estructura de la materia -...

Post on 27-Dec-2019

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Estructura de la materia

2º Bachillerato

2

Indice

1. El átomo. Partículas elementales.

2. Modelo atómico de Rutherford.

3. Modelo atómico de Bohr.

4. Modelo atómico de Bohr-Sommerfeld.

5. Principios de la mecánica cuántica.• Dualidad onda corpúsculo de De Broglie.

• Incertidumbre de Heisenberg.

• Efecto fotoeléctrico.

• Efecto Compton.

6. Modelo ondulatorio de Schrödinger.

3

1. El átomo. Partículas elementales

• ELECTRONES (1897): J.J. Thomson (rayos catódicos) y

R.A. Millikan.

• PROTONES (1918): E. Goldstein (rayos canales) y E.

Rutherford (α).

• NEUTRONES (1932): J. Chadwick (Be+αn+ ...)

La evidencia de la divisibilidad del átomo surge a

mediados del s. XIX estudiando la conductividad de los

gases en tubos de descarga.

Número atómico Z: Z=p

Número másico A: A= p + n

4

P.A.M. Dirac y C.D. Anderson postulan y descubren el

positrón.

El número de partículas y antipartículas no dejo de crecer.

Otras partículas

Tal profusión de partículas llevó a M.

Gell-Mann y G Zweig a desarrollar un

modelo de quarks que postula que los

constituyentes elementales de la

materia son los fermiones (quarks y

leptones).

El protón y neutrón eran hadrones (bariones y mesones).

6 leptones, 6x3 quarks y 12

partículas más para justificar todas

las interacciones conocidas.

- Ampliaciones de Química de 2º de Bachillerato-Capítulo 11

5

2. Modelo atómico de Rutherford

• Antecedentes:

– Descubrimiento de los rayos X por Roentgen en

1895.

– Descubrimiento de la radiactividad por Becquerel en

1896.

– Experimento de Rutherford, 1909.

Un núcleo donde se encuentra prácticamente toda la masa

y la carga positiva del orden de 10-10

m y una corteza

donde orbitan los electrones, cual planetas en torno al Sol,

debido a la interacción electrostática.

• Problemas: El modelo no es estable, toda carga

acelerada emite energía y no era capaz de explicar los

espectros atómicos.

6

3. Modelo atómico de Bohr

• Antecedentes:

– Espectros atómicos: Radiación electromagnética

emitida o absorbida por cuerpos calientes: continuos, de

rayas y bandas.

2 12 2

1 2

1 1 1R siendo n n

n n

R es la constante de Rydberg = 109677,6 cm-1

– Hipótesis de Planck: La radiación electromagnética no

puede ser emitida o absorbida de forma continua, sino

solo en momentos determinados y en cantidades

definidas múltiplos de su frecuencia. E h

h es la constante de Planck = 6,62·10-34

J·s

7

2 2

1 2

7 1

1

Todas las lineas del espectro del átomo de hidrógeno están recogidas en la ecuacion

1 1 1de Rydberg.

donde 1,097 10 es la constante de Rydberg

Serie Zona del espectro valores de n

H

H

k Rn n

R m

2

1 2

1 2

1 2

1 2

1 2

7

9 2 2

2

y n

1 2, 3, 4...

2 3, 4, 5...

3 4, 5, 6...

4 5, 6, 7...

5 6, 7, 8...

1 1 11,097 10

103 10 1

Lyman Ultravioleta n y n

Balmer Visible n y n

Paschen Infrarrojo n y n

Brackett Infrarrojo n y n

Pfund Infrarrojo n y n

n

2 2,95 3

y se trata de la segunda raya de la serie de Lyman

n

Indica que línea de la serie de Lyman aparece a una longitud

de onda de 103 nm.

8

1

A partir de la ecuación de Rydberg se puede determinar la longitud de onda,

y la frecuencia correspondiente a la transición desde el estado fundamental

(n 1) hasta arracarlo completamente del átomo (n 2

7 1

2 2

1 2

7 9

2 2

34

).

1 1 1donde 1,097 10 es la constante de Rydberg

1 1 11,097 10 91,16 10 91,16

1

La energía correspondiente a esta longitud de onda es:

36,62 10

H Hk R R mn n

m nm

cE h h E

8

18

9

18 23 6

102,18 10

91,16 10

La energía de ionización es la energía necesaria para arrancar el electrón

mas debilmente unido a un mol de átomos en estado gaseoso.

2,18 10 6,022 10 1,312 10 /

E J

EI EI J

1318 /mol kJ mol

Calcula la energía de ionización del átomo de hidrógeno.

9

Postulados del modelo de Bohr

• Primer postulado:

Los electrones giran en torno al núcleo en órbitas

estables y sin emitir energía.

