tema 7. la célula ii

100
VII VII Biología. 2º Bachillerato. IES SANTA CLARA. TEMA 7. LA CÉLULA II. TEMA 7. LA CÉLULA II. IES. Santa Clara Dpto. Biología y Geología. Belén Ruiz https://biologiageologiaiessantaclarabelenruiz.wordpress.com/2o-bachillerato/2o-biologia/

Upload: belen-ruiz-gonzalez

Post on 14-Jul-2015

1.800 views

Category:

Education


1 download

TRANSCRIPT

VIIVII Biología. 2º Bachil lerato. IES SANTA CLARA.

TEMA 7. LA CÉLULA II.TEMA 7. LA CÉLULA II.

IES. Santa ClaraDpto. Biología y Geología.

Belén Ruizhttps://biologiageologiaiessantaclarabelenruiz.wordpress.com/2o-bachillerato/2o-biologia/

Los primeros organismos vivos (protocélulas) tendrían una estructura simple (de tipo procariota) que consistiría en una membrana externa, un material genético, un metabolismo básico de tipo heterótrofo y la posibilidad de fabricar sus propias proteínas enzimáticas.

Teoría endosimbionte de Lynn Margulis: los organismos eucariontes no surgieron a partir de un único organismo procarionte sino que se originaron de la simbiosis de dos o más procariotas diferentes.

CélulaEucariota Animal y Vegetal

Tipos de Eucariotas ANIMAL

VEGETAL

Más compleja, más evolucionada. Más grande.

Con verdadero núcleo

Sin cloroplastosSin pared celular de celulosaCon centriolos

Con cloroplastos para hacer la fotosíntesis.

Sin centriolos, con organizadores nucleares

Con pared celular de celulosa

Reino Fungi, Protoctista,

Metazoo y Metafita

Membrana PlasmáticaMembrana Plasmática1. Estructura2. Composición3. Propiedades4. Función

ESTRUCTURA: MODELO MOSAICO FLUIDO DE SINGER Y NICHOLSON 1972

1-Los lípidos y las proteínas integrales se disponen formando un mosaico molecular.

2-Las membranas son estructuras fluídas, en las que lípidos y proteínas pueden realizar movimientos

de difusión lateral dentro de la bicapa.

3-Las membranas son estructuras asimétricas en cuanto a todos sus componentes: los lípidos y las

proteínas de las dos monocapas son diferentes y los oligosacáridos se sitúan solo hacia el medio

extracelular.

ESTRUCTURA: MODELO MOSAICO FLUIDO DE SINGER Y NICHOLSON 1972

Asimetría: Los distintos componentes se sitúan de forma asimétrica a ambos lados de la

membrana, en la cara externa aparecen las fracciones glucídicas de glucolípidos y

glucoproteínas, asociadas en ocasiones a otras sustancias y constituyendo un conjunto llamado

Glucocalix. La bicapa es atravesada por proteínas integrales total (transmembranales) o

parcialmente. En la cara interna no aparecen fracciones glucídicas sino algunas proteínas

llamadas proteínas periféricas (de ahí la asimetría).

Autosellado y autoensamblaje: El

modelo en mosaico fluido permite la

deformación de las membranas, la

rotura y la fusión de fragmentos de

membrana (autosellado), necesarias

para la endocitosis la, la secreción, la

división celular, la digestión celular, la

formación de los dictiosomas, etc.

Propiedades estructurales del M.P.

1. Bicapa de fosfolípidos) 2. Lado externo de la membrana 3. Lado interno de la membrana 4. Proteína intrínseca de la membrana 5. Proteína canal iónico de la membrana 6. Glicoproteína 7. Moléculas de fosfolípidos organizadas en bicapa 8. Moléculas de colesterol 9. Cadenas de carbohidratos 10.Glicolípidos 11.Región polar (hidrofílica) de la molécula de fosfolípido 12.Región hidrofóbica de la molécula de fosfolípido

El colesterol es otro componente importante de la membrana. Se encuentra embebido en el área hidrofóbica de la misma, su presencia contribuye a la estabilidad de la membrana al interaccionar con las "colas" de la bicapa lipídica y contribuye a su fluidez evitando que las "colas" se "empaqueten" y vuelvan más rígida la membrana (este efecto se observa sobre todo a baja temperatura).Las células vegetales no contienen colesterol.

