guÍa del maestro para escuela intermedia y

37
GUÍA DEL MAESTRO PARA ESCUELA INTERMEDIA Y SECUNDARIA Glóbulos rojos, linfocitos T (teñidos de verde) y plaquetas (teñidas de azul) © Dennis Kunkel, Ph.D.

Upload: doanquynh

Post on 04-Jan-2017

242 views

Category:

Documents


1 download

TRANSCRIPT

GUÍA DEL MAESTRO PARAESCUELA INTERMEDIA Y

SECUNDARIA

Gló

bulo

s ro

jos,

linfo

cito

s T (

teñi

dos

de v

erde

) y

plaq

ueta

s (t

eñid

as d

e az

ul)

©

Den

nis

Kun

kel,

Ph.D

.

IntroducciónContenidoParte 1:La sangre es una mezcla

3 Plan de la lección3 Demostración: La sangre es una mezcla 4-5 Guía para el maestro; Laboratorio: Hematocrito saludable 5 Respuestas a la hoja de trabajo y a las preguntas del laboratorio

Parte 2:Forma y función de las células de la sangre

6 Plan de la lección6 Demostración: Forma y función de las células de la sangre 7 Guía para el maestro; Laboratorio: A la caza de células 7 Respuestas a la hoja de trabajo y a las preguntas del laboratorio

Parte 3:Arterias, capilares y venas: Los caminos que recorre la sangre

8 Plan de la lección8 Demostración: Arterias, capilares y venas:

Los caminos que recorre la sangre9 Guía para el maestro; Laboratorio: El vaso misterioso9 Respuestas a la hoja de trabajo y a las preguntas del laboratorio

Parte 4:Intercambio de oxígeno y dióxido de carbono

10 Plan de la lección10 Demostración: Intercambio de oxígeno y dióxido de carbono11 Guía para el maestro; Laboratorio:

Dióxido de carbono burbujeante11 Respuestas a la hoja de trabajo y a las preguntas del laboratorio

Parte 5:Ciclo cardiaco

12 Plan de la lección12 Guía para el maestro; Laboratorio: El bombeo del corazón12 Respuestas a la hoja de trabajo y a las preguntas del laboratorio

Parte 6:Los diferentes grupos de sangre

13-14 Plan de la lección13-14 Guía para el maestro; Laboratorio: Una decisión importantísima14-15 Respuestas a la hoja de trabajo y a las preguntas del laboratorio

Parte 7:16-17 Ser parte de la solución: Cómo organizar una

campaña de donación de sangre en la escuela (grados 11 y 12)

Hojas de trabajo y Preguntas de laboratorio:18-21 La sangre es una mezcla22-25 Forma y función de las células de la sangre26-27 Arterias, capilares y venas: Los caminos que recorre la sangre28-29 Intercambio de oxígeno y dióxido de carbono 30-31 Ciclo cardiaco32-35 Los diferentes grupos de sangre

36 Glosario36 Lista de materiales37 Agradecimientos y recursos

© 2005 Todos los derechos reservados. America’s Blood Centers.2

Estimados educadores:

America's Blood Centers y la Fundación para America's BloodCenters están comprometidos a aumentar el conocimiento delpúblico sobre la importancia de la donación de sangre, paraasegurar que toda la población tenga acceso a un suministro desangre seguro y adecuado. La creación de Mi Sangre, Tu Sangrereafirma este compromiso. A la vez que fomenta el altruismo yel espíritu de comunidad, tanto esta Guía del Maestro como elprograma Mi Sangre, Tu Sangre en su conjunto, proporcionaninformación actualizada y estrategias creativas que contribuyen ala enseñanza de la biología sanguínea. Desarrollado por médicosy educadores, Mi Sangre, Tu Sangre fue diseñado con el fin de serun programa educativo clave, fácilmente adaptable a diversosniveles de enseñanza. America's Blood Centers espera que usted ysus estudiantes disfruten de las actividades educativas y le alientaa visitar el sitio web de Mi Sangre, Tu Sangre:www.MiSangreTuSangre.org.

Nuestra Guía para el maestro de Mi Sangre, Tu Sangre sigue losEstándares Nacionales de Educación para las Ciencias:

Los Estándares Nacionales de Educación para las Ciencias,desarrollados por El Concejo Nacional de InvestigacionesCientíficas y la Academia Nacional de Ciencias, son criteriospara el desarrollo de planes de estudio destinados a aumentar losconocimientos de ciencias de todos los estudiantes en EstadosUnidos.

El Video y la Guía del maestro de Mi Sangre, Tu Sangre puedenasistir a los educadores a seleccionar y asignar lecciones quefacilitarán la comprensión de los estudiantes en las siguientesáreas de estudio establecidas por los Estándares Nacionales deEducación para las Ciencias.

Ciencias de la vida:· Estructura y función de los organismos vivos (Niveles 5-8)· La célula y la materia, la energía, y la organización de los

sistemas vivos (Niveles 9-12)

Las ciencias desde una perspectiva personal y social:· Salud personal (Niveles K-8)· Salud personal y de la comunidad (Niveles 9-12)· La ciencia y la tecnología frente a problemas locales y en la

sociedad (Niveles K-12)

100

90

80

70

60

50

40

30

20

10

100

90

80

70

60

50

40

30

20

10

PAR

TE

1

P L A N D E L A L E C C I Ó N

3© 2005 Todos los derechos reservados. America’s Blood Centers.

Plan de la lecciónTiempo estimado: dos períodos de clase

·· Muestre el segmento inicial del video Mi Sangre,Tu Sangre ·· Demostración: La sangre es una mezcla; Enseñe los conceptos que se dan en la información para el maestro (30 minutos)·· Use las diapositivas 1-4 ·· Los estudiantes leen las hojas de trabajo y responden a las preguntas (en clase o como tarea)·· Actividad de laboratorio: Hematocrito saludable

Demostración: La sangre es una mezcla1. Para demostrar que la sangre es una mezcla de células suspendidas en el plasma, haga una mezcla de lentejuelas rojas (que

representarán a los glóbulos rojos) y cuentas o bolitas de vidrio o plástico (que representarán a los glóbulos blancos y a lasplaquetas).

2. El plasma es un líquido de color amarillento. Para simular este color, agregue unas pocas gotas de colorante de repostería yun poco de soda de cola a unos 100 mL de agua, hasta obtener una coloración pajiza pálida.

3. En una tienda de manualidades, compre un paquete grande de lentejuelas rojas. Necesitará tantas como para llenar un cilindrograduado hasta la marca de 40 mL.

4. También compre una pequeña cantidad de cuentas esféricas de vidrio o plástico para que sean los leucocitos (las cuentas devidrio que tienen dentro pequeñas pintas de colores se ven muy realistas), y otras cuentas más pequeñas, asimétricas o disparejas, para que representen a las plaquetas. La proporción debe ser de aproximadamente 1.000 glóbulos rojos por cadaglóbulo blanco y por cada 100 plaquetas. No es necesario que las cuente, simplemente haga un estimado de esta proporción.

5. Mezcle las "células" y el "plasma" en un recipiente de vidrio transparente, para mostrar a los estudiantes que la suspensión se ve roja.

6. Luego vierta la mezcla en un cilindro graduado de vidrio o plástico transparente de 100 mL.7. A medida que las cuentas se asientan, señale que las células de la sangre están suspendidas en el plasma.8. Cuando todas las cuentas se hayan asentado, comente lo que es el hematocrito y de qué manera esta medida del volumen

de células en la sangre se usa en medicina (vea la información para el maestro más adelante).

MEZCLADO ASENTADO

La sangre es una mezcla

Nota:Puede hacer esta demostración amayor escala, usando un cilindrograduado de 1 L, para hacerlo visiblepara una clase grande. O, si quierealgo más representativo, puede usaruna jeringa grande de 60cc en lugardel cilindro graduado.

PAR

TE

1

4

L A B O R A T O R I O

Guía para el maestro: Hematocrito saludable

Resumen de laactividadLos estudiantesmedirán el hematocritode la sangre de unpaciente centrifugandouna muestra de sangre.La sangre se simula concristales de azúcar concolorante rojo,suspendidos en aceitevegetal. Esta sangresimulada puede sercentrifugada o dejarseasentar. El estudianteentonces determina elhematocrito midiendocon una regla elporcentaje del total dela muestra de "sangre"que conforman lascélulas acumuladas enel fondo.

Información para el maestro sobre anemia y hematocritoPara medir qué proporción de la sangre está conformada por los glóbulos rojos, se coloca unagota de sangre en un pequeñísimo tubo capilar con un extremo tapado. El tubo es centrifugado,y el porcentaje de glóbulos rojos puede apreciarse fácilmente porque éstos se asientan en elfondo, dejando el plasma amarillento y los glóbulos blancos y las plaquetas en la parte superiordel tubo. Un valor de hematocrito normal está entre un 37-45 por ciento de glóbulos rojos.

Si el hematocrito es demasiado bajo, la persona puede estar anémica. La palabra anemia significa"falta de sangre". La anemia es una señal de muchos trastornos, no una enfermedad por sí misma.Una persona puede tener anemia si:

·· Su médula ósea no produce suficientes glóbulos rojos debido a una enfermedad, a untratamiento con radiación o a toxinas; o a mala alimentación o desnutrición

·· Está mal alimentada o desnutrida;·· Sus glóbulos rojos no sobreviven durante un período de tiempo normal; o ·· Ha perdido sangre.

