entropia energías libres y equilibrio

27
Arredondo Navarro Kathia López Carlón Baltazar Medina García Cecilia Peñuelas Lugo Narda Vázquez Sarabia Itzel I.Q, Rodolfo Gámez Aguilar

Upload: cecymedinagcia

Post on 21-Jan-2018

329 views

Category:

Engineering


2 download

TRANSCRIPT

Page 1: Entropia Energías Libres y Equilibrio

Arredondo Navarro KathiaLópez Carlón BaltazarMedina García Cecilia Peñuelas Lugo NardaVázquez Sarabia Itzel

I.Q, Rodolfo Gámez Aguilar

Page 2: Entropia Energías Libres y Equilibrio

IntroducciónLa termodinámica es una amplia disciplina científica y de grandes alcances, que tiene relación con la

interconversión del calor y otras formas de energía. También permite utilizar la información

obtenida en los experimentos de un sistema para llegar a conclusiones sobre otros aspectos del

mismo sistema, sin tener que hacer más experimentos.

LAS TRES LEYES DE LA TERMODINAMICA:

La primera ley establece que la energía puede convertirse de una forma a otra pero no puede

crearse ni destruirse. Una medida de esos cambios es la cantidad de calor que un sistema libera o

absorbe durante un proceso a presión constante, que se define como cambio de entalpia (∆𝐻).

La segunda ley explica porque los procesos químicos se ven favorecidos en una dirección.

La tercera ley es una extensión de la segunda ley.

Page 3: Entropia Energías Libres y Equilibrio

Uno de los principales objetivos al estudiar termodinámica es predecir si ocurrirá algunareacción bajo condiciones especiales de T, P y concentración de los reactivos.Una reacción que sí ocurre en determinadas condiciones se llama reacción espontánea.Si no ocurre en esas condiciones se dice que es no espontánea.

Ejemplos de ellos: Una cascada de agua cae, pero nunca sube

espontáneamente. El agua se congela de modo espontáneo

debajo de 0ºC y el hielo se funde demanera espontánea por arriba de 0ºC (a 1atm).

El calor fluye de un objeto más caliente aotro más frío, pero el proceso inversonunca ocurre de forma espontánea.

Con esto se muestra que los procesos que ocurren en

forma espontánea en una dirección no pueden ocurrir

de manera espontánea en la dirección opuesta bajo las

mismas condiciones.

Page 4: Entropia Energías Libres y Equilibrio

Se suponía que los procesos espontáneos ocurren para disminuir la energía de un sistema; de manerasemejante, gran número de reacciones exotérmicas son espontáneas, ejemplo de ellos:

𝐶𝑜𝑚𝑏𝑢𝑠𝑡𝑖ó𝑛 𝑑𝑒𝑙 𝑚𝑒𝑡𝑎𝑛𝑜: 𝐶𝐻4𝑔 + 2𝑂2𝑔⟶ 𝐶𝑂2𝑔 + 2𝐻2𝑂 𝑙 ∆𝐻∘ = −890.4𝑘𝐽

𝑚𝑜𝑙

𝑁𝑒𝑢𝑡𝑟𝑎𝑙𝑖𝑧𝑎𝑐𝑖ó𝑛 á𝑐𝑖𝑑𝑜 − 𝑏𝑎𝑠𝑒: 𝐻𝑎𝑐+ + 𝑂𝐻

𝑎𝑐− ⟶𝐻2𝑂 𝑙 ∆𝐻∘ = −56.2

𝑘𝐽

𝑚𝑜𝑙

Sin embargo, si consideramos una transición de fase sólida a líquida:

𝐻2𝑂𝑠⟶𝐻2𝑂𝑙 ∆𝐻∘ = −6.01𝑘𝐽

𝑚𝑜𝑙

En este caso falla la suposición de que los procesos espontáneos siempre disminuyen la energía del sistema.

Este proceso de fundición del hielo es de manera espontánea (por arriba de los 0ºC) a pesar de ser un proceso

endotérmico. Como este ejemplo, podemos encontrar muchos casos más; por lo cual, se llega a la conclusión: el

carácter exotérmico favorece la espontaneidad de una reacción, pero no la garantiza.