Las membranas biológicas no son rígidas, sino que sus constituyentes se encuentran en constante

movimiento, propiedad denominada “fluidez de membrana“.

Los lípidos pueden realizar movimientos de varios tipos: difusión lateral (desplazamiento a través de la

bicapa), rotación sobre el eje mayor, flexión y flip-flop (difusión transversal o cambio de monocapa,

gracias a enzimas como las flipasas). Las proteínas pueden moverse por difusión lateral.

FLUIDEZ DE LA MEMBRANA

El contenido de esteroles, como el colesterol, también regula la fluidez de las membranas. La estructura plana rígida del

núcleo esteroide, insertado entre las cadenas laterales de ácidos grasos, tiene dos efectos sobre la fluidez:

-Por debajo de la temperatura de transición impide el empaquetamiento ordenado de las cadenas de los ácidos grasos, con

lo que aumenta la fluidez de la membrana.

-Por encima de la temperatura de transición, el anillo rígido del colesterol reduce la libertad de las cadenas de los ácidos

grasos vecinos para moverse, con lo que se reduce la fluidez.

Los esteroles tienden así a moderar los extremos de solidez y fluidez de las membranas que los contienen.

REDUCE LA FLUIDEZ

AL AUMENTAR LA TEMPERATURA

(PORQUE RESTRINGE EL MOVIMIENTO DE LOS

FOSFOLÍPIDOS)

MANTIENE LA FLUIDEZ

AL DISMINUIR LA TEMPERATURA

(PORQUE IMPIDE EL EMPAQUETAMIENTO DE LOS

FOSFOLÍPIDOS)

Funciones de la membrana plasmáticaFunciones de la membrana plasmática

BARRERA SELECTIVA: membrana semipermeble que regula el intercambio de sustancias.

Producción y control de gradientes electroquímicos: proteínas y cadenas de transporte que regulan el intercambio de sustancias.

Intercambio de señales: detecta y trasmite señales con el medio externo o con otras células.

División celular. Adhesión:, proteínas que facilitan la unión y la comunicación entre

células adyacentes. Endocitosis y exocitosis

Función: transporte de sustancias.Función: transporte de sustancias.

TRANSPORTE ACTIVO En este proceso también actúan proteínas de membrana, pero éstas requieren energía, normalmente, en forma de ATP, para transportar las moléculas de tamaño medio (ej. glucosa) e iones, al otro lado de la membrana. Se produce cuando el transporte se realiza en contra del gradiente electroquímico. Son ejemplos de transporte activo la bomba de Na+/K+, y la bomba de Ca2+.

Difusión (transporte pasivo)Difusión (transporte pasivo)

1 2 3

1. Difusión simple: A través

de membrana

2. Difusión simple: A través

de canales

3. Difusión facilitada: permeasas

Función: transporte de sustancias.Función: transporte de sustancias.

A) Difusión simple: Sustancias de pequeño tamaño que pasan directamente a través de: La bicapa lipídica (1): sustancias apolares, esto es lipofilas (ej. hormonas

esteroideas, O2, N2 ) o polares sin carga de muy pequeño tamaño (CO2, H2O en este caso la difusión de llama ósmosis, etc.)

Canales proteicos (2) (proteínas que delimitan canales): para moléculas polares pequeñas e iones (H2CO3, Na+, K+, Ca++ ,Cl- ) B) Difusión facilitada (3): Permite el transporte de moléculas polares de tamaño medio, como los aminoácidos, monosacáridos, etc., que al no poder atravesar la bicapa lipídica, requieren que proteínas integrales faciliten su paso, también algunos iones. Estas proteínas reciben el nombre de proteínas transportadoras o permeasas que, al unirse a la molécula a transportar sufren un cambio en su estructura que arrastra a dicha molécula hacia el interior de la célula.

Transporte activoTransporte activo

4

4. Transporte activo

Función: transporte de sustancias.Función: transporte de sustancias.

La bomba de Na+/K+ requiere una proteína transmembral que bombea 3 iones de Na+ hacia el exterior de la membrana y 2 de K+ hacia el interior. Esta proteína actúa contra el gradiente gracias a su actividad como ATP-asa, ya que rompe el ATP para obtener la energía necesaria para el transporte. El transporte activo de Na+ y K+ tiene una gran importancia fisiológica. De hecho todas las células animales gastan más del 30% del ATP que producen ( y las células nerviosas más del 70%) para bombear estos iones.

