yacimiento tipo porfido

Upload: aketzally-luevano-bc

Post on 20-Feb-2018

232 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/24/2019 yacimiento tipo porfido

    1/50

    1

    EOSC 331:EOSC 331: Porphyry depositsPorphyry deposits

    Bingham, Utah (USA)

    Stefan Wallier

    EOS-South 058

    [email protected]

  • 7/24/2019 yacimiento tipo porfido

    2/50

    What is going to be covered

    Definition of porphyry deposits

    Occurrence of porphyry deposits

    Classification Metal-based classification Cu, Mo, Au, Sn, W

    Systematic relationships to magma types Alkalinity and silica content

    Related deposit types

    How are they formed

    Styles of alteration and mineralization

  • 7/24/2019 yacimiento tipo porfido

    3/50

    What is a porphyry Cu ( other metals) deposit?

    Large tonnage and low hypogene

    grade (

  • 7/24/2019 yacimiento tipo porfido

    4/50

    Defining characteristics of

    porphyry deposits Genetic association with

    porphyries, igneous rocks that

    both Are porphyritic

    Have a sugary (aplitic), fine-grainedgroundmass

    Large volumes of uniform,low to moderate grademineralization Systems with spatial dimensions of

    kilometers, yet Processes that formed deposits

    occurred on scales of veins

    Multiple commodities

  • 7/24/2019 yacimiento tipo porfido

    5/50

    Porphyry deposits are major sources of metals

    Copper > Mo ~ Au > Pb, Zn, Rh, W, etc

    Copper used in construction, currency, electronics

    Molybdenum used in high strength alloy and high-T steel;

    aircraft parts, paints and lubricants

    chalcopyrite CuFeS2

    digenite Cu9S5 Chalcocite Cu2S

    bornite Cu5FeS4 enargite Cu3AsS4

    molybdenite MoS2

  • 7/24/2019 yacimiento tipo porfido

    6/50

    Distribution in time

    All classes strongly skewed to Cenozoic

    Function of preservation

  • 7/24/2019 yacimiento tipo porfido

    7/50

    Global

    distributionof porphyries

    Convergent margins Circum-Pacific

    Alpine-Himalayan Altaides

  • 7/24/2019 yacimiento tipo porfido

    8/50

    Tectonic settings Only in settings that generate large and moderately hydrous

    magma chambers

    Variety of settings; copper deposits mostly in arcs

  • 7/24/2019 yacimiento tipo porfido

    9/50

    Size and

    grade Sizes

    10 Mt to 10 Gt Cu > Mo ~ Au > W ~ Sn

    Grades

    Typical ore grades:

    0.4 - 1.0 % Cu

    0.001 - 0.1 % Mo

    0.001 - 1 g/t Au

    100 to 10,000 x crustal

    abundance

    Seedorff et al. (2005)

  • 7/24/2019 yacimiento tipo porfido

    10/50

    Classes

    Based on the principal contained metals

    Classes Porphyry copper

    Porphyry molybdenum

    Porphyry gold

    Porphyry tungsten

    Porphyry tin

  • 7/24/2019 yacimiento tipo porfido

    11/50

    Subdivision based

    on igneous rocks Consistent broad patterns in

    Metals Setting

    Alteration types

    Distinctive features

    Seedorff et al.

    (2005)

  • 7/24/2019 yacimiento tipo porfido

    12/50

    Modif ied from

    Blevin, 2003

    Metal Endowment & Magma Chemistry

    Cu - Au

    Sn W

    Mo

    WW - Mo

    Cu - Mo

    Sn

    Increasing

    fractionation

    Increasing

    oxidation

    Rb/Sr fractionation

    Fe2O3 /

    FeO

    101

    100

    10-1

    oxidation

    state

    10-110-210-3 102101100 103

    Metal endowment of

    intrusion-related

    deposits controlled

    by magmatic: oxidation state

    compositional

    evolution silica content

  • 7/24/2019 yacimiento tipo porfido

    13/50

    What is a porphyry Cu ( other metals) deposit?

    Large tonnage and low hypogene

    grade (

  • 7/24/2019 yacimiento tipo porfido

    14/50

    Source of metals and fluid

    - Metals from magma

    - Fluid from magmatic volatile phase which are exsolved from a

    crystallizing magma body.