Por tal motivo, si hay reacciones que son endotérmicas y son espontáneas, también pueden existir aquellasexotérmicas no espontáneas. Lo cual nos lleva, a que no se pude predecir que una reacción es espontánea sisólo se consideran los cambios de energía del sistema. Para hacer estas predicciones es necesario incluir a laentropía

Page 5: Entropia Energías Libres y Equilibrio

Para predecir la espontaneidad de un proceso es necesario conocer dos cosas: el cambio de entalpíay entropía del sistema.La entropía (S) se describe como una medida de la aleatoriedad o del desorden de un sistema.

𝐴:> 𝑑𝑒𝑠𝑜𝑟𝑑𝑒𝑛,> 𝐸𝑛𝑡𝑟𝑜𝑝í𝑎< 𝑑𝑒𝑠𝑜𝑟𝑑𝑒𝑛,< 𝐸𝑛𝑡𝑟𝑜𝑝í𝑎

Una de las formas en las que conceptualizamos el orden o desorden es en términos de probabilidad.1. Un acontecimiento probable es aquel que pude ocurrir en diversas formas2. Un acontecimiento improbable es el que solo puede suceder en una o pocas formas.

Page 6: Entropia Energías Libres y Equilibrio

Por ejemplo, si suponemos que: En la figura solo existe una molécula; debido a que los dos recipientes tienen volúmenes

iguales, la probabilidad de encontrar la molécula en uno u otro recipiente, una vez abierta la

llave, es la misma, es decir, 1

2.

Si ahora tenemos dos moléculas, la probabilidad de encontrar ambas en el mismo recipiente

después de abrir la llave es: 1

2

1

2=1

4

Con ello, podemos notar que a medida que

aumenta el número de moléculas, la

probabilidad (P) de encontrar todas las

moléculas en un mismo lugar se hace menor.

𝑃 =1

2

1

2

1

2… =

1

2

𝑁

Donde N es el número total de moléculas presentes.

Si N es del orden de 6 × 1023, el número de moléculas en 1 mol de gas, la probabilidad se

convertiría en:

1

2

6×1023

Que es un número tan pequeño, que acostumbramos considerar como 0.

Entonces, con base a las consideraciones de probabilidad, se espera que el gas llene ambos recipientes de forma equitativa y espontánea

Page 7: Entropia Energías Libres y Equilibrio

En cambio, para el segundo caso la situación descrita es no espontánea, ya que es algo muy improbable.

Un estado ordenado tiene baja posibilidad de ocurrir y baja entropía; y en tanto, un estado desordenado tiene alta probabilidad de ocurrir y

una entropía grande.

Page 8: Entropia Energías Libres y Equilibrio

La probabilidad es útil para predecir la dirección de los procesos espontáneos.Para poder llegar a definir apropiadamente a la entropía es necesario que abordemosprimero los microestados, los cual se hará mediante un ejemplo.

Considerando un sistema simple de cuatro moléculas

distribuidas en dos compartimientos iguales. Tenemos que:

Hay solo una forma de distribuir todas las moléculas en el

compartimiento izquierdo.

Hay cuatro formas de tener tres moléculas en el

compartimiento izquierdo y una en el derecho

Tenemos seis formas de tener dos moléculas en cada uno de

los compartimientos

A las once maneras posibles de distribuir las moléculas se les

denomina estados microscópicos o microestados, y cada

conjunto de microestados similares, se define como

distribución.

Concluimos que la probabilidad de que ocurra una

distribución en especial (estado) depende del número de

maneras (microestados) por medio de los cuales se puede

alcanzar la distribución.

Page 9: Entropia Energías Libres y Equilibrio

Boltzmann (1868), demostró que: la entropía del sistema se relaciona con el logaritmo natural del número de microestados (W):

𝑆 = 𝑘 · ln𝑊 𝑘 = 𝑐𝑡𝑒 𝑑𝑒 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛 1.38 × 10−23𝐽

𝐾

A mayor W, mayor entropía del sistema.