Endocitosis, Endocitosis, ExocitosisExocitosis

4

5

5. Endocitosis y exocitosis

Función: transporte de sustancias.Función: transporte de sustancias.

Transporte de partículas Transporte de moléculas de elevada masa molecular como macromoléculas (ej. proteínas) o partículas formadas por numerosas moléculas (ej. una bacteria). Para el transporte de este tipo de moléculas existen tres mecanismos principales: endocitosis, exocitosis y transcitosis. En cualquiera de ellos es fundamental el papel que desempeñan las llamadas vesículas revestidas. Estas vesículas se encuentran rodeadas de filamentos proteicos de clatrina. Endocitosis: Es el proceso por el que la célula capta partículas del medio externo mediante una invaginación de la membrana en la que se engloba la partícula a ingerir. Se produce la estrangulación de la invaginación originándose una vesícula que encierra el material ingerido. Según la naturaleza de las partículas englobadas, se distinguen diversos tipos de endocitosis.

Pinocitosis. Implica la ingestión de líquidos y partículas en disolución por pequeñas vesículas revestidas de clatrina.

Fagocitosis. Se forman grandes vesículas revestidas o fagosomas que ingieren microorganismos y restos celulares en estado sólido.

Endocitosis mediada por un receptor. Es un mecanismo por el que sólo entra la sustancia para la cual existe el correspondiente receptor en la membrana. (ej. LDL-colesterol).

Fagocitosis, si la partícula endocitada fuera un líquido o soluto se llamaría

PinocitosisEndocitosis mediada por

receptor

Difusión (transporte pasivo)Difusión (transporte pasivo)

Transporte activoTransporte activoEndocitosis, Endocitosis, ExocitosisExocitosis

1 2 3

4

5

DS: S. apolares y polares

pequeñas

2. DSCanales: iones

3. DF: s. polares medias (glucosa)

e iones

4. TA: iones y s. polares medias (ej. glucosa)

5.En y Ex: Partículas

En la fagocitosis, el contacto entre la membrana plasmática y una partícula sólida induce la

formación de prolongaciones celulares que envuelven la partícula, englobándola en una vacuola.

2. En la pinocitosis, la membrana celular se invagina, formando una vesícula alrededor del

líquido del medio externo que será incorporado a la célula.

3. En la endocitosis mediada por receptor, las sustancias que serán transportadas al interior de

la célula deben primero unirse a receptores específicos de membrana. Los receptores se

encuentran concentrados en zonas particulares de la membrana (depresiones) o se agrupan

después de haberse unido a las moléculas que serán transportadas. Cuando las depresiones

están llenas de receptores con sus moléculas especificas unidas, se ahuecan y se cierran

formando una vesícula

http://highered.mcgraw-hill.com/olc/dl/120068/bio02.swf

Bacteria

FAGOCITO (uno de los tipos de glóbulos blancos), realizando la

FAGOCITOSIS (captura y destrucción) de una bacteria.

La bacteria es fagocitada

La bacteria es destruida

Glóbulo blanco Pseudópodos

Actúan de forma indiscriminada contra cualquier tipo de microorganismo o partícula extraña. La llevan a cabo los fagocitos (un tipo de glóbulo blanco)

FAGOCITOSIS FAGOCITOSIS

FAGOCITOSISFAGOCITOSIS

Exocitosis

Las macromoléculas contenidas en

vesículas citoplasmáticas son transportadas

desde el interior celular hasta la membrana

plasmática, para ser vertidas al medio

extracelular. Esto requiere que la membrana

de la vesícula y la membrana plasmática se

fusionen para que pueda ser vertido el

contenido de la vesícula al medio. Mediante

este mecanismo, las células son capaces de

eliminar sustancias sintetizadas por la célula,

o bien sustancias de desecho. En toda célula

existe un equilibrio entre la exocitosis y la

endocitosis, para mantener la membrana

plasmática y que quede asegurado el

mantenimiento del volumen celular.

Transcitosis

Es el conjunto de fenómenos que permiten a una

sustancia atravesar todo el citoplasma celular desde un

polo al otro de la célula. Implica el doble proceso

endocitosis-exocitosis. Es propio de células

endoteliales que constituyen los capilares sanguíneos,

transportándose así las sustancias desde el medio

sanguíneo hasta los tejidos que rodean los capilares

Diferenciaciones de la membranaDiferenciaciones de la membrana

En algunos tipos de células la membrana se ha especializado para cumplir distintas funciones:

Microvellosidades. Prolongaciones digitiformes cuya finalidad es aumentar la superficie y que están relacionadas con procesos de digestión y absorción de nutrientes a nivel del tubo digestivo.

