comm dhodgecsics11presentation

Upload: adamtomas

Post on 05-Apr-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 Comm DHodgeCSICS11Presentation

    1/18

    A Robust AlGaN/GaN HEMTTechnology for RF SwitchingApplications

    Michael D. Hodge1,2, Rama Vetury1, Jeff Shealy1,and Ryan Adams2

    1) RF Micro Devices, Charlotte, NC

    2) University of North Carolina at Charlotte, Charlotte, NC

  • 7/31/2019 Comm DHodgeCSICS11Presentation

    2/18

    DPBU

    Outline

    Advantages of GaN Materials for RF Switching

    Background on GaN reliability

    OFF-State Step Stress Experiment

    Conclusion

  • 7/31/2019 Comm DHodgeCSICS11Presentation

    3/18

    DPBU

    GaN Material Advantages

    Ruggedness

    Low Loss,Low Noise

    PowerHandling

    UNREALIZEDPotential

  • 7/31/2019 Comm DHodgeCSICS11Presentation

    4/18

    DPBU

    Why GaN for RF Switches ?

    GaN-on-SiC

    Engineer COFF, low Ron high BKDN

    high ID,max

    Low RTH

    High Max TCH

    Si PSi PSi PSi P----iiii----N:N:N:N:

    Drive CurrentDependence

    GaAs pHEMT:GaAs pHEMT:GaAs pHEMT:GaAs pHEMT:

    BKDN vs RON Trade

    Si P-i-N GaAs FET GaN FET

    Loss

    Isolation

    Power Handling

    Speed

    Linearity

    Operating Efficiency Engineering Complexity

    High Power RF Switch Technologies

  • 7/31/2019 Comm DHodgeCSICS11Presentation

    5/18

    DPBU

    Device Design - GaN RF switch

    Path Control FET

    Symmetric Operation

    Power Amp/Switching FET

    Non-symmetric Operation

    Gate

    Source Connected FP

    DrainSource

    PA FET

    SiN

    Gate

    S/DS/D

    LGCFP

    Switch FET

    LG-O

    LG

    SiN

    Switch

    LNA

    HPA

  • 7/31/2019 Comm DHodgeCSICS11Presentation

    6/18

    DPBU

    GaN High Temperature Reliability Test

    18 19 20 21 22 23 24 25 26 27 2810

    0

    102

    104

    106

    108

    1010

    1/kT

    MTT

    F

    350 325 300 275 250 225 200 175 150

    Tch (C)

    18 19 20 21 22 23 24 25 26 27 2810

    0

    102

    104

    106

    108

    1010

    1/kT

    MTTF

    350 325 300 275 250 225 200 175 150

    Tch (C)

    RFMDGaN1High Power

    RFMDGaN2High Linearity

    GaN High TemperatureReliability Test

    SampleSize

    GaN1High

    Power

    GaN 2High

    Linearity

    TotalDevices

    Wafers

    Fab Lots

    Epi Vendors

    Number ofTemperatures

    Results GaN1HighPower

    GaN2High

    Linearity

    MTTF Hrs

    Ea eV

    TCHANNEL C

    VDS V

  • 7/31/2019 Comm DHodgeCSICS11Presentation

    7/18

    DPBU

    Reliability Concerns in GaN HEMTs

    Inverse Piezoelectric Effect (IPE)

    Requires

    High electric field

    Observed to have no time

    dependence

    Impact

    Physical crystal defect

    Symptoms

    Parametric degradation

    Ron, Idmax, Idss

    Increased gate leakage

    Hot Electron InducedDegradation (HEI)

    Requires

    High electric field

    Carriers

    Time dependent

    Impact

    Hot electrons induce traps in bufferand/or barrier layers

    Symptoms Parametric degradation

    Ron, Idmax, Idss

    7

  • 7/31/2019 Comm DHodgeCSICS11Presentation

    8/18

    DPBU

    Inverse Piezoelectric Related Literature

    Failure Within Minutesof Stress

    20-100 minutes

    2T is the most stressful

    Critical Voltage

    17-38V (GaN-on-SiC)

    Study Stress Conditions Critical Voltage (V) Total Stress Time (Mins) Technology Notes

    (1) Joh 2006 Vds=0V, Vgs=-15V to -34V 17-34V 100 GaN-on-SiC Lg dependent

    (2) Joh 2008 Vds=0V, Vg=-10V to -50V

    Vgs=-8V, Vd=10V to 50V

    27V (2T)38V (3T)

    40 GaN-on-SiC 2T stress harsher than3T

    (3) Demirtas2009

    Vds=0V, Vgs=-1V to 20V 37V GaN-on-SiC70V GaN-on-Si

    20 GaN-on-SiCGaN-on-Si

    Vcrit of GaN-on-Si >GaN-on-SiC

    (4) Makaram2010

    Vg=-7V, Vd=8V to 50V 150C base

    Vg=-7V, Vd=50V 150C base

    20V 42

    10 and 1000

    GaN-on-SiC Metal etch to reveal pits

  • 7/31/2019 Comm DHodgeCSICS11Presentation

    9/18

    DPBU

    -200

    -150

    -100

    -50

    0

    50

    100

    150

    200

    -200

    -150

    -100

    -50

    0

    50

    100

    150

    200

    0 10 20 30 40 50 60

    Vgs(V)

