producción fitasa por aspergillus ficuum mediante ssf en torta canola

6
8/13/2019 Producción Fitasa Por Aspergillus ficuum Mediante SSF en Torta Canola http://slidepdf.com/reader/full/produccion-fitasa-por-aspergillus-ficuum-mediante-ssf-en-torta-canola 1/6 ELSEVIER 0960-8524 95)00041-0 ioresource Technology 53 (1995) 7-12 Elsevier Science Limited Printed in Great Britain 0960-8524/95/ 9.50 PRODUCTION OF PHYTASE DURING SOLID STATE FERMENTATION USING S P E R G I L L U S FICUUM NRRL 3 35 IN CANOLA MEAL A. Ebune, S. AI-Asheh Z. Duvnjak* Department of Chemical Engineering, University of Ottawa, Ottawa, Ontario, Canada, KIN 6N5 (Received 8 November 1994; revised version received 8 March 1995; accepted 10 March 1995) bstract Effects of moisture content of media, inoculum age and homogenization on production of phytase and reduction of phytic acid content in canola meal by Aspergillus ficuum NRRL 3135 during static solid- state fermentation (SSF) have been considered. Optimum moisture content of media for these pro- cesses was 64 . Rate of phytase production increased with an increase in inoculum age between 2 and 5 days. Both the level and the rate of phytase production were lower in initial stages of SSF when inoculum was homogenized for longer periods of time, while after 36 h of the process an increase in phytase production was noticed with an increase in homogenization time. Mathematical correlations of phytase activity and phytic acid content reduction with moisture content and with time of homogenization of inoculum are pro- posed in this work. Key words: Phytase, solid-state fermentation, phytate, canola meal, Aspergillus ficuum . INTRODUCTION Canola meal, which is a by-product of canola-oil processing, is a good source of protein for animals; it contains 37-40 protein with a more favorable pattern of essential amino acids than soybean meal (Clandinin, 1986). Canola meal contains about 4-6 phytic acid. Phytic acid reduces bioavailability of dietary mineral elements (Ford et al., 1978) and inhibits enzymes such as a-amylase (Sharma et al., 1978), trypsin, tyr- osinase and pepsin (Graf, 1986). Therefore, it is necessary to reduce phytic acid content in canola meal, in order to enhance its value. Phytase is a phosphomonoesterase capable of hydrolyzing phytic acid to yield inorganic orthophos- *Author to whom correspondence should be addressed. phate and a series of lower esters of myo-inositol and, ultimately, free myo-inositol (Irving & Cos- grove, 1972). This enzyme is widely distributed in plants, animal tissues and many species of fungi and bacteria (Cosgrove, 1966). This enzyme releases inorganic phosphates from phytic acid in seeds that have inherent phytase, e.g. beans (Chang et al., 1977), cotton seeds, soybean (Han et al., 1987) and wheat (Peers, 1953). However, there are seeds, such as canola, that contain considerable quantities of phytic acid, but do not have phytase; hence, other means of reducing phytic acid content are necessary. Rackis (1974) reported that autoclaving of soy isolate for 4 h at 115°C destroyed most of the phytic acid in this material. In the cotyledon, phytic acid was reduced to values of 32-68 and 18-68 during roasting and autoclaving, respectively (Hussain et al., 1989). Unfortunately, these methods are not suitable, due to amino acid destruction. Phytic acid was also reduced from rapeseed flour using various amounts of ethylenediamine-tetra acetic acid (0.25-0.75 M) at pH 9-0, and CaCI2 (0.25-0.75 M) at pH 3-5, but nitrogen losses were observed. In order to avoid the mentioned disadvantages, microbial enzymes can be used for reduction of phy- tic acid content in these commodities. Several microorganisms were tested for their abil- ity to produce phytase; one of the most efficient was Aspergillus ficuum (Shieh & Ware, 1968). This microorganism was used in a study of the reduction of phytic acid content in canola meal in solid-state fermentation (Nair & Duvnjak, 1990). In this work the effect of inoculum age, its con- centration and homogenization, and the moisture content of canola meal medium on phytase produc- tion using A. ficuum in an SSF process was studied. In addition, mathematical models were given that relate the phytase production and reduction of phy- tic acid content with the moisture content level and the time of inoculum homogenization.

Upload: marcelo-torres

Post on 04-Jun-2018

224 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Producción Fitasa Por Aspergillus ficuum Mediante SSF en Torta Canola

8/13/2019 Producción Fitasa Por Aspergillus ficuum Mediante SSF en Torta Canola

http://slidepdf.com/reader/full/produccion-fitasa-por-aspergillus-ficuum-mediante-ssf-en-torta-canola 1/6

E L S E V I E R0 9 6 0 - 8 5 2 4 9 5 ) 0 0 0 4 1 - 0

ioresource Technology 5 3 ( 1 9 9 5) 7 - 1 2E l se v i e r S c i e nc e L im i t e dP r in t e d i n Gr e a t B r i t a in

0960-8524/95/ 9.50

P R O D U C T I O N O F P H Y T A S E D U R I N G S O L ID S T A T E

F E R M E N T A T I O N U S I N G SP E RG I L L U S F I C U U M N R R L 3 3 5

I N C A N O L A M E A L

A. Ebune, S. AI-Ash eh Z. Duvnjak*

Department of Chemical Engineering, University o f O ttawa, Ottawa, Ontario, Canada, KI N 6N5

(Received 8 N ovem ber 1994; revised version received 8 March 1995; accepted 10 March 1995)

bs t ra c t

Ef fect s o f mois ture content o f media , inoculum age

and hom ogen i z a ti on on p r oduc t i on o f phy t a s e and

reduct ion o f phyt ic acid con tent in canola me al byAs perg i l l u s f i cuum NRRL 3135 dur ing s ta t ic so l id-

state fermentat ion (SSF) have been considered.