Los riñones producen la hormona eritropoyetina, que es la encargada de estimular laproducción de glóbulos rojos en la médula ósea. Actualmente existe la eritropoyetina humanasintetizada en laboratorio, que se usa para aquellos pacientes cuya médula ósea ha resultadotemporalmente dañada por la quimioterapia o en la insuficiencia renal por cualquier causa.

Desafortunadamente, algunos corredores de larga distancia abusan de la eritropoyetina sintéticapara aumentar artificialmente el número de glóbulos rojos presentes en su sangre, de modo queéstos puedan transportar más oxígeno a sus músculos. Actualmente se hacen pruebas rutinariasdel hematocrito de los atletas, para determinar si están alterando su sangre mediante el uso deeritropoyetina sintética. Es sospechoso un hematocrito de más del 50 por ciento. Esta prácticano sólo no es ética, y contra las reglas deportivas, sino que además es peligrosa. Si la sangre seespesa debido a un exceso de glóbulos rojos, puede no desplazarse con fluidez y formarcoágulos.

Día anterior al experimento de laboratorio:1. Compre tres envases de cristales de azúcar con colorante rojo por clase, en cualquier

tienda de alimentos. Generalmente se encuentra en la sección de productos para decoración de pasteles. Puede encontrar recipientes más grandes que los que se venden enlas secciones de decoración de pasteles en una tienda de artículos para artesanías.

2. Compre una botella de aceite comestible.

Día del experimento de laboratorio o día anterior:1. Mezcle una partida de "sangre", agregando 40 por ciento de cristales de azúcar coloreada

por volumen de aceite (use un aceite de color amarillento pálido para simular el plasma).2. Haga la mezcla justo antes de verterla en vasos plásticos transparentes o en recipientes de

laboratorio en las mesas.3. Puede mezclar diferentes partidas de "sangre", para representar a diferentes "pacientes".

Algunas de las muestras pueden contener menos del 40 por ciento de cristales de azúcarpor volumen de aceite, otras pueden estar por encima del 40 por ciento, y unas pocas pueden estar alrededor del 50 por ciento. Recuerde que el porcentaje está basado en el volumen total. Para hacer una muestra con un hematocrito de un 40 por ciento, siga la receta de la página siguiente.

© 2005 Todos los derechos reservados. America’s Blood Centers.

PAR

TE

1

5© 2005 Todos los derechos reservados. America’s Blood Centers.

Receta de sangre simulada con nivel normal de hematocrito

1. Mida 40 mL de cristales de azúcar en un cilindro graduado seco.

2. Vierta los cristales en un vaso de laboratorio de 150 mL.

3. Agregue aceite, a la vez que revuelve.

Si tiene acceso a una centrifugadora de mesa:

Si va a pedir a los estudiantes que centrifuguen las muestras, quizás quiera moler el azúcar

en cristales más pequeños con un mortero, para que la mezcla no se asiente rápidamente

por sí misma y tenga un aspecto más homogéneo al comenzar el experimento. Los

cristales más pequeños también harán que la mezcla parezca más realista, porque no se

verán partículas grandes adheridas a las paredes del tubo de ensayo.

Si no dispone de una centrifugadora:

Haga el símil de sangre con los cristales enteros. Cuando los estudiantes viertan la

muestra en sus tubos de ensayo, los cristales (glóbulos) se asentarán en 5-10 minutos.

Medición del hematocrito

Los estudiantes pueden usar una regla para medir la altura que alcanza la sangre en el

tubo de ensayo, y luego medir la altura a la que llegan las células. Usen la fórmula siguiente

para determinar el hematocrito.

(Nivel de los glóbulos en cm/Nivel total de la sangre en cm) X 100 = porcentaje de

células por volumen de sangre = hematocrito

Nota: Si usan tubos de ensayo con graduación volumétrica, la regla no es necesaria.

Respuestas a las preguntas de la hoja de trabajo

1. Se necesita hierro para producir hemoglobina. La hemoglobina transporta oxígeno.

2. La respuesta es C.Tanto el caso A (no tiene suficiente hemoglobina) como el B (no

tiene suficientes glóbulos rojos), harían que la persona se sintiera cansada y débil.

3. Los glóbulos rojos son más que los blancos, en una proporción de 1.000 a 1.

4. Los glóbulos rojos fluirían fuera de la herida, y serían aglomerados por las plaquetas

y la fibrina. Las plaquetas cerrarían la herida haciéndose pegajosas y activando el

proceso de producción de la fibrina. Los glóbulos blancos atacarían a las bacterias y

eliminarían los desechos.

5. Una persona puede quedar anémica si no ingiere suficiente hierro o si pierde sangre.

6. Las transfusiones y los suplementos de hierro son dos tratamientos para la anemia.

7. Una transfusión sería apropiada para una víctima de un accidente.

8. El centro de sangre se asegurará de que los donantes tengan un contenido suficiente

de hierro en la sangre en el momento de la donación. Los donantes deben beber

abundante agua antes de la donación, para asegurarse de que la lectura de sus niveles

de hematocrito sea la correcta.

PAR

TE

2

© 2005 Todos los derechos reservados. America’s Blood Centers.6

Plan de la lecciónTiempo estimado: 1-2 períodos de clase

·· Muestre el primer segmento del video Mi Sangre,Tu Sangre

·· Demostración: Forma de los glóbulos rojos,interacciones entre glóbulos blancos y anticuerpos (20 minutos)

·· Use las diapositivas 1-3, 9-11 ·· Los estudiantes leen las hojas de trabajo y responden

a las preguntas (15 minutos en clase o como tarea)·· Actividad de laboratorio:A la caza de células

Demostración: Forma y función de las células de la sangreA. Forma de los glóbulos rojos

1. Infle un globo rojo y átelo.2. Presione en lados opuestos del globo con los puños.3. Explique que ésa es la forma de los glóbulos rojos, que

son, fundamentalmente, bolsas llenas de hemoglobina.Debido a los lados cóncavos, estas células tienen más cantidad de hemoglobina cerca de la superficie que la que tendrían si fueran esféricas (en una esfera, mucha de la hemoglobinaestaría en el centro, alejada de la membrana celular). Las plaquetas, por otro lado, tienen forma irregular para ofrecer una mayor superficie de adherencia cuando se unen a las paredes de los vasos sanguíneos para formar coágulos.

B. Funciones de los monocitos y los anticuerposÉsta es una actividad divertida, que proporciona a losestudiantes una imagen visual del trabajo conjunto querealizan los monocitos y los anticuerpos al capturarmicroorganismos y virus.

1. Dé a cada estudiante un plato pequeño conteniendo algunas cucharadas de copos de cereal de arroz.

2. Diga a los estudiantes que ellos representarán el papel de monocitos (las células blancas que se tragan a los invasores y que maduran hasta convertirse en macrófagos, o "grandes tragadores"). Los estudiantes se lamerán un dedo, recogerán los copos de cereal dearroz uno a uno y se los comerán. Déles 30 segundosy vean cuántos pueden comerse de esta manera.

3. Explique que los anticuerpos son como un pegamento muy específico, y se pegan a los microorganismos, aglomerándolos unos con otros.

4. Reparta golosinas de barras de cereal de arroz y malvavisco. Pregunte a los estudiantes qué representala masa de malvavisco.Ahora, ¿cuántos copos de cereal de arroz se puede comer el monocito cada vez? Puede pedirles que estimen cuántos copos hay en cada golosina.

Macrófago, teñido de azul, y monocito, teñido de rosa, atacando bacterias de E. coli.© Dennis Kunkel, Ph.D.

Glóbulos rojos, linfocitos T (en verde), monocitos (en dorado) y plaquetas.© Dennis Kunkel, Ph.D.

P L A N D E L A L E C C I Ó NForma y función de las células de la sangre

PAR

TE

2

Guía para el maestro:A la caza de células

7© 2005 Todos los derechos reservados. America’s Blood Centers.

L A B O R A T O R I O

Resumen de la actividadLos estudiantes observarán la forma y la relativaabundancia de los glóbulos rojos, los glóbulosblancos y las plaquetas.

Una semana o más antes del experimento de

laboratorio:

Compre o reúna frotis preparados o muestras de sangre humana

teñida con tintura de Wright.Necesitará un frotis por cada grupo

de estudiantes.

Nota sobre seguridad: No existe riesgo de contaminarse

con patógenos transmitidos por la sangre, ya que la muestra

está cubierta y pegada al vidrio protector del portaobjetos.

Sugerencia sobre organización de la clase: Se les debe

dar a los estudiantes una descripción de los tipos de células

que tienen que encontrar. Una vez que encuentran una, usted

puede verificar que hayan localizado la célula correcta, antes

de que la marquen en sus listas. Cuando un estudiante haya encontrado todas las células, puede darle una "certificación", para que le

ayude a usted a verificar las células que encuentran los demás.

Respuestas a las preguntas de la hoja de trabajo

1. Los granulocitos y los monocitos se tragan a las bacterias. Los linfocitos producen anticuerpos, los cuales aglomeran a las bacterias

y facilitan que los fagocitos las destruyan.

2. Las transfusiones de plasma, o de factores sanguíneos extraídos del plasma, han ayudado a extender la vida de los hemofílicos al

devolverle a su sangre la capacidad de formar coágulos.

