unidad 3 fundamentos telecomunicaciones

34
Instituto Tecnológico de Orizaba Modulación Unidad 3 1 3.1 Técnicas de modulación analógica: Modulación en amplitud (AM) y modulación en frecuencia (FM). Modulación. Modulación engloba el conjunto de técnicas que se usan para transportar información sobre una onda portadora, típicamente una onda sinusoidal. Estas técnicas permiten un mejor aprovechamiento del canal de comunicación lo que posibilita transmitir más información en forma simultánea además de mejorar la resistencia contra posibles ruidos e interferencias. Según la American National Standard for Telecommunications, la modulación es el proceso, o el resultado del proceso, de variar una característica de una portadora de acuerdo con una señal que transporta información. El propósito de la modulación es sobreponer señales en las ondas portadoras.1 Básicamente, la modulación consiste en hacer que un parámetro de la onda portadora cambie de valor de acuerdo con las variaciones de la señal moduladora, que es la información que queremos transmitir. Existen varias razones para modular, entre ellas: • Facilita la propagación de la señal de información por cable o por el aire. • Ordena el radioespectro, distribuyendo canales a cada información distinta. • Disminuye dimensiones de antenas. • Optimiza el ancho de banda de cada canal. • Evita interferencia entre canales. • Protege a la información de las degradaciones por ruido. • Define la calidad de la información trasmitida. Modulación Analógica Modulación analógica con portadora analógica: Se utiliza cuando se desea transmitir la señal analógica a una frecuencia diferente o con un ancho de banda menor. La modulación se puede realizar utilizando cambios de amplitud, frecuencia o fase de la señal portadora.

Upload: angel-lagunes

Post on 25-Oct-2015

104 views

Category:

Documents


4 download

TRANSCRIPT

Instituto Tecnológico de Orizaba Modulación Unidad 3

1

3.1 Técnicas de modulación analógica: Modulación en amplitud

(AM) y modulación en frecuencia (FM).

Modulación. Modulación engloba el conjunto de técnicas que se usan para transportar información sobre una onda

portadora, típicamente una onda sinusoidal. Estas técnicas permiten un mejor aprovechamiento del canal

de comunicación lo que posibilita transmitir más información en forma simultánea además de mejorar la

resistencia contra posibles ruidos e interferencias. Según la American National Standard for

Telecommunications, la modulación es el proceso, o el resultado del proceso, de variar una característica

de una portadora de acuerdo con una señal que transporta información. El propósito de la modulación es

sobreponer señales en las ondas portadoras.1

Básicamente, la modulación consiste en hacer que un parámetro de la onda portadora cambie de valor de

acuerdo con las variaciones de la señal moduladora, que es la información que queremos transmitir.

Existen varias razones para modular, entre ellas:

• Facilita la propagación de la señal de información por cable o por el aire.

• Ordena el radioespectro, distribuyendo canales a cada información distinta.

• Disminuye dimensiones de antenas.

• Optimiza el ancho de banda de cada canal.

• Evita interferencia entre canales.

• Protege a la información de las degradaciones por ruido.

• Define la calidad de la información trasmitida.

Modulación Analógica Modulación analógica con portadora analógica: Se utiliza cuando se desea transmitir la señal analógica a

una frecuencia diferente o con un ancho de banda menor. La modulación se puede realizar utilizando

cambios de amplitud, frecuencia o fase de la señal portadora.

Instituto Tecnológico de Orizaba Modulación Unidad 3

2

Modulación analógica con portadora digital: Se utiliza cuando se desea transmitir la señal analógica a

través de una red digital.

Ejemplo: transmisión de voz a través de telefonía móvil digital.

Amplitud Modulada (AM):

Amplitud modulada (AM) o modulación de amplitud es un tipo de modulación no lineal que consiste en

hacer variar la amplitud de la onda portadora de forma que esta cambie de acuerdo con las variaciones de

nivel de la señal moduladora, que es la información que se va a transmitir. La modulación de amplitud es

equivalente a la modulación en doble banda lateral con reinserción de portadora.

Aplicaciones tecnológicas de la AM:

La AM es usada en la radiofonía, en las ondas medias, ondas cortas, e incluso en la VHF550 a 1600 khz.

la cual es utilizada en las comunicaciones radial es entre los aviones y las torres de control de los

aeropuertos.

Este es un caso de modulación donde tanto las señales de transmisión como las señales de datos son

analógicas.

Un modulador AM es un dispositivo con dos señales de entrada, una señal portadora de amplitud y

frecuencia constante, y la señal de información o moduladora. El parámetro de la señal portadora que es

modificado por la señal moduladora es la amplitud.

En otras palabras, la modulación de amplitud (AM) es un tipo de modulación lineal que consiste en hacer

variar la amplitud de la onda portadora de forma que esta cambie de acuerdo con las variaciones de nivel

de la señal moduladora, que es la información que se va a transmitir.

Instituto Tecnológico de Orizaba Modulación Unidad 3

3

Instituto Tecnológico de Orizaba Modulación Unidad 3

4

Consideremos que la expresión matemática de la señal modulada en amplitud está dada

por:

Frecuencia Modulada (FM):

En telecomunicaciones, la frecuencia modulada (FM) ó la modulación de frecuencia transmite

información a través de una onda portadora variando su frecuencia (contrastando está con la amplitud

modulada o modulación de amplitud (AM), en donde la amplitud de la onda es variada mientras que su

frecuencia se mantiene constante). Datos digitales pueden ser enviados por el desplazamiento de la onda

de frecuencia entre un conjunto de valores discretos, una técnica conocida como modulación por

desplazamiento de frecuencia.

La frecuencia modulada es usada comúnmente en las radiofrecuencias de muy alta frecuencia por la alta

fidelidad de la radiodifusión de la música y el habla. El sonido de la televisión analógica también es

difundido por medio de FM. Un formulario de banda estrecha se utiliza para comunicaciones de voz en la

radio comercial y en las configuraciones de aficionados. El tipo usado en la radiodifusión FM es

generalmente llamado amplia-FM o W-FM (de la siglas en inglés "Wide-FM"). En la radio de dos vías, la

Instituto Tecnológico de Orizaba Modulación Unidad 3

5

banda estrecha ó N-FM (de la siglas en inglés "Narrow-FM") es utilizada para ahorrar banda estrecha.