Y considerando a la entropía una función de estado, el cambio en entropía ∆𝑆, es:

∆𝑆 = ∆𝑆𝑓 − ∆𝑆𝑖 = 𝑘 · ln𝑊𝑓 − 𝑘 · ln𝑊𝑖 = 𝑘 · ln𝑊𝑓

𝑊𝑖Donde Wi y Wf son los números correspondientes de microestados en su estado inicial y final. Así, si: 𝑊𝑓 > 𝑊𝑖 , ∆𝑆 > 0 y la entropía aumenta.

Page 10: Entropia Energías Libres y Equilibrio

Usualmente definíamos entropía como una medida de la aleatoriedad o desorden, pero es preferible ver el

cambio de entropía de un sistema en términos del cambio del número de microestados del sistema.

En un sólido (átomos fijos) el número de microestados es muy

pequeño.

Al fundirse estos átomos el número de microestados aumenta, puesto

que existe muchas formas en que pueden ordenarse las partículas.

Al realizarse una vaporización, también se implica un incremento del

número de microestados, pues en esta fase, el espacio entre moléculas

es mayor e implica mayor número de estados.

Otro factor que puede aumentar la entropía del sistema es elcalentamiento. Con ello queremos decir que a mayor temperatura,mayor cantidad de microestados disponibles, por tal motivo, laentropía de un sistema aumenta siempre con el incremento detemperatura.

Page 11: Entropia Energías Libres y Equilibrio

Ej. Cuando un sólido iónico de NaCl se disuelve en agua, hay dos factores quecontribuyen al incremento de entropía:

𝑁𝑎𝐶𝑙𝑠

𝐻2𝑂𝑁𝑎𝑎𝑐+ + 𝐶𝑙𝑎𝑐

1. El procesos de disolución: mezcla de soluto y disolvente2. Disociación del compuesto en ionesEsto se debe a que a mayor número de partículas mayor número de microestados.

Sin embargo, se debe considerar la hidratación, que provoca que las moléculas de aguase ordenen más en torno a los iones. Lo cual provoca que disminuya la entropía debido aque reduce el número de microestados de las moléculas del disolvente.

Page 12: Entropia Energías Libres y Equilibrio

A pesar de la gran utilidad que nos brinda la ecuación: 𝑆 = 𝑘 · ln𝑊, no seacostumbra utilizar por la dificultad para determinar los microestados en unsistema macroscópico. En vez de ello, la entropía se obtiene mediante métodoscalorimétricos.Puesto que es posible determinar el valor absoluto de la entropía de la sustancia(llamada entropía absoluta), podemos obtener valores ya calculados de entropía.

La entropía estándar es la entropía absoluta de una sustancia a 1atm y 25ºC.Cabe destacar que tanto la entropía estándar para elementos como paracompuestos son positivas, (∆𝑆∘ > 0); caso contrario con la entalpía estándar deformación que se denota un cero para los elementos en su forma más estable, ypara los compuestos puede ser positiva o negativa

Page 13: Entropia Energías Libres y Equilibrio

Aclarando: Como ya se vio, para el agua líquida se tiene menor entropía que el vapor de

agua, para el yodo tenemos la misma relación, tiene mayor entropía el vaporque el líquido.

Para las sustancias diferentes que se encuentran en la misa fase, lacomplejidad molecular determina cual tendrá mayores valores de entropía: ej.El diamante y el grafito son sólidos, pero el diamante tiene una estructura másordenada y con ello menor cantidad de microestados, por lo cual el diamantees menos entrópico que el grafito.

Los átomos más pesados más microestados asociados a que se presenta unadistribución mayor de la energía

Page 14: Entropia Energías Libres y Equilibrio

Para un proceso espontáneo:

(∆Suniverso) = (∆Ssistema) + (∆Salrededores) > 0

Para un proceso en equilibrio:

(∆Suniverso) - (∆Ssistema) + (∆Salrededores) - 0

Debido a que el universo está constituido por el sistemay su entorno, el cambio de entropía del universo(∆Suniverso) en cualquier proceso es la suma de loscambios de entropía del sistema (∆Ssistema) y de susalrededores (∆Salrededores) y se puede expresar:

“La entropía del universo aumenta en un proceso

espontáneo y se mantiene constante en un proceso

que se encuentra en equilibrio.”