3. La sangre puede separarse. Es posible darle plaquetas a un paciente, proteínas plasmáticas a otro y glóbulos rojos a un tercero.

Respuestas a las preguntas de laboratorio

1. La tabla se debe completar con la función apropiada de cada tipo de célula de la sangre.

2. Los glóbulos rojos son flexibles y de superficie lisa, lo que les permite maniobrar incluso dentro de los minúsculos vasos capilares.

Además, debido a sus costados cóncavos, más hemoglobina está cerca de la superficie del glóbulo (si fueran esféricos, buena parte

de la hemoglobina estaría en el centro, alejada de la membrana celular).

3. Las plaquetas tienen formas irregulares, que les proporcionan una mayor superficie de adherencia cuando tienen que pegarse a

las paredes de los vasos sanguíneos.

4. Los glóbulos rojos deben ser los más abundantes.

5. Los linfocitos son, por lo general, los más difíciles de encontrar.

Dos macrófagos envolviendo a la bacteria de E. coli (en verde) en los pulmones.© Dennis Kunkel, Ph.D.

© 2005 Todos los derechos reservados. America’s Blood Centers.8

PAR

TE

3

P L A N D E L A L E C C I Ó N

Arterias, capilares y venas:Los caminos que recorre la sangre

Plan de la lección

Tiempo estimado: 1-2 períodos de clase

·· Muestre el segmento del video Mi Sangre,Tu Sangre sobre vasos sanguíneos y transporte del oxígeno

·· Los estudiantes leen las hojas de trabajo y responden a las preguntas (15 minutos)

·· Use las diapositivas 1-11

·· Demostración: Quemar un cacahuate o maní (5-10 minutos)

·· Actividad de laboratorio: El vaso misterioso (30 minutos)

Demostración:

Arterias, capilares y venas: Los caminos que recorre la sangre

Objetivo: Demostrar qué necesitan las células del cuerpo para sobrevivir y tener energía.

1. Doble un clip para papeles de manera que forme un soporte similar a un trípode.

2. Inserte medio cacahuate o maní en la punta.

3. Pregunte a los estudiantes qué es lo que proporciona energía a las células de su

cuerpo. La mayoría responderá "la comida", algunos dirán "el oxígeno".

4. Queme la mitad de un cacahuate o de un pequeño malvavisco para demostrar la

energía que está almacenada en los alimentos. La mayoría de los estudiantes

comprenden que una llama contiene energía (energía calorífica y lumínica).

5. A medida que el alimento se quema, explique que en nuestras células se produce una

serie de reacciones químicas para liberar, de manera controlada, la energía contenida

en los alimentos. Pero, ¿qué más, aparte del alimento, se necesita para producir

energía?

6. Coloque un frasco de vidrio encima del cacahuate ardiendo. Cuando la llama se

apague, pregunte a los estudiantes por qué se apagó. La mayoría de los estudiantes

sabrán que la llama agotó el oxígeno.Al igual que para la energía liberada cuando algo

se quema, para nuestra producción celular de energía son necesarios el alimento y el

oxígeno. ¿Cómo nuestras células obtienen alimento y oxígeno? ¡La sangre los

transporta a cada célula de nuestro cuerpo! El intercambio de oxígeno y moléculas

de alimentos se produce en los capilares.

9© 2005 Todos los derechos reservados. America’s Blood Centers.

Resumen de la actividadPara identificar los diferentesvasos sanguíneos, losestudiantes deberán aplicar lainformación dada en la hoja detrabajo Arterias, capilares yvenas: Los caminos que recorre lasangre.

Una semana o más antes delexperimento de laboratorio:1. Compre o reúna frotis

preparados de secciones transversales de arterias y venas.

Día anterior al experimentode laboratorio:2. Cubra la etiqueta de cada

portaobjetos con un cuadrado de papel blanco y fíjelo con cinta adhesiva.Ponga a uno de los frotis el número 1, y al otro el número 2.

Información para el maestro sobre vasos sanguíneos

Sugerencia sobre organización de la clase: Si no hay suficientes frotis para que cada grupo de estudiantes tenga un par, cada

grupo puede identificar sólo uno, y luego reunirse con otros grupos y ver si lo que identificaron concuerda. Esta colaboración puede

resultar ser una buena manera de que los estudiantes comuniquen sus hallazgos a sus compañeros.

Respuestas a las preguntas de la hoja de trabajo

1. Las arterias deben tener la capa muscular más gruesa.

2. Las venas tienen las paredes más delgadas, ya que no deben estirarse ni contraerse.

3. Los movimientos corporales (principalmente los de las piernas) ayudan al traslado de la sangre desde los pies hasta el corazón.

Gran parte del trabajo es realizado por la presión creada al otro extremo de los capilares: el movimiento producido por los

latidos del corazón. Obviamente, si una persona no se mueve, la sangre de todos modos viaja desde los pies hasta el corazón.

Pero el movimiento puede ser muy importante. Las personas que permanecen muchas horas sentadas durante viajes en avión

pueden desarrollar un enlentecimiento de la circulación o coágulos en las venas de los pies y las piernas; por esto muchos

doctores recomiendan que se hagan ejercicios o levantarse y caminar una vez por hora cuando se realiza un largo viaje en avión.

Respuestas a las preguntas de laboratorio

1. El diámetro de las arterias cambiaría.

2. Las arterias se harían más grandes (se dilatarían) para disminuir la presión sanguínea.

CAPILAR

ARTERIA

VENA

L A B O R A T O R I OGuía para el maestro: El vaso misterioso

PAR

TE

3

© 2005 Todos los derechos reservados. America’s Blood Centers.10

PAR

TE

4

P L A N D E L A L E C C I Ó N

Intercambio de oxígeno y dióxido de carbono

Plan de la lección

Tiempo estimado: 1-2 períodos estándar de clase

·· Muestre el segmento del video Mi Sangre,Tu Sangre sobre intercambio de oxígeno y dióxido de carbono (Comience 08:25;

Termine 12:30)

·· Los estudiantes leen y completan la hoja de trabajo (10-15 minutos)

·· Diapositivas 9-11

·· Demostración:Transferencia del oxígeno en los alvéolos (15 minutos)

·· Laboratorio: Dióxido de carbono burbujeante (30 minutos)

Demostración:

Intercambio de oxígeno y dióxido de carbono

Objetivo: Esta demostración da a los estudiantes una imagen visual de la transferencia de oxígeno desde los alvéolos hacia la sangre

circundante.

1. Llene una bolsa de plástico barata para sándwiches, que tenga cierre en la parte de arriba, con una solución de bicarbonato de

sodio y agua (aproximadamente 2 cucharadas soperas de bicarbonato de sodio cada 200 mililitros de agua).

2. Para conseguir resultados más rápidos haga un pequeño agujero en la bolsa con una aguja fina. Si no se hace el agujero, la difusión,

o transferencia, del bicarbonato hacia el agua va a producirse a través del plástico semipermeable, pero va a demorar varias horas

y por lo tanto los resultados no van a ser visibles hasta el día siguiente.

Nota: No les diga a los estudiantes que hay bicarbonato en los alvéolos ya que esto los confundiría, dado que ellos recién

aprendieron el rol del bicarbonato en la sangre.

3. Los alvéolos (la bolsa de plástico con el bicarbonato de sodio) se colocan en un recipiente transparente que contiene una solución

de agua, rojo del Congo y vinagre (la receta se muestra abajo). Cuando el bicarbonato de sodio se difunde en el recipiente, la

solución violeta-rojiza se torna de un rojo brillante, simulando el cambio de color que se produce cuando la hemoglobina se oxigena.

Receta para la solución de rojo del Congo

1. Llene 2/3 del recipiente con agua

2. Agregue la cantidad necesaria de rojo del Congo para lograr una solución de color rojo vivo, pero transparente. Esto va a requerir

sólo una pequeña cantidad de polvo. Mezcle bien.

3. Agregue vinagre gota a gota a la solución a la vez que mezcla, hasta que ésta se torne violácea.

11© 2005 Todos los derechos reservados. America’s Blood Centers.

Resumen de la actividadLos estudiantes verán que se exhalamás dióxido de carbono luego de hacerejercicio.

Unas semanas antes del experimentode laboratorio:Consiga u ordene solución indicadora opolvo de azul de bromtimol.

Un día o más antes del laboratorio:Compre un popote o pajita, un globogrande y una taza de plásticotransparente para cada estudiante.

Día del laboratorio:Prepare una solución de azul debromtimol diluido.1. En 1 litro de agua agregue la

cantidad necesaria de azul de bromtimol para obtener un color azul vivo o verde (dependiendo del pH de su agua).

2. Si la solución de arriba es azul, está listo. Si es verde, debe agregarle la cantidad necesaria de blanqueador de cloro o amoníaco, gota a gota,hasta que la solución se torne azul.Puede ser que esto se logre con unasola gota.

3. Divida la solución en varios recipientes pequeños, que serán colocados en diferentes lugares del salón.

Guía para el maestro:Dióxido de carbono burbujeante

Repuestas a las preguntas de la hoja de trabajo

1. La hemoglobina puede ligarse al dióxido de carbono.Además, en los

glóbulos rojos hay una enzima que convierte el dióxido de carbono en

bicarbonato, el cual puede ser almacenado en el plasma.