Op t i m um mo i s tu r e con t en t o f med i a f o r t hese p r o -

cesses was 64 . Rate o f phytase produc t ion increased

wi th an increase in inoculum age between 2 and 5

days. B oth the level and the ra te o f phytase product ion

were lower in in i tia l s tages o f SSF when inoculu m was

homogenized for longer per iods o f t ime, whi le a f ter

36 h o f the process an increase in phytase product ionwas noticed with an increase in homogenizat ion t ime.

M athe ma tical correlat ions o f phy tase act ivi ty an d

phyt ic acid content reduct ion wi th mois ture content

and w i t h ti me o f homogen i z a ti on o f i nocu l um are p r o -

posed in this work.

Key words: P hy t as e , s o l i d - s t a t e f e rm en t a t i on , phy t a t e ,

c a n o l a m e a l , Aspergi llus f i cu um .

I N T R O D U C T I O N

C ano l a m ea l , wh i ch i s a by -p roduc t o f cano l a -o i lp roces s i ng , i s a good s ou rce o f p ro t e i n fo r an i m a l s ;

i t c o n t a i n s 3 7 - 4 0 p r o t e i n w i t h a m o r e f a v o r ab l e

p a t t e r n o f e s s e n t i a l a m i n o a c i d s t h a n s o y b e a n m e a l

(Clandin in , 1986) .

C a n o l a m e a l c o n t a i n s a b o u t 4 - 6 p h y t ic a c id .

P hy t i c ac i d r educ es b i oava i l ab il i ty o f d i e t a ry m i ne ra l

e l e m e n t s ( F o r d et al., 1978) and i nh i b i t s enzym es

s uch as a - am y l as e (S harm a et al., 1978), t rypsin, tyr-

o s i nas e and peps i n (Gra f , 1986 ) . There fo re , i t i sn e c e s s a r y t o r e d u c e p h y t i c a c i d c o n t e n t i n c a n o l a

m ea l , i n o rde r t o enhance i t s va l ue .

P h y t a s e is a p h o s p h o m o n o e s t e r a s e c a p a b l e o fhyd ro l yz i ng phy t i c ac i d t o y i e l d i no rgan i c o r t hophos -

*Au thor to w hom corre sponde nce should be addressed.

pha t e and a s e r i e s o f l ower e s t e r s o f m yo- i nos i t o l

and , u l t im a t e l y , f r ee m yo- i nos i t o l ( I rv i ng & C os -

grove, 1972) . This enzyme i s widely d i s t r ibuted in

p l an t s , an i m a l t i s s ues and m any s pec i es o f fung i and

bac t e r i a (C os g rove , 1966 ) . Th i s enzym e re l eas es

i n o r g a n ic p h o s p h a t e s f r o m p h y t ic a c i d i n s e e d s t h a t

have i nhe ren t phy t as e , e . g . beans (C hang et al.,

1977) , co t t on s eeds , s oybean (Han et al., 1987) and

wheat (Peers , 1953) .

However , t he re a re s eeds , s uch as cano l a , t ha t

con t a i n co ns i de rab l e qu an t i t i e s o f phy t ic ac id , bu t do

n o t h a v e p h y t a s e ; h e n c e , o t h e r m e a n s o f r e d u c i n g

phy t i c ac i d con t en t a r e neces s a ry . R ack i s (1974 )repo r t ed t ha t au t oc l av i ng o f s oy is o l a t e fo r 4 h a t

115° C des t royed m os t o f t he phy t i c ac i d i n t h i s

m a t e r i a l . I n t he co t y l edon , phy t i c ac i d was r educed

t o v a l u e s o f 3 2 - 6 8 a n d 1 8 - 6 8 d u r i n g r o a s t in g

and au t oc l av i ng , r e s pec t i ve l y (Hus s a i n et al., 1989).

U n f o r t u n a t e l y , t h e s e m e t h o d s a r e n o t s u i t a b l e , d u e

t o am i no ac i d des t ruc t i on . P hy t i c ac i d was a l s o

r e d u c e d f r o m r a p e s e e d f l o u r u s i n g v a r i o u s a m o u n t s

o f e t hy l ened i am i ne- t e t r a ace t i c ac i d (0 .25 -0 .75 M) a t

pH 9 -0 , and C aC I2 (0 .25 -0 .75 M) a t pH 3 -5 , bu t

n i t rogen l o s s es we re obs e rved .

I n o r d e r t o a v o i d t h e m e n t i o n e d d i s a d v a n t a g e s ,m i c r o b ia l e n z y m e s c a n b e u s e d f o r r e d u c t i o n o f p h y -

t i c ac i d con t en t i n t hes e com m od i t i e s .

