pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

103
Taller de Construcción II Isaac Devin Munguía Estarrón Instituto Tecnológico de Colima Pruebas de condiciones de seguridad de las instalaciones Fecha de entrega: 07/09/2014

Upload: isaac-devin-munguia

Post on 16-Jun-2015

248 views

Category:

Career


2 download

DESCRIPTION

Trabajo para el taller de construcción II: Pruebas de seguridad para las instalaciones por Isaac Devin Munguía Estarrón- Instituto Tecnológico de Colima

TRANSCRIPT

Page 1: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Taller de Construcción II

Isaac Devin Munguía Estarrón

Instituto Tecnológico de Colima

Pruebas de condiciones de

seguridad de las instalaciones

Fecha de entrega: 07/09/2014

Page 2: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Instalación Hidráulica

A).- Equipo necesario.

1.- Bomba hidráulica manual.

2.- Válvula de retención.

3.- Tubería flexible.

4.- Tanque de almacenamiento de agua.

Page 3: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

B).- Prueba para tubería de cobre.

La prueba consiste en lo siguiente:

1.- Llenado de la tubería con agua a baja presión, lo cual tiene por objeto

eliminar lentamente el aire del sistema y detectar las posibles fugas graves de la

instalación.

2.- Aumento de la presión al doble de la presión de trabajo pero en ningún

caso a una presión menor de 8.8Kg/cm2 (125Lbs/in2). La duración mínima de la

prueba será de 3 horas y la máxima de 5. Después de realizada la prueba,

deberán dejarse cargadas las tuberías soportando la presión de trabajo hasta la

colocación de muebles y equipos. Para verificar esto, deberán permanecer

instalados los manómetros en lugares de fácil observación.

3.-Las pruebas deberán hacerse por secciones a medida que se vayan

terminado estas y antes de terminar los trabajos relativos a albañilería, a fin de

detectar las posibles fugas y corregirlas de inmediato.

4.-Los extremos abiertos de los tubos y conexiones deben estar cerrados

con tapones.

5.-Se deberán colocar válvulas eliminadoras de aire y otro dispositivo

adecuado al inicio de la prueba con el objeto de que el aire que ocupe la tubería

pueda ser eliminado para evitar averías en el sistema.

6.-Cuando no existan fugas durante la prueba ni posteriormente a estas,

durante el tiempo que existan cargadas las tuberías y se observe que la presión

del manómetro desciende, se verificara si este se encuentra en buen estado, o si

existen fallas de la bomba de prueba o de la válvula de retención. Una vez

verificado lo anterior y que se encuentra en buenas condiciones, se procederá a

recorrer nuevamente las líneas examinando todas las uniones hasta descubrir la

fuga en la tubería.

Page 4: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

7.-Se tomara en cuenta la expansión que sufre el agua con el incremente

de la temperatura; por lo tanto, se evitara llevar a cabo la prueba cuando existan

cambios bruscos de temperatura.

8.-Para que proceda la prueba, la tubería deberá estar totalmente soportada

y sin forro.

9.-Aceptación de la prueba:

a) El corresponsable aprobara los resultados de la prueba y si son satisfactorios

se recibirá.

b) deberá hacerse un reporte completo de la prueba, con los siguientes datos:

-Situación y localización de la instalación antes de la prueba.

-Tipo y número de pruebas efectuadas.

-Tipo y número de fugas (si las hubo).

-Inspección.

-Reparación.

c) Se consignaran estos resultados de las pruebas en el libro de bitácora.

a) Prueba hidrostática accidental

Consiste en dar a la parte más baja de la tubería, una carga de agua que no

exceda de un tirante de dos metros. Esta prueba se efectúa sólo cuando existan

sospechas de trabajos deficientes en el junteo, o cuando por cualquier

circunstancia se ocasionen movimientos en las juntas.

b) Prueba hidrostática sistemática

Esta se hará en todos los casos en que no se realice la accidental. Consiste en

vaciar, en el pozo de visita aguas arriba del tramo por probar, el contenido de agua

de una pipa, que desagüe al citado pozo con una manguera de 4" o 6" de diámetro,

Page 5: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

dejando correr el agua libremente a través del tramo por probar. En el pozo de

aguas abajo, el contratista instalará una bomba a fin de evitar que se forme un

tirante de agua que pueda deslavar las últimas juntas de mortero que aún estén

frescas. Esta prueba tiene por objeto determinar si es que la parte inferior de las

juntas se retacó adecuadamente con mortero cemento. Se realiza antes de hacer

los rellenos.

CARGA DURANTE UN MINUTO

Es la fuerza aplicada al gato hidráulico a un 140% de su capacidad

nominal (véase tabla 2). Esta fuerza debe aplicarse durante un minuto y el

gato debe funcionar correctamente sin presentar deformaciones

permanentes ni bajar más de 5 mm en el tiempo establecido.

TABLA 2.- Capacidad y control de carga

Capacidad nominal en

toneladas

Carga de prueba en

toneladas

Prueba de

sostenimiento en

toneladas

1,5 2,1 1,8

3,0 4,2 3,6

5,0 7,0 6,0

8,0 11,2 9,6

12,0 16,8 14,4

20,0 28,0 24,0

30,0 42,0 36,0

Page 6: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Nota: para otras capacidades nominales (Cn), la carga de prueba debe ser

de 7 Cn/5 y para la prueba de sostenimiento de carga deben usarse 6

Cn/5.

Aparatos y equipo

a) Prensa hidráulica con manómetro calibrado de acuerdo a

la capacidad de la máquina.

b) Tabla de equivalencias de acuerdo al émbolo de la

prensa y del manómetro.

c) Cronómetro (reloj).

Procedimiento

Colocar el gato hidráulico con la extensión y pistón hasta su

máxima altura en posición vertical en la prensa, aplicar la carga de

prueba de acuerdo a lo establecido en la tabla 2 y sostener la carga

durante un tiempo de un minuto. El conteo del tiempo debe

iniciarse en el momento en que el pistón se haya desplazado como

máximo 15 mm por debajo de su altura máxima.

Resultados

Después de efectuar la prueba, los gatos hidráulicos deben funcionar sin

presentar: deformaciones permanentes, dobleces ni desgastes, Carga

durante un minuto

PRUEBA DE CARGA EN 3 POSICIONES

Carga en tres posiciones

Page 7: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

TABLA 2.- Capacidad y control de carga

Capacidad nominal en

toneladas

Carga de prueba en

toneladas

Prueba de sostenimiento

en toneladas

1,5 2,1 1,8

3,0 4,2 3,6

5,0 7,0 6,0

8,0 11,2 9,6

12,0 16,8 14,4

20,0 28,0 24,0

30,0 42,0 36,0

Nota: para otras capacidades nominales (Cn), la carga de prueba debe ser

de 7 Cn/5 y para la prueba de sostenimiento de carga deben usarse 6

Cn/5.

Es la fuerza aplicada al gato hidráulico a un 140% de su capacidad

nominal (véase tabla 2). Esta fuerza debe aplicarse durante 10 min en tres

posiciones, las cuales deben ser:

a) Un centímetro arriba del punto muerto inferior de la carrera del

pistón.

b) A la mitad de la carrera del pistón.

c) Cinco milímetros abajo del tope máximo.

El gato hidráulico debe soportar esta carga sin pérdida de presión, fugas

del fluido, deformaciones permanentes o fallas mecánicas en sus

componentes ni bajar más de 5 mm en el tiempo establecido,

comprobándose de acuerdo al procedimiento de cargas en tres posiciones.

Aparatos y equipo

Page 8: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

a) Prensa hidráulica con manómetro calibrado de acuerdo a

la capacidad de la máquina.

b) Tabla de equivalencias de acuerdo al émbolo de la

prensa y del manómetro.

c) Cronómetro (reloj).

Procedimiento

Colocar el gato hidráulico en posición vertical en la prensa, aplicar

la carga de prueba de acuerdo a lo establecido en la tabla 2, en

tres posiciones: 10 mm arriba del punto muerto inferior, a mitad del

recorrido hidráulico (recorrido del pistón sin extensión) y 5 mm

abajo del tope máximo, durante un tiempo de 10 min. En cada

posición.

Resultados

Después de efectuar la prueba, los gatos hidráulicos deben

funcionar correctamente y soportar la carga aplicada sin fugas del

fluido hidráulico, y no debe presentar deformaciones permanentes

de sus componentes, conforme a lo establecido.

Es la fuerza aplicada al gato hidráulico a un 140% de su capacidad

nominal (véase tabla 2). Esta fuerza debe aplicarse durante 10 min

en tres posiciones, las cuales deben ser:

a) Un centímetro arriba del punto muerto inferior de la carrera del

pistón.

b) A la mitad de la carrera del pistón.

c) Cinco milímetros abajo del tope máximo.

Page 9: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

El gato hidráulico debe soportar esta carga sin pérdida de presión,

fugas del fluido, deformaciones permanentes o fallas mecánicas en

sus componentes ni bajar más de 5 mm en el tiempo establecido,

comprobándose de acuerdo al procedimiento descrito

PRUEBA DE SOSTENIMIENTO DE CARGA

Aparatos y equipo

a) Prensa hidráulica con manómetro calibrado de acuerdo a

la capacidad de la máquina.

b) Tabla de equivalencias de acuerdo al émbolo de la

prensa y del manómetro.

c) Cronómetro (reloj).

Procedimiento

Colocar el gato hidráulico en posición vertical en la prensa, sacar el

dispositivo extensión (si lo tiene), aplicar la carga de prueba de

acuerdo a lo establecido en la tabla 2, operar el gato llevándolo al

tope máximo y mantenerlo en esa posición durante un tiempo de 10

min.

Nota: para otras capacidades nominales (Cn), la carga de prueba debe ser

de 7 Cn/5 y para la prueba de sostenimiento de carga deben usarse 6

Cn/5.

Resultados

Page 10: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Durante la prueba los gatos hidráulicos deben soportar la carga de prueba,

la fuerza aplicada al gato hidráulico a un 120% de su capacidad nominal

durante 10 min. en la carrera máxima del pistón (véase tabla 2).

El pistón no debe bajar más de 5 mm aplicando la carga en el tiempo

establecido y no presentar daños en ninguno de sus componentes,

comprobándose de acuerdo al procedimiento descrito.

PRUEBA DE CARGA COMBINADA A UNA PENDIENTE DE 4°

Aparatos y equipo

- Prensa hidráulica con manómetro calibrado de acuerdo a la

capacidad de la máquina para efectuar la prueba.

- Cuña de acero con un ángulo de inclinación de 4°.

Procedimiento

Colocar la cuña de 4° entre la mesa de la prensa hidráulica y la

base del gato hidráulico, acto seguido sacar totalmente el pistón y

dispositivo extensión (si lo tiene) y aplicar la carga de sostenimiento

establecida en la tabla 2, durante un tiempo de 10 min. iniciar el

conteo a partir de que sea aplicada la carga.

Resultados

Después de efectuar la prueba, el gato hidráulico no debe mostrar

deformaciones visibles en ninguna de sus partes y debe funcionar

correctamente, conforme a lo establecido en el inciso 5.4.

5.4 Carga combinada a una pendiente de 4º

Page 11: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Es la fuerza vertical aplicada durante 10 min. al gato hidráulico a un 120%

de su capacidad nominal (véase tabla 2). El gato debe estar colocado en

un plano inclinado de 4º y el dispositivo extensión en su longitud máxima.

Después de aplicar la carga, el gato debe ser capaz de regresar a su

posición de elevación mínima y operar sin fallar ni presentar fugas ni bajar

más de 5 mm en el tiempo establecido, comprobándose con el

procedimiento descrito.

PRUEBA DE VIDA ÚTIL

Aparatos y equipo

- Prensa hidráulica con manómetro calibrado de acuerdo a la

capacidad de la máquina para efectuar la prueba.

Procedimiento

Colocar el gato hidráulico en posición vertical en la prensa, sin

extensión y aplicar los ciclos de trabajo indicados en la tabla 1,

ejerciendo la carga nominal, desde el punto muerto inferior hasta el

tope máximo.

Resultados

Después de efectuar la prueba, el gato hidráulico debe funcionar

correctamente conforme a lo establecido:

El gato hidráulico debe soportar la cantidad de ciclos especificada en la

tabla 1, aplicando la carga nominal. Al término de los ciclos

correspondientes, el gato debe ser capaz de soportar por lo menos un ciclo

más de operación, sin presentar fugas ni deformaciones permanentes que

Page 12: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

afecten el funcionamiento del gato, comprobándose con el procedimiento

descrito.

TABLA 1.- Capacidades de los gatos hidráulicos

Tipo Ciclo de prueba Capacidad en toneladas

1 60 1,5 o menos

2 60 1,6 a 3,0

3 40 3,1 a 5,0

4 40 5,1 a 8,0

5 25 8,1 a 12,0

6 25 12,1 a 20,0

7 25 20,1 a 30,0

Nota: los gatos hidráulicos de capacidades intermedias a las indicadas en la tabla 1 deben cumplir con los demás requisitos de esta Norma Oficial Mexicana,

interpolando el número de ciclos de prueba cuando sea aplicable.

PRUEBA DE LONGITUD MÁXIMA

Aparatos y equipo

- Dispositivo adecuado para medir la altura.

Procedimiento

Colocar el gato en posición vertical, acto seguido sacar totalmente

el pistón y el dispositivo extensión (si lo tiene). En estas

condiciones medir en forma paralela al eje del gato hidráulico, la

longitud de la base al punto más alto del mismo.

Resultados

La longitud medida debe ser conforme a lo especificado:

Page 13: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

La longitud máxima del gato hidráulico extendido debe ser la que

especifique el fabricante con una tolerancia de ± 5 mm. Esto se comprueba

con el procedimiento descrito en el inciso 7.6.

PRUEBA DE DESCENSO

Aparatos y equipo

- Un bloque con un peso de acuerdo a lo especificado:

Para que el émbolo principal baje, después de abrir la válvula, se deben

aplicar como máximo las cargas siguientes:

- Para capacidades menores de 12 t, máximo 245 N (25 kgf).

- Para capacidades de 12 t a 30 t, máximo 490 N (50 kgf).

Procedimiento

Colocar el gato hidráulico en posición vertical, acto seguido

accionar la bomba del gato hasta llevar el pistón a su máxima

elevación, para fijar el bloque en la parte superior del pistón,

finalmente, abrir la válvula de control para permitir el descenso del

pistón.

Resultados

El pistón debe bajar a su posición de elevación mínima libremente,

conforme a lo establecido.

PRUEBA DEL DISPOSITIVO DE SEGURIDAD

Aparatos y equipo

No se requiere de ningún aparato o equipo para la prueba.

Page 14: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Procedimiento

Colocar el gato hidráulico en posición vertical; accionar la bomba

del gato hasta llevar el pistón a su posición de máxima elevación y

continuar bombeando durante 30 s.

Resultados

Asegurarse que el pistón no es expulsado ni presenta fugas de

aceite, ni deformaciones permanentes, conforme a lo establecido.

Cada gato hidráulico debe tener un dispositivo de seguridad para evitar

una carrera excesiva del émbolo principal. Esto se verifica de acuerdo al

procedimiento descrito, cuando el émbolo principal deja de subir en un

punto máximo de desplazamiento.

Page 15: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Instalaciones Sanitarias

El aforo de muebles de baño

En este apartado se enlistan los términos mayormente empleados para el aforo de

los muebles de baño para facilitar su comprensión y uso.

Prueba de aforo simple

a) Cuando el flujo es constante y libre, como en las regaderas, puede emplearse

un recipiente de volumen conocido (p.ej. cubeta) y un cronómetro, para estimar el

gasto el procedimiento de cálculo es el siguiente:

Se toma el tiempo transcurrido para llenar el recipiente y se divide el volumen

obtenido entre el tiempo medido, como lo indica la ecuación 1.

Q = V / t --------------------------------------------------------------------------------------- (1)

Donde:

Page 16: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

V es el volumen

t es el tiempo transcurrido

Q es el gasto o caudal

Las unidades de mayor uso son m3/s, L/s y L/min, sin embargo puede usarse

cualquier otra mientras se respete la relación de volumen sobre tiempo.

b) En los dispositivos que no se tiene un flujo libre, excusado de tanque por

ejemplo, se puede seguir el siguiente procedimiento simple:

1) Cortar el suministro de agua,

2) Con un marcador de aceite marcar el nivel superior de agua del tanque,

3) Jalar la palanca y medir con un cronómetro el tiempo necesario para la

descarga del tanque,

4) Finalmente se marca el nivel inferior del Agua.

Adicionalmente deben tomarse las dimensiones internas del tanque para conocer

la capacidad del mismo.

Con la diferencia de niveles, el volumen del tanque y el tiempo medido puede

estimarse el consumo por descarga con la ayuda de la ecuación 1.

c) Una forma de estimar los consumos de agua sin realizar pruebas o cálculos es

a través de los valores publicados en normas o bien, en las fichas técnicas de los

muebles.