Además, se utiliza para enviar señales al espacio.

La frecuencia modulada también se utiliza en las frecuencias intermedias de la mayoría de los sistemas de

vídeo analógico, incluyendo VHS, para registrar la luminancia (blanco y negro) de la señal de video. La

frecuencia modulada es el único método factible para la grabación de video y para recuperar de la cinta

magnética sin la distorsión extrema, como las señales de vídeo con una gran variedad de componentes de

frecuencia -de unos pocos hercios a varios megahercios, siendo también demasiado amplia para trabajar

con equalisers con la deuda al ruido electrónico debajo de -60 dB. La FM también mantiene la cinta en el

nivel de saturación, y, por tanto, actúa como una forma de reducción de ruido del audio, y un simple

corrector puede enmascarar variaciones en la salida de la reproducción, y que la captura del efecto de FM

elimina a través de impresión y pre-eco. Un piloto de tono continuo, si se añade a la señal - que se hizo en

V2000 y muchos formatos de alta banda -puede mantener el temblor mecánico bajo control y ayudar al

tiempo de corrección.

Este es un caso de modulación donde tanto las señales de transmisión como las señales de datos son

analógicas y es un tipo de modulación exponencial.

En este caso la señal modulada mantendrá fija su amplitud y el parámetro de la señal portadora que variará

es la frecuencia, y lo hace de acuerdo a como varíe la amplitud de la señal moduladora.

En otras palabras, la modulación por frecuencia (FM) es el proceso de codificar información, la cual

puede estar tanto en forma digital como analógica, en una onda portadora mediante la variación de su

frecuencia instantánea de acuerdo con la señal de entrada.

Instituto Tecnológico de Orizaba Modulación Unidad 3

6

Instituto Tecnológico de Orizaba Modulación Unidad 3

7

La expresión matemática de la señal modulada en frecuencia, está dada por:

3.2 Técnicas de modulación digital:

Modulación por desplazamiento de amplitud (ASK)

Modulación por desplazamiento de frecuencia (FSK)

Modulación por desplazamiento de fase (PSK)

Modulación de amplitud en cuadratura (QAM).

Técnicas de Modulación Digital.

Las señales (bits) son generadas por un dispositivo de procesamiento de datos (digital), y es transportado

por un camino originalmente analógico.

Para esto se necesita técnicas que permitan transmitir señales sin que se pierda su integridad.

Para cumplir esto se necesita agregar a los dispositivos de procesamiento de datos equipos especialmente

elaborados para MODULAR y DEMODULAR, como los MODEM.

Instituto Tecnológico de Orizaba Modulación Unidad 3

8

Una señal (bit) puede ser enviada de dos formas: digital y analógica. Las técnicas empleadas para

transportar información son:

MODULACIÓN:

Técnica empleada para modificar una señal con la finalidad de posibilitar el transporte de informaciones a

través de un canal de comunicación y recuperar la señal en su forma original en la otra extremidad.

Ahora serán posibles dos técnicas para la transmisión de datos : Analógica y Digital.

Solamente la Analógica realiza modulación. Una vez que la Digital usa un recurso de codificación de

pulsos.

BITS Y BAUDIOS:

La Tasa de modulación representa la cantidad de veces que la línea fue señalizada y es expresada en

Baudios.

Tasa de Modulación = 1/d d = duración del elemento básico de la señal

Una tasa de transmisión es dada por el número de bits por segundo que pueden ser transmitidos.

Tomándose en cuenta que la línea puede asumir n estados diferentes, se puede transmitir k bits por estado,

tal que:

2 k =n k = log2 n

Tasa de Transmisión = k * Tasa de modulación

MODULACION DIGITAL:

Los Modems digitales no ejecutan exactamente una modulación, sino una especie de codificación de una

señal que difiere mucho en relación a una señal analógica generada por los Modems analógicos.

Los códigos básicos son:

Código RZ

Código NRZ

Código BIO

El resto de códigos son derivación de algunos de estos, así tenemos :

Códigos:

NRZ-L; BIO-L

NRZ-M; BIO-M

NRZ-SBIO-S

RZ AMI

Instituto Tecnológico de Orizaba Modulación Unidad 3

9

Modulación por desplazamiento de amplitud (ASK)

ASK (Amplitudes-shift- keying), es una modulación de amplitud donde la señal moduladora (datos) es

digital. Los dos valores binarios se representan con dos amplitudes diferentes y es usual que una de las dos

amplitudes sea cero; es decir uno de los dígitos binarios se representa mediante la presencia de la

portadora a amplitud constante, y el otro dígito se representa mediante la ausencia de la señal portadora.

En este caso la señal moduladora vale

Mientras que el valor de la señal de transmisión (señal portadora) es dado por

vp(t) = Vp sen(2π fp t)

Donde Vp es el valor pico de la señal portadora y fp es la frecuencia de la señal portadora.

Como es una modulación de amplitud, la señal modulada tiene la siguiente expresión

v(t) = Vp vm(t) sen(2π fp t)

como ya vimos la en señal moduladora vm(t) al ser una señal digital toma únicamente los valores 0 y 1,

con lo cual la señal modulada resulta

La señal modulada puede representarse gráficamente de la siguiente manera

Instituto Tecnológico de Orizaba Modulación Unidad 3

10

Debido a que la señal moduladora es una secuencia periódica de pulsos, su espectro de frecuencias

obtenido por medio del desarrollo en serie compleja de Fourier tiene la característica de la función sen x/x.

Este caso es similar a la modulación de amplitud para señales analógicas, o sea que se produce un

desplazamiento de frecuencias, que en este caso traslada todo el espectro de frecuencias representativo de

la secuencia de pulsos periódicos.

Por lo tanto concluimos que el ancho de banda necesario para esta transmisión es mayor que el requerido

para modulación de amplitud, debido a que la cantidad de señales de frecuencias significativas (las del

primer tramo) que contiene el espectro, dependiendo dicha cantidad de la relación entre el período y el

tiempo de duración de los pulsos.