2. Las células del cuerpo necesitan alimento y oxígeno.

L A B O R A T O R I O

© 2005 Todos los derechos reservados. America’s Blood Centers.12

PAR

TE

5

P L A N D E L A L E C C I Ó N

Ciclo cardiaco

Plan de la lecciónTiempo estimado: 2 períodos estándar de clase

·· Muestre el final del primer segmento del video Mi Sangre,Tu Sangre ·· Los estudiantes leen la hoja de trabajo y contestan las preguntas (20 minutos)·· Use las diapositivas 4-8·· Laboratorio: El latido del corazón (30 minutos)

Guía para el maestro: El latido del corazónResumen de la actividadLos estudiantes medirán su pulso y escucharán con estetoscopios los latidos de su corazón. Despuésdeterminarán su ritmo cardiaco y lo compararán con su pulso para hacer una conexión entre el pulso y lascontracciones del corazón.

Nota: Este experimento de laboratorio debe ser realizado con un juego de estetoscopios de la clase o conestetoscopios prestados por un centro de sangre o clínica de su localidad. También se puede hacer conestetoscopios caseros. Se puede unir un pequeño embudo a un trozo de tubo de goma para que el estudianteescuche el latido de su propio corazón colocando el lado ancho del embudo contra su pecho. Se pueden colocartubos de cartón de rollos de toallas de papel sobre el pecho de otra persona para escuchar los latidos de sucorazón. Si decide hacer esto, tenga en cuenta que las chicas prefieren tener compañeras de trabajo de sumismo sexo.

Si está usando estetoscopios, desinfecte los auriculares con un algodón embebido en alcohol.

Esta actividad se facilita con el uso de cronómetros, pero éstos no son imprescindibles para realizarla.

Respuestas a las preguntas de la hoja de trabajo1. Debido a que los músculos están trabajando más, el corazón tiene que bombear la sangre más rápidamente para que más oxígeno

y alimento (azúcar, etc.) puedan llegar a las células, y para que el producto de desecho, el dióxido de carbono, pueda ser liberadode los pulmones.

2. Los músculos que están más adelante que el coágulo resultan perjudicados, y pueden morir si la circulación en la zona no se restablece rápidamente.

Segunda sección3. Sientes una pulsación cuando el corazón está impulsando la sangre hacia las arterias.4. Sí, cada vez que tu corazón se contrae, tú deberías sentir una pulsación.

Respuestas a las preguntas de laboratorio1. No, pero están cerca.2. Nosotros solamente medimos nuestro ritmo cardiaco y nuestro pulso durante seis segundos, por lo tanto ésta no es una

medición muy exacta.3. Es más fácil y más conveniente medir el pulso.

L A B O R A T O R I O

PAR

TE

6

13© 2005 Todos los derechos reservados. America’s Blood Centers.

P L A N D E L A L E C C I Ó N

Plan de la lección

·· Muestre el segmento del video Mi Sangre,Tu Sangre sobre tipos de sangre y donación de sangre

·· Diapositiva 12

·· Los estudiantes leen la hoja de trabajo y contestan las preguntas.

·· Laboratorio: Una decisión importantísima (30-40 minutos)

Una decisión importantísima: Guía de laboratorio para el maestro

Objetivo: Los estudiantes aprenden a clasificar la sange en diferentes grupos y tipos y la importancia de la donación de sangre.

Dos semanas antes del laboratorio:

Ordene un kit de tipo de símil de sangre a una compañía de suministros biológicos.

Un día o más antes del laboratorio:

Coloque diferentes tipos de símil de sangre en tubos de micro centrífuga. Use el diagrama de abajo para crear las muestras.

Los diferentes grupos de sangre

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

A-

O-

O+

O+

B+

B+

A+

A-

O+

O+

A+

AB+

A-

B+

O+

O-

O+

A-

B+

O+

A-, O-

O-

O+, O-

O+, O-

B+, B-, O+, O-

B+, B-, O+, O-

A+,A-, O+, O-

A-, O-

O-,O+

O-, O+

A-,A+, O-, O+

AB+,AB-, O+, O-, B+, B-,A+,A-

A-,O-

B+, B-,O-,O+

O+, O-

O-

O+, O-

A-, O-

B+, B-, O+, O-

O+, O-

A-

O-

O+

O-

B+

B+

A+

A-

O+

O+

A-

A+

O-

B-

O+

O-

O+

O-

B-

O+

O-

5 unidades

O+

6 unidades

A+

3 unidades

A-

2 unidades

B+

2 unidades

B-

2 unidades

NÚMERODELPACIENTE

GRUPOSANGUÍNEO

GRUPO SANGUÍNEO QUE EL PACIENTE PUEDEACEPTAR

SANGRERECOMENDADA PARALA TRANSFUSIÓN(una solución para elproblema—hay otrassoluciones posibles)

SANGRE DISPONIBLE

Respuestas a las preguntas de la hoja de trabajo

2. El grupo sanguíneo O Rh negativo es donante de sangre universal.

3. Los pacientes con grupo sanguíneo AB Rh positivo pueden recibir sangre de cualquier grupo o factor.

4. Sí, una persona con sangre B Rh positivo puede recibir sangre O Rh negativo.

5. No, las personas que son Rh-negativo producen anticuerpos anti Rh.

Los diferentes tipos de sangre

© 2005 Todos los derechos reservados. America’s Blood Centers.14

PAR

TE

6

P L A N D E L A L E C C I Ó N ( c o n t i n u a c i ó n )

DONANTE A B AB O

A

B

AB

O

RECEPTOR

☺ ☺

☺ ☺☺☺

DONANTE NEGATIVO (-) POSITIVO (+)

NEGATIVO (-)

POSITIVO (+)

RECEPTOR

☺ ☺

Distribución de tipos desangre en Estados Unidos

45%

40%

11%

4%

PAR

TE

6

15© 2005 Todos los derechos reservados. America’s Blood Centers.

P L A N D E L A L E C C I Ó N

Respuestas a las preguntas de laboratorio

1. El grupo de sangre O Rh negativo es muy apreciado porque se le puede suministrar a cualquier paciente.

2. Nunca se sabe cuánta sangre se va a necesitar o qué grupo y factor se va a necesitar.

3. Sí, había suficiente sangre para los accidentados, pero si los grupos de sangre hubieran sido diferentes podría haberse presentado

una situación crítica. Por ejemplo, si hubiera más pacientes con sangre O Rh negativo, no habría suficiente sangre O Rh negativo

para sus transfusiones.

4. Dar fluidos por vía intravenosa a los pacientes y enviarlos por helicóptero a otra institución, o traer en helicóptero sangre desde

otro hospital.

5. Debería estar basado en la necesidad; a quien esté más gravemente herido y tenga posibilidades de recuperarse se le debería

dar prioridad.

6. Organizar una campaña de donación de sangre, donar dinero a un centro de sangre, donar sangre habitualmente, alentar a otros

a donar sangre.

PAR

TE

7

© 2005 Todos los derechos reservados. America’s Blood Centers.16

C ó m o o r g a n i z a r u n a c a m p a ñ a d e d o n a c i ó n d e s a n g re e n l a e s c u e l a

Sus estudiantes han aprendido lo importante que es la sangre y la donación de sangre para salvar vidas. Organizar una campaña de

donación de sangre en la escuela es una maravillosa oportunidad para aquellos estudiantes que anhelan lograr un cambio positivo para

su comunidad.

Delegar las tareas involucradas en una exitosa campaña de donación de sangre no sólo hace el trabajo más fácil, también fomenta el

trabajo de equipo y le da a más personas la oportunidad de involucrarse. Cree un comité nombrando a cuatro estudiantes

responsables. Estos estudiantes a su vez nombran a otros estudiantes para que les ayuden.Visite www.MiSangreTuSangre.org para

conseguir muestras y ejemplos de cartas y otros documentos útiles.

Comité de la campaña de donación de sangre

Asesor/a de la escuela (¡Usted!)

Puestos de los estudiantes

Coordinador/a de la campaña

Director/a de reclutamiento de donantes

Director/a de promoción

Director/a de preparación del local

Responsabilidades de cada miembro del comité de la campaña

Asesor de la escuela

·· Elije a los líderes estudiantiles.

·· Contacta a America's Blood Centers al 1-888-872-5663 o www.AmericasBlood.org para averiguar cómo ubicar el centro

de sangre comunitario de su localidad.

·· Se reúne con representantes del centro de sangre local y con los directores de la escuela para fijar una fecha para la campaña.

·· Fija reuniones con el comité de la campaña.

·· Controla el progreso de los líderes estudiantiles.

Coordinador/a de la campaña

·· Contacta a padres, maestros y empleados de la escuela y les solicita que donen sangre.

·· Hace anuncios a los estudiantes antes de la semana de colecta de los nombres de los interesados y también antes de la colecta

de sangre como un recordatorio.

·· Se asegura de que todos los directores cumplan con sus responsabilidades.

Ser parte de la solución:

PAR

TE

7

17© 2005 Todos los derechos reservados. America’s Blood Centers.

C ó m o o r g a n i z a r u n a c a m p a ñ a d e d o n a c i ó n d e s a n g re e n l a e s c u e l a

Director/a de reclutamiento de donantes

·· Forma un equipo de estudiantes que reclutarán estudiantes donantes. Este equipo debe conocer la importancia de la donación

de sangre, estar familiarizado con las razones más comunes por las cuales la gente no dona sangre y entender quién puede

donar sangre.