Si se desea optar por este método primero debe determinarse la edad de los

muebles, p.ej. si estos son anteriores al año 1994, el consumo de los inodoros

seguramente excede los 13 litros por descarga, llegando incluso a los 18 lpd2.

Generalmente los muebles de baño de años recientes cumplen con la

normatividad, en las que se observan las siguientes recomendaciones de

descarga máxima:

Mingitorios: 3.8 lpd.

Tazas sanitarias: 6 lpd

Page 17: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Llaves de lavabo: 2 lpm.

Regaderas: 10 lpm.

Todos los muebles de baño poseen en la parte inferior modelo y año de

fabricación, el contar con este dato es de gran utilidad al momento de inferir su

gasto.

El medidor de agua

La forma más práctica, rápida y precisa de aforar un baño es con un medidor que

mantenga un registro constante del consumo de agua de los muebles y aparatos

sanitarios. Los medidores más comunes son de carátula analógica, aunque

también los hay digitales.

En un medidor de carátula analógica, ésta se observa dividida en cien partes

iguales, con una manecilla cuyo funcionamiento es similar a un reloj y un contador

progresivo que acumula las vueltas que va dando dicha manecilla. El medidor

antes de ser instalado debe estar en cero, esto garantiza que es nuevo y que está

listo para empezar a medir el volumen de agua que abastece al inmueble.

Page 18: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Las lecturas estarán conformadas de una parte entera y cuatros cifras

significativas (aunque depende del modelo); la parte entera está dada por los

números en negro del contador, las siguientes cifras significativas se toman de la

coma hacia la derecha (generalmente en color rojo), por último las dos cifras que

faltan se obtienen por la posición de la manecilla sobre la carátula. Cada marca

fuerte son 0.001m3 o 10litros.

Un auxiliar importante en la carátula del medidor es la hélice, que gira cuando se

usa algún mueble o aparato de baño y permanecerá inmóvil mientras no se use,

por lo que, si se detecta movimiento aún cuando no exista ningún consumo

aparente, entonces se puede suponer la presencia de una fuga, que se deberá

reportar inmediatamente a la autoridad pertinente para que la atienda y se repare

de inmediato.

Prueba de aforo con medidor

A continuación se enlista una serie de pasos que serán de utilidad para efectuar el

aforo de los muebles y aparatos sanitarios con la ayuda de un medidor.

Recomendaciones:

Page 19: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Se necesitan dos personas para la realización de las pruebas; uno hará las

descargas y otro asentará la lectura que el medidor indique.

La forma de tomar las lecturas consiste en diferencias entre lectura inicial y

lectura final, por lo que se requiere de dos lecturas por cada ensayo.

Se requieren por lo menos tres ensayos.

Procedimiento Parte 1. Identificación:

1) Identificar ampliamente el lugar donde se hace la prueba.

o p.ej. Edificio: 12 del Instituto de Ingeniería

o Nivel: Primer nivel

o Baño: Hombres / Mujeres

2) Identificar el mueble o aparato sujeto de la prueba y asignar un número

subsecuente que facilite su ubicación dentro de un mismo cuarto de baño o

servicio.

o p.ej. Mueble/Aparato: Inodoro 2

o Nota: Una forma simple de establecer un orden es comenzar desde el más

cercano a la puerta de acceso a la unidad.

3) Anotar la marca del mueble o aparato y el consumo nominal de descarga que

indique la ficha correspondiente e indicar el tipo3.

o p.ej. Mueble/Aparato: Fuxómetro 2

o Marca:

o Consumo N: 6 lpd

o Tipo: Sensor Electrónico

o Nota: Cuando se trate del conjunto mingitorio–fuxómetro o inodoro–

fluxómetro deberá hacerse este paso por ambos objetos.

Page 20: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Procedimiento Parte 2. Lecturas:

1) Tomar la lectura incial del medidor.

2) Realizar la descarga.

3) Tomar la lectura final del medidor

Nota: esperar a que la manecilla y la helice detengan su movimiento.

4) Comparar ambas lecturas y establecer la diferencia, es decir:

Q = Lf – Li ------------------------------------------------------------------------------------- (2)

Dónde:

Li es la lectura inicial

Lf es la lectura final

Q es el gasto o caudal

Nota: en el caso de aparatos con descarga libre debe seguirse el procedimiento

descrito.

5) Para obtener el gasto en litros, multiplicar el resultado anterior por mil pues

el gasto está expresado en metros cúbicos (m3). Hacer esto para cada

ensayo.

6) Realizar un promedio aritmético entre los gastos calculados para obtener el

gasto promedio del mueble y/o aparato.

Procedimiento Parte 3. Comparación:

1) Se comparan los resultados obtenidos de consumo con los extraídos de la

ficha técnica del mueble y con el límite máximo permitido por la norma

correspondiente.

2) Elaborar una gráfica comparativa entre los caudales aforados y los

nominales.

3) Analizar los resultados y emitir un dictámen de funcionamiento sustentado

en la información obtenida.

Page 21: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Nota: Estos pasos deben seguirse para el aforo de cualquier mueble y/o

aparato sanitario observando los límites permisibles, mencionados con

anterioridad.

Pruebas al conjunto fluxómetro–excusado

A nivel internacional existen diversas pruebas para evaluar el funcionamiento del

conjunto inodoro–fluxómetro y se realizan de acuerdo a la normatividad vigente,

en México la última versión de esta norma corresponde a la NOM-009-CNA-2001

Pruebas para sanitario especificaciones y métodos de prueba.

Adicionalmente los fluxómetros deben cumplir su propia normatividad (NOM-005-

CNA-1996), sin embargo las pruebas que establecidas no son de realización

simple por el equipo necesario para el análisis de los aparatos. Estas normas

deben ser seguidas por los productores.

Pumagua efectúo en sus estudios todas las pruebas incluidas en la norma y

después de analizar su desempeño y comparar los resultados con el laboratorio

montado en la feria del baño se llegó a la conclusión de que las pruebas a

continuación descritas son las de menor dificultad y mayor eficacia en la

evaluación del conjunto referido.

Espejo de agua

Equipo y material:

Procedimiento

espejo de agua a nivel normal.

cesado el escurrimiento.

Page 22: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Resultados: El ensayo se considera aceptado si las dimensiones del espejo son

de 12.7 x 10.2 cm como mínimo.

A continuación se muestran las imágenes del desarrollo de la prueba realizada en

un conjunto que se ha desempeñado satisfactoriamente.

Intercambio de agua

Equipo y material:

Solución de azul de metileno al 0.15%4

Frasco con gotero de punta redondeada

Procedimiento

o La taza debe tener el espejo de agua a nivel normal.

o Mezclar 5 gotas de la solución con el agua del cuenco, poniendo el gotero

siempre en posición vertical desde una altura no mayor a 20 cm desde la

superficie del agua.

o Identificar la intensidad el color.

o Descargar.

o Identificar la intensidad del color.

o Este ensayo se repetirá 2 veces.

Page 23: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Resultados: Al final del ensayo el color azul debe haber sido diluido por lo menos

en un 90%, de lo contrario no pasa la prueba.

A continuación se muestran las imágenes del desarrollo de la prueba realizada en

un conjunto que se ha desempeñado satisfactoriamente.

Exclusión de residuos

Equipo y material:

o Esferas de plástico (unicel) de 3/4" (19 mm).

o Procedimiento:

o La taza debe tener el espejo de agua a nivel normal.

o Depositar 15 esferas dentro de la taza y descargar.

o Este ensayo se repetirá 2 veces.

Resultados: Debe por lo menos desalojar el 90% del material, de lo contrario no

pasa la prueba.

A continuación se muestran las imágenes del desarrollo de la prueba realizada en

un conjunto que se ha desempeñado satisfactoriamente.

Page 24: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Eliminación de desperdicios

Equipo y material:

o Seis esponjas simétricas de 2x2 cm de sección por 7 cm de largo, medidas

únicamente al estar nuevas y no después de usarse. No recuperables.

o Cinco bolas de papel higiénico sanitario sencillo5 de 4 hojas de 114x127

mm, que tengan un tiempo de absorción de 3 a 9 s.

o Recipiente con agua para saturar esponjas.

Procedimiento

o La taza debe tener el espejo de agua a nivel normal.

o Saturar de agua las esponjas.

o Depositar las esponjas saturadas y las bolas de papel dentro de la taza.

o Descargar a los 3 segundos.

o Este ensayo se repetirá 2 veces.

Resultados: La carga debe ser desalojada en su totalidad, de lo contrario no pasa

la prueba.

Esta prueba es la que más problemas representa para los conjuntos.

Page 25: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

A continuación se muestran las imágenes del desarrollo de la prueba realizada en

un conjunto que se ha desempeñado satisfactoriamente.

Barrido

Equipo y material:

o Seis esponjas simétricas de 2x2 cm de sección por 6 cm de largo, medidas

únicamente al estar nuevas y no después de usarse. No recuperables.

o Recipiente con agua para saturar esponjas.

Procedimiento

o La taza debe tener el espejo de agua a nivel normal.

o Depositar las esponjas saturadas dentro de la taza.

o Descargar a los 3 segundos.

o Este ensayo se repetirá 2 veces.

Resultados: Debe desalojar todo el material, de lo contrario no pasa la prueba.

Page 26: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

A continuación se muestran las imágenes del desarrollo de la prueba realizada en

un conjunto que se ha desempeñado satisfactoriamente.

Arrastre

Equipo y material:

o Aserrín

Procedimiento

o La taza debe tener el espejo de agua a nivel normal.

o Arrojar “un puñado” de aserrín sobre la taza de modo tal que quede cubierta

la mayor cantidad de la superficie del mueble.

o Descargar.

o Este ensayo se repetirá 2 veces.

Resultados: Debe desalojar todo el material, de lo contrario no pasa la prueba.

A continuación se muestran las imágenes del desarrollo de la prueba realizada en

un conjunto que se ha desempeñado satisfactoriamente.

Page 27: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Análisis de Resultados

En relación con las pruebas ya descritas los resultados se asentarán en un

condensado que permita emitir un dictámen de funcionamiento general del

conjunto. A continuación se muestra una ficha que incluye la información de una

prueba realizada:

Page 28: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)
Page 29: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Pruebas a realizarse en cañerías sanitarias antes de cubrirlas

GENERALIDADES

o En General las pruebas de presión y de estanqueidad para las instalaciones

sanitarias se deben realizar a una presión de prueba de 1,5 veces la

presión de trabajo.-

o Las cañerías se deben colocar de forma que los sellos de aprobación y la

marca de las mismas queden del lado visto, para las inspecciones de

control de la Dirección de Obra.

o Las cañerías deben estar fijadas (punteadas) con concreto, dejando a la

vista las soldaduras y conexiones.-

o Por cada prueba se debe confeccionar comprobante escrito con fecha de

realización de la prueba en el que figuren los datos de la obra y del

contratista, sector de instalación que se prueba, observaciones o

aceptación de la prueba, plazos para una nueva prueba y conformidad de

Contratista y Director de Obra

o Estas pruebas no reemplazan ni invalidan a las que se exijan por parte de

las autoridades de control.-

1) PRUEBAS EN DESAGÜES

- De Funcionamiento: descargas de los depósitos de inodoro, o de

volúmenes de agua similares, simultáneamente por distintos puntos de

acceso de la cañería. Descargas simultáneas en: embudos, conexión de

inodoros, bocas de acceso, caños cámara, y de cualquier otro punto que

requiera la Dirección de Obra.-

- De Hermeticidad: Llenado de la cañería por tramos, taponando los puntos

abiertos aguas abajo, manteniendo la carga durante 24 hs. como mínimo.

Para tal efecto el Contratista deberá proveer las herramientas necesarias.-

- Cálculo de la presión de prueba cuando se utiliza bomba de presión:

Determinar la altura entre nivel de piso del local sanitario y el nivel mas bajo

Page 30: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

de la cañería bajo ensayo (ej.: 7.00m: presión de prueba 0,7kg/cm2). El

tiempo de prueba es de por lo menos 2 hs, y se debe repetir por lo menos 2

veces con un lapso intermedio de 24.00hs. La presión no debe descender

más de un 5% y no se deben verificar pérdidas en las uniones.-

- Pasaje de Tapón: para verificar la uniformidad interior y la ausencia de

rebabas internas en las uniones en cañerías de hierro fundido.-

2) PRUEBAS EN AGUA FRÍA

- De hermeticidad: Se deben mantener cargadas las cañerías durante por lo

menos 3 días a la presión normal de trabajo, previo al cierre de las

canaletas.

3) PRUEBAS EN AGUA CALIENTE

- de hermeticidad: Se deben mantener cargadas durante por lo menos 3 días

al doble de la presión de trabajo si se prueban con agua fría. Si se dispone

en obra de los calentadores, se puede probar a 1,5 veces la presión normal

de trabajo.

Page 31: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Instalaciones Eléctricas

VERIFICACIÓN POR EXAMEN

Debe preceder a los ensayos y medidas, y normalmente se efectuará para el

conjunto de la instalación estando ésta sin tensión. 2

Está destinada a comprobar:

• Si el material eléctrico instalado permanentemente es conforme con las

prescripciones establecidas en el proyecto o memoria técnica de diseño.

• Si el material ha sido elegido e instalado correctamente conforme a las

prescripciones del Reglamento y del fabricante del material.

• Que el material no presenta ningún daño visible que pueda afectar a la

seguridad.

En concreto los aspectos cualitativos que este tipo de verificación debe

tener en cuenta son los siguientes:

• La existencia de medidas de protección contra los choques eléctricos por

contacto de partes bajo tensión o contactos directos, como por ejemplo: el

aislamiento de las partes activas, el empleo de envolventes, barreras,

obstáculos o alejamiento de las partes en tensión.

• La existencia de medidas de protección contra choques eléctricos derivados

del fallo de aislamiento de las partes activas de la instalación, es decir,

contactos indirectos. Dichas medidas pueden ser el uso de dispositivos de

corte automático de la alimentación tales como interruptores de máxima

corriente, fusibles, o diferenciales, la utilización de equipos y materiales de

clase II, disposición de paredes y techos aislantes o alternativamente de

conexiones equipotenciales en locales que no utilicen conductor de

protección, etc.

• La existencia y calibrado de los dispositivos de protección y señalización.

• La presencia de barreras cortafuegos y otras disposiciones que impidan la

propagación del fuego, así como protecciones contra efectos térmicos.

• La utilización de materiales y medidas de protección apropiadas a las

influencias externas.

• La existencia y disponibilidad de esquemas, advertencias e informaciones

similares.

• La identificación de circuitos, fusibles, interruptores, bornes, etc.

• La correcta ejecución de las conexiones de los conductores.

• La accesibilidad para comodidad de funcionamiento y mantenimiento.

Page 32: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

MEDIDA DE LA CONTINUIDAD DE LOS CONDUCTORES DE PROTECCIÓN Y

DE LAS UNIONES EQUIPOTENCIALES PRINCIPALES Y SUPLEMENTARIAS.

Esta medición se efectúa mediante un ohmímetro que aplica una intensidad

continua del orden de 200 mA con cambio de polaridad, y equipado con una

fuente de tensión continua capaz de genera de 4 a 24 voltios de tensión continua

en vacío. Los circuitos probados deben estar libres de tensión. Si la medida se

efectúa a dos hilos es necesario descontar la resistencia de los cables de

conexión del valor de resistencia medido.

En la figura se ilustra la medida del valor de la resistencia óhmica del conductor

de protección que une dos bases de enchufe, mediante un comprobador de baja

tensión multifunción, válido para otros tipos de comprobaciones, no obstante, un

simple ohmímetro con medida de resistencia a dos hilos sería suficiente para esta

verificación.

MEDIDA DE LA RESISTENCIA DE PUESTA A TIERRA.

Por la importancia que ofrece, desde el punto de vista de la seguridad cualquier

instalación de toma de tierra, deberá ser obligatoriamente comprobada por el

Director de la Obra o Instalador Autorizado en el momento de dar de alta la

instalación para su puesta en marcha o en funcionamiento.

Personal técnicamente competente efectuará la comprobación de la instalación

de puesta a tierra, al menos anualmente, en la época en la que 4 el terreno esté

más seco. Para ello, se medirá la resistencia de tierra, y se repararán con

carácter urgente los defectos que se encuentren.

Page 33: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

En los lugares en que el terreno no sea favorable a la buena conservación de los

electrodos, éstos y los conductores de enlace entre ellos hasta el punto de puesta

a tierra, se pondrán al descubierto para su examen, al menos una vez cada cinco

años.

Estas medidas se efectúan mediante un telurómetro, que inyecta una intensidad

de corriente alterna conocida, a una frecuencia superior a los 50 Hz, y mide la

caída de tensión, de forma que el cociente entre la tensión medida y la corriente

inyectada nos da el valor de la resistencia de puesta a tierra.

La conexión se efectúa a tres terminales tal y como se indica en la figura, de

forma que la intensidad se inyecta entre E y H, y la tensión se mide entre S y ES.