S evera l m i c roo rgan i s m s we re t e s t ed fo r t he i r ab il -

i ty t o p rod uce phy t as e ; one o f t he m os t e f f i c ien t was

Aspergil lus f icuum (S h i eh & Ware , 1968 ) . Th i s

m i c r o o r g a n i s m w a s u s e d i n a s t u d y o f t h e r e d u c t i o n

o f phy t i c ac i d con t en t i n cano l a m ea l i n s o l i d - s t a t e

fe rm en t a t i on (Na i r & Duvn j ak , 1990 ) .

In t h i s work t he e f f ec t o f i nocu l um age , i t s con -

c e n t r a t i o n a n d h o m o g e n i z a t i o n , a n d t h e m o i s t u r e

c o n t e n t o f c a n o l a m e a l m e d i u m o n p h y t a s e p r o d u c -

t i on u s i ng A . f i c u u m i n an S S F p roces s was s t ud i ed .I n a d d i t io n , m a t h e m a t i c a l m o d e l s w e r e g i v e n t h a t

r e l a te t h e p h y t a s e p r o d u c t i o n a n d r e d u c t i o n o f p h y -

t ic a c i d c o n t e n t w i th t h e m o i s t u r e c o n t e n t l e v e l a n d

t h e t i m e o f i n o c u l u m h o m o g e n i z a t i o n .

Page 2: Producción Fitasa Por Aspergillus ficuum Mediante SSF en Torta Canola

8/13/2019 Producción Fitasa Por Aspergillus ficuum Mediante SSF en Torta Canola

http://slidepdf.com/reader/full/produccion-fitasa-por-aspergillus-ficuum-mediante-ssf-en-torta-canola 2/6

8 A. Eb une S. Al-Asheh Z. Duvnjak

M E T H O D S

M ic r oor gan i sm m e d ia an d c on d i t ion s o f gr ow t h

Aspergillus ficuu m N R R L 3 13 5 w a s u s e d i n t h is w o r k

a s a p r o d u c e r o f p h y t a s e . T h e m i c r o o r g a n i s m w a s

m a i n t a i n e d o n a s o li d m e d i u m c o m p o s e d o f 4 .5 %

ma l t a g a r , 0 . 5 % g lu c o s e , 0 . 5 % y e a s t e x t r a c t a n d d i s -t i l le d w a t e r . T h e m e d i u m w a s s t e r i l i z e d a t 1 1 5° C f o r

1 5 m i n , i n o c u l a t e d a f t e r c o o l i n g a n d i n c u b a t e d a t

3 0 ° C . A f t e r t h e t h i r d o r f o u r th d a y , s p o r e s w e r e

f o r m e d . T h e s l a n t s w e r e s t o r e d a t 4 ° C f o r f u r t h e r

us e .

Aspergillus ficuu m w a s f o u n d t o g r o w w e l l o n a

r o t a r y s h a k e r ( 2 0 0 r p m) a t 3 0 °C in t h e f o r m o f p e l -

l e ts i n a li q u id m e d i u m , c o m p o s e d o f 0 -8 % n u t r i e n t

b r o th , 0 5 % g lu c o s e , 0 . 5 % y e a s t e x t r a c t , a n d d i s t i l l e d

w a t e r . A f t e r g r o w t h , t h e c u l t u r e w a s h o m o g e n i z e d

( b e t w e e n 3 0 - 1 2 0 s ) a n d u s e d a s t h e i n o c u l u m f o r

th e S S F p r o c e s s .

F i f t y g r a m s o f c a n o l a m e a l a n d 5 0 m l o f d i s t i l l e d

w a t e r ( u n l e s s o t h e r w i s e s t a t e d ) w e r e p u t i n 5 0 0 m l

E r l e n m e y e r f l as k s a n d a u to c l a v e d a t 1 2 1 °C f o r 45

min . T h e f l a s k s w e r e t h e n a l l o w e d t o c o o l , i n o c u -

l a t e d w i t h h o m o g e n i z e d i n o c u l u m a n d i n c u b a t e d

s t a t i c a l l y a t 3 0 ° C . A l l t h e t e s t s w e r e c a r r i e d o u t i n

d u p l i c a t e , a n d t h e r e s u l t s s h o w n a r e a v e r a g e v a lu e s .

A n alys is o f sam p le s

Enzyme preparation and assa y procedure. E n z y m e

a ct iv it y an d a m o u n t o f e n z y m e p r o d u c e d w e r e d e t e r -

m i n e d i n t h e c r u d e e n z y m e e x t ra c t e d f ro m c a n o l a

m e a l c u l t u r e d u r i n g t h e f e r m e n t a t i o n p r o c e s s .F iv e mi l l i l i t e r s o f a 2 % a q u e o u s s o lu t i o n o f

C a C 1 2 . 2 H 2 0 w e r e u s e d f o r e x t r a c t i o n o f p h y t a s e

f r o m a 1 g s a m p l e b y c o n t i n u o u s s h a k i n g o n a r o t a r y

s h a k e r ( 2 0 0 r p m ) f o r 1 h a t 2 5 ° C . T h e l i q u id w a s

s q u e e z e d o u t t h r o u g h d o u b l e - l a y e r c h e e s e - c l o t h a n d

c e n t r i f u g e d ( 5 0 0 0 g ; 1 5 min ; 4 ° C ). T h e c l e a r s u p e r -

n a t a n t w a s d e s i g n a t e d t h e c r u d e e n z y m e .