Estereocilios. Vellosidades de gran tamaño relacionadas con movimiento de fluidos (pero no con desplazamiento celular), por ejemplo en cóclea y canales emicirculares del oido interno

Invaginaciones. Repliegues hacia el interior de la célula, como los podocitos renales.

Uniones intercelulares. Uniones de adherencia. Unen células entre sí. Un ejemplo son los

desmosomas. Uniones impermeables. Las membranas de células próximas se unen

de forma hermética impidiendo el paso de cualquier sustancia entre ellas. Por ejemplo epitelios.

Uniones comunicantes (gap) Contactan membranas adyacentes, pero permiten el paso de pequeñas moléculas y de impulsos eléctricos. Por ejemplo transmisión del estímulo nervioso.

Pared celularPared celular

VacuolasVacuolas

CloroplastosCloroplastos

Órgánulos Órgánulos carácterísticos carácterísticos de c. vegetalesde c. vegetales

Cubierta más externa que se encuentra adosada a la membrana plasmática de las

células vegetales

PARED CELULAR VEGETALPARED CELULAR VEGETAL

PARED CELULAR VEGETALPARED CELULAR VEGETAL

PARED CELULAR VEGETAL. COMPONENTESPARED CELULAR VEGETAL. COMPONENTES

COMPOSICIÓNDiversos tipos de polisacáridos: celulosa (fibra),

hemicelulosa y pectina

PARED CELULAR VEGETALPARED CELULAR VEGETAL

PARED CELULAR VEGETALPARED CELULAR VEGETAL

Serie de gruesas capas (Lámina media, Pared primaria y Pared secundaria, esta no siempre aparece en todas las células). La pared se encuentra interrumpida en ciertas zonas llamadas plasmodesmos que permiten el intercambio de sustancias entre células vecinas, cuando la interrupción no es total apareciendo membrana y una fina pared primaria los plasmodesmos se denominan punteaduras

PARED CELULAR VEGETALPARED CELULAR VEGETAL

En una pared celular bien desarrollada podemos distinguir tres componentes

estructurales, que de fuera a dentro son:

Lámina media.

Es la primera capa que se forma y constituye

el cemento de unión entre las paredes de las células de un tejido.

Compuesta fundamentalmente por pectinas. -Las microfibrillas no presentan

ordenacion molecular

Pared primaria.

Es una capa delgada que se deposita entre la lámina media y la membrana

plasmática. Es extensible, por lo que permite el crecimiento de la célula.

Compuesta en orden decreciente por hemicelulosas, celulosa, pectinas y

proteinas.

Muy hidratada, hasta con un 60 % de agua. -Microfibrillas entrecruzadas, sin

ordenacion molecular.

Pared secundaria.

Es la capa mas gruesa de la pared celular, formando prácticamente todo su

espesor y es la última que se deposita, situándose entre la pared primaria y la

membrana plasmática. Presenta gran resistencia pero es poco extensible, por

lo que no permite el crecimiento. Microfibrillas de celulosa dispuestas

ordenadamente, agrupandose en paralelo en cada capa, con distintas

orientaciones en las distintas capas.

PARED CELULAR VEGETALPARED CELULAR VEGETAL

PARED CELULAR VEGETALPARED CELULAR VEGETAL

Función: Confiere forma y rigidez a la célula y actúa “sostén”

Función: Confiere forma y rigidez a la célula y actúa “sostén”

DIFERENCIACIONES DE LA PARED CELULAR DIFERENCIACIONES DE LA PARED CELULAR VEGETALVEGETAL

Son estructuras que conectan a la célula con el medio ambiente y con las células adyacentes, permitiendo el intercambio de

sustancias.

Punteaduras o poros: son adelgazamientos de la pared celular que se corresponden con otros complementarios al mismo nivel en

las células adyacentes. La punteadura consta de una cavidad y de una membrana de cierre compuesta por lámina media y una pared

primaria muy delgada.

Plasmodesmos: son finos canales, tapizados de membrana plasmática, que atraviesan totalmente las paredes celulares y

establecen una continuidad entre los citoplasmas de las células vecinas. A través del canal pasa, a su vez, una estructura cilíndrica

llamada desmotúbulo, derivado del retículo endoplasmático.