·· Cuando un estudiante se ofrezca voluntariamente para donar sangre, ellos deben hacer una cita para que done sangre durante la

campaña. Deben conseguir el número de teléfono de la casa del estudiante para poder contactarle el día antes y recordarle su cita.

·· El centro de sangre les proveerá las tarjetas de citas para ese propósito.

Director/a de promoción

·· Promover y publicitar la campaña de donación de sangre a través de afiches, publicaciones escolares y anuncios.

·· Los centros de sangre comunitarios les proporcionarán afiches impresos con la fecha e información de su campaña de donación

de sangre. Averigüen dónde pueden colocar esos afiches en su escuela. Consigan permiso del director de su escuela antes de

colgar carteles o de entregar volantes.

·· Averiguar la fecha límite para publicar un artículo en el periódico de la escuela. El centro de sangre les dará testimonios personales

de personas que salvaron su vida gracias a una donación de sangre. Entretejan los hechos de esos testimonios con datos sobre

la donación de sangre, disipando los mitos comunes, una lista de los cuales también le puede proveer el centro de sangre de su

comunidad. Si es posible, incluyan también testimonios de los donantes.

·· Coordinar con el director o directora de su escuela y con el centro de sangre para ver si se puede hacer una asamblea para

incrementar la conciencia de todo el cuerpo de estudiantes acerca de la necesidad de donaciones de sangre.

·· Alentar a la asociación de padres a involucrarse y pedir a los padres que donen sangre durante la campaña.

·· Trabajando en grupo, intercambien ideas sobre maneras de alentar a los amigos que estén en edad de donar sangre. Sin embargo,

sean concientes de que existen muchas razones por las que un individuo puede no ser capaz de donar sangre (medicación,

enfermedades, comportamientos de riesgo, etc.) y algunas de esas razones son muy personales. Se debe reconocer que si alguien

elige no donar, no debería ser coercido ni presionado para donar porque eso podría comprometer la seguridad del

abastecimiento de sangre y porque donar sangre es una decisión personal que debe ser respetada. Los individuos que no pueden

o no quieren donar pueden contribuir a la campaña en muchas otras maneras: educando a otros acerca de la necesidad,

entregando volantes, haciendo citas para los donantes, etc.

·· Pregunten a sus maestros si se puede hacer un anuncio sobre de la campaña de la sangre antes de sus clases o a través del sistema

de parlantes de la escuela. Personalicen el anuncio: incluyan lo que han aprendido acerca de la importancia de la donación de

sangre. Si es posible, usen segmentos del video Mi Sangre,Tu Sangre para agregar una cara humana a la necesidad de sangre.

Director/a de preparación del local

·· Asegurarse de que el área que será usada para la campaña de donación de sangre esté preparada.

·· Hacer arreglos para que el estacionamiento para el vehículo del centro de sangre esté cerca de la entrada.

·· Asegurarse que el área que será usada esté a una temperatura confortable (con calefacción o aire acondicionado si es necesario).

·· Conseguir una mesa y varias sillas.

© 2005 Todos los derechos reservados. America’s Blood Centers.18

Hoja de trabajo: La sangre es una mezcla

Nombre: ________________________________________________

¿Qué le da su color rojo a la sangre?La sangre contiene células llamadas eritrocitos, o glóbulos rojos. Los glóbulos rojos están llenos de una molécula de proteína llamadahemoglobina. El radical heme de la hemoglobina es de color rojo. Cada molécula de hemoglobina contiene cuatro átomos de hierro.Estos átomos de hierro se ligan a moléculas de oxígeno, y de esta manera la sangre transporta oxígeno desde los pulmones haciatodas las células del cuerpo. Cada glóbulo rojo contiene millones de moléculas de hemoglobina, y cada gota de sangre contienemillones de glóbulos rojos.

Algo más que glóbulos rojosPero en la sangre hay mucho más que glóbulos rojos. Hay otros dos tipos de células en la sangre, los glóbulos blancos (leucocitos) ylas plaquetas (trombocitos). Los glóbulos rojos superan en número a los glóbulos blancos en una proporción de 1.000:1. Los glóbulosblancos son una parte importante de nuestro sistema inmunológico: combaten las infecciones causadas por bacterias y virus. Lasplaquetas, también llamadas trombocitos, son las responsables de crear un coágulo, o trombo, para detener el sangrado cuando seproduce una herida.

Los glóbulos rojos, los glóbulos blancos y las plaquetas flotan suspendidos en un líquido amarillento llamado plasma. El plasma no essolamente agua, sino que contiene importantes proteínas, hormonas y sales. Los glóbulos rojos viven solamente cuatro meses, sinembargo, la médula ósea está constantemente produciendo nuevas células. Como escuchaste en el video, tu medula ósea ¡produceentre 4 y 5 mil millones de glóbulos rojos por hora! Los glóbulos rojos conforman entre el 40 y el 45 por ciento del volumen de tusangre.

¿Cuáles son las causas de la anemia?Para que el cuerpo produzca hemoglobina, es necesario ingerir suficientes cantidades de proteína, hierro y ciertas vitaminas. Entre lascausas de la anemia se incluyen una dieta pobre en hierro y ciertas enfermedades crónicas.

A veces, la causa de la anemia es que la medula ósea no está produciendo suficientes glóbulos rojos. Esto puede ser causado por losefectos de tratamientos para el cáncer, radiación, toxinas o mal funcionamiento de los riñones, así como por deficiencia de hierro. Losriñones sanos producen una hormona llamada eritropoyetina, que estimula la médula ósea para que produzca glóbulos rojos.

La anemia también puede ser causada por la pérdida de mucha sangre. Las mujeres que tienen un período menstrual muy abundanteo las personas que han perdido mucha sangre debido a una herida o cirugía pueden contraer anemia.

¿Cómo pueden recuperarse las personas que tienen un conteo bajo de glóbulos rojos?Si una herida o cirugía ha causado una pérdida de sangre, una transfusión corregirá el problema de inmediato. Un tratamiento comúnpara una anemia leve es tomar un suplemento de hierro en forma de píldoras o infusiones. La anemia crónica es tratada identificandosu causa y eliminándola.

Una transfusión puede dar alivio a los pacientes mientras esperan que se haga el diagnóstico apropiado. Dependiendo de cuál sea lacausa subyacente de la anemia, otros tratamientos pueden corregir el problema de modo que no sean necesarias más transfusiones.

¿El donar sangre puede causar anemia al donante? La respuesta es generalmente no. Antes de donar sangre, se mide el hematocrito del posible donante. Solamente aquellos que tenganniveles saludables de hematocrito podrán donar sangre. En una persona sana, los glóbulos rojos que se pierden en una donación desangre son rápidamente reemplazados en un plazo de aproximadamente cuatro a seis semanas.

19© 2005 Todos los derechos reservados. America’s Blood Centers.

Preguntas

Nombre: ________________________________________________

1. ¿Por qué es importante que tu dieta incluya suficiente hierro?

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

2. Sin oxígeno, nuestras células no pueden funcionar. ¿Cuál de las siguientes podría ser la explicación de que una persona se

sienta débil?

a. No tiene suficiente hemoglobina.

b. No tiene suficientes glóbulos rojos.

c. Tanto a como b pueden hacer que una persona se sienta cansada y débil.

3. ¿Qué tipo de célula de la sangre es mucho más numerosa que las demás?

___________________________________________________________________________________________________

___________________________________________________________________________________________________

4. Supón que te caes y te raspas la rodilla, describe qué hace cada tipo de célula de la sangre en el lugar de la herida.

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

5. ¿De qué dos maneras un paciente puede contraer anemia?

___________________________________________________________________________________________________

___________________________________________________________________________________________________

6. Menciona dos tratamientos para la anemia.

___________________________________________________________________________________________________

___________________________________________________________________________________________________

7. ¿Qué tratamiento sería más apropiado para una víctima de accidente de tráfico que haya perdido mucha sangre?

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

8. ¿Qué le dirías a alguien que no está seguro de si puede donar sangre porque piensa que podría ser anémico?

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

Nombre: ________________________________________________

Objetivo: Medir el porcentaje de glóbulos rojos por volumen en una muestra de sangre simulada para determinar el hematocrito.

Una vez que hayas medido el hematocrito de tu "paciente", puedes determinar si la persona

tiene un hematocrito bajo, normal o si es policitémica (tiene demasiados glóbulos rojos).

Materiales

tubo de ensayo

muestra de sangre simulada

centrifugadora (opcional)

regla en sistema métrico

marcador

Procedimiento

1. Obtén una muestra de sangre simulada.

2. Mézclala con una varilla mezcladora y llena con la muestra 2/3 de un tubo de ensayo.

3. Si hay una centrifugadora disponible, marca el tubo de ensayo con tus iniciales y ponlo

en la centrifugadora, opuesto a otro tubo de ensayo (la centrifugadora tiene que estar

equilibrada; todo tubo de ensayo debe tener otro en el lado opuesto). Centrifuga

durante tres minutos.

4. Si no dispones de una centrifugadora, deja que las células de tu muestra se asienten

durante 10 minutos.

