theorem de thevenin y norton

31
UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA MECÁNICA “Año de diversificación productiva y fortalecimiento de la educación” INFORME DE LABORATORIO N°03 CURSO: LABORATORIO DE CIRCUITOS ELÉCTRICOS Sección: B Autores: ALVAREZ ZENTENO ERICK BENJAMIN 20134047F CASTILLO FARFAN MANUEL HUMBERTO 20132092D COLLAHUA PADILLA ALEXIS LUIGI 20121305A DÁVILA RUIZ, LUDWIN 20091142B ROMERO QUISPE FRANCO STEVE 20132072C VEGA LÓPEZ JESÚS ALEXIS 20130114K Teoremas de Thevenin y Norton

Upload: chuls123

Post on 06-Feb-2016

362 views

Category:

Documents


23 download

DESCRIPTION

pol

TRANSCRIPT

Page 1: Theorem de Thevenin y Norton

UNIVERSIDAD NACIONAL DE INGENIERÍA

FACULTAD DE INGENIERÍA MECÁNICA

“Año de diversificación productiva y fortalecimiento de la educación”

INFORME DE LABORATORIO N°03

CURSO: LABORATORIO DE CIRCUITOS ELÉCTRICOS

Sección: B

Autores:

ALVAREZ ZENTENO ERICK BENJAMIN 20134047F

CASTILLO FARFAN MANUEL HUMBERTO 20132092D

COLLAHUA PADILLA ALEXIS LUIGI 20121305A

DÁVILA RUIZ, LUDWIN 20091142B

ROMERO QUISPE FRANCO STEVE 20132072C

VEGA LÓPEZ JESÚS ALEXIS 20130114K

FECHA DE REALIZACIÓN DEL EXPERIMENTO : 15 de abril de 2015

FECHA DE ENTREGA DEL INFORME : 22 de abril de 2015

Teoremas de Thevenin y Norton

Page 2: Theorem de Thevenin y Norton

UNI - FIM

INDICE

INDICE………………………………………………………………………….............. 1

RESUMEN……………………………………………………………………………… 2

1. OBJETIVOS……………………………………………………………………........... 3

2. FUNDAMENTO TEÓRICO………………………………………………………..... 3

3. .MATERIALES UTILIZADOS …………………………………………………….... 5

4. DIAGRAMA DE FLUJO DEL EXPERIMENTO REALIZADO……………….... 6

5. CÁLCULOS Y RESULTADOS…………………………………………………....... 9

6. CONCLUSIONES…………………………………………………………………...... 21

7. RECOMENDACIONES………………………………………………………………. 21

8. BIBLIOGRAFÍA………………………………………………………………………. 22

1

Page 3: Theorem de Thevenin y Norton

UNI - FIM

RESUMEN

En el presente informe se detallara los procedimientos y resultados obtenidos en el laboratorio. Allí se ha

realizado el experimento que tiene como objetivo demostrar los teoremas de Thevenin y Norton. Para

ello, se ha distribuido el presente en tres partes bien definidas. La primera corresponde a un breve marco

teórico y objetivos sobre la experiencia. La segunda parte trata sobre la comprobación experimental de

dichos teoremas. Allí se expresan los cálculos y los errores experimentales hallados. Por último, se dan a

conocer las conclusiones a las cuales se ha llegado así como algunas recomendaciones para experiencias

futuras.

Palabras clave: Teorema de Thevenin, Teorema de Norton, fuente de corriente real, fuente de voltaje real, multímetro, panel resistivo, corriente de Norton, voltaje de Thevenin, resistencia de Thevenin.

.

2

Page 4: Theorem de Thevenin y Norton

UNI - FIM

Teoremas de Thevenin y Norton

1. OBJETIVOS

1. Comprobar experimentalmente los teoremas de Thevenin y Norton.2. Comprender el concepto de fuente ideal y fuente real.3. Comprobar que cualquier sistema eléctrico puede ser reemplazado por su equivalente

Norton o su equivalente Thevenin

2. FUNDAMENTO TEÓRICO

Teorema de Thevenin:

El teorema de Thevenin establece que cualquier circuito lineal activo con terminales de salida A y B (Fig. 1a), puede sustituirse, o equivale, por una fuente de tensión V’ en serie con una impedancia Z’. (Fig. 1 b)

Para el caso de la experiencia realizada, la impedancia corresponde a una resistencia equivalente.