PARED CELULAR VEGETALPARED CELULAR VEGETAL

Detalles de plasmodesmos Detalles de plasmodesmos

PARED CELULAR VEGETALPARED CELULAR VEGETAL

CITOPLASMA O HIALOPLASMACITOPLASMA O HIALOPLASMA

Citoesqueleto:1. Microtúbulos. 2. Microfi lamentos. 3. Fi lamentos intermedios

Microtúbulos (9+2)Microtúbulos (9+2)Cil ios y f lagelosCil ios y f lagelos

Microtúbulos (9+0)Microtúbulos (9+0)CentriolosCentriolos

Red microtrabecular

CITOESQUELETOCITOESQUELETO

Es una red tridimensional de filamentos proteicos de

varios tipos que, en las células eucarióticas,

se extiende por todo el citoplasma. Da forma a la

célula y es responsable de la estructura y

organización del citoplasma, a la vez que colabora

en el movimiento de los orgánulos y en el de la célula

entera. Los componentes del citosqueleto son de

tres tipos (atendiendo al diámetro):

1- Microfilamentos o filamentos de actina

(flexibles). Diámetro: 7nm.

2- Filamentos intermedios (resistentes). Diámetro:

8-10 nm.

3- Microtúbulos (rígidos). Diámetro: 25 nm.

Además de estos tres tipos de filamentos, existen

numerosas proteínas accesorias que participan en el

ensamblaje de estos filamentos, en su interacción

con otros elementos o en su movimiento. El

citoesqueleto no es rígido ni estático, sino flexible y

dinámico.

Citoesqueleto: 1. Microtúbulos. 2. Microfilamentos.3. Filamentos intermedios

istribución en el citoplasma de los filamentos del citoesqueleto se puede apreciar en los esquemas de la figura, los microtúbulos irradian (aster) desde una región del citoplasma denominada centro organizador de microtúbulos o centrosoma, las células vegetales no tienen centríolos pero si centrosoma. Los microfilamentos se encuentran dispersos por todo el citoplasma; pero se concentran fundamentalmente por debajo de la membrana plasmática. Los filamentos intermedios, se extienden por todo el citoplasma y se anclan a la membrana plasmática proporcionando a las células resistencia mecánica. El intrincado complejo que forman los distintos tipos de elementos del citoesqueleto forman una maraña de estructuras internas conocida como Red microtrabecular

1- Esqueleto mecánico en prolongaciones celulares (microvellosidades,

estereocilios)

2- Refuerzan la membrana plasmática por su cara interna, formando

una densa red de filamentos denominada “córtex celular“.

3- Provocan deformaciones en la membrana implicadas en la

locomoción (pseudópodos) o en la endocitosis.

4- Asociadas a filamentos de miosina, permiten la contracción de las

células musculares.

5- Intervienen en la formación del anillo contráctil que separa las células

hijas en la división celular (asociados también a miosina).

6- Provocan corrientes citoplasmáticas (ciclosis).

1. FUNCIONES DE LOS MICROFILAMENTOSSe sitúan principalmente en la periferia celular, debajo de la

membrana y están formados por hebras de la proteína actina, son los responsables de la contracción muscular

2. FILAMENTOS INTERMEDIOS

Formados por diversos tipos de proteínas. Son polímeros muy estables y resistentes. Especialmente abundantes en el citoplasma de las células sometidas a fuertes tensiones

mecánicas (queratina de los desmosomas en células de la piel) ya que su función consiste en repartir las tensiones, que de otro

modo podrían romper la célula

Los filamentos intermedios son los

elementos del citoesqueleto que aportan

resistencia mecánica o sostén

estructural a la célula. Se distribuyen por

el citoplasma y forman parte de la

envuelta nuclear.

Están formados por monómeros con dos

cabezas y una zona intermedia que, al

agruparse, pierden polaridad, por lo tanto

no presentan extremo + y extremo -

,como los microtúbulos y

microfilamentos.

2. TIPOS DE FILAMENTOS INTERMEDIOS

Según el tipo celular varían sus proteínas constitutivas. Se conocen muchos tipos de filamentos

intermedios, entre los que cabe destacar:

-Tonofilamentos, compuestos por queratinas, en las células epiteliales.

- Filamentos de vimentina, en las células del tejido conjuntivo y en los vasos sanguíneos.

-Filamentos de desmina, en el músculo.