5. Con la graduación en centímetros de la regla, toma la medida desde el fondo del tubo

de ensayo hasta la parte superior de tu muestra de sangre. Anota la medida aquí:

Altura total de la sangre en el tubo _______ cm

6. Ahora mide la altura de la capa de células, partiendo también del fondo del tubo de ensayo. Anota la medida aquí:

Altura de las células de la sangre ________ cm

7. Para determinar el hematocrito (el cual es simplemente el porcentaje del volumen de sangre que está formado por células),

divide la altura de las células por la altura total de la sangre en el tubo y multiplica el cociente por 100:

Altura de las células en cm / altura total de la sangre en el tubo = hematocrito

Hematocrito del "paciente" ____________________

Compara tus resultados con la siguiente tabla para diagnosticar a tu paciente:

38–50 por ciento = NORMALMenos del 38 por ciento = POSIBLE ANEMIA (bajo nivel de hematocrito a los efectos de donación de sangre) 1

Más del 50 por ciento = POSIBLE POLICITEMIA (excesivo número de células en la sangre)

1 Un resultado de menos del 38 por ciento está por debajo del nivel exigido por la Administración de Alimentos y Drogas de Estados Unidos (FDA) para donantes de sangre, pero no necesariamente significa que la persona esté anémica.

© 2005 Todos los derechos reservados. America’s Blood Centers.20

Laboratorio: Hematocrito saludableMedición del volumen de las células de la sangre para diagnosticar una posible anemia

21© 2005 Todos los derechos reservados. America’s Blood Centers.

Preguntas de laboratorio

Nombre: ________________________________________________

1. ¿En qué condiciones encontraste la sangre del paciente que analizaste?

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

2. Algunos atletas realizan una práctica llamada doping, según la cual se inyectan eritropoyetina para aumentar el nivel de glóbulos

rojos de su sangre, y así lograr que ésta transporte más oxígeno a sus músculos. Debido a esto, su hematocrito está por

encima de lo normal. Mucha gente considera que esta práctica no es ética, y en muchos deportes, la prueba de que un

deportista ha practicado el doping es razón suficiente para su descalificación.

a. ¿Opinas que el doping sanguíneo debe permitirse en los deportes? Explica tu respuesta.

b. Si el hematocrito excede el 70 por ciento se produce una grave condición. ¿Qué efecto nocivo sobre el sistema

circulatorio crees que puede tener un exceso de glóbulos rojos?

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

© 2005 Todos los derechos reservados. America’s Blood Centers.22

Hoja de trabajo: Forma y función de las células de la sangre

Nombre: ________________________________________________

Como aprendiste en el video Mi Sangre,Tu Sangre, todas las células de la sangre son producidas a partir de células madre en la

médula ósea.

"Los glóbulos blancos son parte del sistema de defensa del organismo. Hay tres tipos de glóbulos blancos: granulocitos, linfocitos y

monocitos.Todos ellos combaten infecciones producidas por bacterias, virus, y todos los microbios que causan enfermedades."

Los glóbulos blancos forman un ejército que se desplaza para buscar y destruir a los microorganismos nocivos y a los virus. Estas

eficientes células pueden incluso salir de los vasos sanguíneos y patrullar en medio de todos los tejidos de tu cuerpo.

Hay dos tipos principales de glóbulos blancos: los fagocitos (o "tragadores") y los que producen anticuerpos. Los granulocitos y los

monocitos son fagocitos, y los linfocitos son productores de anticuerpos. Los glóbulos blancos que son fagocitos estiran unos brazos

celulares, como los de las amebas, y se tragan a las bacterias y otros microorganismos. Este proceso se llama fagocitosis. Estos glóbulos

blancos "tragadores" se comunican con los productores de anticuerpos (linfocitos). Los anticuerpos son moléculas de proteína que

se pegan a los microorganismos invasores, aglomerándolos unos con otros. Una vez que están así aglomerados, a los monocitos y los

granulocitos les resulta mas fácil tragárselos a todos.

Las plaquetas (trombocitos), que no son en realidad células sino fragmentos de células, forman coágulos para detener las hemorragias.

Cuando, debido a una herida, un vaso sanguíneo se rompe o perfora, las plaquetas se tiran rápidamente sobre la ruptura en la pared

del vaso. Se vuelven pegajosas y se adhieren unas a otras y a la pared del vaso.También atrapan glóbulos rojos, y juntos forman un

coágulo. Las plaquetas también producen una sustancia química que activa una cadena de sucesos que transforman una proteína

soluble de la sangre, el fibrinógeno, en una proteína sólida, larga y fibrosa, llamada fibrina. Las moléculas de fibrina forman una red que

sostiene al coágulo en su lugar. Esto es lo que forma la costra sobre las heridas. Lo que ves del lado de afuera es generalmente sangre

seca. Del lado interior es donde se encuentran los intrincados tapones de fibrina y plaquetas en cada vaso sanguíneo dañado. Los

tapones de fibrina y plaquetas se forman y se vuelven a formar constantemente hasta que los tejidos dañados están completamente

reparados. El arrancar una costra va a destruir esos tapones y entonces, todo el proceso debe comenzar de nuevo. Por eso es que

las heridas sanan mucho antes si no se tocan. Las plaquetas también trabajan abundantemente en todo el interior del cuerpo.

La hemofilia, un trastorno genético, es causada por la ausencia de una de las proteínas necesarias para la coagulación. Esta proteína

de la sangre puede aislarse por medio de un fraccionamiento químico de la sangre, y suministrarse a los pacientes hemofílicos en

forma concentrada.

En los enfermos de cáncer a menudo se presentan dificultades para la coagulación de la sangre, debido a que su médula ósea puede

resultar perjudicada por la radiación o la quimioterapia y entonces no producen suficientes plaquetas.A estos pacientes a menudo se

les hacen transfusiones de plaquetas.

Una sola donación de sangre puede salvar tres vidas, debido a que la sangre de un donante puede separarse en tres partes para

distintas necesidades. Por ejemplo, una pinta de sangre donada puede proveerle plasma a un paciente hemofílico, plaquetas a un

paciente con cáncer y glóbulos rojos a uno que sufra de anemia.

© 2005 Todos los derechos reservados. America’s Blood Centers.

Preguntas

Nombre: ________________________________________________

1. Describe el trabajo que los dos tipos de glóbulos blancos realizan en conjunto para matar a los microorganismos causantes

de enfermedades (patógenos).

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

2. Hace cincuenta años, los pacientes hemofílicos no vivían mucho. Ahora, la gente que padece esta enfermedad disfruta de vidas

más largas y sanas. ¿Qué lo ha hecho posible?

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

3. Describe con tus propias palabras de qué manera una pinta de sangre puede utilizarse para tres personas diferentes.

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

23

© 2005 Todos los derechos reservados. America’s Blood Centers.24

Laboratorio: A la caza de células

Nombre: ________________________________________________

Objetivo: Aprender a identificar los distintos tipos de células de la sangre y a relacionar su estructura con su función.

Materiales

Portaobjetos con un frotis preparado o muestra de sangre humana teñida

Microscopio

Información

Vas a ir a la caza de células. Debes hallar todos los tipos de células mencionadas abajo. Usa las descripciones de su estructura como

ayuda. Debes verificar que has encontrado la célula correcta con tu maestro/a o con un estudiante "certificado".

1 Las plaquetas no tienen núcleo porque son tan solo fragmentos que "se desprenden" de un magacariocito en la médula ósea.

LOCALIZADO CON EL MICROSCOPIO(se requiere verificación del maestro o su ayudante)

Eritrocito(Glóbulo rojo)

Discos rojos, con el borderojo oscuro y el centrorojo más claro (sin núcleo).

Granulocito(Glóbulo blanco)

Célula redonda de aspectogranuloso; tiene el núcleolobulado o dentado de uncolor azul.

Monocito(Glóbulo blanco)

Célula grande, de formairregular, con el núcleolobulado o dentado.

Linfocito(Glóbulo blanco)

Célula redonda o alargada, amenudo con bordespuntiagudos. Su núcleo esgeneralmente redondo.

Trombocito(Plaqueta)

Cuerpos pequeños deformas irregulares y sinnúcleo.1

TIPO DE CÉLULA DESCRIPCIÓN FUNCIÓN

25© 2005 Todos los derechos reservados. America’s Blood Centers.

Preguntas de laboratorio

Nombre: ________________________________________________

1. Completa la tabla de la página anterior escribiendo la función de cada una de las células de la sangre.

2. ¿De qué manera la forma de los glóbulos rojos está adaptada a su función?

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

3. ¿De qué manera la forma de las plaquetas está adaptada a su función?

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

4. ¿Qué tipo de célula es la más abundante en tu portaobjetos?

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

5. ¿Cuál fue la célula de la sangre que te resultó más difícil de encontrar?

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

26

Hoja de trabajo: Arterias, capilares y venas:Los caminos que recorre la sangre

Nombre: ________________________________________________

El corazón es la bomba que impulsa la sangre haciéndola fluir por los vasos sanguíneos del cuerpo. Los vasos sanguíneos que transportan

sangre desde el corazón al resto del cuerpo se llaman arterias. La mayor de las arterias que salen del corazón es la aorta. Cuando el corazón

expulsa sangre, ésta sale bajo presión.Por lo tanto, las arterias necesitan tener paredes fuertes y elásticas, que puedan resistir esta presión. Los

músculos que recubren las paredes arteriales también permiten controlar la presión sanguínea en el cuerpo al relajarse (lo que baja la presión)

o contraerse (lo que la aumenta).