2

hm v r n

• Segundo postulado:

Solo son posibles para el electrón aquellas órbitas en que

el momento angular es un numero entero de h/2π.

• Tercer postulado:

Los electrones pueden pasar de una órbita a otra, cuando

esto ocurre se absorbe o emite un cuanto de luz.

2 1E E h

- Ampliaciones de Química de 2º de Bachillerato-Capítulo 3

10

834 18

9

18

La energía correspondiente a esta radiación es:

3 106,62 10 1,589 10

125 10

El Julio la unidad de energía del sistema internacional 1 1

1,589 10

cE h h E E J

J C V

C

19

1

1,6 10

eV

C

9,93 eV

Un electrón excitado del átomo de hidrógeno vuelve a su

estado fundamental tras emitir un fotón cuya longitud de onda

es de 125 nm. Calcula la diferencia de energía en eV entre

los ambos niveles.

11

Valoración del modelo de Bohr

• Aciertos:

– Concuerda exactamente con la fórmula de Balmer y

Rydberg relativa a los espectros de átomo de hidrógeno.

– Permite deducir los radios y las energías de las órbitas del

átomo de hidrógeno que concuerdan con los datos

espectrales.

• Limitaciones:

– Es todavía una mezcla de teorías clásicas y cuánticas.

– Las órbitas deberían ser elípticas y no circulares.

– Solamente es valida para el átomo de hidrógeno e

hidrogenoideos.

– Los avances en espectroscopía dieron lugar a muchas

más rayas que el modelo no podía explicar.

12

4. Modelo de Bohr-Sommerfeld

• Sommerfeld amplió el modelo de Bohr para explicar las

nuevas líneas espectrales.

– Debían existir en una misma capa electrones con niveles

de energía diferentes.

– Supuso que dentro de una misma capa existen distintas

trayectorias, además de la circular, e imaginó para cada

capa principal n subórbitas de las que una era circular y

las otras elípticas. Esto justificaba todas las rayas

espectrales conocidas.

– Precisaba un segundo número cuántico que defina la

subórbita.

• Quedaba por explicar el efecto Zeeman. El desdoblamiento

de las rayas espectrales frente a un campo magnético.

13

5. Principios de la mecánica cuántica

- La luz tiene una naturaleza dual, corpuscular y ondulatoria y

nunca manifiesta estas dos naturalezas simultáneamente.

- El efecto fotoeléctrico y Compton solo tienen explicación

desde el punto de vista corpuscular y fenómenos como la

difracción o la interferencia solo tienen explicación ondulatoria.

- La luz son fotones que se caracterizan por su energía y

cantidad de movimiento y que llevan asociados una onda em.

- De Broglie dio la vuelta al razonamiento y propuso que la

materia también presenta esta dualidad.

- Toda partícula en movimiento lleva asociada una onda

cuya longitud de onda es: h

m v

Principio de dualidad onda corpúsculo de De Broglie.

14

Primero necesitamos conocer la velocidad de este neutrón y la calcularemos

a partir de su energía.

0,16 e191,6 10

1

CV

e

20

202

27

2,56 10

La energía que tiene este neutrón es energía cinética.

1 2 2 2,56 105537,0

2 1,67 10

Toda partícula en movimiento lleva asociada una onda electromagnética,

que según el

n

n

J

Ec mEc m v v v

m s

3411

27

principio de dualidad onda-corpúsculo de De Broglie vale:

6,62 107,16 10

1,67 10 5537,0

hm

mv

Calcula la longitud de onda de un neutrón emitido en un

proceso de fusión, si su energía es de 0,16 eV.

15

- Cuando se pretende realizar alguna medida se está ya

introduciendo una perturbación que modifica el estado del

objeto medido.

Es imposible conocer simultáneamente y con exactitud la

posición y la cantidad de movimiento de una partícula.

2

hx p

Principio de incertidumbre de Heisemberg

- La incertidumbre no deriva de los instrumentos sino del hecho

de medir.

16

Es la capacidad que tienen algunos metales de emitir

electrones al ser sometidos a irradiación de luz de una

determinada frecuencia.

La energía de los electrones emitidos no de pende de la

intensidad de la luz sino de su frecuencia.

- Existe una frecuencia umbral antes de la cual no se produce

efecto fotoeléctrico.

- La energía umbral o función de trabajo es la energía de la

radiación justa para arrancar el electrón del metal

2 2

0

1 1

2 2incidente umbral cinética e e eE E E h W m v h h m v

Efecto fotoeléctrico

- Ampliaciones de Química de 2º de Bachillerato.-Capítulo 4

17

o

834 19

10

La energía de una radiación de 2000A es:

3 106,62 10 9,93 10

2000 10

Que es superior al trabajo de extracción y por tanto se producirá

efecto fotoeléctrico.