El electrodo de puesta a tierra está representado por RE, mientras que los otros

dos electrodos hincados en el terreno son dos picas auxiliares de unos 30 cm de

longitud que se suministran con el propio telurómetro. Los tres electrodos se

deben situar en línea recta.

Durante la medida, el electrodo de puesta a tierra cuya resistencia a tierra (RE) se

desea medir debe estar desconectado de los conductores de puesta a tierra. La

distancia entre la sonda (S) y el electrodo de puesta a tierra (E/ES), al igual que la

distancia entre (S) y la pica auxiliar (H) debe ser al menos de 20 metros. Los

cables no se deben cruzar entre sí para evitar errores de medida por

acoplamientos capacitivos.

La medida efectuada se puede considerar como correcta si cuando se desplaza la

pica auxiliar (S) de su lugar de hincado un par de metros a izquierda y derecha en

la línea recta formada por los tres electrodos el valor de resistencia medido no

experimenta variación. En caso contrario es necesario ampliar la distancia entre

los tres electrodos de medida hasta que se cumpla lo anterior.

Mediante telurómetros que permiten una conexión a cuatro terminales se puede

medir también la resistividad del terreno.

Page 34: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

MEDIDA DE LA RESISTENCIA DE AISLAMIENTO DE LA INSTALACIÓN.

Las instalaciones deberán presentar una resistencia de aislamiento al menos igual

a los valores indicados en la tabla siguiente:

Este aislamiento se entiende para una instalación en la cual la longitud del

conjunto de canalizaciones y cualquiera que sea el número de conductores que

las componen no exceda de 100 metros. Cuando esta longitud exceda del valor

anteriormente citado y pueda fraccionarse la instalación en partes de

aproximadamente 100 metros de longitud, bien por seccionamiento, desconexión,

retirada de fusibles o apertura de interruptores, cada una de las partes en que la

instalación ha sido fraccionada debe presentar la resistencia de aislamiento que

corresponda según la tabla anterior.

Cuando no sea posible efectuar el fraccionamiento citado en tramos de 100

metros, el valor de la resistencia de aislamiento mínimo admisible será el indicado

en la tabla 1 dividido por la longitud total de la canalización, expresada ésta última

en unidades de hectómetros.

Si las masas de los aparatos receptores están unidas al conductor neutro (redes

T-N), se suprimirán estas conexiones durante la medida, restableciéndose una vez

terminada ésta.

Cuando la instalación tenga circuitos con dispositivos electrónicos, en dichos

circuitos los conductores de fase y el neutro estarán unidos entre sí durante las

medidas.

El aislamiento se medirá de dos formas distintas: en primer lugar entre todos los

conductores del circuito de alimentación (fases y neutro) unidos entre sí con

respecto a tierra (aislamiento con relación a tierra), y a continuación entre cada

pareja de conductores activos.

La medida se efectuará mediante un megóhmetro, que no es más que un

generador de corriente continua, capaz de suministrar las tensiones de ensayo

especificadas en la tabla anterior con una corriente de 1 mA para una carga igual

a la mínima resistencia de aislamiento especificada para cada tensión.

Page 35: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Durante la primera medida, los conductores, incluido el conductor neutro o

compensador, estarán aislados de tierra, así como de la fuente de alimentación de

energía a la cual están unidos habitualmente. Es importante recordar que estas

medidas se efectúan por tanto en circuitos sin tensión, o mejor dicho

desconectados de su fuente de alimentación 6habitual, ya que en caso contrario

se podría averiar el comprobador de baja tensión o megóhmetro. La tensión de

prueba es la tensión continua generada por el propio megóhmetro.

La medida de aislamiento con relación a tierra, se efectuará uniendo a ésta el polo

positivo del megóhmetro y dejando, en principio, todos los receptores conectados

y sus mandos en posición “paro”, asegurándose que no existe falta de continuidad

eléctrica en la parte de la instalación que se verifica; los dispositivos de

interrupción intercalados en la parte de instalación que se verifica se pondrán en

posición de "cerrado" y los cortacircuitos fusibles instalados como en servicio

normal a fin de garantizar la continuidad eléctrica del aislamiento. Todos los

conductores se conectarán entre sí incluyendo el conductor neutro o compensador,

en el origen de la instalación que se verifica y a este punto se conectará el polo

negativo del megóhmetro.

Cuando la resistencia de aislamiento obtenida resultara inferior al valor mínimo

que le corresponda, se admitirá que la instalación es, no obstante correcta, si se

cumplen las siguientes condiciones:

Cada aparato receptor presenta una resistencia de aislamiento por lo

menos igual al valor señalado por la norma particular del producto

que le concierna o en su defecto 0,5 MΩ.

Desconectados los aparatos receptores, la resistencia de aislamiento

de la instalación es superior a lo indicado anteriormente.

La segunda medida a realizar corresponde a la resistencia de aislamiento entre

conductores polares, se efectúa después de haber desconectado todos los

receptores, quedando los interruptores y cortacircuitos fusibles en la misma

posición que la señalada anteriormente para la medida del aislamiento con

relación a tierra. La medida de la resistencia de aislamiento se efectuará

sucesivamente entre los conductores tomados dos a dos, comprendiendo el

conductor neutro o compensador.

Para las instalaciones que empleen muy baja tensión de protección (MBTP) o de

seguridad (MBTS) se deben comprobar los valores de la resistencia de

aislamiento para la separación de estos circuitos con las partes activas de otros

circuitos, y también con tierra si se trata de MBTS, aplicando en ambos casos los

mínimos de la tabla1 anterior.

Page 36: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

MEDIDA DE LA RESISTENCIA DE AISLAMIENTO DE SUELOS Y

PAREDES.

Uno de los sistemas que se utiliza para la protección contra contactos indirectos

en determinados locales y emplazamientos no conductores se basa en que, en

caso de defecto de aislamiento básico o principal de las partes activas, se

prevenga el contacto simultáneo con partes que puedan estar a tensiones

diferentes, utilizando para ello suelos y paredes aislantes con una resistencia de

aislamiento no inferior a:

- 50 kΩ, si la tensión nominal de la instalación no es superior a 500 V;

y

- 100 kΩ, si la tensión nominal de la instalación es superior a 500 V. 7

Para comprobar los valores anteriores deben hacerse al menos tres medidas en el

mismo local, una de esas medidas estando situado el electrodo, aproximadamente

a 1m de un elemento conductor accesible en el local. Las otras dos medidas se

efectuarán a distancias superiores. Esta serie de tres medidas debe repetirse para

cada superficie importante del local.

Se utilizará para las medidas un megóhmetro capaz de suministrar en vacío una

tensión de unos 500 voltios de corriente continua, (1000 voltios si la tensión

nominal de la instalación es superior a 500 voltios).

Se pueden utilizar dos electrodos de medida (el tipo 1, o el tipo 2), aunque es

recomendable utilizar el tipo 1.

El electrodo de medida tipo 1 está constituido por una placa metálica cuadrada de

250 mm de lado y un papel o tela hidrófila mojada y escurrida de unos 270 mm de

lado que se coloca entre la placa y la superficie a ensayar. Durante las medidas se

aplica a la placa una fuerza de 750 N o 250 N según se trate de suelo o paredes.

Page 37: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

El electrodo de medida tipo 2 está constituido por un triángulo metálico, donde los

puntos de contacto con el suelo o pared están colocados próximos a los vértices

de un triángulo equilátero. Cada una de las piezas de contacto que le sostiene,

está formada por una base flexible que garantiza, cuando está bajo el esfuerzo

indicado, un contacto íntimo con la superficie a ensayar de aproximadamente 900

mm2, presentando una resistencia inferior a 5000 Ω. En este caso antes de

efectuar las medidas la superficie a ensayar se moja o se cubre con una tela

húmeda. Durante la medida, se aplica sobre el triángulo metálico una fuerza de

750 N o 250 N, según se trate de suelos o paredes.

ENSAYO DIELÉCTRICO DE LA INSTALACIÓN.

Por lo que respecta a la rigidez dieléctrica de una instalación, ha de ser tal, que

desconectados los aparatos de utilización (receptores), resista durante 1 minuto

una prueba de tensión de 2U + 1000 voltios a frecuencia industrial (50 Hz), siendo

U la tensión máxima de servicio expresada en voltios y con un mínimo de 1.500

voltios. Este ensayo se realizará para cada uno de los conductores incluido el

neutro o compensador, con relación a tierra y entre 8conductores, salvo para

aquellos materiales en los que se justifique que haya sido realizado dicho ensayo

previamente por el fabricante.

Este ensayo se efectúa mediante un generador de corriente alterna de 50 Hz

capaz de suministrar la tensión de ensayo requerida. Durante este ensayo los

dispositivos de interrupción se pondrán en la posición de "cerrado" y los

cortacircuitos fusibles instalados como en servicio normal a fin de garantizar la

continuidad del circuito eléctrico a probar.

Este ensayo no se realizará en instalaciones correspondientes a locales que

presenten riesgo de incendio o explosión. Durante este ensayo, la corriente

suministrada por el generador, que es la que se fuga a tierra a través del

aislamiento, no será superior para el conjunto de la instalación o para cada uno de

los circuitos en que ésta pueda dividirse a efectos de su protección, a la

sensibilidad que presenten los interruptores diferenciales instalados como

protección contra los contactos indirectos.

MEDIDA DE CORRIENTES DE FUGA.

Además de la prueba de corriente de fuga del apartado anterior es conveniente

efectuar para cada uno de los circuitos protegidos con interruptores diferenciales

la medida de corrientes de fuga, a la tensión de servicio de la instalación y con los

receptores conectados. Los valores medidos deben ser igualmente inferiores a la

Page 38: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

mitad de la sensibilidad de los interruptores diferenciales instalados para

protección de cada uno de los circuitos. Mediante este método es posible detectar

un circuito o receptor que presente un defecto de aislamiento o que tenga una

corriente de fugas superior a la de la sensibilidad de los interruptores diferenciales

de la instalación, llegando en casos extremos a disparar el o los diferenciales de

protección, en cuyo caso sería necesario puentearlos para poder localizar el

circuito o receptor averiado.

La medida se efectúa mediante una tenaza amperimétrica de sensibilidad mínima

de 1mA, que se coloca abrazando los conductores activos (de fase y el neutro), de

forma que la tenaza mide la suma vectorial de las corrientes que pasan por los

conductores que abraza, si la suma no es cero la instalación tiene una intensidad

de fuga que circulará por los conductores de puesta a tierra de los receptores

instalados aguas abajo del punto de medida. Este tipo de pinzas suelen llevar un

filtro que nos permite hacer la medida a la frecuencia de red (50Hz) o para

intensidades de alta frecuencia.

No hay que confundir la corriente de defecto con la corriente de fuga, ya que esta

última se da en mayor o menor medida en todo tipo de receptores en condiciones

normales de funcionamiento, sobre todo en receptores que lleven filtros para

combatir interferencias, como los formados por 9condensadores conectados a

tierra. Un ejemplo son los balastos electrónicos de alta frecuencia asociados a los

tubos fluorescentes.

MEDIDA DE LA IMPEDANCIA DE BUCLE.

La medida del valor de la impedancia de bucle es necesaria para comprobar el

correcto funcionamiento de los sistemas de protección basados en la utilización de

fusibles o interruptores automáticos en sistemas de distribución TN, e IT

principalmente.

Estos sistemas de protección requieren determinar la intensidad de cortocircuito

prevista fase tierra, para comprobar que para ese valor de intensidad de

cortocircuito el tiempo de actuación del dispositivo de protección de máxima

intensidad es menor que un tiempo especificado. Este tiempo depende del

esquema de distribución utilizado y de la tensión nominal entre fase y tierra, U0,

de la instalación.

Page 39: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Los parámetros que intervienen en estas comprobaciones son los

siguientes:

Zs es la impedancia del bucle de defecto, incluyendo la de la fuente, la del

conductor activo hasta el punto de defecto y la del conductor de protección,

desde el punto de defecto hasta la fuente. Para el esquema TN de la

siguiente figura se tendría que: Zs= (R1+R2) + j (XL1 + XL2).

Los medidores de impedancia de bucle son instrumentos que miden directamente

el valor de esta impedancia y que calculan mediante un procesador el valor de la

intensidad de cortocircuito prevista. Durante este tipo de medidas es necesario

puentear provisionalmente cualquier interruptor diferencial instalado aguas arriba

del punto de prueba.

Esta medida se debe efectuar con la instalación en tensión. Como estas medidas

se efectúan a dos hilos es necesario descontar la resistencia de los cables de

conexión de la medida.

Además de la medida de la impedancia de bucle entre fase y tierra (L-PE),

también es posible mediante estos instrumentos determinar la impedancia de

Page 40: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

bucle entre cualquier fase y el conductor neutro (L-N), así como entre dos fases

cualesquiera para instalaciones trifásicas.

El principio de funcionamiento de un medidor de impedancia de bucle consiste en

cargar el circuito en el punto de prueba mediante una resistencia calibrada que se

conecta durante un tiempo muy breve del orden de milisegundos, de forma que

circula una intensidad conocida.

El instrumento mide la tensión tanto antes como durante el tiempo que circula la

corriente, siendo la diferencia entre ambas, la caída de tensión en el circuito

ensayado, finalmente el cociente entre la caída de tensión y el valor de la

intensidad de carga nos da el valor de la impedancia de bucle.

MEDIDA DE LA TENSIÓN DE CONTACTO Y COMPROBACIÓN DE

LOSINTERRUPTORES DIFERENCIALES.

Cuando el sistema de protección contra los choques eléctricos está confiado a

interruptores diferenciales, como es habitual cuando se emplean sistemas de

distribución del tipo T-T se debe cumplir la siguiente condición:

Para garantizar la seguridad de la instalación se tienen que dar dos condiciones, la

primera que la tensión de contacto que se pueda presentar en la instalación en

Page 41: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

función de los diferenciales instalados sea menor que el valor límite convencional

(50 V ó 24 V), y la segunda que los diferenciales funcionen correctamente.

a) Medida de la tensión de contacto.

En la práctica los medidores de impedancia de bucle que sirven también para

medir el valor de la tensión de contacto no suelen ser capaces de medir

únicamente el valor de la resistencia RA, sino que miden el valor de la impedancia

de todo el bucle indicado en la figura anterior incluyendo la resistencia de tierra del

centro de transformación (RB), de forma que se obtiene un valor superior al valor

buscado de RA. Finalmente el medidor multiplica este valor por la intensidad

asignada del interruptor diferencial que nosotros hayamos seleccionado para

obtener así la tensión de contacto:

Como la impedancia de bucle es siempre mayor que la de puesta a tierra el valor

de la tensión de contacto medida siempre será mayor que el valor real y

estaremos del lado de la seguridad. Obviamente la instalación es segura si la

tensión de contacto medida es menor que la tensión de contacto límite

convencional.

b) Comprobación de los interruptores diferenciales.

La comprobación de diferenciales requiere de un aparato capaz de inyectar a

través del diferencial bajo prueba una corriente de fugas especificada y conocida

que según su valor deberá hacer disparar al diferencial. Para hacer la prueba el

comprobador se conecta en cualquier base de enchufe aguas abajo del diferencial

en ensayo, estando la instalación en servicio.

Además cuando dispare el diferencial el comprobador debe ser capaz de medir el

tiempo que tardó en disparar desde el instante en que se inyectó laintensidad de

fugas.

Page 42: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Normalmente estos equipos inyectan una corriente senoidal, pero para comprobar

algunos diferenciales especiales a veces es necesario también que sean capaces

de inyectar corriente alterna rectificada de media onda o una corriente continua.

Las pruebas habituales para comprobar el funcionamiento de un diferencial del

tipo general son las siguientes: 12

• Se inyecta una intensidad mitad de la intensidad diferencial residual

asignada, con un ángulo de fase de corriente respecto de la onda de

tensión de 0º, y el diferencial no debe disparar.

• Se repite la prueba anterior con un ángulo de fase de 180º y el diferencial

no debe disparar.

• Se inyecta una intensidad igual la intensidad diferencial residual asignada,

con un ángulo de fase de corriente respecto de la onda de tensión de 0º, y

el diferencial debe disparar en menos de 200 ms.

• Se repite la prueba anterior con un ángulo de fase de 180º y el diferencial

debe disparar en menos de 200 ms.

• Se inyecta una intensidad igual al doble de la intensidad diferencial residual

asignada, con un ángulo de fase de corriente respecto de la onda de

tensión de 0º, y el diferencial debe disparar en menos de 150 ms.

• Se repite la prueba anterior con un ángulo de fase de 180º y el diferencial

debe disparar en menos de 150 ms.

• Se inyecta una intensidad igual a cinco veces la intensidad diferencial

residual asignada, con un ángulo de fase de corriente respecto de la onda

de tensión de 0º, y el diferencial debe disparar en menos de 40 ms.

• Se repite la prueba anterior con un ángulo de fase de 180º y el diferencial

debe disparar en menos de 40 ms.

Para los diferenciales selectivos del tipo S las pruebas tienen otros límites de

aceptación.