P h y t a s e a c ti v it y w a s a s s a y e d b y m e a s u r i n g t h e

a m o u n t o f p h o s p h o r u s r e l e a s e d b y u s in g s o d i u m

p h y t a t e a s t h e s u b s t r a t e . A r e a c t i o n m i x t u r e c o n -

s i s t e d o f 0 2 M a c e t a t e b u f f e r ( p H 4 . 7) , 1 ml o f 1 .5

m M s o d i u m p h y t a t e a n d 0 1 m l o f c r u d e e n z y m e .T h e r e a c t i o n s w e r e c a r r i e d o u t a t 6 0° C f o r 1 0 m i n ,

a n d t h e n s t o p p e d b y a d d i n g 5 m l o f 1 0 % t r i c h lo r o

a c e t i c a c id . S p e c t r o p h o t o m e t r i c d e t e r m i n a t i o n o f t h e

p h o s p h o r u s r e l e a s e d w a s c o n d u c t e d u s i n g T a u s s k y -

S c h o o r r e a g e n t , a s d e s c r i b e d b y H a r l a n d a n d

H a r l a n d ( 1 9 8 0 ) .

O n e u n i t o f p h y t a s e a c ti v it y w a s d e f i n e d a s t h e

a m o u n t o f p h y t a s e r e q u i r e d t o r e l e a s e 1 m g o f p h o s -

p h o r u s f r o m 1 m l o f 1 .5 m M s o d i u m p h y t a t e p e r

h o u r a t a g i v e n t e m p e r a t u r e a n d p H .

Phytic acid. A p p r o x i m a t e l y 3 g o f s a m p l e s w e r e

t a k e n i n 1 5 0 m l E r l e n m e y e r f la s ks , a n d p h y t i c ac i dw a s e x t r a c t e d u s in g 5 0 m l o f 2 .4 % H C I u n d e r c o n -

t i n u o u s s h a k i n g ( 2 00 r p m ) f o r 1 h . A f t e r c e n t r i fu g i n g

( 6 0 0 0 g , 1 5 m i n ) , t h e s u p e r n a t a n t w a s c o l l e c t e d a n d

p h y t i c a c i d m e a s u r e d b y t h e H a u g a n d L a n t z s c h

m e t h o d ( 19 8 3 ).

R E S U LT S A N D D I S C U S S I O N

T h e w a t e r c o n t e n t o f t h e s u b s t r a t e p l a y s an i m p o r -

t a n t r o l e i n b o t h c e ll g r o w t h a n d e n z y m e p r o d u c t i o ni n s o l i d - s t a t e f e r m e n t a t i o n . F o r e x a m p l e , H a n et al.( 1 98 7 ) f o u n d t h a t t h e o p t i m u m l e v e l o f m o i s t u r e f o r

p h y t a s e p r o d u c t i o n a n d c e l l g r o w t h i n s o y b e a n m e a l

u s in g A. f icuum i s 2 5 - 3 5 % a n d a b o u t 5 0 % , r e s p e c -

t i v e ly . T h e l e v e l o f p h y t a s e p r o d u c e d w a s d r a s t i c a l l y

r e d u c e d w h e n t h e w a t e r c o n t e n t e x c e e d e d 4 0 % . N a i r

a n d D u v n j a k ( 1 9 9 0 ) r e p o r t e d r e l a t iv e l y f a st r e d u c -

t i o n o f p h y t i c a c i d c o n t e n t i n c a n o l a m e a l u s i n g A .

f icuum i n S S F w h e n t h e m o i s t u r e c o n t e n t w a s 6 4 % .

T h e r e s u l t s f r o m th i s s t u d y [ F ig . l ( a ) ] s h o w th a t t h e

a m o u n t o f e n z y m e p r o d u c e d i n c r e a s e s w i t h a n

i n c r e a s e i n m o i s t u r e c o n t e n t u p t o 6 4 % . T h e s e

r e s u lt s c a n b e c o r r e l a t e d m a t h e m a t i c a l l y u s i n g t h e

lo g i s ti c l a w ty p e o f e q u a t i o n :

v

d t O~mY 1 - ( 1 )

. , . 4

4

3

1

75

5

2 5

0

4

A

I I ~ I

v

o

o.M

a

b

48 72 96 12

r i m e h )

B

Fig. 1. Effect of mo isture conten t on : (a) productionof phytase , (b) reduction of phytic acid content dur ingSSF. (Moisture , %: o - - 31; A - - 39; + - - 45; x - - 50;

o 64.)

Page 3: Producción Fitasa Por Aspergillus ficuum Mediante SSF en Torta Canola

8/13/2019 Producción Fitasa Por Aspergillus ficuum Mediante SSF en Torta Canola

http://slidepdf.com/reader/full/produccion-fitasa-por-aspergillus-ficuum-mediante-ssf-en-torta-canola 3/6

Production of phytase during solid state fermentation 9

w h e r e v i s t h e p h y t a se a c t i v i t y , V m i s the

m a x i m u m p h y t a s e a c t iv i ty w h i c h c a n b e a c h i e v e d

theoretically, 0~m i s a n e mp i r i c a l c o n s t a n t a n d t is t h e

t i m e o f f e r m e n t a t i o n . I n t e g r a t i o n o f e q n ( 1 ) g iv e s

V m

v = (2)

v m )1 + - 1 e . . . .A) o

w h e r e Vo i s t h e i n i ti a l p h y t a se a c t i v it y a f t e r i n o c u l a -

t ion .

