fabricación de fibras de cristal fotonico de nucleo hueco

7
Control of hollow-core photonic bandgap fiber ellipticity by induced lateral tension Gilhwan Kim 1,2 , Taiyong Cho 1 , Kyujin Hwang 1 , Kwanil Lee 1* , Kyung S. Lee 2 , and Sang Bae Lee 1* 1 Photonics Research Team, Korea Institute of Science Technology (KIST), 39-1 Hawolgok-Dong Seongbuk-Ku, Seoul 136-791, Republic of Korea 2 School of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746,  Republic of Korea * Corresponding authors: [email protected] ; [email protected]  Abstract: We describe the fabrication of elliptical hollow-core photonic bandgap fibers (EC-PBGFs). It was shown that the aspect ratio of the hollow core can be controlled by tuning the negative pressure in the space between the intermediate preform cane and outer jacketing tube, and by placing this preform assembly off-center in the furnace, resulting in lateral tension during the final draw. Modal birefringences of fabricated PBGFs with different aspect ratio were measured using a Sagnac loop interferometer . For the elliptical hollow core PBGF with aspect ratio of 2.34, the modal birefringence was measured to be about 4.6 10 -2 at 1,550nm. 2008 Optical Society of America OCIS codes: (060.2280) Fiber design and fabrication; (060.2400) Fiber properties; (120.5790) Sagnac effect. References and links 1. P. St. J. Russsell, “Photonic crystal fibers,” Science 299, 358-362 (2003). 2. J. C. Knight, “Photonic crystal fibers,” Nature 424, 847-851 (2003). 3. A. Ortigosa-Blanch, J. C. Knight, J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett 25, 1325-1327 (2000), http://www.opticsinfobase.org /abstract.cfm?URI=ol -25-18-1325. 4. T. P. Hansen, J. Brong, S. E. B. Libori, E. Knudsen, A . Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-g uiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001). 5. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maint aining photonic crystal fiber,” Opt. Express 9, 676-680 (2001), http://www.opticsinfobase.org /abstract.cfm?URI= oe-9-13-676. 6. J. Ju, W. Jin, M. S. Demokan, “Properties of a highly birefringent photo nic crystal fiber,” IEEE Photon. Technol. Lett. 15, 1375-1377 (2003). 7. P. R. Chaudhuri, V. Paulose, C. Zhao, and C. Lu, “Near-Elliptic core polarization-maintaining photonic crystal fiber: modeling birefringence characteristics and realization,” IEEE Photon. Technol. Lett 16, 1301- 1303 (2004). 8. T. Y. cho, G. H. Kim, K . Lee, S. B. Lee, and J. -M. Jeo ng, “Study on the f abrication process of polarization maintaining photonic crystal fibers and their optical properties,” J. Opt. Soc. Korea 12, 19-24 (2008). 9. N. A. Issa, M. A. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. J. Large, “ Fabrication and study of microstructured optical fibers with elliptical holes,” Opt. Lett 29, 1336-1338 (2004), http://www.opticsinfobase.org /abstract.cfm?URI=ol -29-12-1336. 10. K. Saitoh and M. Koshiba, “Photonic bandgap fibers with high birefringence,” IEEE Photon. Technol. Lett 14. 1291-1293 (2002). 11. M. S. Alam, K. Saitoh, and M. Koshiba, “High group birefringence in air-core photonic bandgap fibers,” Opt. Lett 30, 824-826 (2005), http://www.opticsinfobase.org /abstract.cfm?URI=ol -30-8-824. 12. F. Poletti, N. G. R. Broderick, D. J. Richardson, and T. M. Monro, “The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers,” Opt. Express 13, 9115-9124 (2005), http://www.opticsinfobase.org /abstract.cfm?URI=oe -13-22-9115. 13. G. Bouwmans, F. Luan, J. C. Knight, P. St. J. Russsell, L. Farr, B. J. Mangan, H. Sabert, “Properties of a hollow-core photonic bandgap fibers at 850nm wavelength,” Opt. Express 11, 1613-1620 (2003), http://www.opticsinfobase.org /abstract.cfm?URI=oe -11-14-1613. 14. X. Chen, Ming-Jun. Li, N. Venkataraman, M. T. Gallagher, W. A. Wood, A. M. Crowley, J. P. Carberry, L. A. Zenteno, and K.W. Koch, “Highly birefringent hollow-core photonic bandgap fiber,” Opt. Express 30, 3888-3893 (2005), http://www.opticsinfobase.org/ abstract.cfm?URI=oe-12-16-3888 . #102 096 - $15.00 US D Receiv ed 26 Sep 2 008; rev ised 23 Dec 2008; acc epted 12 J an 2009 ; publis hed 21 Jan 2 009 (C) 2009 OSA 2 February 2009 / Vol. 17, No. 3 / OPTICS EXPRESS 1268

Upload: emmanuel-hernandez

Post on 06-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 3: Fabricación de fibras de cristal fotonico de nucleo hueco

8/3/2019 Fabricación de fibras de cristal fotonico de nucleo hueco

http://slidepdf.com/reader/full/fabricacion-de-fibras-de-cristal-fotonico-de-nucleo-hueco 3/6

Page 4: Fabricación de fibras de cristal fotonico de nucleo hueco

8/3/2019 Fabricación de fibras de cristal fotonico de nucleo hueco

http://slidepdf.com/reader/full/fabricacion-de-fibras-de-cristal-fotonico-de-nucleo-hueco 4/6

Page 5: Fabricación de fibras de cristal fotonico de nucleo hueco

8/3/2019 Fabricación de fibras de cristal fotonico de nucleo hueco

http://slidepdf.com/reader/full/fabricacion-de-fibras-de-cristal-fotonico-de-nucleo-hueco 5/6

Page 6: Fabricación de fibras de cristal fotonico de nucleo hueco

8/3/2019 Fabricación de fibras de cristal fotonico de nucleo hueco

http://slidepdf.com/reader/full/fabricacion-de-fibras-de-cristal-fotonico-de-nucleo-hueco 6/6