COMPROBACIÓN DE LA SECUENCIA DE FASES.

Esta comprobación se efectúa mediante un equipo específico o utilizando un

comprobador multifunción de baja tensión que tenga esta capacidad. Esta medida

es necesaria por ejemplo si se van a conectar motores trifásicos, de forma que se

asegure que la secuencia de fases es directa antes de conectar el motor.

Prevención del riesgo eléctrico

Las condiciones de seguridad que deben reunir las instalaciones eléctricas son:

En relación a las características constructivas de las instalaciones se debe seguir

lo dispuesto en la reglamentación para la ejecución de instalaciones eléctricas en

Page 43: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

inmuebles. En esta reglamentación se determinan los materiales, equipos y

aparatos eléctricos que se deben utilizar.

Para la protección contra riesgos de contactos directos se deben adoptar una o

varias de las siguientes opciones:

• Protección por alejamiento: Alejar las partes activas de la instalación a

distancia suficiente del lugar donde las personas se encuentran o circulan

para evitar un contacto fortuito.

• Protección por aislamiento: Las partes activas de la instalación deben estar

recubiertas con aislamiento apropiado que conserve sus propiedades

durante su vida útil y que limite la corriente de contacto a un valor inocuo.

• Protección por medio de obstáculos: Consiste en interponer elementos que

impidan todo contacto accidental con las partes activas de la instalación. La

eficacia de los obstáculos debe estar asegurada por su naturaleza, su

extensión, su disposición, su resistencia mecánica y si fuera necesario, por

su aislamiento.

• Para la protección contra riesgos de contactos indirectos (proteger a las

personas contra riesgos de contacto con masas puestas accidentalmente

bajo tensión) se debe contar con los siguientes dispositivos de seguridad:

• Puesta a tierra de las masas: Las masas deben estar unidas eléctricamente

a una toma a tierra o a un conjunto de tomas a tierra interconectadas. Este

circuito de puesta a tierra debe continuo, permanente y tener la capacidad

de carga para conducir la corriente de falla y una resistencia apropiada.

Periódicamente se debe verificar los valores de resistencia de tierra de las

jabalinas instaladas. Los valores de resistencia a tierra obtenidos se deben

encontrar por debajo del máximo establecido (10 ohm).

• Disyuntores diferenciales: los disyuntores diferenciales deben actuar

cuando la corriente de fuga a tierra toma el valor de calibración (300 mA o

30 mA según su sensibilidad) cualquiera sea su naturaleza u origen y en un

tiempo no mayor de 0,03 segundos.

• Separar las masas o partes conductoras que puedan tomar diferente

potencial, de modo que sea imposible entrar en contacto con ellas

simultáneamente (ya sea directamente o bien por intermedio de los objetos

manipulados habitualmente).

• Interconectar todas las masas o partes conductoras, de modo que no

aparezcan entre ellas diferencias de potencial peligrosas.

• Aislar las masas o partes conductoras con las que el hombre pueda entrar

en contacto.

• Separar los circuitos de utilización de las fuentes de energía por medio de

transformadores o grupos convertidores. El circuito separado no debe tener

Page 44: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

ningún punto unido a tierra, debe ser de poca extensión y tener un buen

nivel de aislamiento.

• Usar tensión de seguridad.

• Proteger por doble aislamiento los equipos y máquinas eléctricas.

Normas y material de seguridad.

Las normas de seguridad e higiene, son fundamentales en los trabajos que se

realicen en las instalaciones eléctricas. Entre otras, las más básicas son dos:

- Cortar la energía eléctrica antes de tocar los circuitos

- Manipular en las maquinas y sus circuitos, solo cuando se esté

seguro de los que se quiere hacer.

El resto de las normas mínimas de seguridad las marcan los distintos

Reglamentos aplicables en cada caso. Además de dichos reglamentos, es

necesario observar y cumplir la legislación de seguridad y salud aplicable a cada

lugar de trabajo donde se encuentre la instalación eléctrica.

NORMAS GENERALES

Toda persona debe dar cuenta al correspondiente supervisor de los

trabajos a realizar y debe obtener el permiso correspondiente.

Debe avisar de cualquier condición insegura que observe en su trabajo y

advertir de cualquier defecto en los materiales o herramientas a utilizar.

Quedan prohibidas las acciones temerarias (mal llamadas actos de

valentía), que suponen actuar sin cumplir con las Reglamentaciones de

Seguridad y entrañan siempre un riesgo inaceptable.

No hacer bromas, juegos o cualquier acción que pudiera distraer a los

operarios en su trabajo.

Cuando se efectúen trabajos en instalaciones de Baja Tensión, no podrá

considerarse la misma sin tensión si no se ha verificado la ausencia de la

misma.

NORMAS ESPECÍFICAS ANTES DE LA OPERACIÓN

A nivel del suelo ubicarse sobre los elementos aislantes correspondientes

(alfombra o manta aislante o banqueta aislante).

Utilizar casco (el cabello debe estar contenido dentro del mismo y

asegurado si fuese necesario), calzado de seguridad dieléctrico, guantes

aislantes para BT y anteojos de seguridad.

Page 45: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Utilizar herramientas o equipos aislantes. Revisar antes de su uso el

perfecto estado de conservación y aislamiento de los mismos, de su toma

de corriente y de los conductores de conexión.

Desprenderse de todo objeto metálico de uso personal que pudiera

proyectarse o hacer contacto con la instalación. Quitarse anillos, relojes o

cualquier elemento que pudiera dañar los guantes.

Utilizar máscaras de protección facial y/o protectores de brazos para

proteger las partes del cuerpo.

Aislar los conductores o partes desnudas que estén con tensión, próximos

al lugar de trabajo.

La ropa no debe tener partes conductoras y cubrirá totalmente los brazos,

las piernas y pecho.

Utilizar ropas secas, en caso de lluvia usar la indumentaria impermeable.

En caso de lluvia extremar las precauciones.

NORMAS ESPECÍFICAS DURANTE LA OPERACIÓN

Abrir los circuitos con el fin de aislar todas las fuentes de tensión que

pueden alimentar la instalación en la que se va a trabajar. Esta apertura

17debe realizarse en cada uno de los conductores que alimentan la

instalación, exceptuando el neutro.

Bloquear todos los equipos de corte en posición de apertura. Colocar en el

mando o en el mismo dispositivo la señalización de prohibido de maniobra.

Verificar la ausencia de tensión. Comprobar si el detector funciona antes y

después de realizado el trabajo.

Puesta a tierra y la puesta en cortocircuito de cada uno de los conductores

sin tensión incluyendo el neutro.

Delimitar la zona de trabajo señalizándola adecuadamente.

NORMAS ESPECÍFICAS POSTERIORES A LA OPERACIÓN

Reunir a todas las personas que participaron en el trabajo para notificar la

reposición de la tensión.

Verificar visualmente que no hayan quedado en el sitio de trabajo

herramientas u otros elementos.

Se retirará la señalización y luego el bloqueo.

Se cerrarán los circuitos.

NORMAS ESPECÍFICAS PARA EL EMPLEO Y CONSERVACIÓN DEL

MATERIAL DE SEGURIDAD

Page 46: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

• Casco de seguridad

Es obligatorio para toda persona que realice trabajos en instalaciones eléctricas de

cualquier tipo.

• Anteojos de protección o máscara protectora facial

El uso es obligatorio para toda persona que realice un trabajo que encierre un

riesgo de accidente ocular tal como arco eléctrico, proyección de gases partículas,

etc.

• Guantes dieléctricos

Los guantes deben ser para trabajos a BT. Deben verificarse frecuentemente,

asegurarse que están en buen estado y no presenta huellas de roturas, desgarros

ni agujeros. Todo guante que presente algún defecto debe ser descartado. Deben

ser protegidos del contacto con objetos cortantes o punzantes con guantes de

protección mecánica. Conservarlos en estuches adecuados.

• Cinturón de seguridad

El material de los cinturones será sintético. No deben ser de cuero. Debe 18llevar

todos los accesorios necesarios para la ejecución del trabajo tales como cuerda de

seguridad y soga auxiliar para izado de herramientas.

Estos accesorios deben ser verificados antes de su uso, al igual que el cinturón,

revisando particularmente el reborde de los agujeros previstos para la hebilla

pasa-cinta de acción rápida. Verificar el estado del cinturón: ensambles sólidos,

costuras, remaches, deformaciones de las hebillas, mosquetones y anillos. Los

cinturones deben ser mantenidos en perfecto estado de limpieza y guardados en

lugares aptos para su uso posterior.

• Banquetas aislantes y alfombra aislante

Es necesario situarse en el centro de la alfombra y evitar todo contacto con las

masas metálicas.

• Verificadores de ausencia de tensión

Se debe verificar ante de su empleo que el material está en buen estado. Se debe

verificar antes y después de su uso que la cabeza detectora funcione

correctamente. Para la utilización de estos aparatos es obligatorio el uso de los

guantes dieléctricos de la tensión correspondiente.

Page 47: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

• Escaleras

Se prohíbe utilizar escaleras metálicas para trabajos en instalaciones eléctricas o

en su proximidad inmediata, si tiene elementos metálicos accesibles.

• Dispositivos de puesta a tierra y en cortocircuito

La puesta a tierra y en cortocircuito de los conductores, aparatos o partes de

instalaciones sobre las que se debe efectuar un trabajo, debe hacerse mediante

un dispositivo especial diseñado a tal fin. Las operaciones se deben realizar en el

siguiente orden:

Asegurarse de que todas las piezas de contacto, así como los conductores

del dispositivo, estén en buen estado.

Siempre conectar en primer lugar el morseto de cable de tierra del

dispositivo, utilizando guante de protección mecánica, ya sea en la tierra

existente de las instalaciones o bien en una jabalina especialmente clavada

en el suelo.

Desenrollar completamente el conductor del dispositivo, para evitar los

efectos electromagnéticos debido a un cortocircuito eventual.

Fijar las pinzas de conexión de los conductores de tierra y cortocircuitos

sobre cada uno de los conductores de la instalación utilizando guantes de

protección dieléctrica y mecánica.

Para quitar los dispositivos de puesta a tierra y en cortocircuito operar

rigurosamente en el orden inverso, primero el dispositivo de los conductores

y por último el de tierra.

Señalizar el lugar donde se coloque la tierra, para individualizarla

perfectamente.

En la industria, lo más importante es la continuidad del servicio de energía

eléctrica, ya que de eso depende el proceso de producción; por ello, es importante

asegurar que los equipos e instalaciones eléctricas estén en óptimas condiciones.

Es indispensable que se realicen pruebas y se dé el mantenimiento

correspondiente.

Tipos de pruebas

Existen varias pruebas eléctricas que se denominan con relación al lugar o la

finalidad de las mismas.

Pruebas prototipo. Son aquéllas que se realizan a diseños nuevos, con la

finalidad de verificar si se cumple con las especificaciones y normas que

Page 48: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

apliquen, según sea el caso, considerando la evaluación de los materiales

utilizados, así como los criterios de diseño.

Pruebas de fábrica. Éstas se realizan como rutina, por parte del área de

control de calidad, conforme a los métodos establecidos en las normas

aplicables. Tienen el objetivo de verificar las características del equipo, sus

condiciones de operación y la calidad de la fabricación antes de ser

entregados al cliente. Estas pruebas pueden ser atestiguadas por el cliente

(ver figura 1).

Pruebas de aceptación. Se realizan a todo equipo nuevo y reparado para

verificar que no ha sufrido algún desperfecto en el traslado, que cumple

con las especificaciones y que se ha realizado la correcta instalación.

También se realizan para establecer referencias para pruebas futuras.

Estas pruebas se realizan previamente a la puesta en servicio (ver figura

2).

Pruebas de mantenimiento. Se realizan periódicamente durante toda la

vida del equipo, con el propósito de verificar si el equipo se encuentra en

condiciones de operación satisfactorias y detectar fallas de manera

oportuna, antes de que se convierta en un problema grave.

Se realizan cuando existen sospechas de que un equipo se halla en problemas o

cuando dicho equipo se ha sometido a condiciones de trabajo extremas.

Pruebas con corriente directa o corriente alterna

Las pruebas se realizan con corriente directa o con corriente alterna, dependiendo

de lo que se desea simular o valorar. En términos generales, el principio básico de

las pruebas obedece a la Ley de Ohm. Por ejemplo: la prueba de resistencia de

aislamiento. En ella, el instrumento inyecta una tensión eléctrica (volts), el cual

mide una corriente de fuga (micro-amperes) y la expresa en resistencia

(megohms):

R = V / I

Entre los instrumentos de medición que operan con corriente directa, se

encuentran: medidor de resistencia de aislamiento (megóhmetro), probador de

potencial aplicado (hi-pot) y medidor de resistencia (óhmetro).

Las pruebas con corriente alterna, en términos generales, producen esfuerzos

eléctricos similares a las condiciones reales de operación de los equipos, como las

pruebas de factor de disipación, pruebas de relación de transformación, reactancia

Page 49: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

de dispersión, resistencia a tierra y potencial aplicado a frecuencia nominal o a

baja frecuencia.

Qué equipo eléctrico probar

Prácticamente, todo equipo y sistema eléctrico se puede probar para verificar si

cumple con las normas de producto, especificaciones, proyecto eléctrico, así como

para valorar el estado funcional y estimar su vida útil.

Pruebas básicas

Si se considera que un sistema debe estar aislado con el fin de que no exista un

cortocircuito o fallas a tierra, la prueba básica es la medición de resistencia de

aislamiento. Esta prueba es aplicable a cables de media tensión, componentes de

subestación compacta (bus, cuchillas, aparta-rayos, interruptor), transformadores,

componentes de tableros eléctricos (bus e interruptores), cables alimentadores y

derivados; arrancadores, motores, etc. En general, en donde queramos comprobar

que el aislamiento de los equipos es satisfactorio.

Otra prueba básica es la medición de la resistencia del sistema de tierra y

continuidad de las conexiones. Dicha prueba se realiza en instalaciones nuevas

para verificar que se cumpla la NOM-001-SEDE y, posteriormente, con el fin de

asegurar que las condiciones iniciales se mantengan. Para el último caso se debe

considerar la NOM-022-STPS, la cual indica que se tienen que realizar mediciones

anualmente.

Métodos y procedimientos de prueba

Los métodos y procedimientos de prueba dependen de la prueba en cuestión y del

equipo a probar. Por ejemplo, la norma mexicana NMX-J-169 establece los

métodos de prueba para transformadores y autotransformadores de distribución y

potencia. En algunas normas se establecen también criterios de evaluación.

Existen, además, normas de referencia como la NRF-048-PEMEX, referente al

diseño de instalaciones eléctricas; en su anexo D, se indican criterios de

evaluación para pruebas en campo. Por su parte, Comisión Federal de

Electricidad cuenta con su Manual de procedimientos de pruebas de campo para

equipo primario de subestaciones de distribución, denominado SOM-3531.

Pruebas confiables

Page 50: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

El primer elemento a considerar es que las mediciones y pruebas eléctricas se

realicen con equipos calibrados por un laboratorio acreditado para tal fin; es decir,

acreditado por la Entidad Mexicana de Acreditación (EMA). Otra parte importante

es el personal capacitado y calificado para realizar dichas pruebas, ya que, al final

del día, lo importante no es tener el valor de prueba, sino el diagnóstico para saber

qué hacer.

Existe otro elemento de gran importancia, el cual consiste en que las pruebas se

realicen en forma sistemática; es decir, que existan procedimientos de seguridad y

prueba documentados. Esto se obtiene con una compañía en donde esté

colaborando personal calificado, que tiene la infraestructura (equipos calibrados) y

un sistema de calidad certificado. De tal forma, se asegura que existirá un registro

(archivo) de las mediciones para consultas futuras.

Medidas de seguridad básicas

La seguridad se obtiene utilizando instrumentos de medición adecuados,

procedimientos de trabajo seguros y equipo de protección personal:

Utilizar guantes aislantes

No utilizar joyas o relojes de pulsera

Utilizar gafas de seguridad

Utilizar zapatos dieléctricos

Utilizar ropa ignífuga

En cuanto a los instrumentos de medición:

Verificar que la carcasa no esté rota y que los cables no estén desgastados

Asegurarse de que las baterías tengan suficiente energía para obtener

lecturas confiables

Verificar la resistencia de los cables de prueba para detectar si no existe

ruptura interna

Respecto a los procedimientos de trabajo, sobre todo con circuitos eléctricos con

tensión:

Enganche primero el cable de referencia o tierra, y después conecte el

cable con tensión

Retire primero el cable con tensión y por último el cable de tierra o

referencia

Verifique el funcionamiento del instrumento de medición

Page 51: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Utilice la regla de usar sólo una mano, con el fin de evitar cerrar el circuito a

través del pecho y corazón

Page 52: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Instalaciones de Gas

PRUEBAS DE PRESIÓN

La prueba de presión es para detectar posibles escapes de gas y verificar la

resistencia de la red a presiones superiores a la presión de operación,

asegurando que el total de los componentes tales como, válvulas, tubería y

accesorios, resisten esas presiones.