T h e v a l u e s o f t h e p a r a m e t e r s vm a n d a m f o r d i f f er -

e n t m o i s t u r e l e v e ls w e r e c a l c u l a t e d u s in g e q n ( 2 )

a n d a p p l y i n g t h e l e a s t s q u a r e s t e c h n i q u e ( M a r -

q u a r d t , 1 96 3) f o r t h e s e t o f e x p e r i m e n t a l d a t a f o r

e a c h m o i s t u r e c o n t e n t ( T a b l e 1 ) . F i g u r e 2 s h o w s

t h a t t h i s e q u a t i o n g i v e s o n l y a r o u g h e s t i m a t e o f t h e

e x p e r i m e n t a l d a t a , s i n c e e q n ( 2 ) d o e s n o t a c c o u n t

f o r t h e p h a s e w h e r e e n z y m e a ct iv i ty d e c r e a s e s .T h e r a t e s o f p h y t i c a c i d r e d u c t i o n i n c a n o l a m e a l

[ Fi g. l ( b ) ] w e r e i n a g r e e m e n t w i th t h e p r o d u c t i o n o f

p h y t a s e [F ig . l ( a ) ] ; h i g h e r m o i s t u r e c o n t e n t s w e r e

b e n e f i c i a l t o b o t h p r o c e s s e s . T h e r a t e o f p h y t i c a c i d

h y d r o ly s i s a t 6 4 m o i s tu r e [ Fig. l ( b ) ] w a s p r o p o r -

t i o n a t e l y m u c h h i g h e r t h a n a t 5 0 m o i s t u r e , w h e n

c o mp a r in g t h e i r e n z y me l e v e l s . I t i s p o s s ib l e t o

a s s u m e t h a t d i ff u s io n o f t h e p r o d u c e d e n z y m e w a s

e n h a n c e d b y i n c r e a s i n g t h e w a t e r c o n t e n t i n s o l i d -

s t a t e c u l t u r e s a n d t h a t , i n a d d i t i o n t o t h e h i g h e r

e n z y m e l e v e l , c o n t r i b u t e d t o t h e m u c h h i g h e r r a t e o f

p h y t i c a c i d r e d u c t i o n i n t h e s y s t e m c o n t a i n i n g 6 4m o i s t u r e .

T h e f o l l o w i n g e m p i r i c a l c o r r e l a t i o n c a n f i t t h e

r e s u lt s f o r p h y t i c a c id r e d u c t i o n f o r v a r i o u s m o i s t u r e

c o n t e n t s :

P = P o e x p ( - k t 2 (3)

w h e r e P i s t h e n o r m a l i z e d p h y t i c a c i d c o n c e n t r a t i o n

a t t ime t , P o i s t h e i n i t i a l n o r ma l i z e d p h y t i c a c id

c o n c e n t r a t i o n a n d k i s a n e m p i r i c a l c o n s t a n t . T o u s e

t h i s e q u a t i o n t o c a l c u l a t e p h y t i c a c i d c o n t e n t r e d u c -

t i o n d u r i n g S S F , t h e k c o n s t a n t w a s e v a l u a t e d f o r

e a c h m o i s t u r e c o n t e n t ( T a b l e 1 ) u s i n g t h e e x p e r i -

m e n t a l d a t a f r o m t h i s w o r k , a n d a p p l y i n g t h e l e a s t

s q u a r e s t e c h n i q u e . C o m p a r i s o n b e t w e e n t h e e x p e r i -

T a b l e 1 . M a x i m u m e n z y m e a c t iv i t y V m s p e c i f i c r a t e c o n -

s t a n t o f e n z y m e a c ti v i ty C ~m a n d t h e e m p i r i c a l c o n s t a n t

k f o r v a r i o u s m o i s t u r e c o n t e n t s

M oisture Maximum enzym e Specif ic ra te Empir icalconte nt activity, v_ constant, constant, k

( ) (units g ~') ctm (h -1 ) (h -2 )

31 2.53 0.057 0.0005839 3.22 0.075 0.0013945 3.48 0-077 0-0021950 4-29 0.082 0-0031864 4.71 0.096 0.01133

m e n t a l d a t a a n d t h o s e c a l c u l a t e d f r o m e q n ( 3 ) f o r

v a r i o u s m o i s t u r e c o n t e n t s ( F i g . 3 ) s h o w s t h a t t h e

s u g g e s t e d e m p i r i c a l m o d e l p r e d i c t s t h e p h y t i c a c i d

l e v e l i n c a n o l a m e a l w i t h v a r i o u s m o i s t u r e c o n t e n t s

v e r y w e l l .

T h e a g e o f i n o c u l u m u s e d i n t h i s s o l i d s t a t e c u l -

t u r e a f f e c te d th e a m o u n t o f e n z y m e p r o d u c e d . T h e5 a n d 2 d a y i n o c u l u m p r o d u c e d t h e l a r g e s t a n d t h e

l e a s t a mo u n t o f e n z y me , r e sp e c t i v e ly ( F ig . 4 ) .

