modelos

28
ESTRUCTURA ATÓMICA Química 4º ESO

Upload: martisifre

Post on 27-Jun-2015

2.283 views

Category:

Documents


4 download

DESCRIPTION

Modelos y propiedades atómicas

TRANSCRIPT

Page 1: Modelos

ESTRUCTURA ATÓMICA

ESTRUCTURA ATÓMICA

Química 4º ESO

Page 2: Modelos

John Dalton John Dalton Para él tenía que cumplirse, ante todo, que los átomos de un mismo elemento debían tener la misma masa.

Con esta idea, Dalton publicó en 1808 su Teoría Atómica que podemos resumir:

La materia está formada por partículas muy pequeñas, llamadas átomos , que son indivisibles e indestructibles.

Todos los átomos de un mismo elemento tienen la misma masa atómica.

Los átomos se combinan entre si en relaciones sencillas para formar compuestos.

Los cuerpos compuestos están formados por átomos diferentes. Las propiedades del compuesto dependen del número y de la clase de átomos que tenga.

Page 3: Modelos

Físico Británico estudió las propiedades eléctricas de la materia, especialmente la de los gases.

Joseph John Thomson (1856-1940)Joseph John Thomson (1856-1940)

Descubrió que los rayos catódicos estaban formados por partículas cargadas negativamente (hoy en día llamadas electrones), de las que determinó la relación entre su carga y masa. En 1906 le fue concedido el premio Nóbel por sus trabajos.

Millikan calculó experimentalmente el valor de la carga eléctrica negativa de un electrón mediante su experimento con gotas de aceite entre placas de un condensador. Dió como valor de dicha carga e = 1,6 * 10 -19 culombios.

La medida directa del cociente carga-masa, e/m, de los electrones por J.J.Thomson en 1897 puede considerarse justamente como el principio para la compresión actual de la estructura atómica.

Page 4: Modelos

El clásico experimento de Thomson se desarrolló a partir del estudio de las descargas eléctricas en gases.

Tubo de rayos catódicos utilizado por Thomson

Cuando se sitúan unas aberturas en A y B, el brillo se limita a un punto bien definido sobre el vidrio, este punto puede desviarse mediante campos eléctricos o magnéticos.

Page 5: Modelos

Thomson define así su modelo de átomo :

Considera el átomo como una gran esfera con carga eléctrica positiva, en la cual se distribuyen los electrones como pequeños granitos (de forma si-milar a las semillas en una sandía)

Modelo atómico de ThomsonModelo atómico de Thomson

Concebía el átomo como una esfera de carga positiva uniforme en la cual están incrustados los electrones.

Page 6: Modelos

Tras las investigaciones de Geiger y Mardsen sobre la dispersión de partículas alfa al incidir sobre láminas metálicas, se hizo necesario la revisión del modelo atómico de Thomson, que realizó Rutherford entre 1909-1911.

Ernest Rutherford, (1871-1937)

Físico Inglés, nació en Nueva Zelanda, profesor en Manchester y director del laboratorio Cavendish de la universidad de Cambridge. Premio Nobel de Química en 1908. Sus brillantes investigaciones sobre la estructura atómica y sobre la radioactividad iniciaron el camino a los descubrimientos más notables del siglo. Estudió experimentalmente la naturaleza de las radiaciones emitidas por los elementos radiactivos.

Ernest Rutherford, (1871-1937)

Físico Inglés, nació en Nueva Zelanda, profesor en Manchester y director del laboratorio Cavendish de la universidad de Cambridge. Premio Nobel de Química en 1908. Sus brillantes investigaciones sobre la estructura atómica y sobre la radioactividad iniciaron el camino a los descubrimientos más notables del siglo. Estudió experimentalmente la naturaleza de las radiaciones emitidas por los elementos radiactivos.

Puesto que las partículas alfa y beta atraviesan el átomo, un estudio riguroso de la naturaleza de la desviación debe proporcionar cierta luz sobre la constitución de átomo, capaz de producir los efectos observados.

Las investigaciones se produjeron tras el descubrimiento de la radioactividad y la identificación de las partículas emitidas en un proceso radiactivo.

Page 7: Modelos

Experimento para determinar la constitución del átomo

Experimento para determinar la constitución del átomo

La mayoría de los rayos alfa atravesaba la lámina sin desviarse, porque la mayor parte del espacio

de un átomo es espacio vacío.