Requerimientos generales

Este procedimiento se aplica a todos los tamaños de tubería, comenzando

aguas abajo de la estación de medición y regulación hasta la válvula de corte

de cada equipo.

La prueba no comenzará sin una exhaustiva inspección visual a la instalación y

particularmente a las uniones soldadas, para detectar cualquier defecto.

La prueba de presión deberá ser realizada con aire o gas inerte, hasta una

presión máxima de 6 bar.

Preparación de la prueba

Presión:

La presión de prueba será igual a tres veces la presión de operación. (SEC)

con un mínimo de 6 bar.

Como instrumento de medición se usarán manómetros Bourdon, calibrados en

divisiones no mayores a 0,1 Lb/pulg2 (o 10 mbar), graduados en un rango no

mayor de 0 - 150 Lb/pulg2 (o - 10 bar).

El tiempo de la prueba deberá ser calculado usando la siguiente fórmula:

Tiempo (min) = Volumen de tubería (m3) x 214 (-)

Page 53: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

En todos los casos los tiempos mínimos y máximos serán:

Mínimo: 15 minutos.

Máximo: 60 minutos.

Procedimiento de la prueba

Todas las válvulas dentro del área de prueba deberán ser probadas en

posición abierta, colocando en el extremo una tapa tornillo (plug) para

instalaciones roscadas o flanche ciego para instalaciones soldadas.

Deberá considerarse un tiempo adicional de 15 minutos para lograr

estabilizar el sistema, ya sea por cambios de temperatura y/o presión

ambiente, o bolsas de aire en la tubería.

La presión debe ser incrementada gradualmente en rangos de no más

que 10% de la presión de prueba, dando el tiempo necesario para

estabilizar la presión.

La presión deberá ser chequeada durante todo el período de prueba, no

debiendo registrarse movimientos perceptibles en esta medida.

Paralelamente a lo anterior, todas las juntas deberán ser chequeadas

pasando una solución de agua y jabón para detectar posibles fugas.

De existir una disminución de presión mayor que 0,1 Lb/pulg2 (o 10

mbar) durante el tiempo de la prueba, la fuga deberá ser localizada y

reparada. La prueba de presión se repetirá nuevamente.

Se deberá emitir un formulario de la prueba de presión inmediatamente

después de terminada la prueba y antes de realizar la purga.

Una vez finalizada la prueba de presión se deberá hacer una exhaustiva

limpieza interior de la tubería, a través de barridos con aire comprimido,

Page 54: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

preferentemente desde la E.M.R. en cada uno de los puntos de

consumo. Este proceso se repetirá las veces que sea necesario hasta

que el aire de salida esté libre de óxidos y partículas.

PRUEBAS EN TRAMOS VISTOS, EMPOTRADOS O ALOJADOS EN VAINAS O

CONDUCTOS

Consideraciones generales

Todas las instalaciones receptoras una vez construidas y con anterioridad a su

puesta en disposición de servicio por parte de la Empresa Distribuidora,

deberán someterse a una prueba de estanquidad con resultado satisfactorio,

es decir, no debe detectarse fuga alguna.

Esta prueba debe ser correctamente documentada.

La prueba de estanquidad no incluye a los conjuntos de regulación,

reguladores de abonado, válvulas de seguridad por defecto de presión y

contadores, por lo que estos deberán aislarse mediante llaves de corte o

desmontarse de la instalación, colocando los correspondientes puentes

tapones extremos.

Asimismo, la prueba de estanquidad tampoco incluye los aparatos a gas, ni su

conexión a la instalación receptora.

Esta prueba de estanquidad se realizará en todos los tramos que componen la

instalación receptora, es decir, desde la llave de acometida, excluida ésta,

hasta las llaves de conexión de aparato, incluidas éstas, y siempre antes de

ocultar, enterrar o empotrar las tuberías.

Siempre que en una instalación receptora existan tramos alimentados a

diferentes presiones, en cada tramo se aplicarán los criterios establecidos para

el rango de presión de servicio que corresponda. Si se realiza de forma

completa, la presión de prueba será la del tramo de más presión.

Page 55: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Esta prueba de estanquidad deberá ser realizada por la Empresa Instaladora

utilizando como fluido de prueba aire o gas inerte, estando prohibido el uso del

gas de suministro o de cualquier otro tipo de gas o líquido.

Tanto el nivel de presión de la prueba como el tiempo del ensayo dependen de

la presión de servicio del tramo, y se indican más adelante.

Con anterioridad a la realización de la prueba de estanquidad, deberá

asegurarse que están cerradas las llaves que delimitan la parte de instalación a

ensayar, colocados los puentes y tapones extremos necesarios y, además, que

se encuentran abiertas las llaves intermedias.

Para alcanzar el nivel de presión necesario en el tramo a probar, deberá

conectarse en una toma de presión de la instalación el dispositivo adecuado

para inyectar aire o gas inerte, controlando su presión mediante el elemento de

medida adecuado al rango de presión de la prueba, inyectando el aire o el gas

inerte hasta alcanzar el nivel de presión necesario para realizar la prueba

según la presión de servicio del tramo.

En caso de que no exista toma de presión, se conectará el dispositivo de

inyección en una llave extrema, en las conexiones del contador o del regulador,

etc.

Una vez alcanzado el nivel de presión necesario para la realización de la

prueba de estanquidad, se deja transcurrir el tiempo preciso para que se

estabilice la temperatura y se toma lectura de la presión que indica el elemento

de medida, comenzando en este momento el período de ensayo.

Paralelamente, se maniobrarán las llaves intermedias para verificar su

estanquidad con relación al exterior, tanto en su posición de abiertas como en

su posición de cerradas.

Una vez pasado el período de ensayo, intentando que durante este período la

temperatura se mantenga lo más estable posible, se tomará de nuevo lectura

de la presión en el aparato de medida y se comparará con la lectura inicial,

dándose como correcta la prueba si no se observa disminución de la presión

en el período de ensayo.

Page 56: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

En el supuesto de que la prueba de estanquidad no dé un resultado

satisfactorio, es decir, que se observara una disminución de presión, deberán

localizarse las posibles fugas utilizando agua jabonosa o un producto similar,

corregirse las mismas y repetir la prueba de estanquidad.

Si se observaran variaciones de la presión y se intuyera que puedan ser

debidas a variaciones de la temperatura, deberá repetirse la prueba en horas

en las que se prevea que no se producirán estas variaciones.

En el supuesto de que esto no sea posible, se registrará la temperatura del

fluido de prueba, aire o gas inerte, a lo largo de la misma, evaluando al final su

posible repercusión.

PRUEBA DE ESTANQUIDAD EN LOS DIFERENTES TRAMOS DE LA

INSTALACIÓN RECEPTORA

La prueba se considera correcta si no se observa una disminución de la

presión, transcurrido el período de tiempo que se indica en la tabla siguiente,

desde el momento en que se efectuó la primera lectura.

* La prueba debe ser verificada con un manómetro de rango 0 a 10 bar,

clase 0’6, diámetro 100 mm o un manómetro electrónico o digital o mano

termógrafo del mismo rango y características.

El tiempo de prueba puede reducirse a 30 min en tramos inferiores a 20 m en

instalaciones individuales.

** La prueba debe ser verificada con un manómetro de rango 0 a 6 bar,

clase 0’6, diámetro 100 mm o un manómetro electrónico o digital o mano

termógrafo del mismo rango y características.

Page 57: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

*** La prueba debe ser verificada con un manómetro de rango 0 a 1’6

bar, clase 0’6, diámetro 100 mm o un manómetro electrónico o digital o mano

termógrafo del mismo rango y características. Cuando la prueba se realice con

una presión de hasta 0,05 bar, ésta se verificará con un manómetro de

columna de agua en forma de U con escala ± 500 mca como mínimo o

cualquier otro dispositivo, con escala adecuada, que cumpla el mismo fi n.

El tiempo de prueba puede ser de 10 min si la longitud del tramo a probar es

inferior a 10 m.

Comprobación de la estanquidad en conjuntos de regulación y en contadores

La estanquidad de las uniones de los elementos que componen el conjunto de

regulación y de las uniones de entrada y salida, tanto del regulador como de

los contadores, debe comprobarse a la presión de operación correspondiente

mediante detectores de gas, aplicación de agua jabonosa, u otro método

similar.

PRUEBAS EN TRAMOS ENTERRADOS (SÓLO CATEGORÍA A)

Previa su puesta en servicio, tanto las acometidas interiores como las líneas de

distribución interiores se deberán someter de una vez o por tramos a las

pruebas de resistencia y de estanquidad.

Estas pruebas estarán de acuerdo con la norma UNE-EN 12327 y se realizarán

preferentemente de forma conjunta.

Solamente pueden ponerse en servicio las canalizaciones que hayan superado

ambas pruebas, a excepción de extensiones cortas y uniones entre nueva

canalización y canalización en servicio, que pueden ser verificadas con fluido

detector de fugas u otro método apropiado a la presión de operación. Se

seguirá igual procedimiento para la comprobación de eventuales reparaciones.

Para redes con MOP inferior a 0,1 bar se permitirá la realización de una única

prueba que verifi que las condiciones de estanquidad, de acuerdo con las

especificaciones del apartado 7.4 de la norma UNE 60311.

Page 58: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Cuando sea necesario se deberá proceder al secado de la canalización antes

de su puesta en servicio.

Seguidamente se exponen las consideraciones generales que han de tenerse

presentes.

El equipo de medida de presión tendrá una clase mínima de 0,6, con un rango

máximo de medida de 1,5 veces la presión de prueba. La temperatura debe ser

medida con un instrumento con escala mínima de 1 ºC. Los resultados de

todas las pruebas deben ser registrados.

Todos los accesorios empleados para estos ensayos deberán ser aptos para

una presión como mínimo igual a la de ensayo, debiendo encontrarse fijos de

forma tal que la presión no pueda proyectarlos durante el proceso. En el

transcurso de las pruebas deberán tomarse las precauciones necesarias para

que en caso de estallido accidental las piezas o partes de las mismas

proyectadas no puedan alcanzar a las personas asistentes al ensayo.

No está admitida la adición o el uso de productos odorizantes como medio para

la detección de las eventuales fugas.

En el caso de emplear aire comprimido para probar tuberías de polietileno,

deberá instalarse un filtro o separador de aceite que reduzca al mínimo la

contaminación del polietileno por esta causa. Además, deberá evitarse que

durante el período de prueba la temperatura del aire en el interior de la

canalización no supere los 40 ºC.

En el caso de pruebas de canalizaciones de polietileno se procurará no realizar

las pruebas en obra si la temperatura ambiente es inferior a 0 ºC por el riesgo

de propagación rápida de fi sura (RCP).

En el caso de emplear aire o gas inerte comprimido para probar tuberías de

polietileno, la aportación deberá realizarse mediante una conducción de

admisión de acero.

Habrá de controlarse periódicamente la precisión de los manómetros y de los

registradores de presión eventualmente empleados.

Antes de la puesta bajo presión, hay que asegurarse de que:

Page 59: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

– En el caso de tuberías de polietileno, se han enfriado totalmente todas las

soldaduras de forma natural.

– Todas las uniones entre tubos, tubos con accesorios y accesorios no soldados

están debidamente apretadas y provistas de juntas.

– En los casos de tuberías de polietileno, la canalización esté convenientemente

anclada para impedir desplazamientos peligrosos o cambios de dirección como

consecuencia de la presión interna a la que se verá sometida.

– El personal se halla fuera de la zanja y todos los asistentes se mantienen a una

distancia prudencial.

– El personal que se encarga del ensayo y de la detección de las eventuales fugas

es el único que se halla en la zanja, pero en ningún caso situado tras un tapón.

– Cuando se compruebe la estanquidad de una conducción de polietileno

mediante agua jabonosa o agentes espumantes, deberán éstos eliminarse

completamente con agua una vez concluido el ensayo.

Durante las pruebas de estanquidad, deberá comprobarse que la presión indicada

por el manómetro se mantiene constante. Se recomienda emplear un registrador

de presión.

Al proceder a la descompresión de la conducción una vez concluido el

ensayo, deberán tomarse las precauciones necesarias para evitar que el aire

expulsado lance tierra, piedras u otros objetos.

Los empalmes efectuados para unir la canalización nueva con la canalización

ya en servicio serán examinados con ayuda de agua jabonosa u otro producto

espumante, a la presión de servicio.

PRUEBA DE RESISTENCIA MECÁNICA

La prueba de resistencia mecánica precederá a la prueba de estanquidad cuando

ambas se efectúen por separado.

El fluido de prueba será aire comprimido o gas inerte y su duración será como

mínimo de 1 h a partir del momento en que se haya estabilizado la presión de

prueba.

Page 60: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

La presión mínima de prueba será función de la MOP de diseño según la siguiente

Tabla:

La presión de prueba no debe superar, con carácter general, la presión máxima

especifica cada para los materiales, ni el valor de 0,9 veces la PRCP de la tubería,

en el caso de canalizaciones de polietileno.

PRUEBA DE ESTANQUIDAD

La prueba de estanquidad se realizará con el mismo fluido utilizado en la prueba

de resistencia.

En acometidas la duración de la prueba será, como mínimo, de 1 h. En líneas

interiores la duración será de 6 h a partir del momento en que se haya estabilizado

la presión de prueba, excepto si su MOP es inferior a 0,1 bar, en cuyo caso la

duración mínima será de 1 h.

La presión mínima de prueba será función de la MOP de diseño según la siguiente

Tabla

Prueba conjunta de resistencia y estanquidad

La prueba conjunta se debe efectuar a la presión de prueba de resistencia y su

duración será, como mínimo, de 6 h, a partir del momento de estabilización de la

presión de prueba.

Podrá reducirse a 1 h cuando la estanquidad de las uniones pueda ser verificada

con un fluido detector de fugas u otro método apropiado.

Page 61: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

También puede reducirse el tiempo a 1 h en el caso de acometidas o en el caso

de líneas interiores si su MOP es inferior o igual a 0,1 bar.

Los instrumentos de medición, equipos y dispositivos que se indican en la

presente Norma Oficial Mexicana, representan los requisitos mínimos para la

aplicación de las pruebas y pueden sustituirse por otros equivalentes que permitan

obtener el resultado de la prueba en las unidades o valores que se especifican.

Antes de iniciar el ciclo de pruebas, los especímenes deben acondicionarse a una

temperatura de 293.15

K ± 5 K (20 °C ± 5 °C), durante 6 h, como mínimo.

7.1 Prueba de resistencia a la tensión.

7.1.1 Equipo

Dinamómetro adecuado y con capacidad de aplicar la fuerza que se establece en

la Tabla 3.

Especímenes para prueba

Tomar como mínimo 100 mm de la conexión más el vástago con punta POL o el

conector.

Procedimiento

Colocar y sujetar el espécimen entre las mordazas del dinamómetro.

Ajustar el dinamómetro a cero y aplicar una fuerza de tensión gradualmente hasta

alcanzar los valores que se especifican en la Tabla 3.

Expresión de resultados

El ensamble no debe presentar desprendimiento ni fractura.

Prueba de resistencia al momento de torsión de los conectores roscados.

Page 62: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Equipo

a) Medidor de momento de torsión adecuado para efectuar las mediciones

conforme a la prueba;

b) Prensa mecánica de sujeción;

c) Accesorios (conexiones);

d) Verificadores de roscas.

Preparación del espécimen

Los conectores que se emplean para la determinación de la resistencia al

momento de torsión deben estar exentos de rebabas y deformaciones.

Procedimiento

No debe utilizarse ningún tipo de sellador (cinta de teflón, pintura, etc.) en las

roscas durante la aplicación del momento de torsión.

Se deberá comprobar que en las roscas rectas y roscas tipo ACME el verificador

“pasa” entre libremente a través de la longitud de la rosca y el verificador “no pasa”

entre máximo dos hilos para roscas rectas; para rosca tipo ACME deberá entrar

máximo un hilo. Para las roscas cónicas el verificador debe estar dentro de la

tolerancia de ± 1 hilo.

Sujetar el conector a probar en la prensa de tal manera que quede libre la sección

roscada. Enseguida, acoplar un conector hasta el tope y por medio del medidor de

momento de torsión aplicar el momento de torsión, de acuerdo con lo que se

especifica en lo siguiente:

Para las conexiones Tipos 1 y 2 la tuerca con rosca EXT izquierda debe soportar

un momento de torsión de 50 N•m, la tuerca con rosca EXT derecha debe soportar

un momento de torsión de 20 N•m. Para las conexiones que presentan maneral,

Page 63: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

éste debe soportar un momento de torsión de 20N•m. En todos los casos se

tendrá una tolerancia de ± 1%. Las características descritas se comprueban

conforme a lo establecido en el procedimiento anterior.

La conexión Tipo 3 debe resistir el momento de torsión que se establece en las

Tablas 1 y/o 2, según corresponda, comprobándose conforme a lo descrito en el

procedimiento.