Aspergillus ficuu m g r e w i n t h e l i q u i d m e d i u m i n

th e f o r m o f p e l l e t s , a n d i t w a s d i f f i c u l t t o c o n s i s -

t e n t l y t r a n s f e r t h e s a m e a m o u n t o f i n o c u l u m i n t o

t h e s o l i d m e d i u m . T h e r e f o r e , h o m o g e n i z a t i o n o f

i n o c u l u m w a s c o n s i d e r e d . E f f e c t s o f i n o c u l u m

h o m o g e n i z a t i o n t i m e o n p h y t a s e p r o d u c t i o n a n d

p h y t i c a c id r e d u c t io n a r e sh o w n in F ig . 5 ( a ) a n d ( b ) ,

r e sp e c t i v e ly . I n t h e f i r s t 2 4 h , t h e mo s t p h y t a se w a s

p r o d u c e d i n t h e m e d i a i n o c u l a t e d w i t h A. f i cuum

t h a t w e r e h o m o g e n i z e d f o r a s h o r t e r p e r io d o f t im e[ F ig . 5 ( a ) ] . H o w e v e r , a f t e r 4 8 h t h e s i t u a t i o n

r e v e r s e d . T h i s i m p l i e s t h a t t h e i n o c u l a e x p o s e d t o

h o m o g e n i z a t i o n f o r a s h o r t e r p e r i o d o f t i m e w a s le s s

d a m a g e d , w h i c h r e s u l t e d i n a h i g h e r i n i t i a l p h y t a s e

a c t i v i t y c o m p a r e d t o t h e i n o c u l a h o m o g e n i z e d f o r a

l o n g e r p e r i o d o f t i m e . S i n c e t h e i n o c u l a h o m o g e -

n i z e d f o r l o n g e r p e r i o d s h a d m o r e g r o w t h c e n t e r s ,

t h e y b e g a n t o e x h ib i t h ig h e r p h y t a se a c t i v i ty a f t e r a

5

3

0Dcn 2

0

5

~ 3

m 2

0

5

~ 3&1)

m 2

F i g . 2 .

B

i I n I i I i

I ~ I , I ,

2 4 48 7 96

T ime( I I )

o

i I F I i

2 4 4 8 7 2 9 6

Tim e (h)

Predicted (solid l ines) and experimental (sym-bols) results for phytase activity for different moisturecontents. (Moisture , : A -- 31; B - - 39; C - - 45; D --

50; E -- 64. )

Page 4: Producción Fitasa Por Aspergillus ficuum Mediante SSF en Torta Canola

8/13/2019 Producción Fitasa Por Aspergillus ficuum Mediante SSF en Torta Canola

http://slidepdf.com/reader/full/produccion-fitasa-por-aspergillus-ficuum-mediante-ssf-en-torta-canola 4/6

10 A. Ebu ne S. Al-Asheh Z. Duvnjak

I 0 0

7 5

5 O

0

1 0 0

75

~ 5 0

x~ e~

1

7 5

~o

.~ e s

I I I r I ,

i t . I f

E

.o

2 4 4 8 7 2 9 6 1 2 0

T i m e (1 1 )

, I I , I n

I i I L I I i

2 4 4 8 7 2 9 6 1 2 0

T i m e ( h )

Fig. 3 . Pred icted (sol id l ines) and expe r imen tal (sym-bo l s) r esu lt s fo r phy t i c ac id con t en t r educ t i on fo r d i f f e ren tmoi s tu re con t en t . (Moi s tu re , : A - - 31 ; B - - 39; C - -

45; D -- 50; E - - 64. )

v

0

e~

Fig . 4 .

6 0

0

4 0

30y2 0

1 0

0 . 0 I , I , I ,

0 g 4 4 8 7 2 9 6 1 2 0

T i m e h )

Effec t o f i nocu lum age on p roduct i on o f phy t asedur ing SSF. (Age, days: © - - 2; zx - - 3 ; + - - 4 ; x - - 5 . )

5

~

A

, I , I , I ,

2 4 4 a 7 2 9 a

T i m e h )007

O 5 0

0 2 4 4 8 7 2

T i m e h )

Fig . 5 . Ef fec t o f t he t ime o f hom ogen i za t i on o f i nocu lumon : ( a ) phy t ase p roduct i on , (b ) r educ t i on o f phy t i c ac idcon t en t i n cano l a meal du r ing SSF. (Time, seconds : o - -

10; m - - 30; + - - 60; X -- 120; O - - 240.)