-Filamentos gliales, compuestos por la proteína ácida fibrilar glial (GFAP) , en las células

de glía del tejido nervioso.

-Neurofilamentos, en las neuronas.

-Laminofilamentos, compuestos por la proteína laminina, que forman la lámina nuclear, en

la superficie interna de la membrana nuclear. Son los únicos filamentos intermedios que no se

encuentran en el citoplasma.

3. MICROTÚBULOS

1.Condicionan la posición de los orgánulos dentro de la célula.

2.Proporcionan las rutas (“red de carreteras“) para el transporte intracelular de orgánulos, vesículas, cromosomas, filamentos o macromoléculas. Para ello interaccionan con proteínas (motores) que se enlazan específicamente con la carga a transportar. Dichas proteínas están compuestas de varias partes que cambian su posición (cambios de conformación) al hidrolizar ATP y producen un movimiento en forma de pasos sobre el microtúbulo.

3.Forman estructuras estables: centriolos, cilios y flagelos.

4.Forman estructuras transitorias: el huso mitótico.

5.Intervienen en la organización de todos los elementos del citoesqueleto.

Son filamentos largos, formados por la proteína tubulina.

CENTROSOMACENTROSOMA

Durante la interfase, el centrosoma organiza la

red de microtúbulos citoplasmáticos. Desde el

material pericentriolar se inicia el ensamblaje

de los microtúbulos que crecerán a partir de

aquí (donde quedan anclados por su extremo

-) hacia la periferia de la célula (donde se

localizarán los extremos +).

-En las células en división, el centrosoma

organiza el huso mitótico.

Los centríolos se duplican durante la fase S de

la interfase, migran a los polos opuestos de la

célula para convertirse en los centros que

organizan el huso mitótico. El centrosoma es

duplicado una vez por ciclo celular, así que

cada célula hija hereda un centrosoma con

dos centríolos.

CILIOS Y FLAGELOSCILIOS Y FLAGELOSSon apéndices móviles que se encuentran en la superficie de muchas células, cuya función es permitir el

desplazamiento de la célula a través de un medio líquido, por ejemplo, en el caso de los espermatozoides,

algunos protozoos,... o bien desplazar el líquido extracelular sobre la superficie celular, como en el caso de las

células que tapizan interiormente los conductos respiratorios o las que recubren las trompas de Falopio.

Aunque la estructura de los cilios y flagelos es idéntica, los cilios son cortos y se presentan en gran número,

mientras que los flagelos son largos y suele haber uno o muy pocos. El tipo de movimiento también es diferente.

CILIOS Y FLAGELOSCILIOS Y FLAGELOS

9 + 0

9 + 2

CILIOS Y FLAGELOSCILIOS Y FLAGELOS

FUNCIÓN: locomoción (espermatozoides, protozoos), defensiva (cilios de mucosa respiratoria), captura de alimentos (algunos protozoos). Algunas células vegetales si los

tienen (algas unicelulares, gametos de algas, musgos y helechos).

El movimiento se produce por deslizamiento de unos

dobletes periféricos con respecto a otros. De este

deslizamiento es responsable la proteína dineína, pues

gracias a su actividad ATP-asa, los brazos de dineína

de un doblete contactan con el adyacente y hacen que

los dobletes se muevan uno con respecto al otro. Los

puentes de nexina, elásticos, mantienen unidos a los

dobletes y limitan su deslizamiento. Como resultado, el

deslizamiento de los dobletes periféricos se convierte

en la flexión del axonema. Aunque flagelos y cilios

eucariotas son idénticos en ultraestructura, estos dos

tipos de apéndices tienen movimientos diferentes. El

flagelo realiza un movimiento helicoidal mientras que el

cilio realiza movimientos cíclicos atrás y adelante,

como un remo.

MOVIMIENTO DE CILIOS Y FLAGELOS

Corte transversal de un axonema

Corte transversal de centriolo

Duplicación de centriolos

INCLUSIONESINCLUSIONES

En rigor solo aquellas no rodeadas de membrana deberían considerarse como inclusiones, aunque en ocasiones esas mismas sustancias pueden almacenarse dentro

de membranas, como es el caso de algunos pigmentos vegetales

RIBOSOMAS RIBOSOMAS (órganulo sin membrana)(órganulo sin membrana)

RIBOSOMAS RIBOSOMAS (Orgánulo sin membrana)(Orgánulo sin membrana)