Fig. 1 Circuito equivalente de Thevenin

La tension equivalente de Thevenin V’ , es la tensión entre los terminales AB medida a circuito abierto, y la impedancia Z’, es la impedancia de entrada en los terminales AB con todas las fuentes internas iguales a cero.

La polaridad de la tensión equivalente de Thevenin V’, se elige de forma que la corriente en una impedancia que se conecte tenga el mismo sentido que si dicha impedancia se conectara al circuito activo original.

3

Page 5: Theorem de Thevenin y Norton

UNI - FIM

Teorema de Norton:

El teorema de Norton establece que cualquier circuito lineal activo con terminales de salida A y B (Fig. 2a), puede sustituirse, o equivale, a una fuente de corriente I’ en paralelo con una impedancia Z’. (Fig. 2 b)

Fig. 2 Circuito equivalente de Norton

La fuente de intensidad I’, equivalente de Norton es la corriente en un cortocircuito aplicado a los terminales del circuito activo. La impedancia Z’ en paralelo es la impedancia de entrada del circuito en los terminales AB cuando se hacen iguales a cero todas las fuentes internas.

Por ende, dado un circuito lineal activo, las impedancias Z’ de los circuitos equivalentes de Thevenin y Norton son idénticas.

La intensidad de corriente en una impedancia conectada a los terminales del circuito equivalente de Norton ha de tener el mismo sentido que la que circularía por la misma impedancia conectada al circuito activo original.

Dadas las características del circuito, es decir, dado un circuito activo lineal, este puede ser representado por un circuito equivalente Thevenin o un circuito equivalente Norton. De esta forma, existe una relacion directa entre el circuito de Thevenin y el circuito de Norton. Esta relación es que la corriente de Norton es igual al voltaje de Thevenin entre la impedancia equivalente. O, viéndolo desde el punto de vista de voltajes, la tensión equivalente Thevenin es igual a la corriente de Norton por la impedancia equivalente.

Fig. 3 Circuitos equivalentes Thevenin y Norton

4

Page 6: Theorem de Thevenin y Norton

UNI - FIM

3. MATERIALES UTILIZADOS

Tabla N°1: Materiales empleados en la experiencia de laboratorio

INSTRUMENTOS IMAGEN

Multímetro

Panel Resistivo y Cables de conexión

Fuente de voltaje

5

Page 7: Theorem de Thevenin y Norton

UNI - FIM

4. PROCEDIMIENTO

1. Armar los circuitos mostrados en la figura u otro circuito según lo que indique el profesor.

2. Conectar la fuente de tensión en los bornes a-b

3. Medir las resistencias de los resistores del circuito

4. Encender la fuente de tensión y regularla a 20 voltios u otra tensión

Cálculo del voltaje de Thevenin (Eth)

Para el 1er circuito:Eth=2.782(v)

Para el 2do circuito:Eth=25.19(v)

6

Page 8: Theorem de Thevenin y Norton

UNI - FIM

5. Desconectar el resistor RL y dejar los bornes c-d a circuito abierto, luego medir la tensión en los bornes c-d (Eth)

Cálculo de la corriente de Norton (LN)

Para el 1er circuito:I=2.782/33.95I=0.08194 (mA)

Para el 2do circuito: I=25.19/30.15I=0.835489 (mA)

6. Cortocircuitar los bornes c-d, luego insertar el multímetro(trabajando con micro o miliamperímetro DC) en dichos bornes y medir la corriente.