Instituto Tecnológico de Orizaba Modulación Unidad 3

11

ASK es sensible a cambios repentinos de la ganancia, además es una técnica de modulación ineficaz.

La técnica ASK se utiliza para la transmisión de datos digitales en fibras ópticas, en los transmisores con

LED, la expresión de la señal modulada sigue siendo válida. Es decir, un elemento de señal se representa

mediante un pulso de luz, mientras que el otro se representa mediante la ausencia de luz. Los transmisores

láser tienen normalmente un valor de desplazamiento, "bias", que hace que el dispositivo emita una señal

de alta intensidad para representar un elemento y una señal de menor amplitud para representar al otro.

Modulación por Desplazamiento de Frecuencia (FSK).

FSK (Frecuency-Shift-Keying), es una modulación de frecuencia donde la señal moduladora (datos) es

digital. Los dos valores binarios se representan con dos frecuencias diferentes (f1 y f2) próximas a la

frecuencia de la señal portadora fp.

La modulación FSK consiste en un procedimiento de 2 osciladores con frecuencias diferentes para dígitos

0 y 1.

Normalmente es usada para la transmisión de datos en bajas velocidades y puede ser:

- Coherente: Donde no ocurre variación de fase de la portadora para dígitos del mismo valor.

- No Coherente: Donde puede ocurrir variación de fase de la portadora para dígitos del mismo valor

La Modulación por desplazamiento de frecuencia o FSK, (Frequency Shift Keying) es una técnica de

transmisión digital de información binaria (ceros y unos) utilizando dos frecuencias diferentes. La señal

moduladora solo varía entre dos valores de tensión discretos formando un tren de pulsos donde un cero

representa un "1" o "marca" y el otro representa el "0" o "espacio".

En la modulación digital, a la relación de cambio a la entrada del modulador se le llama bit-rate y tiene

como unidad el bit por segundo (bps).

A la relación de cambio a la salida del modulador se le llama baud-rate. En esencia el baud-rate es la

velocidad o cantidad de símbolos por segundo.

En FSK, el bit rate = baud rate. Así, por ejemplo, un 0 binario se puede representar con una frecuencia

f1, y el 1 binario se representa con una frecuencia distinta f2.

El módem usa un VCO, que es un oscilador cuya frecuencia varía en función del voltaje aplicado.

Índice modulación general para una

Siendo: fd: máxima desviación en frecuencia; Rsymb: Velocidad de símbolo por segundo

Instituto Tecnológico de Orizaba Modulación Unidad 3

12

Instituto Tecnológico de Orizaba Modulación Unidad 3

13

Modulación por desplazamiento de fase (PSK)

PSK (Phase-shift keying), es una modulación de fase donde la señal moduladora (datos) es digital.

Existen dos alternativas de modulación PSK: PSK convencional, donde se tienen en cuenta los

desplazamientos de fase y PSK diferencial, en la cual se consideran las transiciones.

Las consideraciones que siguen a continuación son válidas para ambos casos.

En PSK el valor de la señal moduladora está dado por

mientras que la señal portadora vale:

vp(t) = Vp cos(2π fp t)

En donde Vp es el valor pico de la señal portadora y fp es la frecuencia de la señal portadora.

La modulación PSK está caracterizada por

Instituto Tecnológico de Orizaba Modulación Unidad 3

14

v(t) = vp(t) . vm(t)

o sea

v(t) = Vp . Vm cos(2π fp t)

Luego para Vm = 1

v(t) = Vp cos(2π fp t)

y para Vm = -1

v(t) = -Vp cos(2π fp t) = Vp cos(2π fp t + π)

Entre las dos últimas expresiones de v(t), existe una diferencia de fase de 180º, y la señal varia

entre dos fases, es por ello que se denomina 2PSK.

Al sistema modulador de 2PSK se lo suele comparar con una llave electrónica controlada por la

señal moduladora, la cual conmuta entre la señal portadora y su versión desfasada 180º.

Esquema para 2 PSK El radio de la circunferencia es igual a 1 y representa la amplitud normalizada de la portadora.

En el sistema PSK convencional es necesario tener una portadora en el receptor para

sincronización, o usar un código autosincronizante, por esta razón surge la necesidad de un

sistema PSK diferencial. Es diferencial puesto que la información no esta contenida en la fase

absoluta, sino en las transiciones. La referencia de fase se toma del intervalo inmediato anterior,

con lo que el detector decodifica la información digital basándose en diferencias relativas de fase.

MODULACION DE AMPLITUD EN CUADRATURA

Es una técnica de modulación digital avanzada que transporta datos, mediante la modulación de

la señal portadora de información tanto en amplitud como en fase. Esto se consigue modulando

una misma portadora, desfasando 90º la fase y la amplitud.

Instituto Tecnológico de Orizaba Modulación Unidad 3

15

La señal modulada en QAM está compuesta por la suma lineal de dos señales previamente

moduladas en DBL-PS (Doble Banda Lateral - con Portadora Suprimida)

Se asocian a esta tecnología aplicaciones tales como:

Modems telefónicos para velocidades superiores a los 2400bps.

Transmisión de señales de televisión, microondas, satélite (datos a alta velocidad por canales con

ancho de banda restringido).

Modulación TCM (Trellis Coded Modulation), que consigue velocidades de transmisión muy

elevadas combinando la modulación con la codificación de canal.

Módems ADSL que trabajan en el bucle de abonado, a frecuencias situadas entre 24KHz y

1104KHz, pudiendo obtener velocidades de datos de hasta 9Mbps, modulando en QAM

diferentes portadoras.

La modulación QAM consiste en modular por desplazamiento en amplitud (ASK) de forma

independiente, dos señales portadoras que tienen la misma frecuencia pero que están desfasadas

entre sí 90º. La señal modulada QAM es el resultado de sumar ambas señales ASK. Estas pueden

operar por el mismo canal sin interferencia mutua porque sus portadoras al tener tal desfase, se

dice que están en cuadratura.

La ecuación matemática de una señal modulada en QAM es:

3.3 Conversión analógico–digital: Muestreo, cuantización y

codificación.