T a b l e 2 . M a x i m u m e n z y m e a c t iv i ty , V m, s p e c i f ic r a t e c o n -

s t a n t o f e n z y m e a c t iv i ty , ~ m , a n d t h e e m p i r i c a l c o n s t a n t ,k , fo r v a r io u s t i m e s o f h o m o g e n i z a t i o n

Tim e o f Ma x imum Specif ic r a t e Em pi r i ca lhom ogen i za t i on en zyme cons t an t , cons t an t , k

(s) activity, v~ ~ m (h - l ) (h -3 × 10 -5 )(un i t s g - f )

10 2.43 0.1439 1.4730 3.15 0-0920 1.7260 3.50 0.0805 2.17

120 3.80 0.0778 2-39240 3-14 0.0787 3.09

r e c o v e r y p e r i o d o f a b o u t 3 6 h . A l t h o u g h t h e e n z y m e

c o n c e n t r a t i o n i n t h e f i r st 2 4 h w a s t h e l o w e s t i n t h e

s y s t em i n o c u l a t e d w i th t h e m o s t h o m o g e n i z e d i n o c u -

l u m , p h y t i c a c i d h y d r o l y s i s w a s s t il l t h e f a s t e s t o f a l l

s y s t e m s [ F i g . 5 ( b ) ] . W e a s s u m e t h a t t h e i n o c u l u m

w a s m o r e e v e n l y d i s t ri b u t e d t h r o u g h o u t t h e m e d i u m

a n d t h e r e f o r e p h y t a s e w a s i n b e t t e r c o n t a c t w i th

p h y t i c a c i d .

E q u a t i o n ( 2 ) w a s u s e d t o c o r r e l a t e t h e r e s u l t s o f

p h y t a s e a c t i v it y [F i g. 5 ( a )] w i t h v a r i o u s t i m e s o f

h o m o g e n i z a t i o n • T h e v a l u e s o f t h e p a r a m e t e r s ~ m

a n d vm w e r e e v a l u t e d ( T a b l e 2 ) f o r d i f f e r e n t t i m e s

o f h o m o g e n i z a t i o n u s in g th e e x p e r i m e n t a l d a t a a n d

t h e l e a s t s q u a r e s t e c h n i q u e , a s m e n t i o n e d p r e v i -

o u s l y . I t a p p e a r s ( F i g . 6 ) t h a t e q n ( 2 ) f it s t h e

e x p e r i m e n t a l d a t a r e a s o n a b l y w e ll .

Page 5: Producción Fitasa Por Aspergillus ficuum Mediante SSF en Torta Canola

8/13/2019 Producción Fitasa Por Aspergillus ficuum Mediante SSF en Torta Canola

http://slidepdf.com/reader/full/produccion-fitasa-por-aspergillus-ficuum-mediante-ssf-en-torta-canola 5/6

5

3

aj

2

0

5

~ 3

m 2

0

5

~ 3

1 )

~ 2

i l l l

1 0 0

O

I I i I

75

50O

x~ 2s

Co

I i l ~ I i

0

, I h I , I

24 48 72 96

T i m e h )

i I I ,

24 48 7 2 96

Time (h)

Predicted (solid lines) and experimental (sym-bols) resul ts for phytase act iv i ty for various t imes ofinoculum homogenization. (Time, seconds: A - - 10; B - -

30; C - - 60; D - - 120; E - - 240. )

°

0

100 ,

75

0

5O0

~ z6

100 0 24 48

T i m e (h)

7 5

N~ 50o

x ~ 26

o C

24 48 72

Time (h)

P r o d u c t i o n o f p h y t a s e d u r i n g s o l i d s t a te f e r m e n t a t i o n 1 1

F i g 6

72

F i g 7. Pre dicted (solid lines) and experim ental (sym-bols) results for phytic acid content reduction for varioustimes of inoculum homogenization. (Time, seconds: A - -

10; B - - 30; C -- 60; D - - 120; E -- 240.)

T o s h o w t h e r e l a t io n s h i p b e t w e e n t i m e o f h o m o g -

e n i z a t io n a n d r e d u c t i o n o f p h y ti c a c id c o n t e n t , t h e

fo l l o wi n g e m p i r i c a l e q u a t i o n i s s u g g e s t e d :

P = P o e x p ( - k t 3 (4 )

T h e e m p i r i c a l c o n s t a n t , k , f o r d i f f e r e n t t i m e s o f

h o m o g e n i z a t i o n w a s c a l c u l a t e d ( T a b l e 2 ) u s i n g e q n

(4 ) , a n d a p p l y i n g t h e l e a s t s q u a re s t e c h n i q u e fo r t h e

d a t a f r o m F i g . 5 ( b ) . F i g u r e 7 s ho w s g o o d a g r e e m e n t

b e t w e e n t h e e x p e r i m e n t a l r e s u l t s a n d t h o s e c a l c u -l a t e d u s i n g e q n (4 ) fo r d i f f e r e n t t i m e s o f

h o m o g e n i z a t i o n .

C O N C L U S I O N S

O p t i m u m m o i s t u r e c o n t e n t o f t h e s o li d m e d i u m f o r

t h e p r o d u c t i o n o f p h y t a s e a n d h y d r o ly s i s o f p h y ti c

a c i d b y A . f i c u u m N R R L 3 1 35 is 6 4 . A n i n c r e a s e

i n i n o c u l u m a g e b e t w e e n 2 a n d 5 d a y s e n h a n c e d t h e

r a t e o f e n z y m e p r o d u c t i o n . I n t h e e a r l y st a g e s o f

S S F , l o w e r r a te s o f p h y t a s e p r o d u c t i o n w e r e n o t i c e d

i n t h e c u l t u r e s i n o c u l a t e d w i t h i n o c u l u m h o m o g e -

n i z e d fo r a l o n g e r p e r i o d o f t i m e , b u t a t l a t e r s t a g e s

t h e o p p o s i t e w a s o b s e r v e d .