Cálculo de la resistencia equivalente (Req)

Para el 1er circuito:Req=33.95(kohms)

Para el 2do circuito:Req=30.15(kohms)

7

Page 9: Theorem de Thevenin y Norton

Medir las resistencias de los resistores con el multímetro

Regular la fuente de tensión y hacer las conexiones indicadas

Desconectar el resistor RL y dejar los bornes de éste a circuito abierto para después medirlo: Eth (Voltaje Thevenin)

Retirar la fuente y hacer cortocircuito en los bornes de éste, luego medir con el multímetro la resistencia entre los bornes c-d: Req (Resistencia equiv.)

Luego, por la ley de Ohm: IN=ETH/REQ, en los circuitos: LN=ETH/REQ

UNI - FIM

7. Con los bornes c-d a circuito abierto,retirar la fuente y cortocircuitar losbornes a-b, luego medir con el multímetro (trabajando como ohmímetro)la resistencia entre los bornes c-d (Req).

8. Conectar la fuente en los bornes c-d a una tensión de 20 voltios, midiendo la corriente que entrega dicha fuente (I) la resistencia equivalente será: Req=20/ I

5. DIAGRAMA DE FLUJO DEL EXPERIMENTO REALIZADO (PROCEDIMIENTO)

8

Page 10: Theorem de Thevenin y Norton

Fig. 4 Simulacion del circuito 1

Fig. 5 Simulacion del circuito 2

UNI - FIM

5. CALCULOS Y RESULTADOS

1. DIAGRAMA DE LOS CIRCUITOS

a) CIRCUITO 1

b)

b)

b)

b)

CIRCUITO 2

9

Page 11: Theorem de Thevenin y Norton

Fig. 6 Circuito equivalente Thevenin Fig. 7 Circuito equivalente Norton

UNI - FIM

2. CIRCUITO THEVENIN Y NORTON CON LOS DATOS EXPERIMENTALES

I. CIRCUITO 1

1.-CIRCUITO DE THEVENIN 2.- CIRCUITO DE NORTON

10

Page 12: Theorem de Thevenin y Norton

Fig. 8 Circuito equivalente Thevenin

Fig. 9 Circuito equivalente Norton

UNI - FIM

Se puede apreciar que la diferencia es muy poca 0.17mV en el voltaje y 0.04mA en la corriente. La razón puede

ser la precisión del multímetro en el cálculo del voltaje, corriente y la resistencia, o como también las

resistencias internas en los cables.

II. CIRCUITO 2

1.-CIRCUITO DE THEVENIN 2.- CIRCUITO DE NORTON

En este circuito se puede notar que los valores son iguales.

3. CALCULO DE MANERA TEORICA

11

Page 13: Theorem de Thevenin y Norton

Fig. 10 Circuito teórico

UNI - FIM

I. CIRCUITO 1

12

Page 14: Theorem de Thevenin y Norton

Fig. 11 Circuito 1 a circuito abierto. Calculo del Voltaje de Thevenin

Fig. 12 Calculo de la corriente de Norton

UNI - FIM

CIRCUITO 1 – CALCULO DE VOLTAJE DE THEVENIN

Abriendo los bordes a – b tenemos

CIRCUITO 1 – CALCULO DE LA CORRIENTE DE NORTON

Haciendo corto los bordes a – b tenemos.

CIRCUITO 1 –

CALCULO DE LA RESISTENCIA EQUIVALENTE

Sabemos que Req=1002.95

=33.898 ohms

13

Page 15: Theorem de Thevenin y Norton

Fig. 13 Calculo de la resistencia equivalente. Resistencia de Thevenin

Fig. 14 Circuito equivalente Thevenin teorico Fig. 15 Circuito equivalente Norton teorico

UNI - FIM

C

I

R

C

U

I

T

O

DE THEVENIN Y NORTON TEORICOS

a) Thevenin b) Norton

Tabla N° 2: Datos teóricos y experimentales del primer circuito

Voltaje en la carga Corriente que circula

Por Thevenin teórico 304.13mV 70.38mA

14

Page 16: Theorem de Thevenin y Norton

UNI - FIM

Por Norton teórico 304.15mV 70.39mA

De forma directa teórico 304.13mV 70.39mA

Experimental Thevenin 314.10mV 72.69mA

Experimental Norton 313.93mV 72.65mA

Tabla N°3: Valores de corriente y tensión medidos en el circuito 1

Teórico Experimental

Voltaje de Thevenin 2.69V 2.782V

Corriente de Norton 79.36mA 81.9mA

Resistencia Equivalente 33.8983 kΩ 33.95 kΩ

Comparando los datos, podemos presumir que el error puede ser por el desgaste de los materiales, como la

baja pila en el multímetro que afecta considerablemente las medidas que toma, o los valores de las

resistencias, como también la resistencia de los cables y los ganchos tipos cocodrilo.