La energía con la que s

cE h h

E J

19 19

19

ale el fotoelectrón emitido será la diferencia

entre la energía de la radiación incidente y la de extracción.

9,93 10 8,2 10

1,73 10

incidente umbral cinética cinética

cinética

E E E E

E J

La energía necesaria para arrancar un electrón de un cierto

metal es 8,2·10-19

J ¿Causaría fotoemisión de electrones una

radiación de longitud de onda de 2000 Å? En caso afirmativo,

calcula la energía cinética con la que saldrán los electrones.

18

En 1923, A.H. Compton descubrió que algunos rayos X, al

dispersarse a través de la materia, perdían energía y, su

longitud de onda aumentaba.

0 (1 cos )e

h

m c

Efecto Compton

- Ampliaciones de Química de 2º de Bachillerato-Capítulo 6

19

6. Modelo ondulatorio de Schrödinger

• Werner Heisenberg renunció a describir

físicamente el átomo. Desarrolló un modelo

puramente matemático fundamentado en

una mecánica matricial para describir el

átomo.

• Erwin Schrödinger apoyándose en la

naturaleza ondulatoria de la materia

desarrolló una mecánica ondulatoria.

Modelo de Heiseberg y de Schrödinger

Ambas tienen una equivalencia matemática demostrada.

Aunque la mecánica ondulatoria es más intuitiva.

20

• La llamada ecuación de Schrödinger es una ecuación

diferencial que permite obtener: la función de onda del

electrón, los números cuánticos principal, secundario,

magnético y la función de probabilidad.

2 2 2

2 2 2 2

2( ) 0

mE V

x y z

Ecuación de onda de Schrödinger

- es la llamada función de onda, no tiene

significado físico y se denomina orbital.

- ||2

es la función de probabilidad.

- E es la energía total del electrón.

- V es la energía potencial del electrón.

- Ampliaciones de Química de 2º de Bachillerato-Capítulo 10

21

Al resolver la ecuación de Schrödinger se obtienen ciertas

funciones de onda, , que dependen de tres parámetros o

números cuánticos, n, l y m. El cuarto número cuántico, s,

se obtuvo algo más tarde por Dirac.

Números cuánticos

• Tres números cuánticos (n, l, m), definen un orbital

• Cuatro números cuánticos (n, l, m, s), definen un electrón.

22

• n es el número cuántico principal. Toma valores enteros

de 1 en adelante: n = 1, 2, 3, 4... Está relacionado con el

tamaño del orbital y la energía.

• l es el número cuántico secundario. Toma valores enteros,

para dada n, desde o hasta (n-1): l = 0, 1, 2... (n-1) Está

relacionado con la forma del orbital e influye también en la

energía.

– Si l = 0 el orbital se representa por s

– Si l = 1 el orbital se representa por p

– Si l = 2 el orbital se representa por d

– Si l = 3 el orbital se representa por f

• m es el número cuántico magnético. Toma valores

enteros, para cada l desde –l hasta +l: m= -l, (-l+1)...0...(l-1), +l

Está relacionado la orientación del orbital.

• s es el número cuántico de spin. Puede tomar únicamente

dos valores: s= -1/2 y +1/2 Está relacionado el sentido de giro

del electrón.

23

Niveles, subniveles, orbitales y electrones

n l m s Orbital y

electrones

1 0 0 + ½ y – ½ 1s2

2

0 0 + ½ y – ½ 2s2

1

–1

0

+1

+ ½ y – ½

+ ½ y – ½

+ ½ y – ½

2p6

3

0 0 + ½ y – ½ 3s2

1

–1

0

+1

+ ½ y – ½

+ ½ y – ½

+ ½ y – ½

3p6

2

–2

–1

0

+1

+2

+ ½ y – ½

+ ½ y – ½

+ ½ y – ½

+ ½ y – ½

+ ½ y – ½

3d10

n l m s Orbital y

electrones

4

0 0 + ½ y – ½ 4s2

1

–1

0

+1

+ ½ y – ½

+ ½ y – ½

+ ½ y – ½

4p6

2

–2

–1

0

+1

+2

+ ½ y – ½

+ ½ y – ½

+ ½ y – ½

+ ½ y – ½

+ ½ y – ½

4d10

3

–3

–2

–1

0

+1

+2

+3

+ ½ y – ½

+ ½ y – ½

+ ½ y – ½

+ ½ y – ½

+ ½ y – ½

+ ½ y – ½

+ ½ y – ½

4f14

24

Vivimos en una "nube" de Electrones.

top related