Algunos rayos se desviaban, porque pasan muy cerca de centros con carga eléctrica del mismo tipo que los rayos alfa (CARGA POSITIVA).

Muy pocos rebotan, porque chocan frontalmente contra esos centros de carga positiva.

Page 8: Modelos

El modelo del átomo de RUTHERFORD: con los protones en el núcleo y los electrones girando alrededor.

El Modelo Atómico de Rutherford quedó así:El Modelo Atómico de Rutherford quedó así:

- Todo átomo está formado por un núcleo y corteza.

- El núcleo, muy pesado, y de muy pequeño tamaño, formado por un número de protones igual al NÚMERO ATÓMICO, donde se concentra toda la masa atómica.

- Existiendo un gran espacio vacío entre el núcleo y la corteza donde se mueven los electrones.

NÚMERO ATÓMICO= número de protones del núcleo que coincide con el número de electrones si el átomo es neutro.

NÚMERO ATÓMICO= número de protones del núcleo que coincide con el número de electrones si el átomo es neutro.

Page 9: Modelos

    

Partícula 

  Carga 

  Masa

 

    PROTÓN p+

   +1 unidad electrostática de carga = 1,6. 10-19 C

 1 unidad atómica de masa (u.m.a.) =1,66 10-27kg 

 

   NEUTRON n

 

  0 no tiene carga eléctrica, es neutro

 1 unidad atómica de masa (u.m.a.) =1,66 10-27 kg 

    

ELECTRÓN e-

 

  -1 unidad electrostática de carga =-1,6. 10-19C

Muy pequeña y por tanto despreciable comparada con la de p+ y n  

p11

n10

e01

PARTÍCULAS FUNDAMENTALES

PARTÍCULAS FUNDAMENTALES

Los protones y neutrones determinan la masa de los átomos y los electrones son los responsables de las propiedades químicas.

Los protones y neutrones determinan la masa de los átomos y los electrones son los responsables de las propiedades químicas.

NÚCLEO = Zona central del átomo donde se encuentran protones y neutrones

CORTEZA =Zona que envuelve al núcleo donde se encuentran moviéndose los electrones

NÚCLEO = Zona central del átomo donde se encuentran protones y neutrones

CORTEZA =Zona que envuelve al núcleo donde se encuentran moviéndose los electrones

En 1932 el inglés Chadwik al bombardear átomos con partículas observó que se emitía una nueva partícula sin carga y de masa similar al protón, acababa de descubrir el NEUTRÓN

En el núcleo se encuentran los neutrones y los protones.

Page 10: Modelos

NÚMERO ATÓMICO (Z) al número de protones que tiene un átomo. Coincide con el número de electrones si el átomo está neutro. Todos los átomos de un mismo elemento tienen el mismo número de protones, por lo tanto, tienen el mismo número atómico.

NÚMERO ATÓMICO (Z) al número de protones que tiene un átomo. Coincide con el número de electrones si el átomo está neutro. Todos los átomos de un mismo elemento tienen el mismo número de protones, por lo tanto, tienen el mismo número atómico.

NÚMERO MÁSICO (A) a la suma de los protones y los neutrones que tiene un átomo.NÚMERO MÁSICO (A) a la suma de los protones y los neutrones que tiene un átomo.

ISÓTOPOS a átomos de un mismo elemento que se diferencian en el número de neutrones. Tienen por tanto el mismo número atómico(Z) pero diferente número másico(A).

ISÓTOPOS a átomos de un mismo elemento que se diferencian en el número de neutrones. Tienen por tanto el mismo número atómico(Z) pero diferente número másico(A).

Un átomo se representa por:

   Su símbolo = una letra mayúscula o dos letras, la primera mayúscula que derivan de su nombre. Ca , H , Li, S, He....

   Su número atómico (Z) que se escribe abajo a la izquierda.

Su número másico (A) que se escribe arriba a la izquierda.

EAZIONES a átomos o grupos de átomos que poseen carga eléctrica porque han ganado o perdido electrones. Pueden ser: CATIONES si poseen carga positiva y, por tanto, se han perdido electrones. ANIONES si poseen carga negativa y , por tanto, se han ganado electrones.

IONES a átomos o grupos de átomos que poseen carga eléctrica porque han ganado o perdido electrones. Pueden ser: CATIONES si poseen carga positiva y, por tanto, se han perdido electrones. ANIONES si poseen carga negativa y , por tanto, se han ganado electrones.