b) CIRCUITO 2 RESUELTO DE MANERA TEORICA

15

Page 17: Theorem de Thevenin y Norton

Fig. 16 Circuito 2: Resultados teóricos

Fig. 17 Circuito mostrando el cálculo del voltaje de Thevenin

UNI - FIM

CALCULO DE VOLTAJE DE

THEVENIN

Bordes a – b en circuito abierto

CALCULO DE

RESISTENCIA EQUIVALENTE

16

Page 18: Theorem de Thevenin y Norton

Fig. 18 Circuito equivalente Thevenin

UNI - FIM

Al hacer corto la fuente V2 notamos que las resistencias R6 y R3 están bajo la misma potencial,

entonces los puntos “a” y “b” están al mismo potencial, entonces el Req es igual a cero.

CIRCUITO DE THEVENIN

17

Page 19: Theorem de Thevenin y Norton

UNI - FIM

Tabla N°4: Valores teóricos y experimentales del circuito 2

Voltaje en la carga Corriente que circula

Por Thevenin teórico -30.12V 2.418mA

Por Norton teórico - -

De forma directa teórico -30.12V 2.481mA

Experimental Thevenin 22.18V 99.76µA

Experimental Norton 22.18V 99.76µA

Tabla N°4: Valores de corriente y tensión medidos experimentalmente

Teórico Experimental

Voltaje de Thevenin -30.12V 25.19V

18

Page 20: Theorem de Thevenin y Norton

UNI - FIM

Corriente de Norton - 83.54µA

Resistencia Equivalente 0 kΩ 30.15 kΩ

Se puede notar la total diferencia en los resultados, y eso se debió que no se consideró la polaridad respectiva en cada

caso, del voltaje de Thevenin como la corriente de Norton.

A. LIMITACIONES DEL TEOREMA DE THEVENIN

¿Será siempre aplicable el teorema de Thevenin?

Para explicar lo que se pretende en este apartado se propone el análisis de los siguientes ejemplos. En los ejemplos que se proponen las redes eléctricas utilizadas contienen los dos tipos de fuentes pues es el caso mas general.

Fig. 19 Circuito ejemplo

Ejemplo 1 Dada la red eléctrica de la figura se desea determinar el valor de la tensión V utilizando el teorema de Thevenin.

El objetivo entonces es encontrar un circuito equivalente de Thevenin entre los puntos a y b (ver figura) para simplificar la red original. En la solución, primero se desconecta la carga del resto de la red (figura siguiente) y se determina la tensión a circuito abierto (Vca)

19

Page 21: Theorem de Thevenin y Norton

UNI - FIM

Fig. 20 Circuito abierto para hallar el voltaje de Thevenin

Para determinar la tensión a circuito abierto se usará la ley de kirchhoff de Voltaje, a partir de la siguiente metodología.

Primero

Donde:

Ahora se igualan las expresiones (1.2) y (1.4), y se obtiene que Ix =5.mA. Con este valor de corriente se calcula el voltaje CA en (1.2) o en (1.4) y se obtiene que V=10V.

Una vez determinada la tensión a circuito abierto se procede a hallar la corriente de cortocircuito para luego determinar la resistencia equivalente de Thevenin usando la expresión (2).

Fig. 21 Calculo de la corriente de Norton

20

Page 22: Theorem de Thevenin y Norton

UNI - FIM

Primero:

Donde:

Ix=0

Al ser Ix=0 se tiene que: En la resistencia no existe caida de tension pues según la Ley de Ohm:

La fuente dependiete V cuyo valor de tension depende de IX es cero y una fuente de tension cero se puede sustituir un cortocircuito.