La conexión entre la entropía y la espontaneidad

de una reacción queda expresada en la segunda ley de la termodinámica como:

Page 15: Entropia Energías Libres y Equilibrio

Para calcular (∆Ssistema) suponemos que el sistema se representa por la siguiente reacción:

aA + bB cC + dD

La entropía estándar de una reacción ∆S°reacción está dada por la diferencia en entropías estándar entre productos y reactivos:

∆S°reacción = [cS°(C) + dS°(D)] - [aS°(A) + bS°(B)]

o, en general, para representar la sumatoria y m y n para los coeficientes estequiométricos de la reacción,

∆S°reacción = ΣnS°(productos) - ΣmS°(reactivos)

Page 16: Entropia Energías Libres y Equilibrio

EjemploA partir de los valores de entropía absoluta que se encuentran en el apéndice 3,

calcule los cambios de entropía estándar de la siguiente reaccione a 25°C.

a) CaCO3 (s)CaO

(s)+ CO2 (g)

• Solución

∆S°reacción = [cS°(C) + dS°(D)] - [aS°(A) + bS°(B)]

∆S°reacción = [S°(CaO) + S°(C02)] - [S°(CaC03)]

∆S°reacción = [(39.8 J/K· mol) + (213.6 J/K· mol)] - (92.9 J/K · mol)

∆S°reacción = 160.5 J/K· mol

Del Apéndice 3 S° (J/K . mol)

CaC03 (s) 92.9

CaO(s) 39.8

CO2(g) 213.6

Page 17: Entropia Energías Libres y Equilibrio

• Si una reacción produce más moléculas de gas que las que consume ∆S° es

positivo.

• Si el número total de moléculas de gas disminuye ∆S° es negativo

• Si no hay cambio neto en el número total de moléculas del gas, entonces ∆S° puede

ser positivo o negativo, pero su valor numérico será relativamente pequeño.

Estas conclusiones tienen sentido, ya que los gases siempre tienen mayor entropía

que los líquidos y que los sólidos. Para reacciones que sólo implican líquidos y

sólidos, la predicción del signo de ∆S° es más difícil; pero en muchos casos, un

aumento en el número total de moléculas o de iones del sistema va acompañado

de un incremento de entropía.

Page 18: Entropia Energías Libres y Equilibrio

El cambio de entropía para determinada cantidad de calor absorbido depende de la

temperatura:

• Si la temperatura de los alrededores es alta: el incremento en la entropía será pequeño.

• Si la temperatura de los alrededores es baja: el incremento en la entropía será mayor.

Y Para los procesos a presión constante, el cambio de calor es igual al cambio de

entalpía del sistema, ∆H sistema. Por ello, el cambio de entropía de los alrededores, ∆S

alrededor es proporcional a ∆H sistema:

∆Salrededores∝ - ∆Hsistema

Page 19: Entropia Energías Libres y Equilibrio

Considerando una sustancia cristalina perfecta en el cero absoluto (0 K). En estas

condiciones, los movimientos moleculares son mínimos y el número de

microestados (W) es uno. Y de acuerdo con la tercera ley de la termodinámica, la

entropía de una sustancia cristalina perfecta es cero a la temperatura del cero

absoluto.

• A medida que la temperatura aumenta la libertad de movimiento se incrementa y

también el número de microestados. Así, la entropía de cualquier sustancia a

temperatura superior a O K es mayor que cero.

• Y si el cristal es impuro o tiene defectos, su entropía es mayor que cero incluso a

O K porque no está perfectamente ordenado y el número de microestados

tendría que ser mayor que uno.

Page 20: Entropia Energías Libres y Equilibrio

• El punto importante acerca de la tercera ley de la

termodinámica es que permite determinar la entropía absoluta

de las sustancias. A partir del conocimiento de que la entropía

de una sustancia cristalina pura es cero en el cero absoluto, es

posible medir el incremento de entropía de una sustancia

cuando se calienta de O K hasta, por ejemplo, 298 K.

• El cambio de entropía, ∆S está dado por:

∆S = Sf – Si . por lo tanto ∆S = Sf debido a que Si es cero.