CONVERSIÓN ANALÓGICA DIGITAL

La conversión analógica-digital o digitalización, consiste básicamente en realizar de forma periódica

medidas de la amplitud de la señal de entrada y traducirlas a un lenguaje numérico. La conversión A/D

también es conocida por el acrónimo inglés ADC (analogic to digital converter).

COMPARACIÓN DE LAS SEÑALES ANALÓGICA Y DIGITAL

Una señal analógica es aquélla que puede tomar una infinidad de valores (frecuencia y amplitud) dentro de

un límite superior e inferior. El término analógico proviene de análogo. Por ejemplo, si se observa en un

Instituto Tecnológico de Orizaba Modulación Unidad 3

16

osciloscopio, la forma de la señal eléctrica en que convierte un micrófono el sonido que capta, ésta sería

similar a la onda sonora que la originó.

En cambio, una señal digital es aquélla cuyas dimensiones (tiempo y amplitud) no son continuas sino

discretas, lo que significa que la señal necesariamente ha de tomar unos determinados valores fijos

predeterminados en momentos también discretos. Estos valores fijos se toman del sistema binario, lo que

significa que la señal va a quedar convertida en una combinación de ceros y unos, que ya no se parece en

nada a la señal original. Precisamente, el término digital tiene su origen en esto, en que la señal se

construye a partir de números (dígitos).

¿POR QUÉ DIGITALIZAR?

Ventajas de la señal digital Ante la atenuación, la señal digital puede ser amplificada y al mismo tiempo

reconstruida gracias a los sistemas de regeneración de señales. Cuenta con sistemas de detección y

corrección de errores que se utilizan cuando la señal llega al receptor, entonces comprueban la señal (uso

de redundancia), primero para detectar algún error, y, algunos sistemas, pueden luego corregir alguno o

todos los errores detectados previamente. Facilidad para el procesamiento de la señal. Cualquier operación

es fácilmente realizable a través de cualquier software de edición o procesamiento de señales. La señal

digital permite la multiregeneración infinita sin pérdidas de calidad. Esta ventaja sólo es aplicable a los

formatos de disco óptico; la cinta magnética digital, aunque en menor medida que la analógica (que sólo

soporta como mucho 4 o 5 generaciones), también va perdiendo información con la multiregeneración.

Inconvenientes de la señal digital La señal digital requiere mayor ancho de banda para ser transmitida que

la analógica. Se necesita una conversión analógica-digital previa y una decodificación posterior, en el

momento de la recepción. La transmisión de señales digital requiere una sincronización precisa entre los

tiempos del reloj de transmisor, con respecto a los del receptor. Un desfase cambia la señal recibida con

respecto a la que fue transmitida.

EL PROCESO DE CONVERSIÓN ANALÓGICO–DIGITAL

El proceso de conversión analógico digital consta básicamente de 4 etapas: Muestreo Cuantización

Codificación Recodificación Digital-Digital para transmisión

MUESTREO

El muestreo (en inglés, sampling) consiste en tomar muestras periódicas de la amplitud de onda. La

velocidad con que se toman esta muestra, es decir, el número de muestras por segundo, es lo que se

conoce como frecuencia de muestreo y está en función del teorema de Nyquist, que indica que la

frecuencia de muestreo (fs) será el doble de la frecuencia máxima (fm) de la señal a muestrear, por

ejemplo, si tenemos una señal de audio con un ancho de banda de 20 Hz a 22,500 Hz, su frecuencia

máxima sería fm =22,500 Hz, por lo tanto su frecuencia de muestreo sería:

Instituto Tecnológico de Orizaba Modulación Unidad 3

17

CUANTIFICACIÓN

Básicamente, la cuantificación lo que hace es convertir una sucesión de muestras de amplitud continua en

una sucesión de valores discretos preestablecidos según el código utilizado.

Durante el proceso de cuantificación se mide el nivel de tensión de cada una de las muestras, obtenidas en

el proceso de muestreo, y se les atribuye a un valor finito (discreto) de amplitud, seleccionado por

aproximación dentro de un margen de niveles previamente fijado.

Instituto Tecnológico de Orizaba Modulación Unidad 3

18

Los valores preestablecidos para ajustar la cuantificación se eligen en función de la propia resolución que

utilice el código empleado durante la codificación. Si el nivel obtenido no coincide exactamente con

ninguno, se toma como valor el inferior más próximo.

En este momento, la señal analógica (que puede tomar cualquier valor) se convierte en una señal digital,

ya que los valores que están preestablecidos, son finitos.

No obstante, todavía no se traduce al sistema binario. La señal ha quedado representada por un valor finito

que durante la codificación, será cuando se transforme en una sucesión de ceros y unos.

Así pues, la señal digital que resulta tras la cuantificación es sensiblemente diferente a la señal eléctrica

analógica que la originó, por lo que siempre va a existir una cierta diferencia entre ambas que es lo que se

conoce como error de cuantificación, que se produce cuando el valor real de la muestra no equivale a

ninguno de los escalones disponibles para su aproximación y la distancia entre el valor real y el que se

toma como aproximación es muy grande. Un error de cuantificación se convierte en un ruido cuando se

reproduzca la señal tras el proceso de decodificación digital.

Tipos de cuantificación

Para minimizar los efectos negativos del error de cuantificación, se utilizan distintas técnicas de

cuantificación: Cuantificación uniforme o lineal. Se utiliza un bit rate constante. A cada muestra se le

asigna el valor inferior más próximo, independientemente de lo que ocurra con las muestras adyacentes.

Cuantificación no uniforme o no lineal. Se estudia la propia entropía de la señal analógica y se asignan

niveles de cuantificación de manera no uniforme (bit rate variable) de tal modo que, se asigne un mayor

número de niveles para aquellos márgenes en que la amplitud de la tensión cambia más rápidamente.

Cuantificación logarítmica: Se hace pasar la señal por un compresor logarítmico antes de la cuantificación.