Page 11: Modelos

Sólo son posibles ciertas órbitas llamadas ÓRBITAS ESTACIONARIAS

El electrón gira alrededor del núcleo en órbitas circulares sin emitir energía

Un electrón puede saltar de una órbita a la siguiente si gana energía o volver a la que estaba si pierde esa misma cantidad de energía.

MODELO ATÓMICO DE BÖHRMODELO ATÓMICO DE BÖHR

Page 12: Modelos

Niveles permitidos según el modelo de Bohr

(para el átomo de hidrógeno)Niveles permitidos según el modelo de Bohr

(para el átomo de hidrógeno)

n = 1 E = –21,76 · 10–19 J

n = 2 E = –5,43 · 10–19 J

n = 3 E = –2,42 · 10–19 J

En

ergí

a

n = 4 E = –1,36 · 10–19 Jn = 5 E = –0,87 · 10–19 Jn = E = 0 J

Page 13: Modelos

MODELO ACTUALMODELO ACTUAL

El átomo está formado por un núcleo donde se encuentran los neutrones y los protones y los electrones giran alrededor en diferentes orbitales.

ORBITAL: ZONA DEL ESPACIO EN TORNO AL NÚCLEO DONDE LA POSIBILIDAD DE ENCONTRAR AL ELECTRÓN ES MÁXIMA

ORBITAL: ZONA DEL ESPACIO EN TORNO AL NÚCLEO DONDE LA POSIBILIDAD DE ENCONTRAR AL ELECTRÓN ES MÁXIMA

Los electrones se sitúan en orbitales, los cuales tienen capacidad para situar dos de ellos:• 1ª capa: 1 orb. “s” (2 e–)• 2ª capa: 1 orb. “s” (2 e–) + 3 orb. “p” (6 e–) • 3ª capa: 1 orb. “s” (2 e–) + 3 orb. “p” (6 e–)

5 orb. “d” (10 e–) • 4ª capa: 1 orb. “s” (2 e–) + 3 orb. “p” (6 e–)

5 orb. “d” (10 e–) + 7 orb. “f” (14 e–)• Y así sucesivamente…

s2

p6

d10

f14

s2

p6

d10

f14

Page 14: Modelos

FORMA DE LOS ORBITALESFORMA DE LOS ORBITALES

Page 15: Modelos

1 s

2 s

3 s

2 p

3 p

4 fE

nerg

ía

4 s4 p 3 d

5 s

5 p4 d

6s

6 p5 d

n = 1; l = 0; m = 0; s = – ½n = 1; l = 0; m = 0; s = – ½n = 1; l = 0; m = 0; s = + ½n = 1; l = 0; m = 0; s = + ½n = 2; l = 0; m = 0; s = – ½n = 2; l = 0; m = 0; s = – ½n = 2; l = 0; m = 0; s = + ½n = 2; l = 0; m = 0; s = + ½n = 2; l = 1; m = – 1; s = – ½n = 2; l = 1; m = – 1; s = – ½n = 2; l = 1; m = 0; s = – ½n = 2; l = 1; m = 0; s = – ½n = 2; l = 1; m = + 1; s = – ½n = 2; l = 1; m = + 1; s = – ½n = 2; l = 1; m = – 1; s = + ½n = 2; l = 1; m = – 1; s = + ½n = 2; l = 1; m = 0; s = + ½n = 2; l = 1; m = 0; s = + ½n = 2; l = 1; m = + 1; s = + ½n = 2; l = 1; m = + 1; s = + ½n = 3; l = 0; m = 0; s = – ½n = 3; l = 0; m = 0; s = – ½n = 3; l = 0; m = 0; s = + ½n = 3; l = 0; m = 0; s = + ½n = 3; l = 1; m = – 1; s = – ½n = 3; l = 1; m = – 1; s = – ½n = 3; l = 1; m = 0; s = – ½n = 3; l = 1; m = 0; s = – ½n = 3; l = 1; m = + 1; s = – ½n = 3; l = 1; m = + 1; s = – ½n = 3; l = 1; m = – 1; s = + ½n = 3; l = 1; m = – 1; s = + ½n = 3; l = 1; m = 0; s = + ½n = 3; l = 1; m = 0; s = + ½n = 3; l = 1; m = + 1; s = + ½n = 3; l = 1; m = + 1; s = + ½n = 4; l = 0; m = 0; s = – ½n = 4; l = 0; m = 0; s = – ½n = 4; l = 0; m = 0; s = + ½n = 4; l = 0; m = 0; s = + ½n = 3; l = 2; m = – 2; s = – ½n = 3; l = 2; m = – 2; s = – ½n = 3; l = 2; m = – 1; s = – ½n = 3; l = 2; m = – 1; s = – ½n = 3; l = 2; m = 0; s = – ½n = 3; l = 2; m = 0; s = – ½n = 3; l = 2; m = + 1; s = – ½n = 3; l = 2; m = + 1; s = – ½n = 3; l = 2; m = + 2; s = – ½n = 3; l = 2; m = + 2; s = – ½n = 3; l = 2; m = – 2; s = + ½n = 3; l = 2; m = – 2; s = + ½n = 3; l = 2; m = – 1; s = + ½n = 3; l = 2; m = – 1; s = + ½n = 3; l = 2; m = 0; s = + ½n = 3; l = 2; m = 0; s = + ½n = 3; l = 2; m = + 1; s = + ½n = 3; l = 2; m = + 1; s = + ½n = 3; l = 2; m = + 2; s = + ½n = 3; l = 2; m = + 2; s = + ½n = 4; l = 1; m = – 1; s = – ½n = 4; l = 1; m = – 1; s = – ½n = 4; l = 1; m = 0; s = – ½n = 4; l = 1; m = 0; s = – ½n = 4; l = 1; m = + 1; s = – ½n = 4; l = 1; m = + 1; s = – ½n = 4; l = 1; m = – 1; s = + ½n = 4; l = 1; m = – 1; s = + ½n = 4; l = 1; m = 0; s = + ½n = 4; l = 1; m = 0; s = + ½n = 4; l = 1; m = + 1; s = + ½n = 4; l = 1; m = + 1; s = + ½n = ; l = ; m = ; s = n = ; l = ; m = ; s =