    Vds=

    0V

    Vds(V)

    Vgs=

    -8V

    Time (mins)

    Device A - Condition 1&3

    Device B - Condition 1&3

    Device A - Condition 2&4

    Device B - Condition 2&4

    Base TempConditions 1&2 = 25C

    Conditions 3&4 = 85C

    Step Stress Test Conditions

    Designed to replicate IPE literature stress test conditions2

    Lds = 4.25um

    2 .J. Joh and J. A. del Alamo, Critical Voltage for Electrical Degradation of GaN High-ElectronMobility Transistors, IEEE Electron Device Lett., vol. 29, no. 4, pp. 287-289, Apr. 2008.

    Device A Lds = 3.1um

    Vbd = 110V

    Device B

    Lds = 4.5um Vbd = 200V

  • 7/31/2019 Comm DHodgeCSICS11Presentation

    10/18

    DPBU

    -25

    -20

    -15

    -10

    -5

    0

    5

    0 10 20 30 40 50 60 70 80 90 100

    Ron(%)

    Stress Voltage (V)

    Device A - Condition 1

    A1

    A2

    A3

    A4

    A5

    Tbase= 25C, Vds= 0V, Vgs= 0 to -100V

    -25

    -20

    -15

    -10

    -5

    0

    5

    0 10 20 30 40 50 60 70 80 90 100

    Ron(%)

    Stress Voltage (V)

    Device A - Condition 2

    A1

    A2

    A3

    A4

    A5

    Tbase= 25C, Vds= 0 to 100V, Vgs= -8V

    -25

    -20

    -15

    -10

    -5

    0

    5

    0 10 20 30 40 50 60 70 80 90 100

    Ron(%)

    Stress Voltage (V)

    Device A - Condition 3

    A1

    A2

    Tbase= 85C, Vds= 0V, Vgs= 0 to -100V

    -25

    -20

    -15

    -10

    -5

    0

    5

    0 10 20 30 40 50 60 70 80 90 100

    Ron(%)

    Stress Voltage (V)

    Device A - Condition 4

    A1

    A2

    Tbase= 85C, Vds= 0 to 100V, Vgs= -8V

    No degradation of Ron up device breakdown

    No degradation in Idss and Idmax observed

    Any degradation is

  • 7/31/2019 Comm DHodgeCSICS11Presentation

    11/18

    DPBU

    No degradation of Id

    Negative threshold shift

    Indicates enhancement of channel carriers

    Step Stress Test Results Device A

  • 7/31/2019 Comm DHodgeCSICS11Presentation

    12/18

    DPBU

    Longer term stress

    Held at most stressful condition according to literature

    Vds=0V, Vgs= -100V

    No further parametric change after 6 and 60 hours.

    Step Stress Test Results Device A

  • 7/31/2019 Comm DHodgeCSICS11Presentation

    13/18

    DPBU

    Summary of Step Stress

    Comprehensive OFF-state stress test

    Multiple bias configurations

    2 Terminal 3 Terminal

    Multiple base temperatures

    25C

    85C

    Devices stressed just before catastrophic breakdown

    No parametric degradation observed

    Ron

    Idss

    Idmax

  • 7/31/2019 Comm DHodgeCSICS11Presentation

    14/18

    DPBU

    Conclusions

    No degradation observed in the OFF-state stress

    No IPE related degradation observed in AlGaN/GaN switch FETs

    AlGaN/GaN technology robust for RF switching applications

  • 7/31/2019 Comm DHodgeCSICS11Presentation

    15/18

    DPBU

    Acknowledgements

    The authors would like to thank for their support and discussions

    AFRL

    Dr. John Blevins

    Dr. Chris Bozada

    ONR

    Dr. Paul Maki

  • 7/31/2019 Comm DHodgeCSICS11Presentation

    16/18

    DPBU

    Appendix

  • 7/31/2019 Comm DHodgeCSICS11Presentation

    17/18

    DPBU

    RFMD GaN Power Amplifier

    No difference over extended time

    300 hours and 1016 hours overlays

    Stress Study Results PA OFF-State

    Test Condition Base Temp (C) Vds (V) Approx Id(mA/mm)

    Pdiss (W/mm) Vgs (V)

    1 245 60 0.03 0.0018 -10

    2 245 100 2 0.2 -10

    No crystal defect

  • 7/31/2019 Comm DHodgeCSICS11Presentation

    18/18

    DPBU

    Constant Stress Test Result

    OFF-State No degradation observed

    Results are inconsistent with IPE related degradation