Como en la señal resultante la amplitud del voltaje sufre variaciones menos abruptas la posibilidad de que

se produzca un ruido de cuantificación grande disminuye. Antes de reproducir la señal digital, esta tendrá

que pasa por un expansor. Cuantificación vectorial En lugar de cuantificar las muestras obtenidas

individualmente, se cuantifica por bloques de muestras. Cada bloque de muestras será tratado como si se

tratara de un vector, de ahí, el nombre de esta tipología.

CODIFICACIÓN

La codificación consiste en la traducción de los valores de tensión eléctrica analógicos que ya han sido

cuantificados (ponderados) al sistema binario, mediante códigos preestablecidos. La señal analógica va a

quedar transformada en un tren de impulsos digital.

Instituto Tecnológico de Orizaba Modulación Unidad 3

19

ASPECTOS GENERALES DE LA CODIFICACIÓN

El códec es el código específico que se utiliza para la codificación/decodificación de los datos.

Precisamente, la palabra Códec es una abreviatura de Codificador-Decodificador. Parámetros que definen

el códec Número de canales: Indica el tipo de señal con que se va a tratar: monoaural, binaural o

multicanal Frecuencia de muestreo: La frecuencia o tasa de muestreo se refiere a la cantidad de muestras

de amplitud tomadas por unidad de tiempo en el proceso de muestreo. De acuerdo con el Teorema de

muestreo de Nyquist-Shannon, la tasa de muestreo sólo determinará el ancho de banda base de la señal

muestreada, es decir, limitará la frecuencia máxima de los componentes sinusoidales que forman una onda

periódica. De acuerdo con este teorema, y siempre desde la perspectiva metemática, una mayor tasa de

muestreo para una señal no debe interpretarse como una mayor fidelidad en la reconstrucción de la señal.

El proceso de muestreo es reversible, lo que quiere decir que, desde el punto de vista matemático, la

reconstrucción se puede realizar en modo exacto (no aproximado). La tasa de muestreo se determina

multiplicando por dos el ancho de banda base de la señal a muestrear y, añadiendo un margen (un 10% en

CD-Audio, por ejemplo) para contemplar las limitaciones prácticas de los filtros no ideales (reales).

Resolución (Número de bits): Determina la precisión con la que se reproduce la señal original. Se suelen

utilizar 8, 10, 16 o 24 bits por muestra. Mayor precisión a mayor número de bits. Bit rate: El bit rate es la

velocidad o tasa de transferencia de datos. Su unidad es el bit por segundo (bps). Pérdida: Algunos códecs

al hacer la compresión eliminan cierta cantidad de información, por lo que la señal resultante, no es igual a

la original (compresión con pérdidas).

EJEMPLOS DE CÓDEC Codificación del sonido: Utiliza un tipo de códec (código) específicamente

diseñado para la compresión y descompresión de señales de audio: el códec de audio CDA PAM

(Modulación de amplitud de pulsos). La frecuencia de la portadora debe ser al menos mayor que el doble

de la frecuencia de la señal moduladora. Realiza una cuantificación lineal de la amplitud de la señal

analógica. Actualmente, la principal aplicación principal de una codificación PAM se encuentra en la

transmisión de señales, pues permite el multiplexado (enviar más de una señal por un sólo canal). PCM

(Pulse Code Modulated) cuya resolución es de 8 bits (1 byte. Utiliza la modulación PAM como base, pero

en lugar de en 8 bits en 7 bits, reservándose el octavo para indicar el signo).

Instituto Tecnológico de Orizaba Modulación Unidad 3

20

3.4 Códigos de línea:

RZ, NRZ, NRZ-L, AMI, Pseudoternaria, Manchester, Manchester

Diferencial, B8ZS, HDB3, entre otros.

Código de línea.

En telecomunicaciones, un código en línea (modulación en banda base) es un código utilizado en un

sistema de comunicación para propósitos de transmisión.

Los códigos en línea son frecuentemente usados para el transporte digital de datos. Éstos códigos

consisten en representar la señal digital transportada respecto a su amplitud respecto al tiempo. La señal

está perfectamente sincronizada gracias a las propiedades específicas de la capa física. La representación

de la onda se suele realizar mediante un número determinados impulsos. Estos impulsos representan los 1s

y los 0s digitales. Los tipos más comunes de codificación en línea son el unipolar, polar, bipolar y

Manchester.

Después de la codificación en línea, la señal se manda a través de la capa física. A veces las características

de dos canales aparentemente muy diferentes son lo suficientemente parecidos para que el mismo código

sea usado por ellos.

RZ (RETURN – TO – ZERO)

A/2

-A/2

1 0 1 1 0 1

t

Instituto Tecnológico de Orizaba Modulación Unidad 3

21

En este caso los símbolos de la fuente son estadísticamente independientes, por lo que se puede aplicar la

expresión

m

a mffmfPT

afP

TfG 0

2

0

22

)(

donde

Tf

10 iaEa 22

iaEa

222 aaa

Los símbolos )1,1(ia se suponen equiprobables, luego:

012

11

2

1 iaEa

112

11

2

1 2222 iaEa

1012

222 aaa

El pulso básico tiene la forma:

)(2

)(

tAtp

cf

AtAsin

2)(

2

T

Instituto Tecnológico de Orizaba Modulación Unidad 3

22

Nota: Realmente el pulso está desplazado en tiempo hacia la izquierda y no centrado como el que se

muestra. Esto implica que la transformada del pulso real aparezca multiplicada por un factor de fase que

no influye en el módulo de la transformada. El pulso centrado, por otra parte, simplifica el tratamiento

matemático.

Entonces

fcA

fP 222

2sin

4

y el espectro de potencia toma la forma:

fcdA

fcT

AfGRZ

22

222

sin4

sin4

donde T

d

que se denomina ciclo útil del pulso. Si 2

T

, entonces:

5,02

12/

T

T

Td

2

sin162

sin4

)2/(5,0 22

22 T

fcTAT

fcTA

fGRZ .

Como T

Rs

1 , entonces

ss

RZR

fc

R

AfG

2sin

16

22

Cuyo gráfico es

Instituto Tecnológico de Orizaba Modulación Unidad 3

23

Debe observarse que a medida que se incrementa la razón de baudio (Rs) se incrementa el ancho de banda

requerido y disminuye la amplitud de los picos del espectro.