T h e p r o p o s e d m o d e l s f o r p h y ta s e a c t iv i ty a n d

p h y t i c a c i d c o n t e n t r e d u c t i o n f o r v a r i o u s

m o i s t u r e l ev e ls o f s o li d m e d i u m a n d t i m e s o f

h o m o g e n i z a t i o n f i t t h e e x p e r i m e n t a l d a t a r e a s o n a b l y

well .

R E F E R E N C E S

Chang, R., Schwimmer, S. & Burr, H. K. (1977). Phytate:removal from whole dry beans by enzymatic hydrolysis

and diffusion. J. Food Sci ., 42 (5), 1098-101.Clandinin, D. R. (1986). Ca n o la M ea l fo r L ives to ck a n d

Poultry. Can ola Council of Can ada, Winnipeg, M ani-toba, pp. 1-19.

Courtois , J . & Joseph, G. (1947). Recherches sur la phy-tase 8 . Teneur en inosi tophosphate et act iv i t6phytasique de divers grains. Bull. Soc. Chem. Biol. , 30,195-8.

Cosgrove, D. J. (1966). The chemistry and bioch emis try ofinositol polyphosphates. Re v. Pure Appl. Chem. , 16,209-12.

Ford, J. R., Mustakas, G. C. & Schmutz, R. D. (1978).Phytic acid removal from soybeans by a l ip id proteinconcentrate process . J . Am . O il Chem. Soc. , 55, 371-4.

Graf, E. (1986). Phytic Acid-Chemistry and Applica tion .

The Pillsbury Co., Pilatus Press, Minneapolis, pp. 42-4.Ha n, Y. W., Gallagher, D. J. & Wilfred, A. G. (1987).

Phytase production by Aspergil lus f icuum on semi-solidsubstrate. J. Ind. Microbiol. , 2, 195-200.

Harland, B. F. & Harland, J . (1980). Fermentat ive reduc-

Page 6: Producción Fitasa Por Aspergillus ficuum Mediante SSF en Torta Canola

8/13/2019 Producción Fitasa Por Aspergillus ficuum Mediante SSF en Torta Canola

http://slidepdf.com/reader/full/produccion-fitasa-por-aspergillus-ficuum-mediante-ssf-en-torta-canola 6/6

1 2 A . E b u n e S . A l - A s h e h Z . D u v n j a k

t i o n o f p h y t a t e i n r ye , w h i t e a n d w h o l e w h e a t b r e a d s .Cereal Chem. 5 7 ( 3 ) , 2 2 6 - 9 .

Ha u g , W . L a n tz s c h , H . J . ( 1 9 8 3 ) . S e n s i t iv e m e th o d f o rr a p i d d e t e r m i n a t i o n o f p h y t a te i n c e r e a ls a n d c e r e a lp r o d u c t s . J . Sci . F ood Agric . 3 4 , 1 4 2 3 - 6 .

Hu ssa in , B. , Kh an , S . , I smail , M . Sa t ta r , A. (1989) .E f f e c t o f r o a s t in g a n d a u to c la v in g o n p h y t i c a c id c o n -te n t o f c h ic k p e a . Die Nahrung 3 3 ( 4 ) , 3 4 5 - 8 .

I rv ing , G. C. J . Co sgrov e , D. J . (1972) . Inos i to l pho s-p h a t e p h o s p h a t a s e o f m i c r o b i o lo g i c a l o r ig i n: t h e i n o s i to lp e n t a p h o s p h a t e p r o d u c t s o f Aspergil lus f icuu m p h y ta s e .J. Bacteriol. 1 1 2 , 4 3 4 - 8 .

M a r q u a r d t , D . W . ( 1 9 6 3 ) . A n a l g o r i t h m f o r l e a s t s q u a r e se s t i m a t i o n o f n o n l i n e a r p a r a m e t e r s . J . Soc. Ind. Appl.

Ma th . 1 1 , 4 3 1 - 4 1 .Na i r , V . C . Du v n ja k , Z . ( 1 9 9 0 ) . Re d u c t io n o f p h y t i c

a c i d c o n t e n t i n c a n o l a m e a l b y A . f i c u u m i n s o l id - s t a t ef e r m e n t a t i o n . Appl. Microbiol. Biotechnol. 3 4 ( 2 ) , 1 8 3 - 8 .

P e e r s , F . G . ( 1 9 5 3 ) . P h y ta s e o f wh e a t . Biochem. J . , 53 ,1 0 2 - 1 0 .

Ra c k i s , J . J . ( 1 9 7 4 ) . M in e r a l a v a i l a b i li ty in s o y p r o te inp r o d u c t s . J . Am . O il Chem. Soc. 5 1 , 1 6 1 - 4 .

S h a r m a , C . B . , Go e l , M . I r s h a d , M . ( 1 9 7 8 ) . M y o - in o s i -to l h e x a p h o s p h a te a s a p o te n t i a l in h ib i to r o f o r- amy la seo f d i f f e r e n t o r ig in s . Phytochemistry 1 7 , 2 0 1 - 4 .

S h ie h , T . R . W a r e , J . H . ( 1 9 6 8 ) . S u r v e y o f mic r o -o r g a n i s ms f o r th e p r o d u c t io n o f e x t r a c e l lu la r p h y ta s e .Appl. Microbiol. 1 6 ( 9 ) , 1 3 4 8 - 5 1 .