ORDEN EN QUE SE RELLENAN LOS ORBITALES

ORDEN EN QUE SE RELLENAN LOS ORBITALES

Page 16: Modelos

Se llama CONFIGURACIÓN ELECTRÓNICA de un átomo a la distribución de sus electrones en los diferentes orbitales , teniendo en cuenta que se van llenando en orden creciente de energía y situando 2 electrones como máximo en cada orbital .

Se llama CONFIGURACIÓN ELECTRÓNICA de un átomo a la distribución de sus electrones en los diferentes orbitales , teniendo en cuenta que se van llenando en orden creciente de energía y situando 2 electrones como máximo en cada orbital .

                                                            1s                                                  2s 2p                                              3s 3p 3d                        4s 4d 4p 4f                        5s 5p 5d 5f                        6s 6p 6d                        7s 7p

LA TABLA PERIÓDICA SE ORDENA SEGÚN EL NÚMERO ATÓMICO, como es el número de protones pero coincide con el de electrones cuando el átomo es neutro, la tabla periódica queda ordenada según las configuraciones electrónicas de los diferentes elementos.

Page 17: Modelos

A lo largo de la historia, los químicos han intentado ordenar los elementos de forma agrupada, de tal manera que aquellos que posean propiedades similares

estén juntos. El resultado final el sistema periódicosistema periódico

A lo largo de la historia, los químicos han intentado ordenar los elementos de forma agrupada, de tal manera que aquellos que posean propiedades similares

estén juntos. El resultado final el sistema periódicosistema periódico

Los elementos están colocados por orden creciente de su número atómico (Z)

GRUPOS

a las columnas de la tabla

PERÍODOS

a las filas de la tabla

Se denominan

La utilidad del sistema periódico reside en que los elementos de un mismo grupo poseen propiedades químicas similares

La utilidad del sistema periódico reside en que los elementos de un mismo grupo poseen propiedades químicas similares

Page 18: Modelos

58

Ce140,12Cerio

Lantánidos 6 71

Lu174,97Lutecio

70

Yb173,04Iterbio

69

Tm168,93Tulio

67

Ho164,93Holmio

66

Dy162,50

Disprosio

68

Er167,26Erbio

65

Tb158,93Terbio

63

Eu151,96

Europio

62

Sm150,35

Samario

64

Gd157,25

Gadolinio

61

Pm(145)

Promecio

59

Pr140,91

Praseodimio

60

Nd144,24

Neodimio

90

Th232,04Torio

103

Lr(260)

Laurencio

102

No(255)

Nobelio

101

Md(258)

Mendelevio

99

Es(254)

Einstenio

98

Cf(251)

Californio

100

Fm(257)

Fermio

97

Bk(247)