Si se supone que la señal tiene características ON- OFF. Entonces )1,0(ia y

cfAtAtp sin)()(

y

2

11

2

10

2

1 iaEa

2

11

2

10

2

1 2222 iaEa

4

1

4

1

2

12

222 aaa

luego

m

a mffmfPT

afP

TfG 0

2

0

22

)(

2Rs 4Rs 6Rs .f, Hz

GRZ(f)

A2/16Rs

Instituto Tecnológico de Orizaba Modulación Unidad 3

24

m

RZ mffT

mcdA

fcT

AfG 0

0

222

222 1

sin4

sin4

m

RZ mffmdcdA

fcT

AfG 0

222

222

sin4

sin4

Para el caso específico de d = 0,5

m sss

RZR

mf

mc

A

R

fc

R

AfG

2sin

162sin

16

22

22

y el espectro continuo tiene la misma forma del caso anterior. El espectro continuo, posee líneas

espectrales en m = ±1, ±3, ±5, …

y los ceros en

m/2 = ±2, ±4, ±6, ….

NRZ(NON – RETURN – TO - ZERO)

2Rs 4Rs 6Rs .f, Hz

GRZ(f)

A2/16

2

1sin

16

22A

2

3sin

16

22A

2

5sin

16

22A

Rs 3Rs

Instituto Tecnológico de Orizaba Modulación Unidad 3

25

Esta señal mantiene las características de independencia estadística al igual que la señal RZ pero, ahora

con d = 1. su espectro resulta ser

ss

NRZR

fc

R

AfG 2

2

sin4

Si la señal resulta ser ON-OFF entonces )1,0(ia y

cfAtAtp sin)()(

GRZ(f)

Rs 2Rs 3Rs .f, Hz

A2/4Rs

A/2

-A/2

1 0 1 1 0 1

t

Instituto Tecnológico de Orizaba Modulación Unidad 3

26

y

2

11

2

10

2

1 iaEa

2

11

2

10

2

1 2222 iaEa

4

1

4

1

2

12

222 aaa

luego

mss

NRZ mffmcA

R

fc

R

AfG 0

22

22

sin4

sin4

y el espectro continuo tiene la misma forma del caso anterior. Tan solo que los ceros están en espectrales

en m = ±1, ±2, ±3, … Solamente el espectro discreto posee una componente discreta en 0 frecuencia

(DC)

En telecomunicaciones, se denomina NRZ porque el voltaje no vuelve a cero entre bits consecutivos de

valor uno.

Mediante la asignación de un nivel de tensión a cada símbolo se simplifica la tarea de descodificar un

mensaje. Esta es la teoría que desarrolla el código NRZ (non return to zero). La decodificación en banda

base se considera como una disposición diferente de los bits de la señal on/off, de este modo se adapta la

señal al sistema de transmisión utilizado. Para ello se emplean los códigos tipo NRZ.

Una clasificación atendiendo a las modulaciones situaría el código NRZ dentro de las portadoras digitales

y las moduladoras digitales como los códigos Manchester, Bifase, RDSI, etc.

Atendiendo a la forma de onda binaria se pueden clasificar estos códigos como unipolares (el voltaje que

representa los bits varía entre 0 voltios y +5voltios). Este tipo de código no es recomendable en largas

distancias principalmente por dos motivos. En primer lugar presentan niveles residuales de corriente

continua y en segundo lugar por la posible ausencia de suficientes números de transiciones de señal que

permitan la recuperación fiable de una señal de temporización.

Instituto Tecnológico de Orizaba Modulación Unidad 3

27

Los polares desplazan el nivel de referencia de la señal reduciendo a la mitad la diferencia de potencial

necesaria con referencia a la Unipolar.

En el receptor y el transmisor se debe efectuar un muestreo de igual frecuencia.

Este código no es autosincronizante, y su principal ventaja es que al emplear pulsos de larga duración

requiere menor ancho de banda que otros sistemas de codificación que emplean pulsos más cortos.

Dentro de los códigos NRZ se establece una clasificación, pudiendo tratar códigos del tipo NRZ-L o NRZ-

I.

NRZ-L (No se retorna a nivel cero).

Donde 0 representa el nivel alto y 1 el nivel bajo.

NRZ-I (No se retorna a 0 y se invierte al transmitir el 1).

Al transmitir un 0 no se produce transición y en cambio al enviar un 1 se produce una transición a nivel

positivo o negativo.

AMI

El código AMI (Alternate Mark Inversion- Inversión de marcas alternadas) es un código en línea

recomendado para las transmisiones binarias. Se puede definir como un código bipolar con retorno a cero

con algunas particularidades que se describen a continuación.

En este código, cuando se asigna un impulso positivo al primer “1”, al siguiente "1" se le asigna un

impulso negativo, y así sucesivamente. Por lo tanto, se asignan alternativamente impulsos positivos y

negativos a los "1" lógicos. Además, al ser del tipo retorno a cero, durante la segunda mitad del intervalo

de bit se utiliza tensión cero para representar el “1”.

El AMI cumple las condiciones siguientes:

El espectro de la señal a la frecuencia cero debe ser cero, que la mayoría de los canales eliminan la

componente continua de las señales

El máximo espectral debe darse en un submúltiplo o en la proximidad de un submúltiplo de régimen

binario, así la energía necesaria para producir la señal estará en la zona en la que la atenuación de

transmisión del cable es más reducida y la atenuación de la diafonía es mayor, así que se conseguirá una

mejor relación señal ruido.

Se reducen los requerimientos de potencia y se logra una mayor inmunidad a la diafonía

Gracias a las condiciones anteriores, si la señal puede contener arbitrariamente largas secuencias de ceros

se utiliza un aleatorizador que limite estadísticamente el número de ceros consecutivos, de otra manera se

Instituto Tecnológico de Orizaba Modulación Unidad 3

28

perdería el sincronismo con el reloj. A su vez, si se encuentra dos unos seguidos con la misma polaridad

sabemos que se ha producido un error.