En el caso de las medidas nominales que no se incluyen en las mencionadas

tablas, debe aplicarse el momento de torsión inmediato superior.

Expresión de resultados

El conector no debe presentar grietas ni roscas barridas.

PRUEBA DE HERMETICIDAD NEUMÁTICA

Material y equipo

a) Línea de aire adecuada para efectuar el procedimiento de prueba;

b) Dispositivo para elevar la presión neumática;

c) Manómetro adecuado para efectuar las mediciones conforme a la prueba;

Page 64: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

d) Cronómetro apropiado para efectuar la medición conforme a la prueba.

Procedimiento.

Montar la conexión en el dispositivo y elevar la presión de acuerdo al tipo de

conexión a probar, mantener dicha presión durante 5 min. Como se especifica a

continuación:

La conexión no debe presentar fugas ni deformaciones visibles cuando se aplica el

método de prueba que se establece en el procedimiento, bajo las condiciones

siguientes:

Las conexiones Tipos 1 y 2 deben ser herméticas a una presión neumática de

1.72 MPa (17.54 kgf/cm2).

Las conexiones Tipo 3 deben ser herméticas a una presión neumática de 7 kPa

(71.38 gf/cm2).

Expresión de resultados

No deben existir fugas ni deformaciones permanentes en la conexión bajo prueba.

Posteriormente, tomando como base el procedimiento establecido en el

procedimiento, debe comprobarse la resistencia al reventamiento, por lo que, en

este caso, se aumentará la presión gradualmente en la conexión a probar, la cual

no debe reventarse a una presión inferior a la establecida de acuerdo al tipo de

conexión.

En el caso de las conexiones Tipos 1 y 2 la presión de reventamiento debe ser

como mínimo 8.6 MPa (87.70 kgf/cm2).

Para las conexiones Tipo 3 dicha presión debe ser 3.5 MPa (35.69 kgf/cm2) como

mínimo.

Lo anterior se comprueba conforme a lo establecido en la prueba.

Page 65: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Esta comprobación también puede realizarse utilizando el procedimiento indicado

en el procedimiento.

PRUEBA DE RESISTENCIA HIDROSTÁTICA

Materiales y equipo

a) Agua o aceite hidráulico;

b) Dispositivo para elevar la presión hidrostática;

c) Manómetro adecuado para efectuar las mediciones conforme a la prueba;

d) Cronómetro apropiado para efectuar la medición conforme a la prueba.

Procedimiento

Se monta la conexión en el dispositivo para elevar la presión, incrementándola

dependiendo del tipo de conexión. Mantener dicha presión durante 5 min.

Las conexiones Tipos 1 y 2 no deben presentar fugas al someterse a una presión

hidrostática de 3.4 MPa (34.67 kgf/cm2), y las conexiones Tipo 3 no deben

presentar fugas al someterse a una presión hidrostática de 2.06 MPa (21 kgf/cm2).

Estas condiciones se comprueban conforme a la prueba.

Expresión de resultados

No deben existir fugas ni deformaciones permanentes en la conexión bajo prueba.

PRUEBA DE VARIACIÓN DE LA MASA, VOLUMEN Y DIMENSIONES DEL

ELASTÓMERO

Este método de prueba aplica en los casos en que el espécimen contenga

elastómeros.

Para este método de prueba debe utilizarse uno de los procedimientos descritos

en los numerales 7.5.2.1 o 7.5.2.2.

Page 66: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Materiales y equipo

a) n-hexano;

b) Alcohol etílico;

c) Agua destilada;

d) Balanza analítica adecuada para efectuar las mediciones conforme a la prueba;

e) Recipiente con tapa;

f) Cronómetro adecuado para efectuar las mediciones conforme a la prueba;

d) Cronómetro apropiado para efectuar la medición conforme a la prueba;

g) Medidor de longitud con resolución adecuada para efectuar las mediciones

conforme a la prueba;

h) Medidor de espesores con resolución adecuada para efectuar las mediciones

conforme a la prueba;

i) Ganchos de dimensiones adecuadas;

j) Papel filtro.

Procedimiento

7.5.2.1 Preparación y conservación de los especímenes

Antes de realizar la prueba que se indica en el numeral 7.5.2.2 o 7.5.2.3, medir el

largo, ancho y, cuando aplique, el diámetro, en al menos tres puntos del

espécimen de prueba y calcular el promedio de cada una de las lecturas.

Medir el espesor inicial con el medidor de espesores en cuatro puntos diferentes a

lo largo del espécimen y calcular el promedio de las lecturas.

Después de realizar lo que se indica en el numeral 7.5.2.2 o 7.5.2.3, debe medirse

nuevamente el largo, ancho, espesor y, cuando aplique, el diámetro de cada

espécimen conforme al procedimiento descrito anteriormente.

7.5.2.2 Determinación de la variación de la masa

Tomar un espécimen del elastómero a probar y determinar su masa (P1) en la

balanza analítica.

Page 67: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

La determinación de las masas debe realizarse con aproximación al miligramo o,

en su caso, al centigramo.

Introducir el espécimen en n-hexano cubriéndolo completamente durante 70 h ± 1

h a temperatura ambiente en un recipiente cerrado.

Al final de ese tiempo, sacar el espécimen y enjuagarlo con alcohol etílico y agua

destilada.

Secar el espécimen con papel filtro y dejar reposar a temperatura ambiente

durante 72 h y al final determinar la masa (P5) en la balanza analítica.

Esta última determinación de masa (P5) puede realizarse también de la forma

siguiente: Después de secar el espécimen con papel filtro se introduce en un

horno de circulación de aire a una temperatura de 343.15 K ± 2 K (70°C ± 2°C)

durante 2 h. Al término de ese período, sacarlo del horno y dejarlo reposar entre 1

y 2 h, después del proceso de enfriado determinar su masa (P5) en la balanza

analítica.

Cálculos

Expresión matemática para calcular el porcentaje de la variación de la masa:

En donde:

P1 es la masa inicial del espécimen, en mg;

P5 es la masa final del espécimen, en mg.

7.5.3.2 Expresión matemática para calcular el porcentaje de la variación del

volumen

Page 68: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

En donde:

P1 es la masa del espécimen en el aire, en mg;

P2 es la masa del espécimen en agua destilada, en mg;

P3 es la masa del espécimen en el aire, después de la inmersión en n-hexano, en

mg;

P4 es la masa del espécimen en el agua destilada, después de la inmersión en el

n-hexano, en mg

Expresión matemática para calcular el cambio del porcentaje en la longitud:

En donde:

Ii es la medición inicial, en mm;

If es la medición final, en mm.

Esta expresión matemática debe aplicarse para cada una de las características

que se miden (largo, ancho, espesor y cuando aplique el diámetro).

Expresión de resultados

Al final de la prueba, el espécimen no debe presentar ninguna de las siguientes

condiciones:

a) Deformaciones permanentes o deterioros;

b) Grietas;

c) Fracturas;

d) Degradación;

Page 69: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

e) Un aumento en volumen no mayor de 25%, o una disminución mayor al 1%,

cuando aplique;

f) Aumento en dimensiones mayor a 3%, o disminución en dimensiones mayores a

1%, cuando aplique;

g) Pérdida en masa mayor a 10%.

PRUEBA DE DOBLADO REPETIDO DE LA MANGUERA POR 3 000 CICLOS.

Equipo

a) Armazón metálico para montar dos rodillos. Cada rodillo debe tener un espesor

mínimo de 127 mm, con una ranura semicircular en la circunferencia, que actúe

como guía de la manguera. El radio de los rodillos medido en la base de las

ranuras circunferenciales debe estar conforme a las distancias de centros que se

especifican en la Figura 11; para las medidas nominales que no se incluyen en la

Tabla 12, se toman los valores de la designación nominal inmediata superior. Los

rodillos deben montarse con los extremos en el mismo plano vertical de modo que

la distancia entre centros sea como se especifica en la Figura 11;

b) Cada rodillo debe girar libremente por su eje central con un mecanismo

impulsado por un motor para jalar de la manguera sobre los rodillos, permitiéndole

alcanzar como mínimo cuatro ciclos completos por minuto.

Espécimen para prueba

Tramo de manguera de 3.4 m de longitud.

Page 70: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Procedimiento

Colocar el espécimen sobre los rodillos como se muestra en la Figura 11. Este

mecanismo debe ajustarse de forma tal que el espécimen se mueva a una

distancia aproximada de 1.2 m en cada dirección. Después de que el espécimen

complete los 3 000 ciclos de doblado, retirar éste del aparato para examinarlo y

comprobar la presencia de alguna falla.

Posteriormente, someter el espécimen a lo que se especifica.

Page 71: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

1. Hermeticidad neumática

La conexión no debe presentar fugas ni deformaciones visibles cuando se aplica el

método de prueba que se establece en el numeral 7.3, bajo las condiciones

siguientes:

Las conexiones Tipos 1 y 2 deben ser herméticas a una presión neumática de

1.72 MPa (17.54 kgf/cm2).

Las conexiones Tipo 3 deben ser herméticas a una presión neumática de 7 kPa

(71.38 gf/cm2).

2. Resistencia a la presión hidrostática

Las conexiones Tipos 1 y 2 no deben presentar fugas al someterse a una presión

hidrostática de 3.4 MPa (34.67 kgf/cm2), y las conexiones Tipo 3 no deben

presentar fugas al someterse a una presión hidrostática de 2.06 MPa (21 kgf/cm2).

Estas condiciones se comprueban conforme a la prueba de resistencia hidrostática.

4Expresión de resultados

La manguera no debe presentar rompimiento ni deformaciones visibles.

Informe de pruebas

El informe de pruebas debe contener como mínimo los siguientes datos:

a) Identificación del laboratorio de pruebas;

b) Responsable del laboratorio;

c) Identificación del equipo;

d) Reactivos que se utilizan para las pruebas;

e) Resultados que se obtienen de las pruebas;

f) Comentarios u observaciones sobre los resultados, si existen;

g) Fecha o fechas de realización de las pruebas.

Page 72: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Eco tecnologías

Normativa mexicana aplicable a sistemas FV – Energías renovables

Aprovechamiento sustentable de la energía: Es el uso óptimo de la energía en

todos los procesos y actividades para su explotación, producción, transformación,

distribución y consumo, incluyendo la eficiencia energética.

Eficiencia energética: Todas las acciones que conlleven a una reducción

económicamente viable de la cantidad de energía necesaria para satisfacer las

necesidades energéticas de los servicios y bienes que requiere la sociedad,

asegurando un nivel de calidad igual o superior y una disminución de los impactos

ambientales negativos derivados de la generación, distribución y consumo de

energía. Queda incluida dentro de esta definición, sustitución de fuentes no

renovables de energía por fuentes renovables de energía.

Page 73: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

ESPECIFICACIONES TÉCNICAS

INSTALACIONES FOTOVOLTAICAS CONECTADAS A LA RED

ELÉCTRICA ASOCIADAS A PROYECTOS PRODUCTIVOS

I. OBJETIVO

Definir las Especificaciones Técnicas mínimas que deben cumplir los Sistemas

Fotovoltaicos Interconectados (SFV-IR) con una Red Eléctrica Local (REL) del

Sistema

Eléctrico Nacional (SEN), para su uso en proyectos productivos agropecuarios o

agronegocios beneficiados por el Proyecto de Desarrollo Rural Sustentable,

promovido por el Fideicomiso de Riesgo Compartido (FIRCO), entidad técnica de

la SAGARPA, las que contemplan los requisitos de calidad, seguridad en la

instalación, pruebas de funcionamiento del sistema, garantía al usuario y el

cumplimiento con las

Page 74: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Especificaciones de Interconexión al SEN emitidas por la Comisión Federal de

Electricidad (CFE) y con las Reglas Generales de Interconexión al SEN emitidas

por la Comisión Reguladora de Energía (CRE).

II. ALCANCE

Estas Especificaciones Técnicas se aplican al suministro e instalación de los

equipos, partes y componentes que forman a los SFV-IR, incluyéndose los

elementos o sistemas mecánicos, eléctricos y electrónicos que formen parte de la

instalación, así como las pruebas, ensayos, verificaciones y mantenimiento

involucrados desde su instalación hasta su puesta en operación.

Es aplicable a todos los comercializadores, fabricantes, implementadores, e

instaladores, de aquí en adelante los “Proveedores”, que deseen participar en el

Proyecto de

Desarrollo Rural Sustentable promovido por el Fideicomiso de Riesgo Compartido

(FIRCO), entidad técnica de la SAGARPA, en el suministro, instalación y puesta

en operación de SFV-IR para su uso en los agronegocios beneficiados por el

citado proyecto hasta una capacidad de 500.0 kW

Estas Especificaciones Técnicas serán utilizadas como procedimiento normativo

por el FIRCO-SAGARPA en el proceso de selección de los SFV-IR y aplicadas a

los Proveedores participantes en el proyecto; por lo que serán de observancia

obligatoria a partir de la fecha de su distribución oficial y hasta que se emitan otras

instrucciones al respecto que las sustituyan.

Estas especificaciones formarán parte de la documentación de referencia que

regirán a las instalaciones de SFV-IR. El cumplir con las presentes

especificaciones no exime a los Proveedores de conocer la normatividad aplicable

al proyecto eléctrico y a las condiciones de interconexión que la Comisión Federal

de Electricidad (CFE) y/o la

Page 75: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Comisión Reguladora de Energía (CRE) hayan publicado; en consecuencia, por el

simple hecho de intervenir en cualquier etapa de la obra, tanto los Proveedores

como aquellas empresas que sean subcontratadas para realizar la instalación,

deben conocer y admitir las presentes Especificaciones Técnicas.

La aplicación de las presentes especificaciones no podrá establecer criterios

técnicos contrarios a la normativa vigente nacional y/o internacional contemplada

en el presente proyecto. Las dudas que surjan en la aplicación o interpretación

serán dilucidadas por el Responsable Técnico del Proyecto.

PRUEBAS DE SEGURIDAD Y DESEMPEÑO.

El Generador Fotovoltaico debe producir la potencia eléctrica para el cual fue

diseñado, cuyo valor es obtenido bajo condiciones de medición estándar y

especificado por el fabricante en su placa de identificación, cuyo desempeño

eléctrico, calidad, seguridad y durabilidad debe estar certificado por la Asociación

de Normalización y Certificación (ANCE) que es un Organismo Nacional de

Certificación de producto con base en pruebas de laboratorio basadas en la

Normatividad vigente, en términos de la Ley Federal sobre Metrología y

Normalización y su reglamento; o bien, por un Organismo Internacional de

Certificación perteneciente al Sistema de Conformidad de Pruebas y Certificados

de Equipo Eléctrico (IECEE), que forma parte de la Comisión Electrotécnica

Internacional (IEC: International Electrotechnical Commission), del que se deriva el

Acuerdo Multilateral de Reconocimiento Mutuo de Organismos de Certificación

(CB-Scheme: Certification Body). Todos los sistemas fotovoltaicos deben cumplir

satisfactoriamente con las pruebas de desempeño establecidas en el presente

documento, las cuales son las siguientes:

corriente tensión de dispositivos

fotovoltaicos de acuerdo a la NMX-J-643/1-ANCE-2011 (Aplica únicamente al

Modulo Fotovoltaico) y obtenida por el laboratorio de ANCE y/o laboratorio

nacional evaluado y aprobado por ANCE.

Page 76: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

dimiento de energía (caracterización del sistema)

de los módulos fotovoltaicos y de eficiencia de la conversión Corriente Directa /

Corriente Alterna realizado por el laboratorio de ANCE y/o laboratorio nacional

evaluado y aprobado por ANCE

cionamiento realizada por el Proveedor ante la presencia del

usuario y del Técnico del FIRCO-SAGARPA que incluya la medición de:

condiciones de “sistema apagado”, y al mismo tiempo, medidas de irradiación y

temperatura del módulo para fines de normalización.

operación.

de irradiación y temperatura del módulo para fines de normalización.

NOM-003-ENER-2011

EFICIENCIA TERMICA DE CALENTADORES DE AGUA PARA USO DOMESTICO Y

COMERCIAL.

LIMITES, METODO DE PRUEBA Y ETIQUETADO

PREFACIO

La presente norma fue elaborada por el Comité Consultivo Nacional de Normalización para la Preservación y Uso Racional de los Recursos Energéticos (CCNNPURRE), con la colaboración de los siguientes organismos, instituciones y empresas:

Asociación Nacional de Fabricantes de Aparatos Domésticos

Asociación Nacional de Normalización y Certificación A.C.

Asesoría y Pruebas a Equipo Eléctrico y Electrónico S.A. de C.V.

Calentadores Magamex, S.A. de C.V.

Comercializadora Tektino, S.A. de C.V.

Consultoría Global e Integral

Desarrollo de Productos, S.A. de C.V.

Dirección General de Normas

Calentadores de America. S. de R.L. de C.V.

Gilotronics, S.A. de C.V.

Page 77: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Hidroelectra, S.A. de C.V.

Industrias Lennox de México S.A. de C.V.