• Las mediciones se realizan a 1 atm, por lo regular las entropías

absolutas se presentan como entropías estándar. En contraste,

no se puede obtener la energía o la entalpía absoluta de una

sustancia porque el cero de energía o entalpía está indefinido.

Page 21: Entropia Energías Libres y Equilibrio

La segunda ley de la termodinámica indica que una reacción

espontánea hace que la entropía del universo se incremente; es decir,

∆𝑆𝑢𝑛𝑖𝑣 > 0 Para determinar el signo de ∆𝑆𝑢𝑛𝑖𝑣 cuando ocurre una

reacción, es necesario calcular tanto ∆𝑆𝑠𝑖𝑠𝑡 como ∆𝑆𝑎𝑙𝑟𝑒𝑑. Sin embargo,

por lo general sólo interesa lo que ocurre en un sistema en particular.

Por esta razón es deseable tener otra función termodinámica que ayude

a determinar si una reacción ocurrirá espontáneamente si sólo se

considera al sistema mismo.

Page 22: Entropia Energías Libres y Equilibrio

Se sabe que para un proceso espontáneo, se tiene:

∆𝑆𝑢𝑛𝑖𝑣 = ∆𝑆𝑠𝑖𝑠𝑡 + ∆𝑆𝑎𝑙𝑟𝑒𝑑 > 0

Al sustituir− ∆𝐻𝑠𝑖𝑠𝑡𝑇 por ∆𝑆𝑎𝑙𝑟𝑒𝑑 , se escribe:

∆𝑆𝑢𝑛𝑖𝑣 = ∆𝑆𝑠𝑖𝑠𝑡 −∆𝐻𝑠𝑖𝑠𝑡𝑇> 0

Al multiplicar ambos lados de la ecuación por T se obtiene:

𝑇∆𝑆𝑢𝑛𝑖𝑣 = −∆𝐻𝑠𝑖𝑠𝑡 + 𝑇∆𝑆𝑠𝑖𝑠𝑡 > 0

Por conveniencia, se cambia la ecuación anterior multiplicándola por -1 y el signo > se

remplaza por <:

−𝑇∆𝑆𝑢𝑛𝑖𝑣 = ∆𝐻𝑠𝑖𝑠𝑡 − 𝑇∆𝑆𝑠𝑖𝑠𝑡 < 0

Page 23: Entropia Energías Libres y Equilibrio

A fin de determinar la espontaneidad de una reacción de manera más directa, se utiliza

otra función termodinámica denominada energía libre de Gibbs (G), o solo energía

libre:

𝐺 = 𝐻 − 𝑇𝑆

Todas las cantidades de la ecuación son propiedades del sistema, y T es su

temperatura. Note que G tiene unidades de energía (tanto H como TS tienen unidades

de energía). Igual que H y S, G es una función de estado.

El cambio de energía libre (∆𝐺) de un sistema para un proceso a temperatura

constante es:

∆𝐺 = ∆𝐻 − 𝑇∆𝑆

Page 24: Entropia Energías Libres y Equilibrio

Ahora es posible resumir las condiciones para la espontaneidad y el

equilibrio a temperatura y presión constantes en términos de (∆𝐺) como

sigue:

∆𝑮 < 𝟎 La reacción es espontanea de la dirección directa.

∆𝑮 > 𝟎 La reacción es no espontanea. La reacción es espontanea en la

dirección apuesta.

∆𝑮 = 𝟎 El sistema está en equilibrio. No hay un cambio neto.

Page 25: Entropia Energías Libres y Equilibrio

La energía libre estándar de reacción (∆𝑮°𝒓𝒆𝒂𝒄𝒄𝒊ó𝒏) es el cambio de energía libre en una reacción cuando

se lleva a cabo en condiciones estándar, cuando los reactivos en su estado estándar se convierten en

productos en su estado estándar. Para calcular ∆𝑮°𝒓𝒆𝒂𝒄𝒄𝒊ó𝒏 se empieza con la siguiente ecuación:

𝒂𝑨 + 𝒃𝑩 → 𝒄𝑪 + 𝒅𝑫

El cambio de energía libre estándar para esta reacción está dada por:

∆𝑮°𝒓𝒆𝒂𝒄𝒄𝒊ó𝒏 = 𝒄∆𝑮°𝒇 𝑪 + 𝒅∆𝑮°𝒇 𝑫 − [𝒂∆𝑮°𝒇 𝑨 + 𝒃∆𝑮°𝒇 𝑩 ]

O, en general:

∆𝑮°𝒓𝒆𝒂𝒄𝒄𝒊ó𝒏 = 𝒏∆𝑮°𝒇 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒐𝒔 − 𝒎∆𝑮°𝒇 𝒓𝒆𝒂𝒄𝒕𝒊𝒗𝒐𝒔

Donde m y n son los coeficientes estequiométricos. El término ~G ~ es la energía libre estándar de

formación de un compuesto, es decir, es el cambio de energía libre que ocurre cuando se sintetiza 1 mol

del compuesto a partir de sus elementos que se encuentran en estado estándar

Page 26: Entropia Energías Libres y Equilibrio

Muchas reacciones bioquímicas tienen valor positivo de ∆G°; sin embargo, son esenciales para la vida. En lossistemas vivos estas reacciones están acopladas con algún proceso energéticamente favorable, que tiene unvalor negativo de ∆G°. El principio de reacciones acopladas se basa en un concepto sencillo: se puede utilizaruna reacción favorable termodinámicamente para producir otra reacción no favorable

Las reacciones acopladas tienen un papel primordial en la supervivencia dela raza humana. En los sistemas biológicos, las enzimas facilitan una grancantidad de reacciones que son no espontáneas.

𝐶6𝐻12𝑂 )6(𝑠 + 6𝑂 )2(𝑔 ⟶ 6𝐶𝑂2 𝑔 + 6𝐻𝑠𝑂 𝑙 ∆𝐺° = −2888 𝐾 𝐽 𝑚 𝑜𝑙

En una célula viva esta reacción no procede en una sola etapa (como sucedería al quemar glucosa en una flama); con la participación de las enzimas la molécula de glucosa se rompe en una serie de etapas. Gran parte de la energía libre que se libera durante el proceso se utiliza para formar trifosfato de adenosina (ATP) a partir de difosfato de adenosina (ADP) y ácido fosfórico

𝐴𝐷𝑃 + 𝐻3𝑃𝑂4⟶ 𝐴𝑇𝑃 + 𝐻2𝑂 ∆𝐺° = +31𝐾 𝐽 𝑚 𝑜𝑙

Page 27: Entropia Energías Libres y Equilibrio

𝐴𝑇𝑃 + 𝐻2𝑂 ⟶ 𝐴𝐷𝑃 + 𝐻3𝑃𝑂4 ∆𝐺° = −31𝐾 𝐽 𝑚 𝑜𝑙

Las proteínas son polímeros formados por aminoácidos. Lospasos para la síntesis de una molécula de proteína incluyenla unión de aminoácidos individuales. Considere laformación del dipéptido (una unidad formada por dosaminoácidos) alanilglicina a partir de alanina y glicina.

𝐴𝑙𝑎𝑛𝑖𝑛𝑎 + 𝐺𝑙𝑖𝑐𝑖𝑛𝑎 ⟶ 𝐴𝑙𝑎𝑛𝑖𝑙𝑔𝑙𝑖𝑐𝑖𝑛𝑎 ∆𝐺° = +29 𝐾 𝐽 𝑚 𝑜𝑙

𝐴𝑇𝑃 + 𝐻2𝑂 + 𝐴𝑙𝑎𝑛𝑖𝑛𝑎 + 𝐺𝑙𝑖𝑐𝑖𝑛𝑎 ⟶ 𝐴𝐷𝑃 + 𝐻3𝑃𝑂4 + 𝐴𝑙𝑎𝑛𝑖𝑙𝑔𝑙𝑖𝑐𝑖𝑛𝑎 ∆𝐺° = −2 𝐾 𝐽 𝑚 𝑜𝑙

La reacción acoplada es espontánea, yen estas condiciones se formará unacantidad apreciable de alanilglicina

La conversión entre ATP-ADP que actúa comoalmacenamiento de energía (del metabolismo) yliberación de energía libre (de la hidrólisis delATP) para que ocurran las reacciones esenciales.