Manchester

La codificación Manchester, también denominada codificación bifase-L, es un método de codificación

eléctrica de una señal binaria en el que en cada tiempo de bit hay una transición entre dos niveles de señal.

Es una codificación autosincronizada, ya que en cada bit se puede obtener la señal de reloj, lo que hace

posible una sincronización precisa del flujo de datos. Una desventaja es que consume el doble de ancho de

banda que una transmisión asíncrona. Hoy en día hay numerosas codificaciones (8b/10b) que logran el

mismo resultado pero consumiendo menor ancho de banda que la codificación Manchester.

La codificación Manchester se usa en muchos estándares de telecomunicaciones, como por ejemplo

Ethernet.

Las señales de datos y de reloj, se combinan en una sola que auto-sincroniza el flujo de datos.

Cada bit codificado contiene una transición en la mitad del intervalo de duración de los bits.

Una transición de negativo a positivo representa un 1 y una transición de positivo a negativo representa

un 0.

Instituto Tecnológico de Orizaba Modulación Unidad 3

29

Los códigos Manchester tienen una transición en la mitad del periodo de cada bit. Cuando se tienen bits

iguales y consecutivos se produce una transición al inicio del segundo bit, la cual no es tenida en cuenta

por el receptor al momento de decodificar, solo las transiciones separadas uniformemente en el tiempo son

las que son consideradas por el receptor. Hay algunas transiciones que no ocurren a mitad de bit. Estas

transiciones no llevan información útil, y solo se usan para colocar la señal en el siguiente estado donde se

llevará a cabo la siguiente transición. Aunque esto permite a la señal auto-sincronizarse, en realidad lo que

hace es doblar el requerimiento de ancho de banda, en comparación con otros códigos como por ejemplo

los Códigos NRZ.

Manchester Diferencial

La Codificación Manchester diferencial (también CDP; Conditional DePhase encoding) es un método de

codificación de datos en los que los datos y la señal reloj están combinados para formar un único flujo de

datos auto-sincronizable. Es una codificación diferencial que usa la presencia o ausencia de transiciones

para indicar un valor lógico. Esto aporta algunas ventajas sobre la Codificación Manchester:

Detectar transiciones es a menudo menos propenso a errores que comparar con tierra en un entorno

ruidoso.

La presencia de la transición es importante pero no la polaridad. La codificaciones diferenciales

funcionarán exactamente igual si la señal es invertida (cables intercambiados).

Un bit '1' se indica haciendo en la primera mitad de la señal igual a la última mitad del bit anterior, es

decir, sin transición al principio del bit. Un bit '0' se indica haciendo la primera mitad de la señal contraria

a la última mitad del último bit, es decir, con una transición al principio del bit. En la mitad del bit hay

Instituto Tecnológico de Orizaba Modulación Unidad 3

30

siempre una transición, ya sea de high hacia low o viceversa. Una configuración inversa es posible, y no

habría ninguna desventaja en su uso.

Un método relacionado es la Codificación Manchester en el cual las transiciones significativas son las de

la mitad del bit, codificando los datos por su dirección (positivo-negativo es valor '1', negativo-positivo es

el otro).

Manchester Diferencial está especificado en el IEEE 802.5 estándar para Redes Token Ring, y es usado

para otras muchas aplicaciones, incluyendo el almacenamiento magnético y óptico.

Nota: En la codificación Manchester Diferencial, si el '1 es representado por una transición, entonces el '0'

es representado por 2 transiciones y viceversa.

B8ZS (Bipolar 8-Zero Substitution)

B8ZS: la sustitución bipolar de 8 ceros, también llamada la sustitución binaria de 8 ceros, el canal claro, y

64 claros. Es un método de codificación usado sobre circuitos T1, que inserta dos veces sucesivas al

mismo voltaje - refiriéndose a una violación bipolar - en una señal donde ocho ceros consecutivos sean

transmitidos. El dispositivo que recibe la señal interpreta la violación bipolar como una señal de engranaje

de distribución, que guarda(mantiene) la transmisión y dispositivos de encubrimiento sincronizados.

Generalmente, cuando sucesivos "unos" son transmitidos, uno tiene un voltaje positivo y el otro tiene un

voltaje negativo.

Instituto Tecnológico de Orizaba Modulación Unidad 3

31

Es decir, cuando aparecen 8 "ceros" consecutivos, se introducen cambios artificiales en el patrón basados

en la polaridad del último bit 'uno' codificado:

V: Violación, mantiene la polaridad anterior en la secuencia.

B: Transición, invierte la polaridad anterior en la secuencia.

Los ocho ceros se sustituyen por la secuencia: 000V B0VB

B8ZS está basado en el antiguo método de codificación llamado Alternate Mark Inversion ( AMI).

HDB3 (High Density Bipolar 3)

El código HDB3 es un buen ejemplo de las propiedades que debe reunir un código de línea para codificar

en banda base:

-El espectro de frecuencias carece de componente de corriente continua y su ancho de banda está

optimizado.

-El sincronismo de bit se garantiza con la alternancia de polaridad de los "unos", e insertando impulsos de

sincronización en las secuencias de "ceros".

Los códigos HDBN (High Density Bipolar) limitan el número de ceros consecutivos que se pueden

transmitir: -HDB3 no admite más de 3 ceros consecutivos. Colocan un impulso (positivo o negativo) en el

lugar del 4º cero.

-El receptor tiene que interpretar este impulso como un cero. Para ello es preciso diferenciarlo de los

impulsos normales que representan a los "unos".

-El impulso del 4º cero se genera y transmite con la misma polaridad que la del impulso precedente. Se

denomina por ello V "impulso de violación de polaridad" ( el receptor reconoce esta violación porque

detecta 2 impulsos seguidos con la misma polaridad).

-Para mantener la componente de corriente continua con valor nulo, se han de transmitir alternativamente

tantas violaciones positivas como negativas ( V+ V- V+ V-... ).

-Para mantener siempre alternada la polaridad de las violaciones V, es necesario en algunos casos insertar

un impulso B "de relleno" ( cuando la polaridad del impulso que precede a la violación V, no permite

conseguir dicha alternancia). Si no se insertaran los impulsos B, las violaciones de polaridad V del 4º cero

serían obligatoriamente del mismo signo.