    Surface (meteoric) water (and intergranular fluids

    within country rock)

    Transport of metals in

    - Magma

    - Magmatic derived fluid- Meteoric fluid

    Trap

    - Boiling- Fluid mixing (?)

    - Changing physio-chemical conditions (P,T,Xxi,XO2)

    - Structural traps greater fluid-rock interaction

    - Magmatic breccia traps greater fluid-rock interaction

  • 7/24/2019 yacimiento tipo porfido

    15/50

    Upper crustal magma chambers

    Cuernos del Paine, Chile

    Goodale pluton, California

    Chita pluon, Argentina

    Yoshinubo et al.,

    Mushroom shaped with flat

    tops and bottoms

    Wider (10-20 km) than thick

    (

  • 7/24/2019 yacimiento tipo porfido

    16/50

    Yerington - Advanced argillic to pluton

  • 7/24/2019 yacimiento tipo porfido

    17/50

    Formation of mid-crustal magma chamber and exsolution and trapping of

    hydrothermal fluid in apical zones of chamber is a critical first step in a

    magmatic-hydrothermal system

    169.5 Ma

    168.5 Ma

  • 7/24/2019 yacimiento tipo porfido

    18/50

    Luhr Hill granodiorite

  • 7/24/2019 yacimiento tipo porfido

    19/50

    Yerington Batholith Plan (1-3 km depth) with Luhr Hill

  • 7/24/2019 yacimiento tipo porfido

    20/50

    Yerington Batholith Plan (1 3 km depth) with Luhr Hillcupolas & ppy dikes, alteration zones, & ore deposits

    Lyon Cu

    Fe-oxide

    Na-Ca altn

    Na-Ca altn

    Dilles & Proffett, 1995; Dilles, 2000

  • 7/24/2019 yacimiento tipo porfido

    21/50

    Related deposit types

    With genetic ties

    Lodes

    Skarn

    Replacement

    Epithermal

    Coeval in some areas Iron-oxide-copper-gold (IOCG)

    Volcanogenic massive sulfides

  • 7/24/2019 yacimiento tipo porfido

    22/50

    What is a porphyry Cu ( other metals) deposit?

    Large tonnage and low hypogene

    grade (

  • 7/24/2019 yacimiento tipo porfido

    23/50

  • 7/24/2019 yacimiento tipo porfido

    24/50

  • 7/24/2019 yacimiento tipo porfido

    25/50

    Variety of porphyry

    Cu deposits reflects

    igneous association

    and style of

    hydrothermal system

    normal PCD

    diorite/alkalic

    breccia

    Porphyry Mo: Similar story

  • 7/24/2019 yacimiento tipo porfido

    26/50

    Porphyry Mo: Similar story

    Bingham

  • 7/24/2019 yacimiento tipo porfido

    27/50

    Veins in porphyry Cudeposits

    Bingham

    Referred to as stockworks, which

    implies random arrangement ofveins.

    Silver Bell

  • 7/24/2019 yacimiento tipo porfido

    28/50

    Goonumbla, AustraliaRidgeway, Australia

    Courtesy of David Cooke

    Courtesy of Alan Wilson & David Cooke

  • 7/24/2019 yacimiento tipo porfido

    29/50

    Veins in porphyry deposits

    Widths

    Typically less thana few cm

    Most only a few

    millimeters

    Implications

    Narrow fractures fractures easily filled and

    sealed within a short period of time Generally straightforward to relate formation of

    alteration envelopes to filling of veinlets

  • 7/24/2019 yacimiento tipo porfido

    30/50

    Alteration envelopes Wall-rock alteration envelopes

    Envelopes = selvages = halos

    Generally symmetrical about vein

    Commonlyproduces specific,and usuallycharacteristic,observed mineralassociations

    Stable equilibriumnot necessarilyimplied

    Relict minerals mayremain unreacted

  • 7/24/2019 yacimiento tipo porfido

    31/50

    Vein sequences:

    Reflects fluid evolutionTemperature

    Water rock interaction

  • 7/24/2019 yacimiento tipo porfido

    32/50

    Grouping of vein types

    High-temperature Biotitic veinlets associated

    with potassic assemblages

    Veins dominated bymagnetite, amphibole, andplagioclase

    Sugary quartz veinletsassociated with potassic

    assemblages Veins with sodic-calcic

    envelopes

    Calc-potassic veins

    Veins with silicic and potassicenvelopes

    Moderately high temperature Quartz veins that commonly

    lack alteration envelopes

    Quartz-bearing veins withcomplex mineralogy

    Banded quartz veinlets

    Moderate temperature

    Pyritic veins with feldspar-destructive envelopes

    Greisen veins

    Veins with propylitic envelopes

    Low temperature

    Base-metal veins Generally barren veins without

    alteration envelopes

  • 7/24/2019 yacimiento tipo porfido

    33/50

  • 7/24/2019 yacimiento tipo porfido

    34/50

    Seedorff et al. (2005)

    High-temperature potassic assemblages

  • 7/24/2019 yacimiento tipo porfido

    35/50

    Fish Lake, BritishColumbia (Caira et al.,

    1995, Fig. 15A)

    g p p g

    El Salvador, Chile

    Gustafson and Hunt (1975)

    High temperature sugary quartz

  • 7/24/2019 yacimiento tipo porfido

    36/50

    High-temperature sugary quartz

    veinlets associated with potassicassemblages

    Mineralogy of veins Quartz (50-90 vol%)

    K-feldspar

    Anhydrite

    Bornite and chalcopyrite

    Rare biotite

    Potassic (K-silicate)

    alteration of wall rocks K-feldspar replaces

    plagioclase

    Biotite replaces amphibole

    Commonly Cu mineralized(disseminated)

    X

    Seedorff et al. (2005)

    Moderately high temperature

  • 7/24/2019 yacimiento tipo porfido

    37/50

    Moderately high temperature

    quartz veins that commonly lackalteration envelopes

    Orientation and morphology Continuous along strike for

    meters to tens of meters

    Texture

    Coarse grained Mineralogy

    Quartz

    Molybdenite

    Chalcopyrite Anhydrite (vugs if leached)

    Minor pyrite

    Lesser tourmalineSteeply dipping B veinlet at El

    Salvador (Gustafson and Hunt,

    1975, Fig. 15A)

  • 7/24/2019 yacimiento tipo porfido

    38/50

    Moderately high T veins

    Sulfides

    Molybdenite

    Chalcopyrite pyrite

    Morphology

    Continuous planar

    structures Parallel walls

    Internal banding, including

    centerlines

    Alteration envelopes

    veins generally lack

    alteration halos

    X

    Seedorff et al. (2005)

    Moderately high temperature

  • 7/24/2019 yacimiento tipo porfido

    39/50

    Moderately high temperature

    banded quartz veinlets Orientation and morphology

    Randomly oriented

    Discontinuous and wispy

    Mineralogy Quartz

    Magnetite

    Texture Distinctly banded

    Dark color of bands due to

    Abundant vapor-rich fluidinclusions

    Micrometer-sized grains ofmagnetite

    Dark, banded quartz veinlet fromPancho deposit, Refugio district, Chile

    (Muntean and Einaudi, 2001, Fig. 5A)

    Moderate temperature pyritic veins

  • 7/24/2019 yacimiento tipo porfido

    40/50

    Moderate-temperature pyritic veins

    with feldspar-destructive envelopes

    Orientation and morphology

    Continuous, systematicallyoriented fracturessheeted sets

    Commonly steeply dipping,imperfectly radial pattern

    Vein filling Dominated by pyrite Lesser amounts of other sulfides

    Minor quartz, with anhydrite andminor dolomite

    Alteration envelope Feldspar-destructive alteration

    halos are characteristic

    Sericite or sericite + chlorite

    Also pyrite, quartz, anhydrite,

    other sulfide minerals, and rutile

    Two D veins with pyrite and bright

    sericite halo, cutting B veins with

    purple quartz at Rosia Poieni,

    Romania.