Industrias Rheem, S.A. de C.V.

Industrias Técnicas Mexicanas, S.A. de C.V.

IUSA, S.A. de C.V.

Mex Top, S.A. de C.V.

Metaplus, S.A. de C.V.

Productos Metálicos Maquilados, S.A. de C.V.

Robert Bosch S. de R.L. de C.V.

Servicios Inter Logísticos de México, S.A. de C.V.

Vapores y Calentadores Delta, S.A. de C.V.

Tabla 1.- Eficiencia térmica mínima para calentadores domésticos y

comerciales, con base al poder

calorífico inferior

9.4 Calentadores domésticos y comerciales de rápida recuperación.

La prueba de eficiencia térmica de estos calentadores se debe realizar de

acuerdo a la siguiente condición:

Page 78: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Con el flujo de agua que indica el fabricante del calentador, se debe obtener un

incremento mínimo de temperatura de 25ºC, entre la temperatura del agua de

entrada y la de salida.

9.4.1 Etapa de preparación.

a) Instalar el calentador de acuerdo a la figura 2A.

b) Conectar el calentador a la línea de alimentación del agua fría y hacerle circular el

agua, para verificar que no existan fugas en las conexiones realizadas, durante la

instalación.

c) Conectar el calentador a la línea de alimentación del gas combustible, y verificar

que no existan fugas en las conexiones realizadas, durante la instalación.

d) Encender el piloto del calentador, y ajustar a la presión que se indica en la tabla 5,

de acuerdo al tipo de gas con el que se vaya a probar. Ya que se ajustó la presión

apagar el piloto.

9.4.2 Etapa de precalentamiento.

a) Estabilizar la temperatura del agua fría dentro del calentador, aceptando una

variación de 1ºC, como máximo, además de ajustar el flujo de agua de acuerdo a

lo indicado por el fabricante del calentador.

b) Encender el piloto.

c) Encender el (los) quemador(es), en este momento se comienza a registrar el

tiempo, y se debe colocar la perilla del control de temperatura en el punto máximo.

Page 79: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

d) Dejar que el agua se caliente, hasta que se alcance una estabilización en

el incremento de la temperatura, el cual debe ser como mínimo de 25ºC.

9.4.3 Etapa de prueba.

a) Iniciar el periodo de prueba, de 30 minutos.

b) Registrar la presión barométrica inicial del lugar de prueba, así como la

temperatura del agua en la salida del calentador, en la entrada del calentador,

registrar también la lectura del termómetro que está en la línea del gas y la lectura

inicial del medidor de gas, en este momento se iniciará a tomar el tiempo.

c) En caso de que se tenga medidor para agua, se debe registrar la lectura inicial,

en el momento en que se empieza a registrar el tiempo.

d) En caso de que no se tenga el medidor de agua, se debe empezar a recolectar el

agua, en recipientes de peso conocido, y se debe ir registrando el peso del agua

calentada durante los 30 minutos de prueba.

e) En el caso de contar con la opción A de la tabla 4, para el análisis del gas

combustible se deben de empezar a hacer los análisis, desde el inicio de la

prueba.

f) En caso de que se emplee la opción C de la tabla 4, se tomará una muestra del

gas combustible, al inicio de la prueba, y una última al término de la prueba, para

que posteriormente sean analizadas por un tercero.

g) A los cuatro minutos de iniciada la prueba se deben registrar los siguientes datos;

temperatura del agua en la entrada y en la salida, temperatura del gas combustible

en la línea, todos estos datos se deben ir registrando cada 5 minutos, hasta el final

de la prueba.

h) Apagar el calentador.

i) Con los datos registrados, obtener la eficiencia térmica, aplicando lo establecido

en el punto 9.6.

9.4.4 Resultados.

Page 80: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

El resultado de la eficiencia térmica debe ser como mínimo lo establecido en la

tabla 1, de acuerdo a la capacidad del calentador, y nunca menor a lo establecido

por el fabricante. Además de cumplir con el incremento mínimo de temperatura de

25ºC, sobre la temperatura del agua en la entrada del calentador, con el flujo de

agua que indica el fabricante.

9.5 Calentadores domésticos y comerciales instantáneos.

La prueba de Eficiencia Térmica de estos calentadores se debe realizar de

acuerdo a la siguiente condición:

Con la presión de alimentación de agua mínima, de apertura de la válvula, que

indica el fabricante del calentador, se debe de obtener un incremento mínimo de

temperatura de 25ºC, entre la temperatura del agua de entrada y la de salida,

además del flujo de agua que se especifica.

9.5.1 Etapa de preparación.

a) Instalar el calentador de acuerdo a la figura 3A.

b) Conectar el calentador a la línea de alimentación del agua fría y hacerle circular el

agua, para verificar que no existan fugas en las conexiones realizadas, durante la

instalación.

c) Conectar el calentador a la línea de alimentación del gas combustible, y verificar

que no existan fugas en las conexiones realizadas, durante la instalación.

d) Encender el piloto del calentador, y ajustar a la presión que se indica en la tabla 5,

de acuerdo al tipo de gas con el que se vaya a probar. Ya que se ajustó la presión

apagar el piloto.

9.5.2 Etapa de precalentamiento.

a) Encender el piloto.

b) Poner las perillas de los controles de este tipo de calentadores en la posición de

encendido, para que el paso de agua permita el encendido de los quemadores.

c) Permitir el flujo de agua fría hacia el calentador, regulando a la presión que indica

el fabricante, la prueba se efectuará bajo esta condición.

Page 81: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

d) Si el calentador enciende a una presión de alimentación de agua menor de 19,0

kPa (200 g/cm2 ), y a la presión que enciende da el incremento de temperatura

mayor o igual a 25ºC y el flujo de agua mínimo según lo indicado por el fabricante,

la prueba se efectuará bajo esta condición.

e) Pero si el calentador no da el incremento de temperatura mayor o igual a 25ºC y

el flujo de agua mínimo según lo indicado por el fabricante, se incrementa la

presión hasta que nos proporcione las condiciones antes citadas, sin rebasar la

presión de 350 g/cm2.

f) Si aún en la condición e) no ha proporcionado las condiciones antes citadas, se

ajustará la presión de alimentación de agua a la que indica el fabricante y se

empezará a ajustar los controles de flujo de agua así como las de gas hasta

obtener la condición del incremento de temperatura y el flujo de agua según lo

indicado por el fabricante.

g) Dejar que el agua se caliente, hasta que se alcance una estabilización en el

incremento de la temperatura, el cual debe ser como mínimo de 25ºC.

9.5.3 Etapa de prueba.

a) Iniciar el periodo de prueba de 30 minutos, si el calentador cuenta con dispositivo

de corte de seguridad por tiempo, se desconectará de acuerdo a las instrucciones

del fabricante, para permitir la continuidad de la prueba.

b) Registrar la presión barométrica inicial del lugar de prueba, así como la

temperatura del agua en la entrada del calentador, en la salida del calentador,

registrar también la lectura del termómetro que está en la línea del gas y la lectura

inicial del medidor de gas, en este momento se iniciará a tomar el tiempo.

c) En caso de que se tenga medidor para agua, se debe registrar la lectura inicial,

en el momento en que se empieza a registrar el tiempo.

d) En caso de que no se tenga el medidor de agua, se debe empezar a recolectar el

agua, en recipientes de peso conocido, y se debe ir registrando el peso del agua

calentada durante los 30 minutos de prueba.

Page 82: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

e) En el caso de contar con la opción A de la tabla 4, para el análisis del gas

combustible se deben de empezar a hacer los análisis, desde el inicio de la

prueba.

f) En caso de que se emplee la opción C de la tabla 4, se tomará una muestra del

gas combustible, al inicio de la prueba, otra muestra se tomará al término de la

prueba para que posteriormente sean analizadas por un tercero.

g) A los cuatro minutos de iniciada la prueba se deben registrar los siguientes datos;

temperatura del agua en la salida y en la entrada, temperatura del gas combustible

en la línea y la presión de la línea del gas, todos estos datos se deben ir

registrando cada 5 minutos, hasta el final de la prueba.

h) Apagar el calentador.

i) Con los datos registrados, obtener la eficiencia térmica, aplicando lo establecido

en el punto 9.6.

9.5.4 Resultados.

El resultado de la eficiencia térmica debe ser como mínimo lo establecido en la

tabla 1, de acuerdo a la capacidad del calentador, y nunca menor a lo establecido

por el fabricante. Además de cumplir con el incremento mínimo de temperatura de

25ºC, sobre la temperatura del agua en la entrada del calentador, con el flujo de

agua que indica el fabricante.

Page 83: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Aire Acondicionado

DOF - Diario Oficial de la Federación

NORMA Oficial Mexicana NOM-023-ENER-2010,

Eficiencia energética en acondicionadores de

aire tipo dividido, descarga libre y sin conductos

de aire. Límites, método de prueba y etiquetado.

Que la Ley Orgánica de la Administración Pública Federal, define las facultades de

la Secretaría de Energía, entre las que se encuentra la de expedir normas oficiales

mexicanas que promueven la eficiencia del sector energético; Que la Ley Federal

sobre Metrología y Normalización señala como una de las finalidades de las

normas oficiales mexicanas el establecimiento de criterios y/o especificaciones

que promuevan el mejoramiento del medio ambiente, la preservación de los

recursos naturales y salvaguardar la seguridad al usuario; Que habiéndose

cumplido el procedimiento establecido en la Ley Federal sobre Metrología y

Normalización para la elaboración de proyectos de normas oficiales mexicanas, el

Presidente del Comité Consultivo Nacional de Normalización para la Preservación

y Uso Racional de los Recursos Energéticos, ordenó la publicación del Proyecto

de Norma Oficial Mexicana PROY-NOM-023-ENER-2008, Eficiencia energética en

acondicionadores de aire tipo dividido, descarga libre y sin conductos de aire.

Limites, método de prueba y etiquetado. Lo que se realizó en el Diario Oficial de la

Federación el 13 de mayo de 2010, con el objeto de que los interesados

presentaran sus comentarios al citado Comité Consultivo que lo propuso;

Que durante el plazo de 60 días naturales contados a partir de la fecha de

publicación de dicho proyecto de norma oficial mexicana, la Manifestación de

Impacto Regulatorio a que se refiere el artículo 45 de la Ley Federal sobre

Metrología y Normalización estuvo a disposición del público en general para su

consulta; y que dentro del mismo plazo, los interesados presentaron comentarios

sobre el contenido del citado proyecto de norma oficial mexicana, mismos que

fueron analizados por el Comité, realizándose las modificaciones conducentes al

Page 84: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

proyecto de NOM. Las respuestas a los comentarios fueron publicados en el Diario

Oficial de la Federación el 17 de noviembre de 2010. Que la Ley Federal sobre

Metrología y Normalización establece que las normas oficiales mexicanas se

constituyen como el instrumento idóneo para la prosecución de estos objetivos, se

expide la siguiente norma oficial mexicana: NOM-023-ENER- 2010, Eficiencia

energética en acondicionadores de aire tipo dividido, descarga libre y sin

conductos de aire. Límites, método de prueba y etiquetado. Sufragio Efectivo. No

Reelección. México, D.F., a 1 de diciembre de 2010.- El Presidente del Comité

Consultivo Nacional de Normalización para la Preservación y Uso Racional de los

Recursos Energéticos (CCNNPURRE) y Director General de la Comisión Nacional

para el Uso Eficiente de la Energía, Emiliano Pedraza Hinojosa.- Rúbrica.

Objetivo

Esta norma oficial mexicana establece la Relación de Eficiencia Energética (REE)

mínima que deben cumplir los acondicionadores de aire tipo dividido, descarga

libre y sin conductos de aire (conocidos como minisplit y multisplit), de ciclo simple

(solo frío) o con ciclo reversible (bomba de calor), que utilizan condensadores

enfriados por aire. Establece además, el método de prueba que debe aplicarse

para verificar dicho cumplimiento y define los requisitos que se deben de incluir en

la etiqueta de información al público.

9. Métodos de prueba

9.1 Eficiencia energética

El método de prueba tiene por objeto la determinación de la Relación de Eficiencia

Energética (REE) de acondicionadores de aire.

9.1.1 Instrumentos de medición y equipo de prueba

La prueba de eficiencia energética se lleva a cabo en un calorímetro de cuarto en

donde los compartimentos deben tener dimensiones interiores mínimas de 2,7 m

por lado y una distancia de la parte alta del aparato al techo de no menos de 1 m,

para evitar restricciones de flujo de aire en los puntos de admisión y descarga del

acondicionador sometido a prueba. El calorímetro puede ser tipo calibrado o

Page 85: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

ambiente balanceado, conforme con las especificaciones del Apéndice A. El

registro, descripción y exactitud de los instrumentos, así como las magnitudes que

se miden en la prueba, se especifican en los Apéndices C y D.

Las variaciones permisibles para las lecturas de las magnitudes de operación del

calorímetro, realizadas durante la prueba, deben permanecer dentro de los límites

establecidos en la Tabla B del Apéndice D.

9.1.2 Instalación del equipo

El equipo bajo prueba debe instalarse de acuerdo con las instrucciones del

fabricante, utilizando los procedimientos y accesorios de instalación

recomendados. Si el equipo puede instalarse de distintas maneras, las pruebas

deben realizarse utilizando la condición más desfavorable. En todos los casos,

deben seguirse las recomendaciones del fabricante en relación a las distancias

desde los muros adyacentes, cantidades de extensiones a través de los muros,

etc. No deben existir alteraciones al equipo, con excepción de las sujeciones que

requieren los aparatos e instrumentos de prueba en ciertas condiciones.

Cuando es necesario, el equipo debe evacuarse y cargarse con el tipo y la

cantidad de refrigerante que se especifique en las instrucciones del fabricante. Las

unidades evaporadoras y condensadas deben de conectarse con una tubería de 5

m + 0,05 m de longitud.

Para los equipos en donde el condensador y el evaporador son dos ensambles

separados, se deben probar con la longitud de los tubos de refrigeración, en cada

línea, aislado térmicamente. En los equipos en los que los tubos de interconexión

se equipan como una parte integral de la unidad y en los que no se recomienda

cortarlos a cierta longitud, deben probarse con la longitud completa del tubo con

que se equipan. A menos que sea una restricción del diseño, como mínimo la

mitad del tubo de interconexión deba exponerse a las condiciones exteriores y el

resto del tubo expuesto a condiciones internas. Los diámetros de las líneas,

aislamiento, detalles de instalación, evacuación y carga deben estar de acuerdo

con las recomendaciones que se especifican por el fabricante. Con respecto a los

equipos acondicionadores de aire, de descarga libre sin conductos de aire,

Page 86: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

constituido por más de dos partes (llamados Multisplit), se instalan todos los

evaporadores en el cuarto lado interior y se interconectan a la condensadora la

cual se encuentra instalada en el cuarto lado exterior.

La prueba se efectúa con todos los sistemas funcionando a la vez, es decir, se

obtiene la capacidad y eficiencia de todo el sistema.

Para instalar hasta 3 unidades evaporadoras en el cuarto interior, se instala una

unidad en la pared divisora de los cuartos, y las otras unidades en 2 estantes,

colocados a los lados del cuarto interior, sin encontrarse los flujos de aire.

9.1.3 Condiciones de prueba

Para efectuar la prueba, el aparato se instala dentro del calorímetro de cuarto en

la pared divisoria, con todos sus accesorios funcionando; asimismo, se sellan

todos los huecos con material aislante térmico para evitar la transferencia de calor

entre el lado interno y externo del calorímetro.

Las puertas de acceso en el calorímetro deben de cerrarse herméticamente,

después de instalar y poner a funcionar el aparato y calorímetro.

Antes de iniciar las pruebas, el equipo debe ser instalado de acuerdo a las

especificaciones del fabricante.

La prueba se lleva a cabo a las condiciones especificadas en la Tabla 2 y a la

máxima capacidad de operación del equipo bajo prueba, las cuales deben

mantenerse dentro de un intervalo de variación permisible por lo menos una hora

antes de iniciar la prueba y durante la misma.

Tabla 2.- Condiciones de prueba

Page 87: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Notas: Ver equivalencia de unidades inglesas en la Tabla B del Apéndice F.

Las variaciones permisibles se establecen en la Tabla B del Apéndice D.

* Este valor aplica también para el medio circundante.

** Para unidades con tensión dual debe usarse la tensión más baja durante la

prueba.

Para unidades con tensión simple se puede usar una tensión de 115 V o 230 V

durante la prueba.

9.1.4 Procedimiento

Se debe registrar de forma continua los valores de las temperaturas fijadas en la

Tabla 2, cuando se alcancen las condiciones establecidas se verifica que se

mantengan dentro de las variaciones permisibles durante una hora; al cumplirse

este requisito, se inicia la medición de las magnitudes que son aplicadas al cálculo

del efecto neto de enfriamiento, al menos cada 10 minutos durante 1 hora.