En HDB3 se denomina impulso a los estados eléctricos positivos o negativos, distintos de "cero". (0

voltios).

Cuando aparecen más de tres ceros consecutivos, estos se agrupan de 4 en 4, y se sustituye cada grupo

0000 por una de las secuencias siguientes de impulsos: B00V ó 000V.

Instituto Tecnológico de Orizaba Modulación Unidad 3

32

-B indica un impulso con distinto signo que el impulso anterior. Por tanto, B mantiene laley de alternancia

de impulsos, o ley de bipolaridad, con el resto de impulsos transmitidos.

-V indica un impulso del mismo signo que el impulso que le precede, violando por tanto la ley de

bipolaridad.

El grupo 0000 se sustituye por B00V cuando es par el número de impulsos entre la violación V anterior y

la que se va a introducir.

El grupo 0000 se sustituye por 000V cuando es impar el número de impulsos entre la violación V anterior

y la que se va a introducir.

Así se logra mantener la ley de bipolaridad de los impulsos correspondientes a los "unos", y también la

bipolaridad de las "violaciones" mediante los impulsos B y los impulsos V.

La detección elemental de los errores de transmisión típicos del ruido (inversión, duplicación o pérdida de

impulsos), se realiza simplemente comprobando que los impulsos recibidos por el receptor cumplen las

reglas de polaridad establecidas por la codificación HDB3.

Los errores se suelen detectar en el caso de que aparezcan los 4 ceros consecutivos que no permite el

HDB3 o en el caso de la inserción de un "uno" y que las dos violaciones V+ queden con la misma

polaridad. Sin embargo existen casos en los cuales hay errores que son imposibles de detectar y que

incluso se propagan generando aún más errores.

Por ejemplo en la imagen podemos ver una señal HDB3 con errores que no detecta el RECEPTOR.

Instituto Tecnológico de Orizaba Modulación Unidad 3

33

3.7 Modem, estándares y protocolos

Un módem (Modulador Demodulador) es un dispositivo que sirve para enviar una señal llamada

moduladora mediante otra señal llamada portadora. Se han usado módems desde los años 60,

principalmente debido a que la transmisión directa de las señales electrónicas inteligibles, a largas

distancias, no es eficiente, por ejemplo, para transmitir señales de audio por el aire, se requerirían antenas

de gran tamaño (del orden de cientos de metros) para su correcta recepción. Es habitual encontrar en

muchos módems de red conmutada la facilidad de respuesta y marcación automática, que les permiten

conectarse cuando reciben una llamada de la RTPC (Red Telefónica Pública Conmutada) y proceder a la

marcación de cualquier número previamente grabado por el usuario. Gracias a estas funciones se pueden

realizar automáticamente todas las operaciones de establecimiento de la comunicación.

Los métodos de modulación y otras características de los módems telefónicos están estandarizados por el

UIT-T (el antiguo CCITT) en la serie de Recomendaciones "V". Estas Recomendaciones también

determinan la velocidad de transmisión. Destacan:

V.21. Comunicación Full Duplex entre dos módems analógicos realizando una variación en la frecuencia

de la portadora de un rango de 300 baudios, logrando una transferencia de hasta 300 bps (bits por

segundo).

V.22. Comunicación Full Duplex entre dos módems analógicos utilizando una modulación PSK de 600

baudios para lograr una transferencia de datos de hasta 600 o 1200 bps.

V.32. Transmisión a 9.600 bps.

V.32bis. Transmisión a 14.400 bps.

V.34. Estándar de módem que permite hasta 28,8 Kbps de transferencia de datos bidireccionales (full-

duplex), utilizando modulación en PSK.

V.34bis. Módem construido bajo el estándar V34, pero permite una transferencia de datos bidireccionales

de 33,6 Kbps, utilizando la misma modulación en PSK. (estándar aprobado en febrero de 1998)

V.90. Transmisión a 56,6 kbps de descarga y hasta 33.600 bps de subida.

V.92. Mejora sobre V.90 con compresión de datos y llamada en espera. La velocidad de subida se

incrementa, pero sigue sin igualar a la de descarga.

Existen, además, módems DSL (Digital Subscriber Line), que utilizan un espectro de frecuencias situado

por encima de la banda vocal (300 - 3.400 Hz) en líneas telefónicas o por encima de los 80 KHz ocupados

en las líneas RDSI, y permiten alcanzar velocidades mucho mayores que un módem telefónico

convencional. También poseen otras cualidades, como es la posibilidad de establecer una comunicación

telefónica por voz al mismo tiempo que se envían y reciben datos.

Instituto Tecnológico de Orizaba Modulación Unidad 3

34

Lista de velocidades de acceso

Conexión Modulación Bitrate [kbit/s] Año lanzamiento

Módem de 110 baudios Bell 101 FSK 0.1 1958

Módem de 300 baudios (Bell 103 o V.21) FSK 0.3 1962

Módem 1200 (1200 baudios) (Bell 202) FSK 1.2

Módem 1200 (600 baudios) (Bell 212A o V.22) QPSK 1.2 1980

Módem 2400 (600 baudios) (V.22bis) QAM 2.4 1984

Módem 2400 (1200 baudios) (V.26bis) PSK 2.4

Módem 4800 (1600 baudios) (V.27ter) PSK 4.8

Módem 9600 (2400 baudios) (V.32) QAM 9.6 1984

Módem 14.4k (2400 baudios) (V.32bis) trellis 14.4 1991

Módem 28.8k (3200 baudios) (V.34) trellis 28.8 1994

Módem 33.6k (3429 baudios) (V.34) trellis 33.6

Módem 56k (8000/3429 baudios) (V.90) digital 56.0/33.6 1998

Módem 56k (8000/8000 baudios) (V.92) digital 56.0/48.0 2000

Módem de enlace (dos módems 56k)) (V.92)

112.0/96.0

Compresión por hardware (variable) (V.90/V.42bis)

56.0-220.0

Compresión por hardware (variable) (V.92/V.44)

56.0-320.0

Compresión en el servidor web (variable) (Netscape ISP)

100.0-1,000.0