Se concluye que falta una ocasión, por tanto el teorema de Thevenin no se puede utilizar.

APLICACIONES DEL TEOREMA DE THEVENIN Y NORTON

Por lo general las aplicaciones que tiene el teorema de Thevenin y Norton son muchas entre las cuales tenemos:

Análisis de SEP (Sistemas Eléctricos de Potencia) se aplica en el estudio de fenómenos trancientes y en estabilidad

Reducción de modelos en Sistemas Eléctricos de Potencia

Las redes eléctricas son consideradas como uno de los sistemas de control más grandes y complejos que existen en la actualidad. Están conformados por elementos interconectados de diversa naturaleza: eléctricos, electrónicos, térmicos, hidráulicos, etc.

Cada uno de estos de diferente tipo y con diferente tecnología. Para la planeación, operación y control del sistema eléctrico de potencia de requieren numerosos estudios de diversa índole.

En este trabajo se aborda un tópico importante para el análisis de redes eléctricas interconectadas, conocido como estudio de equivalentes estáticos.La reducción de un sistema eléctrico se puede conseguir mediante una combinación de reducciones den las partes estáticas de la red (elementos pasivos).

Se utiliza en el Análisis Transitorio de Fallas en los Sistemas de Potencia

ESTUDIO Y ANALISIS DE FALLAS

Introducción

Las condiciones anormales de funcionamiento de un Sistema Eléctrico de Potencia (SEP), se deben a fenómenos transitorios, que se pueden clasificar, según al tiempo de duración en las siguientes categorías:

Fenómenos transitorios ultrarápidos: Corresponden sustancialmente a descargas atmosféricas sobre las líneas de transmisión y a los fenómenos producidos por operaciones de conexión y desconexión de diversos componentes de la red del SEP, tales como, las líneas. Las perturbaciones de este tipo dan origen a ondas de tensión y corriente que viajan prácticamente a la velocidad de la luz, pero su efecto dura unos pocos milisegundos después de iniciado. Sin embargo, los procesos de reflexión de las ondas producen elevadas tensiones que pueden llegar a destruir el equipo

21

Page 23: Theorem de Thevenin y Norton

UNI - FIM

asociado a las líneas. La razón del estudio de estos fenómenos radica en el hecho de que su análisis suministra las bases necesarias para la selección adecuada del nivel de aislación de los equipos eléctricos asociados a las líneas y de las líneas mismas.

Fenómenos transitorios medianamente rápidos: En este grupo se incluyen los fenómenos causados por cambios abruptos de la estructura del SEP, o sea los cortocircuitos o líneas abiertas. Usualmente, sólo los 10 primeros ciclos son de importancia práctica y se estudian en el rango de 10 a 100 milisegundos siguientes a la falla.

Estabilidad transitoria. Las oscilaciones mecánicas de los rotores son relativamente lentas, en consecuencia, los estudios de estabilidad transitoria se realizan en el rango de fracción de segundo hasta un minuto. Debido a los fenómenos transitorios se pueden producir en un SEP, diversas alteraciones que reciben el nombre de fallas. Una falla en un circuito es cualquier evento que interfiere con el flujo normal de corriente. Sin embargo, dentro de este curso, designaremos como fallas a los cortocircuitos y las fases abiertas.

Tipos de fallas

Cortocircuitos: Trifásico simétrico, aislado o a tierra, bifásico aislado (cortocircuito entre 2 líneas),bifásico a tierra (entre dos líneas y el conjunto a tierra) y monofásico (una línea conectada a tierra).

Fases abiertas: Una fase abierta, dos fases abiertas y tres fases abiertas. La última situación significa que la línea o dispositivo sale completamente de servicio.