Las arterias se ramifican, dividiéndose en ramas cada vez más pequeñas llamadas arteriolas. Las

arteriolas se ramifican a su vez en arteriolas más y más pequeñas, hasta llegar a los capilares de

delgadas paredes. Los capilares son tan estrechos que las células de la sangre tienen que pasar

por ellos de a una, en fila. Y allí es donde la sangre realiza su trabajo. Las paredes de los capilares

tienen apenas el espesor de una célula, y el oxígeno y algunas pequeñas moléculas de alimento,

como la glucosa, pueden atravesarlas fácilmente y llegar a los tejidos de los músculos. El dióxido

de carbono,un desecho producto de la respiración celular, pasa de los tejidos a la sangre a través

de las delgadas paredes de los capilares.

La sangre debe ahora regresar al corazón.Los capilares desembocan en unos pequeñísimos vasos

llamados vénulas. Las vénulas desembocan en venas, las cuales a su vez llegan a las grandes venas

cava superior y cava inferior, que llevan la sangre de nuevo al corazón. Las venas tienen paredes

mucho más delgadas que las arterias, porque no tienen que soportar tanta presión. Los

movimientos del cuerpo ayudan a impulsar la sangre de regreso al corazón,porque los músculos

empujan las paredes de las venas. Las venas cuentan con válvulas en su interior, que evitan que la

sangre, atraída por la fuerza de la gravedad, vaya otra vez hacia abajo.

En el diagrama se puede observar el flujo de sangre a través del corazón. La sangre que regresa al corazón desde el cuerpo debe luego ir a

los pulmones, donde liberará el dióxido de carbono y se cargará nuevamente de oxígeno.

Preguntas

1. ¿Qué vasos sanguíneos crees que deben tener las paredes más gruesas y musculosas?

___________________________________________________________________________________________________

___________________________________________________________________________________________________

2. ¿Qué vasos sanguíneos tienen las paredes más delgadas? ¿De qué manera esta estructura corresponde a su función?

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

3. ¿Cómo la sangre regresa desde tus pies hasta el corazón?

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

© 2005 Todos los derechos reservados. America’s Blood Centers.

Laboratorio: El vaso misterioso

Nombre: ________________________________________________

Objetivo: Aprender sobre la forma y función de arterias y venas.

Materiales

Portaobjetos con frotis preparados de secciones transversales de arterias y venas

Microscopio

Lápices de colores

Papel blanco

Procedimiento

1. Usando la descripción de la estructura y función de arterias y venas de la página anterior que se ha repartido en clase, determina

cuál de los frotis numerados que tienes corresponde a una arteria y cuál a una vena.

2. Una vez que hayas identificado la arteria y la vena, y hayas confirmado que lo hiciste correctamente con tu instructor o ayudante

de laboratorio, dibuja un esquema de cada una de las secciones transversales

3. Rotula las secciones transversales de acuerdo al diagrama dado.

Preguntas de laboratorio

1. Si una persona tuviera la presión sanguínea demasiado baja, ¿qué vaso sanguíneo cambiaría su diámetro para corregir el problema?

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

2. ¿Ese vaso se haría más grueso o más estrecho si tuviere que corregir una presión sanguínea alta?

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

27

© 2005 Todos los derechos reservados. America’s Blood Centers.28

Hoja de trabajo: Intercambio de oxígeno y dióxido de carbono

Nombre: ________________________________________________

Las vías respiratorias terminan, dentro de los pulmones, en millones de diminutos sacos

de aire llamados alvéolos. Cada alvéolo está cubierto por una red de capilares. El oxígeno

pasa, del aire que hay en el interior del alvéolo a la sangre. Los átomos de hierro de las

moléculas de hemoglobina contenidas en los glóbulos rojos se combinan con las

moléculas de oxígeno. Como cada glóbulo rojo contiene millones de moléculas de

hemoglobina, el oxígeno es rápidamente extraído del aire y se encamina hacia el corazón,

y de allí hacia los tejidos de todo el organismo.

En los capilares de los tejidos del organismo, el oxígeno se desplaza desde la hemoglobina

hasta las células de los tejidos. Estas células producen dióxido de carbono, el cual pasa a

la sangre. Parte del dióxido de carbono es transportado entonces por las moléculas de

hemoglobina. También, dentro de los glóbulos rojos está presente una enzima que

combina el dióxido de carbono con agua para formar bicarbonato. El bicarbonato

permanece en el plasma hasta que la sangre vuelve a los capilares de los pulmones y

entonces se disocia otra vez en agua y dióxido de carbono, y éste es liberado en el aire

de los pulmones.

Preguntas

1. ¿Qué rol cumple el glóbulo rojo en el transporte del oxígeno?

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

2. ¿De qué dos maneras el glóbulo rojo participa en el transporte del dióxido de carbono?

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

3. ¿Qué dos cosas necesitan todas las células del organismo para poder funcionar?

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

Las moléculas de O2 ingresan fácilmente a

los vasos sanguíneos y se pegan a nuestra

hemoglobina.

© 2005 Todos los derechos reservados. America’s Blood Centers.

Laboratorio: Dióxido de carbono burbujeante

Nombre: ________________________________________________

Objetivo: Medirás los efectos del ejercicio en la producción de dióxido de carbono.

Usarás una solución indicadora del dióxido de carbono para determinar cuánto dióxido

de carbono exhalas al respirar. Cuanto más dióxido de carbono haya en la solución, más

rápido el color de ésta cambiará de azul a verde y luego a amarillo.

Materiales

Globo

Vaso de plástico

Popote/pajita/cañita

Solución indicadora del dióxido de carbono

Trozo de cordel o hilo

Marcador

Procedimiento

1. Vierte la solución indicadora del dióxido de carbono hasta llegar a 1/3 del vaso de plástico.

2. Infla el globo con una exhalación completa de aire (el aire que exhalas contiene dióxido de carbono).

3. Mientras aprietas el cuello del globo con una mano, insértale con la otra un popote, hasta llegar a la parte que tú estás apretando.

4. Trata de evitar que el aire del globo escape a través del popote apretando también su extremo con tus dedos.

5. Pon la otra punta del popote en el fondo del vaso que contiene la solución de prueba.

6. Libera el aire lentamente de manera que burbujee dentro de la solución.Tan pronto como la solución se torne amarilla, aprieta

la salida de aire del globo y mide su circunferencia con un cordel o hilo. Marca con un marcador el cordel, de manera que sepas

el tamaño que tenía el globo cuando la solución se puso amarilla.

7. Haz ejercicio durante un minuto (de acuerdo a las instrucciones de tu maestro/a) y repite los pasos del 2 al 6.

8. Mide la diferencia entre las longitudes del cordel con y sin ejercicio.

Preguntas de laboratorio

1. Anota aquí los resultados obtenidos:

Longitud del cordel antes del ejercicio: ________ cm

Longitud del cordel después del ejercicio: _________ cm

Diferencia entre la longitud del cordel antes y después del ejercicio: ___________cm

2. De acuerdo a los resultados de tu experimento, ¿cuándo fue mayor la concentración de dióxido de carbono en tu aliento?

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

29

© 2005 Todos los derechos reservados. America’s Blood Centers.30

Hoja de trabajo: Ciclo cardiaco

Nombre: ________________________________________________

El corazón es el órgano responsable de bombear la sangre a través de los vasos sanguíneos.

Expulsa la sangre hacia afuera, chupa y se llena de sangre, la expulsa otra vez. Expulsa, chupa,

expulsa, chupa… una y otra vez a lo largo de toda tu vida. En las siguientes actividades de

laboratorio, tendrás la oportunidad de escuchar los sonidos que produce tu corazón y calcular

cuántas veces por minuto expulsa sangre cuando estás en reposo y cuando estás haciendo

ejercicio.

Tu corazón hace dos sonidos, uno justo después del otro. A veces, estos sonidos se describen

como "tun-tuc". El primer sonido, "tun", se produce cuando el corazón está expulsando la sangre desde una de sus cámaras mayores,

llamadas ventrículos. Los sonidos en realidad se producen cuando se cierran las válvulas ubicadas entre la aurícula y el ventrículo (para

evitar que la sangre retroceda por el mismo camino que llegó). El segundo sonido, "tuc", aparece cuando el corazón se está llenando

de sangre y se cierran las válvulas que impiden que aquélla fluya hacia fuera del corazón.

Tun = expulsa

Tuc = se llena

Menos de un segundo de descanso

Tun = expulsa

Tuc = se llena

Descanso…

Preguntas

1. Probablemente hayas notado que tu corazón late más rápido cuando estás haciendo ejercicio. Basándote en todo lo que sabes

sobre la sangre, explica por qué tu corazón tiene que latir más rápido cuando haces ejercicio.

2. El músculo cardiaco también necesita sangre. Unos vasos sanguíneos, las arterias coronarias, van directamente de la aorta, que

sale del ventrículo izquierdo, al músculo cardiaco. Estas arterias se ramifican en arterias cada vez más pequeñas, que llevan oxígeno

y nutrientes al tan trabajador músculo cardiaco. Si una de las pequeñas arteriolas que alimentan al músculo cardiaco resulta

bloqueada, ¿qué crees que sucede cuando alguien tiene un ataque cardiaco? ¿Qué daño sufre el músculo cardiaco?