Berquelio

95

Am20,18(243

)Americio

94

Pu(244)

Plutonio

96

Cm(247)Curio

93

Np237

Neptunio

91

Pa(231)

Protoactinio

92

U238,03Uranio

Actínidos 7

17

Cl35,45Cloro

53

I126,90Yodo

85

At(210)

Astato

9

F18,99Flúor

35

Br79,90

Bromo

18

Ar39,95Argón

54

Xe131,30Xenón

86

Rn(222)

Radón

10

Ne20,18Neón

2

He4,003Helio

36

Kr83,80

Criptón

14

Si28,09Silicio

6

C12,01

Carbono

50

Sn118,69Estaño

82

Pb207,19Plomo

32

Ge72,59

Germanio

12

Mg24,31

Magnesio

4

Be9,01

Berilio

88

Ra(226)Radio

38

Sr87,62

Estroncio

56

Ba137,33Bario

20

Ca40,08Calcio

11

Na22,99Sodio

3

Li6,94Litio

87

Fr(223)

Francio

37

Rb85,47

Rubidio

55

Cs132,91Cesio

19

K39,10

Potasio

89

Ac(227)

Actinio

39

Y88,91Itrio

57

La138,91

Lantano

21

Sc44,96

Escandio

109

Mt(266)

Meitnerio

108

Hs(265)

Hassio

106

Sg(263)

Seaborgio

105

Db(262)

Dubnio

107

Bh(262)

Bohrio

104

Rf(261)

Rutherfordio

48

Cd112,40

Cadmio

80

Hg200,59

Mercurio

46

Pd106,4

Paladio

78

Pt195,09Platino

45

Rh102,91Rodio

77

Ir192,22Iridio

47

Ag107,87Plata

79

Au196,97Oro

44

Ru101,07

Rutenio

76

Os190,2

Osmio

42

Mo95,94

Molibdeno

74

W183,85

Wolframio

41

Nb92,91

Niobio

73

Ta180,95

Tántalo

43

Tc(97)

Tecnecio

75

Re186,21Renio

40

Zr91,22

Circonio

72

Hf178,49Hafnio

30

Zn65,38Zinc

28

Ni58,70

Niquel

27

Co58,70

Cobalto

29

Cu63,55Cobre

26

Fe55,85Hierro

24

Cr54,94

Cromo

23

V50,94

Vanadio

25

Mn54,94

Manganeso

22

Ti20,18

Titanio

15

P30,97

Fósforo

7

N14,01

Nitrógeno

51

Sb121,75

Antimonio

83

Bi208,98

Bismuto

33

As74,92

Arsénico

16

S32,07

Azufre

84

Po(209)

Polonio

8

O16,00

Oxígeno

34

Se78,96

Selenio

52

Te127,60Telurio

13

Al26,98

Aluminio

5

B10,81Boro

49

In114,82Indio

81

Tl204,37Talio

31

Ga69,72Galio

Metales No metales

4

3 2

7

5 6

1

1716 1815 13 1412109 11 865 74 21 3

VII AVI AGasesnoblesV A III A IV AII BI BVI BV B VII BIV B II A I A III B VIII

Periodo

Gru

po

1

H1,008

HidrógenoNombre

Masa atómica

Número atómicoSímboloNegro - sólido

Azul - líquidoRojo - gasVioleta - artificialMetales

Semimetales

No metales

Inertes

SISTEMA PERIÓDICO DE LOS ELEMENTOS

Page 19: Modelos

Configuración electrónica y periocidadConfiguración electrónica y periocidad

Elemento Configuración electrónicaConfiguración más externa

Litio

Sodio

Potasio

Rubidio

Cesio

1s2 2s1

1s2 2s2 2p6 3s1

1s2 2p6 3s2 3p6 4s1

1s2 2s2 3s2 3p6 4s2 3d10 4p6 5s1

1s2 2s2 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s1

ns1

Todos los elementos de un mismo grupo tienen en su capa de valencia el mismo número de electrones en orbitales del mismo tipo

Las propiedades químicas de un elemento están relacionadas con la configuración electrónica de su capa más externa

Page 20: Modelos

Su electrón diferenciador se aloja en un orbital s o un orbital p

Su electrón diferenciador se aloja en un orbital d

Se distinguen varios bloques caracterizados por una configuración electrónica típica de la capa de valencia

A) Elementos representativos

B) Metales de transición

El hidrógeno de configuración 1s1 no tiene un sitio definido dentro de los bloques