Con los valores registrados cada vez, se calcula el efecto neto de enfriamiento de

ambos lados del calorímetro conforme a los incisos 9.1.4 y 9.1.5; los cuales deben

coincidir dentro de un 4%, utilizando la siguiente ecuación:

Page 88: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

La prueba no es válida si no se cumplen estas condiciones. Se determina el

promedio de los siete valores de cada magnitud, que son aplicados para calcular

el efecto neto total de enfriamiento tanto en el lado interno como en el externo y la

REE, conforme a los procedimientos establecidos en los incisos 9.1.4, 9.1.5 y

9.1.6.

9.1.5 Cálculo del efecto neto total de enfriamiento en el lado interno del

calorímetro. Para el cálculo del efecto neto total de enfriamiento en el lado interno,

se utiliza la siguiente ecuación:

En donde: pbl presión barométrica que tiene el lugar en donde se realiza la prueba, en Pa.

Page 89: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)
Page 90: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

9.1.7 Cálculo de la Relación de Eficiencia Energética (REE)

La Relación de Eficiencia Energética (REE) del aparato en prueba, se obtiene con

la siguiente expresión:

Page 91: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

En donde:

Es el efecto neto total de enfriamiento determinado en el lado interno

calculado en el inciso 9.1.4, en W.

Es el promedio de las siete mediciones de potencia eléctrica total de

entrada al acondicionador de aire, tomadas durante la prueba, en W.

Page 92: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

SISTEMAS DE SEGURIDAD

Introducción a los Sistemas de Seguridad

Elementos de protección física.

1. Protección lineal: Se encuentran dispositivos que conforman barreras de haces

infrarrojo o microondas. Actúan cuando se rompen la barrera debido al paso de

ella.

2. Protección puntual: Se emplean cuando se quiere llevar a cabo una protección

puntual física sobre un objeto: puerta, ventana, etc.

3. Protección volumétrica: Son los dispositivos volumétricos que se fundamenta en la

detección de infrarrojo y detección por microondas en recintos voluminoso, es

decir, protegen grandes superficies cuadradas, según también las

especificaciones del detector.

Elementos básicos de un sistema de alarma:

Contra robo, incendio y escape de gases, vigilancia de procesos industriales, etc.

-De presión, de movimiento, de desplazamiento, de rotura y de vibración.

-Red de detectores, unidad central de control, red de alarma y alimentación.

-Ésta es una respuesta libre y hay que consultar catálogos de varios fabricantes.

Elementos de protección contra incendios:

Equipos de señalización y control: Estos elementos pretenden centralizar las

alarmas captadas por los detectores para emitir un aviso óptico y acústico de la

situación captada. A la vez transmite las señales a los sistemas de extinción, tanto

manuales como automáticos.

Detectores: Cuando se seleccionan los captadores, se debe basar en alguno de

los componentes habituales de la estancia. Sistemas de Seguridad en Edificios. 14

Page 93: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Medidas constructivas: Protección Pasiva

-Primer nivel en la protección de un edificio: Puertas cortafuego, muros y paredes

resistentes, rejas, puertas brindadas, cristales brindados, valla metálica, etc.

Medidas de detección: Protección Activa

-Sistemas de detección, control y señalización electrónicos. Sistemas de

Seguridad en Edificios.

CAMARAS DE VIGILANCIA: Sistemas de cámaras de vigilancia de la seguridad

se han convertido en una opción muy popular no sólo para las oficinas y lugares

públicos, pero para los hogares privados. Si usted desea aumentar el nivel de

seguridad de su hogar , la instalación de un sistema de vigilancia es una buena

manera de lograrlo. Usted no necesita un instalador profesional de seguridad en el

hogar para realizar esta tarea . El proceso relativamente simple instalación, sobre

todo porque usted, como el dueño de casa , sabes las áreas que desea

supervisar. Cosas que necesitará

Taladro eléctrico

destornillador de cabeza plana de la chapa

Tornillos

Nails

Prueba:

Page 94: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

1

Elegir qué tipo de un sistema de vigilancia para comprar . Para uso doméstico ,

decida si desea que las cámaras tengan la detección de movimiento , para ser a

prueba de agua y para poder grabar por la noche.

2

Haga un plan para el sistema de cámaras de seguridad . Observar un plano de su

casa y el patio . Siga las instrucciones para el sistema particular que compró para

averiguar los ángulos de cámara exactas e incluirlos en su plan. La idea es cubrir

toda la zona con cámaras.

3

Encontrar un lugar para la seguridad de la cámara /s que está protegido de la

intemperie . Si usted no ha elegido un sistema de cámara resistente a la

intemperie , asegúrese de proteger a las cámaras con un escudo hecho de

plástico o metal y pasar los cables por debajo de ella . Si no es a prueba de agua ,

comprar un pedazo de hoja de metal para cada cámara y cortarlo usando las

podadoras de modo que sobresalga 3 pulgadas más allá de la cámara. Hacer un

pliegue de 1 pulgada de la frontera en el lado que va a ser a ras contra la pared.

Utilice tornillos o clavos para fijar el metal a la pared.

4

Monte la cámara en su pared exterior usando un taladro para hacer los agujeros .

Fije los soportes de la cámara fijada a la pared con los tornillos suministrados.

Apriete los tornillos con un destornillador de punta plana con tanta firmeza como

puedas y luego colocar la cámara en el soporte .

5

Conecte los cables siguiendo las instrucciones de su aparato de cámara de

vigilancia. Si ha elegido un sistema inalámbrico, coloque el receptor en algún lugar

de la casa que está cerca del monitor. Si no es inalámbrica, siga las instrucciones

del fabricante sobre cómo asegurar el cableado.

6

Configure el monitor para su sistema de seguridad mediante el uso de su

computadora o televisor. Compruebe si la señal y la calidad de la imagen son

Page 95: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

claras. Su distribuidor cámara debe darle software para este propósito. Los cables

se realizarán desde la cámara directamente a su ordenador o grabador. Por otra

parte, algunas cámaras son inalámbricas y transmitirá una señal a un dispositivo

de seguridad conectado a su ordenador .

ALARMAS DE SEGURIDAD: Desarrollar un sistema de comunicación inalámbrico

de tipo gsm y sms de alarma para alertar a las autoridades correspondientes de

alguna irregularidad. Cabe mencionar que todas estas decisiones las tomaran

personas capacitadas para también informar al cliente sobre posible robo en su

hogar o negocio, así como accidentes y/o posibles emergencias de personas con

cuidados médicos.

Prueba

1.

Instala el teclado al lado de la puerta de modo que sea accesible a los propietarios

desde el interior de la casa. Instala los sensores en las puertas y ventanas. La

mayoría de los sensores son conexiones magnéticas o de cable que se

pueden instalar fácilmente en toda la casa. Asegúrate de que el perímetro de la

casa esté integrado por detectores sensoriales, si viene con tu sistema de alarma

de seguridad.

Page 96: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

2.

Prueba el sistema de seguridad de la alarma y muéstrale a tu familia cómo

usarlo. Haz clic en el botón "Prueba" en un sistema de alarma ADT para probar

que la señal de la alarma está funcionando correctamente.

3.

Haz clic en "Lejos" para indicar que no habrá nadie en el interior de la casa,

incluyendo las mascotas. El sistema de alarma protege tanto el perímetro interior

como el exterior. Cuando se pulsa este botón, asegúrate de que todas las puertas

y ventanas están cerradas y la alarma muestre en la pantalla el mensaje "Listo

para armar". También puedes elegir la opción "Permanecer" para indicarle a la

alarma que personas o animales domésticos permanecerán en el perímetro de tu

casa.

4.

Presiona el botón "Permanencia nocturna" para indicar que la gente se quedará en

el interior por la noche. Presiona "Inmediato" si te vas a quedar en casa y no

esperas ninguna visita. Se armará el perímetro exterior además del interior.

Presiona el botón "Desactivar" para desactivar la alarma de tu casa.

5.

Notifica a las autoridades seleccionando "Policía" o "Bomberos". Haz clic en

"Omitir" cuando quieras dejar una o más zonas de tu casa no protegidas por el

sistema de alarma. Una vez seleccionado, se introducen las zonas, que se

asignan por número para seleccionarlas y omitirlas. Haz clic en "Reiniciar" para

reiniciar o introducir nuevas contraseñas para activar y desactivar el sistema de

alarma de tu casa.

SENSOR DE RUPTURA: Un sensor de ruptura de cristal es en realidad un

micrófono, conectado a un circuito electrónico sensible a los sonidos de altas

Page 97: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

frecuencias provocadas por la fractura de un vidrio.

Estos sensores son utilizados principalmente en los centros comerciales donde se

cuenta con vitrinas con mercancía o de aparadores de cristal. Existen básicamente

dos tipos, los que actúan frente a un desplazamiento o ruptura del vidrio (por

ejemplo con un interruptor de mercurio) y los que están calibrados para detectar la

frecuencia del sonido que produce el vidrio o cristal al momento de se quebrados.

El primero es el más recomendable porque hay técnicas especiales para quebrar

un vidrio sin producir impacto.

Para un buen funcionamiento de estos sensores, se recomienda que el vidrio este

dentro de un marco, ya que enmarcados resultan más rígidos y requieren de más

fuerza para romperse, causando un sonido de potencia mayor a 90 dB a una

distancia de 3 metros. El vidrio deberá romperse ya que el detector de sonido

dentro del sensor no provocará alarma si el vidrio solo se fractura. También

deberá estar en una línea de vista directa al vidrio que se desea proteger. Protege

todas las ventanas y puertas de cristal dentro de un radio de 7m (25 pies aprox.)

cuando está montado en el techo, eliminando la necesidad de detectores

individuales en cada ventana de cristal. Cuando 9está montado en una pared

cubre un área de 13m (45 pies aprox.) al frente y 7m (25 pies) hacia los lados.

PANEL DE CONTROL: El panel de control que se muestra en al figura 2.6 es una

tarjeta electrónica donde se conectan los dispositivos de entrada como los

sensores y el teclado y los dispositivos de salida que podrían ser la sirena, la línea

de teléfono, radio o el celular. El panel de control supervisa en todo momento el

Page 98: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

funcionamiento de los sensores y se alimenta de corriente alterna contando con

una batería de respaldo que le permite seguir funcionando en caso de un sabotaje

(corte de cableados eléctricos) o falla de energía eléctrica. La capacidad del panel

de control puede medirse por la cantidad de zonas que acepta, por medio de una

placa (base o tarjeta madre con circuitos integrados que sirve como centro de

conexión), la fuente eléctrica y la memoria central que es donde se almacenan los

datos de los dispositivos. En el panel de control se reciben las variantes que

emiten los distintos sensores conectados a éste, a consecuencia de esto se

comunica a la central por medio de un modem, etc., al momento de que un sensor

haya sido activado.

SIRENA: La sirena mostrada en la figura 2.8 da la voz de alarma en su inmueble

en caso de cualquier eventualidad, imita el sonido de una patrulla con una

potencia de 123 decibeles. La sirena a su vez está protegida con un gabinete

metálico y es instalada en el exterior de su casa o negocio.

Page 99: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

En la instalación de la sirena se debe de tomar en consideración las condiciones

climáticas, la topográficas (valles, cerros, etc.), de estructuras circundantes

(edificios, etc.) y ruido de fondo para seleccionar la sirena ya que todo estos

aspectos pueden disminuir considerablemente su alcance.

TECLADO: Como todo sistema de seguridad se maneja el estado activado y

desactivado, aquí es donde entra el teclado, como el que se observa en la figura

2.7, donde su función principal es conectar o desconectar en forma total y/o parcial

el sistema de seguridad por medio de teclear los dígitos de control, también

permite crear varias claves de acceso, las cuales son: las claves de usuario que

son las que normalmente se usan para conectar o desconectar el sistema de

seguridad; claves maestras que son para los personas que tienen el privilegio de

programar las claves de los demás usuarios, las claves bajo- presión que permite

desactivar la alarma además de enviar un mensaje especial a la central receptora

indicando que el sistema de seguridad ha sido desactivado por un usuario

autorizado pero contra su voluntad, bajo la presión o amenaza de otra persona, las

claves de activación son programadas por la compañía instaladora, que sirven

para activar y desactivar elementos o aparatos.

Se recomienda que el teclado deba estar lo mas cerca posible al accesos principal

de la vivienda o local y debe de contar con un retardo de entrada lo más corto

posible para la desactivación del sistema para no dar lugar a que un intruso

disponga de mucho tiempo. Si el sistema de seguridad de alarma tiene el

Page 100: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

funcionamiento de conexión a los distintos servicios públicos que existen como

central de bomberos, hospitales, seguridad pública, etc., con tan solo oprimir una

tecla. En otras palabras su función principal es la de permitir a usuarios

autorizados el activar o desactivar el sistema, además de que puede contar con

botones programados a las diferentes dependencias públicas de emergencias. Es

el medio más común mediante el cual se configura el panel de control. El teclado

cuenta con 5 teclas de función programables, terminal de entrada-salida que

puede ser programado como una entrada de zona, salida programable o bien

como un sensor de temperatura baja, múltiples timbres por zona, luz de fondo

ajustable, etc.

SENSOR DE MOVIMIENTO: En el sistema de la alarma, el sensor de movimiento

trabaja por medio de un rayo de luz que cruza la habitación dependiendo el ángulo

al que es puesto. Captan la presencia de personas al detectar la diferencia entre el

calor emitido por el cuerpo humano por medio de la temperatura, cada persona

radia energía infrarroja con una longitud de 9 a 10 micrómetros. Esta luz es

sensible al movimiento pero si el cuerpo se encuentra en reposo no se activa, y el

que hay en el ambiente este envía un golpe de 5luz de energía y espera a que la

energía reflejada sea la misma, si la cantidad de energía enviada al momento de

ser reflejada cambia esto provocará la activación. Incorporan un filtro especial de

luz que evita falsas detecciones por los rayos solares. Existen diferentes usos para

este tipo de sensores: para abrir y cerrar puertas (centros comerciales, etc.), para

Page 101: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

encender luces o para detectar el movimiento de personas.

El sensor de movimiento mostrado en la figura 2.1 fue seleccionado para este

proyecto y tienen las siguientes características: Ajuste de sensibilidad para

configurar el detector para ambientes normales u hostiles. Excepcional inmunidad

a luz blanca. Excelente Inmunidad a la radio frecuencia. Patrón de cobertura de

15.24m x 18.28m, mostrado en la figura 2.2. Montaje a alturas de 1,8 m a 3,2 m.

Alto nivel de protección a estática y transitorios.

Page 102: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

Bibliografía:

NORMA Oficial Mexicana NOM-114-SCFI-2006, Gatos hidráulicos tipo botella-

Especificaciones de seguridad y métodos de prueba.

NORMA Oficial Mexicana NOM-001-CONAGUA-2011, Sistemas de agua potable,

toma domiciliaria y alcantarillado sanitario-Hermeticidad-Especificaciones y

métodos de prueba.

NOM-008-SCFI-2002 “Sistema General de Unidades de Medida”, publicada en el

Diario Oficial de la Federación el 27 de noviembre de 2002.

NMX-Z-012-1987, “Muestreo para la inspección por atributos”, publicada en el

Diario Oficial de la Federación el 28 de octubre de 1987.

http://www.agua.unam.mx/assets/pumagua/manuales/manual_sanitarios.pdf

http://composicionarqdatos.files.wordpress.com/2008/09/instalaciones-

hidrosanitarias.pdf

http://dof.gob.mx/nota_detalle.php?codigo=5234380&fecha=17/02/2012

http://arqnicolasconte.blogspot.mx/2008/05/pruebas-realizarse-en-caerias-antes-

de.html

http://cursos.aiu.edu/Mantenimiento%20Industrial/PDF/Tema%202.pdf

http://constructorelectrico.com/home/pruebas-electricas-y-dielectricas/

http://gama.fime.uanl.mx/~omeza/pro/LEYES/NOM-001-SEDE-2012%20.pdf

procobre.org/es/wp-content/plugins/download.../download.php?id=146

http://www2.uacj.mx/IIT/IEC/Digitales/PROYECTOS/Documentos_junio_2010/Alar

ma%20para%20el%20hogar%20y%20peque%C3%B1os%20negocios%20con%2

0enlace%20inal%C3%A1mbrico%20a%20la%20central%20de%20monitoreo.pdf

http://entremujeres.clarin.com/hogar-y-familia/hogar_y_familia-seguridad-edificio-

casa-consejos-alarma-empresa_de_seguridad_0_679132142.html

http://es.365electric.com/cameras/spy-cameras/1008059240.html

http://www.slideshare.net/Jomicast/sistemas-de-seguridad-en-edificios

http://www.schindler.com/content/ae/internet/en/mobility-

solutions/products/escalators/schindler-

Page 103: Pruebas de seguridad de las insatalciones (isaac devin munguía estarrón)

9700/_jcr_content/rightPar/downloadlist/downloadList/206_1376243549470.downlo

ad.asset.206_1376243549470/schindler_planning_es.pdf

http://www.rosario.gov.ar/tramitesonline/verArchivo?id=265&tipo=docTObj