    2 cm

    Moderate temperature pyritic veins

  • 7/24/2019 yacimiento tipo porfido

    41/50

    Moderate-temperature pyritic veins

    with feldspar-destructive envelopes Synonyms

    D veins

    Quartz + sericite + pyrite(QSP) veins

    Phyllic veins

    X

    Seedorff et al. (2005)

    L t t b t l i

  • 7/24/2019 yacimiento tipo porfido

    42/50

    Low-temperature base-metal veins

    Alteration envelopes Intermediate argillic

    alteration envelopes aremost common

    Sericitic alterationenvelopes also observed

    Certain veins lack wall-rock

    alteration Of exploration interest

    Commonly characterize theregion above and beyond

    the bulk-tonnage target Mineralogy and metal

    ratios can give clues as tothe class and subclass ofthe underlying porphyry

    systemLowell, 1991, Fig. 1

    X

    Low-temperature generally barren

  • 7/24/2019 yacimiento tipo porfido

    43/50

    Low-temperature, generally barren

    veins without alteration envelopes Sulfide-poor veins

    that commonly lackalteration envelopes

    Mineralogy

    Carbonate silicaminerals are common

    Prehnite and zeolites

    may occur in moremafic wall rocks

    May contain precious

    metals

    X

    Seedorff et al. (submitted)

    Main points Alteration mineralization

  • 7/24/2019 yacimiento tipo porfido

    44/50

    Main pointsAlteration-mineralization

    Porphyry deposits exhibit diverse types of veins andalteration envelopes Phase equilibria of mineral assemblages provide a geochemical

    context for understanding porphyry systems

    Diversity of alteration-mineralization features attributed toinfluence of numerous geologic variables

    Certain vein types are common and widely recognized High-temperature sugary quartz veinlets associated with

    potassic alteration Pyritic veins with feldspar-destructive envelopes

    Other types are not widely recognized but may beindicators of certain geologic environments High-temperature green mica veinlets Banded quartz veinlets

    Greisen veins

    P h l

  • 7/24/2019 yacimiento tipo porfido

    45/50

    Porphyry systems are complex

    The real world of geology is complicated

    Models rarely can capture all the detail Valuable for generating insight but not for

    recreating reality

    Interpretations of origin, distribution of grade,

    and many other factors depend onunderstanding time-space relationships From deposit-scale to regional

    Analytical and theoretical tools aidunderstanding, but Understanding the sources of diversity revealed

    by high-quality geology is the key to scientific and

    practical breakthroughs

    OXIDATION & TRANSPORT during weathering:

    S i h t

  • 7/24/2019 yacimiento tipo porfido

    46/50

    Supergene enrichment

    OXIDATION & TRANSPORT during weathering:

    METALS REMOVAL

  • 7/24/2019 yacimiento tipo porfido

    47/50

    METALS REMOVAL

    Removed: Cu, Zn, Fe, Mn, K, +/- As, AuRemaining: Mo, Pb, Ag, Mn, Fe

    METALS ACCUMULATION as oxides, sulfides

    PROTOLITH: metals, reduced sulfur are metastable

    DEVELOPMENT OF GEOCHEMICAL STRATIGRAPHY:

    OXIDATION LEACHING PROCESSES

  • 7/24/2019 yacimiento tipo porfido

    48/50

    OXIDATION-LEACHING PROCESSES

    (applied to a protolith comprising Py >> CuSx and withvariable neutralizing capacity )

    Oxidation and Transport:lose Cu, Zn, ~Fe, +/- As, Au;

    sulfur (as sulfate); ~Al, ~Mn

    Accumulation of Cu, S=, Fe,

    Zn, Au, Al, +/- As

    Lateral transport and

    formation of CuOx

    (FeOx, MnOx)

    Development of oxidation profiles: Cu + Fe + (Mn,Al)

    mobility during oxidative destruction of sulf ides

  • 7/24/2019 yacimiento tipo porfido

    49/50

    Fe+++ + H2O Fe(OH)3 + 3H+(aq) Fe(OH)3 FeOOH(s) + H2O

    Santa Rita, New Mxico

    goethite

  • 7/24/2019 yacimiento tipo porfido

    50/50

    (post- mineral

    sediments)

    pyrite, chalcopyrite

    red hematite + goethite

    pyrite goethite + jarosite

    Cuajone, Per

    Sulfide accumulation zonewith

    pyrite, chalcopyrite + Cu

    chalcosite, covelli te,

    bornite