Su electrón diferenciador se aloja en un orbital f

C) Metales de transición interna

Page 21: Modelos

d10d8d7 d9d6d4d3 d5d2d1

p5p4 p6p3 p1 p2

s2

f10f 8f

7 f 9f

6 f 4f

3 f 5f 2f

1 f14f12f11 f13

ddpp

s2

s1

ss

ns2 npx

ns2 ns2 (n1)dx

ns2 (n1)d10 (n2) fx

ff

Page 22: Modelos

TAMAÑO ATÓMICO TAMAÑO ATÓMICO

Li (1,23 )Α Na (1,57 )

Α K (2,03 )

Α Rb (2,16 )

Α

(1,23 )Α

Li (0,89 )

Α

Be (0,80 )

Α

B (0,70 )

Α

N (0,66 )

Α

O (0,64 )

Α

F (0,77 )

Α

C

Disminuye al avanzar en un periodo

En un grupo: el tamaño atómico aumenta al descender en un grupo porque aumenta el número de capas electrónicas

Page 23: Modelos

Los átomos e iones no tienen un tamaño definido, pues sus orbitales no ocupan una región del espacio con límites determinados. Sin embargo, se acepta un

tamaño de orbitales que incluya el 90% de la probabilidad de encontrar al electrón en su interior, y una forma esférica para todo el átomo.

A continuación se muestra con el tamaño relativo de los átomos de los elementos representativos. Los radios están expresados en nm (1 nm = 10-9 m)

Los radios de los átomos varían en función de que se

encuentren en estado gaseoso o unidos mediante enlaces iónico, covalente o

metálico

Page 24: Modelos

Los iones positivos (cationes) son siempre menores que los átomos neutros a partir de los que se forman

Li (1,23 )Α

F ( 0, 64 )Α

Li ( 0, 68 )Α+

F ( 1, 36 )Α

Pierde 1 e-

Gana 1 e-

Los iones negativos (aniones) son siempre mayores que los átomos neutros a partir de los que se forman

Page 25: Modelos

Los gases nobles. Regla del octetoLos gases nobles. Regla del octeto

“En la formación de un compuesto, un átomo tiende a intercambiar electrones con otros átomos hasta conseguir una capa de valencia de ocho electrones”

Los gases nobles tienen una configuración electrónica externa ns2 np6 es decir, tienen 8 electrones en su última capa (excepto el He que tiene 2)

Una capa de valencia con 8 electrones se denomina octeto, y Lewis enunció la regla del octeto diciendo:

1

1

7

+1

2

2

6

+2

3

3

5

+3

4

4

4

+-4

5

5

3

3

6

6

2

2

7

7

1

1

8

0

0

0

GrupoNº de electrones en la capa de valencia

Sobran para el octeto

Faltan para el octeto

Carga del ión

I II III IV V VI VII VIII

Page 26: Modelos

Iones monoatómicosIones monoatómicos

C A T I O N E S A N I O N E S

Son iones formados por un solo átomo

El catión se nombra como el átomo del que procede

El anión se nombra como el no metal pero acabado en uro (excepto el ión óxido)

H+

Na+

K+

Mg2+

Ca2+

Fe2+

Fe3+

Al3+

Ion hidrógeno

Ion sodio

Ion potasio

Ion magnesio

Ion calcio

Ion hierro (II)

Ion hierro (III)

Ion aluminio

H

F

Cl

Br

I

S2

O2

N3

Ion hidruro

Ion fluoruro

Ion cloruro

Ion bromuro

Ion yoduro

Ion sulfuro

Ion óxido

Ion nitruro

Page 27: Modelos

CARÁCTER METÁLICO.CARÁCTER METÁLICO.

Metales:• Pierden fácilmente electrones para formar cationes• Bajas energías de ionización• Bajas afinidades electrónicas• Bajas electronegatividades• Forman compuestos con los no metales, pero no con los metales

Según el carácter metálico podemos considerar los elementos como:

No Metales:• Ganan fácilmente electrones para formar aniones• Elevadas energías de ionización• Elevadas afinidades electrónicas• Elevadas electronegatividades• Forman compuestos con los metales, y otros con los no metales

Semimetales o metaloides:• Poseen propiedades intermedias entre los metales y los no metales (Si, Ge)

Page 28: Modelos

RECURSO OBTENIDO DE LA PÁGINA WEB DE

CARMEN PEÑA

Y

CELIA RODRIGUEZ.