Cortocircuitos trifásicos simétricos

Comportamiento de un generador en condiciones de cortocircuito trifásico simétrico.-

El generador en vacío antes de producirse la falla: La corriente que circula por cada fase del generador en cortocircuito, es similar a la que circula por un circuito R-L serie, alimentado bruscamente por una fuente de tensión sinusoidal; es decir, la corriente es asimétrica respecto al eje de tiempo y disminuye en forma exponencial. Sin embargo, existe una diferencia fundamental y ella radica en que la reactancia del generador no permanece constante durante el fenómeno. Las corrientes en las tres fases de un generador en cortocircuito se muestran en la Figura

Fig. 22 Comportamiento de generador de cortocircuito trifasico

22

Page 24: Theorem de Thevenin y Norton

UNI - FIM

Fig. 23 Estado transitorio de corriente subtransiente

Usualmente la corriente continua no se considera en el análisis y su efecto se incluye posteriormente en el cálculo de las corrientes instantáneas y de interrupción de los interruptores. Despreciando el efecto de la componente continua, la corriente de cortocircuito de una fase cualquiera, resulta simétrica, como se muestra

en la Figura 5.3, que corresponde a un generador con enrollados amortiguadores y en vacío antes de producirse la falla. Directamente de esta figura los valores eficaces de corrientes de cortocircuito quedan:

El generador con carga antes de producirse la falla: En este caso, la fuerza electromotriz (fem) interna E se va modificando a medida que transcurre el fenómeno y, para determinar las corrientes subtransiente y transiente de cortocircuito se deben considerar los circuitos mostrados en las Figuras donde Ze es una impedancia externa que puede existir entre los terminales del generador y el punto de Falla F y Zc es la impedancia del consumo.

Fig. 24 Generador con carga cuando se produce la falla

23

Page 25: Theorem de Thevenin y Norton

UNI - FIM

6. CONCLUSIONES

En conclusión, se ha determinado que un circuito lineal activo con 2 terminales de salida, puede ser

reemplazado por su equivalente de Thevenin, que es una fuente de tensión V th en serie con la resistencia

equivalente Req. La tensión V th es igual la tensión en circuito abierto entre las terminales de salida, y la

Req es la resistencia de entrada vista desde los terminales de salida.

De una manera equivalente, en el experimento del Teorema de Norton, se estableció que cualquier

circuito lineal se puede sustituir por una fuente equivalente de intensidad I N en paralelo con una

resistencia Req.

Debido a lo experimentado se concluye que la Resistencia de Thevenin es calculable por tres métodos:

1) Haciendo pasiva la red y haciendo a circuito abierto, en donde se quiere determinar el R de

Thevenin

2) También podemos calcular el R de thevenin con el método excitación- respuesta.

3) También podemos calcular el R de thevenin con el cociente del V th y el I N .

Es así que mediante los Teoremas de Thevenin y Norton podemos hallar fácilmente la tensión y corriente

de una carga dentro de cualquier circuito por más complejo que sea.

Los errores fueron producto de la idealización de los instrumentos, ya que estos no son ideales, sino que

tiene elementos internos que afectan a las mediciones.

7. RECOMENDACIONES

Se recomienda cambiar los elementos que no hagan buen contacto, y los que se encuentran defectuosos, ya que estos pueden ocasionar errores en la medición. Asimismo, calibrar correctamente el multimetro antes de realizar las mediciones, calibrarlo en un rango apropiado para evitar dificultades.

También, evitar estar repitiendo los mismos procedimientos varias veces debido a que si el circuito se plantea dos o más veces, los valores de las resistencias pueden variar ligeramente debido a que este se relaciona con la temperatura y a la vez al pasar una corriente por aquí afecta el valor de esta resistencia debido a que se disipa energía. Entonces afectaría en algunos cálculos al momento de verificar las tensiones y/o corrientes, inclusive los teoremas.

24

Page 26: Theorem de Thevenin y Norton

UNI - FIM

8. BIBLIOGRAFIA

[1] BIBLIOGRAPHYEdminister, J. A. (1965). Circuitos Eléctricos. Akron: Serie de compendios Schaum.

[2] Tarazona, B., & Sinchi. (2008). Manual de laboratorio de circuitos electricos. Lima.

[3] Aparicio José “Equivalentes estáticos para selección de contingencias

25