Pulso

Cuando tu corazón bombea sangre fuera de los ventrículos, la sangre sale a presión. Especialmente el ventrículo izquierdo es muy

musculoso y puede expulsar la sangre hacia la aorta en fuertes chorros. Las arterias pueden estirarse para soportar esta presión. Si

colocas tus dedos al costado de tu cuello, puedes sentir el pulso de la sangre cuando es bombeada a través de la arteria carótida.

3. ¿Percibes el pulso en una de tus arterias cuando tu corazón expulsa sangre, cuando se llena, o en ambas ocasiones?

___________________________________________________________________________________________________

___________________________________________________________________________________________________

4. ¿Tu pulso es igual a tu ritmo cardiaco? ¿Por qué?

___________________________________________________________________________________________________

___________________________________________________________________________________________________

Nombre: ________________________________________________

Objetivo: Escuchar los sonidos de tu corazón y comparar el ritmo cardiaco con el pulso antes y después de hacer ejercicio.

Materiales

Estetoscopios

Cronómetro o reloj con segundero

Procedimiento

1. Usando un estetoscopio, escucha los sonidos de tu corazón. El diafragma del estetoscopio debe apoyarse en el medio de tu pecho.

Mueve el diafragma hasta que los sonidos se escuchen con claridad. Es importante que estés en un lugar silencioso durante este

procedimiento.

2. Trata de distinguir el sonido "tun" del "tuc". Imagínate tu corazón expulsando la sangre cuando escuchas el "tun", y llenándose

cuando escuchas el "tuc".

3. Usa un cronómetro, y cuenta cuántas veces late tu corazón en seis segundos. Multiplica ese número por 10 para obtener tu ritmo

cardiaco por minuto. Completa la tabla de abajo con tus datos.

4. Haz ejercicio durante un minuto y escucha los latidos de tu corazón otra vez. Cuenta cuántas veces late tu corazón en seis

segundos. Multiplica ese número por 10 y completa la tabla de abajo con tus datos.

5. Descansa durante unos cuantos minutos para asegurarte de que tu corazón vuelva a su ritmo normal de reposo.

6. Pon tus dedos sobre uno de los puntos del pulso del cuello o de la muñeca. Cuenta las pulsaciones que sientes en seis segundos.

Multiplica ese número por diez para obtener tus pulsaciones por minuto. Completa la tabla de abajo.

7. Haz ejercicio durante un minuto y tómate el pulso otra vez. Completa la tabla.

Preguntas de laboratorio

1. Compara tu ritmo cardiaco con tu pulso. ¿Son exactamente iguales?

___________________________________________________________________________________________________

2. Si no son exactamente iguales, ¿cuál podría ser la causa de la diferencia?

___________________________________________________________________________________________________

___________________________________________________________________________________________________

3. Cuando tu doctor/a quiere medir tu ritmo cardiaco, ¿por qué te toma el pulso en lugar de escucharte el corazón?

___________________________________________________________________________________________________

___________________________________________________________________________________________________

© 2005 Todos los derechos reservados. America’s Blood Centers.

Laboratorio: El bombeo del corazón

31

EN REPOSO INMEDIATAMENTE DESPUÉS DEL EJERCICIORITMO CARDIACO (latidos/minuto) RITMO CARDIACO (latidos/minuto)

PULSO (pulsaciones/minuto) PULSO (pulsaciones/minuto)

Nombre: ________________________________________________

Las células de la sangre contienen proteínas en el exterior de sus membranas celulares.Algunos de estos marcadores son iguales entodas las células de la sangre humana, y otros presentan variaciones (diferentes personas tienen diferentes tipos). Tu sistemainmunológico reconoce como "propios" los marcadores de las células de tu sangre. Las células sanguíneas que tengan diferentesmarcadores serán tratadas como invasores externos, y los anticuerpos y los glóbulos blancos las aglutinarán y destruirán. La destrucciónde células sanguíneas incompatibles puede producir reacciones dañinas para el paciente receptor de la sangre.

Existen dos categorías principales de clasificación de la sangre, el sistema de grupos sanguíneos ABO y el sistema de factor sanguíneoRh. En el sistema ABO, se diferencian 4 grupos de sangre:A, B,AB y O. En el sistema Rh, se distingue entre dos factores: Rh positivo yRh negativo. Cada persona tiene una combinación de esos dos, por ejemplo, alguien puede tener sangre A Rh negativo, o sangre B Rhpositivo, o cualquier otra combinación.

En una persona con grupo sanguíneo A, el organismo sólo "reconoce" el marcador A. O sea que el organismo de esa persona noreconocerá la proteína B, y tratará de destruir las células que tengan el marcador B. El organismo (o el sistema inmunológico) de alguienque tenga el grupo sanguíneo B sólo puede reconocer la proteína B como propia, de modo que producirá anticuerpos anti-A. Unapersona que tenga sangre AB no producirá anticuerpos anti-A ni anti-B, ya que reconoce ambos marcadores como propios. Las célulasdel grupo sanguíneo O no tienen ningún marcador ABO en sus membranas celulares.

Cuando alguien pierde una gran cantidad de sangre necesita reponerla de inmediato.No existe sustituto para la sangre humana: la sangrede transfusión debe provenir de un donante voluntario sano. ¿Cómo se puede dar sangre donada a los pacientes sin que se produzcauna reacción aglutinante? El donante debe corresponderse con un paciente que tenga el mismo tipo de sangre o uno compatible.

La tabla de abajo ilustra los diferentes grupos y tipos de sangre y quién puede recibir sangre de quién. La tabla se ha completadoparcialmente.

1. Estudia las tablas de abajo y completa los espacios en blanco con una ☺ cuando los grupos sanguíneos son compatibles y con una cuando

no lo son.Comprueba tus respuestas con tu maestro/a.

2. El "donante universal" es el que puede donar sangre a todos los pacientes. ¿Qué grupo y factor de sangre tiene el donante

universal? _____________________________________________________

3. El "receptor universal" es el paciente que puede recibir transfusiones de todos los grupos sanguíneos. ¿Qué grupo y factor de

sangre tiene el receptor universal? _____________________________________________________

4. Una persona con sangre B+ sufre un accidente de tránsito y necesita recibir una transfusión de inmediato. La única sangre

disponible es O+. ¿Será seguro darle una transfusión de este grupo y tipo de sangre al paciente? ______________________________

5. Una persona de sangre A- tuvo una operación en una rodilla y fue necesaria una unidad de sangre. ¿Hubiera sido seguro hacerle

una transfusión de sangre A+ a este paciente? _____________________________________________________

© 2005 Todos los derechos reservados. America’s Blood Centers.32

Hoja de trabajo: Los diferentes grupos sanguíneos

DONANTE A B AB O

A

B

AB

O

RECEPTOR

☺ ☺

☺☺☺

DONANTE NEGATIVO (-) POSITIVO (+)

NEGATIVO (-)

POSITIVO (+)

RECEPTOR

☺ ☺

© 2005 Todos los derechos reservados. America’s Blood Centers.

Laboratorio: Una decisión importantísima

33

Nombre: ________________________________________________

Objetivo: Aprender cómo se determinan los grupos y factores sanguíneos y entender cómo

pueden hacerse transfusiones seguras a diferentes personas.

Información:

Un autobús cargado de pasajeros que regresan de un viaje de esquí vuelca

en una carretera congelada. Veinte heridos son llevados al hospital en

condición crítica. Todos necesitan transfusiones de sangre debido a la

gravedad de sus heridas. El pequeño hospital al que los llevaron tiene

20 unidades de sangre, pero sólo tiene 5 unidades de sangre O-. Por lo

tanto, es necesario averiguar qué tipo de sangre tienen los pacientes

para administrárselas de manera segura.

Se te darán dos muestras de sangre para que averigües de qué tipo es.

Los pacientes están numerados del 1 al 20. Determina el tipo de sangre de

tus pacientes y luego, con la clase, decidan cómo repartirán la sangre

disponible.

Materiales

2 muestras de sangre simulada

Anticuerpos simulados anti-A, anti-B y anti-Rh

Placa o frotis de clasificación de sangre

6 palillos escarbadientes

Procedimiento

1. Coloca una gota de sangre en las secciones A, B y Rh de la placa de clasificación.

2. Agrega una gota de anti-A en la sección A, una gota de anti-B en la sección B, y una gota de anti-Rh en la sección Rh.

3. Mezcla cada sección con un escarbadientes diferente.

4. Espera tres minutos. Si se produce una reacción, la sangre se pondrá como un gel y se aglutinará.

5. Para determinar el factor, mira las secciones que se aglutinaron. Las que se aglutinaron te darán el tipo. Por ejemplo, si A y Rh se

aglutinaron,entonces la persona es A+.Si A y B se aglutinaron pero no Rh,entonces la persona es AB-. Si ninguna se aglutinó,entonces

la persona es O-.

6. Completa la tabla con la información antes de clasificar la

sangre del segundo paciente. Enjuaga bien la placa de

clasificación y sécala completamente antes de usarla

para el segundo paciente.

7. Para la segunda muestra de sangre, repite los pasos 1-4.

NÚMERO DEL PACIENTE TIPO DE SANGRE

Distribución de grupossanguíneos en Estados Unidos

45%

40%

11%

4%

Nombre: ________________________________________________

8. Observa la tabla de abajo para ver las unidades de sangre disponible. Con la clase, determina qué pacientes deben recibir qué unidades

de sangre.

© 2005 Todos los derechos reservados. America’s Blood Centers.34

Laboratorio: Una decisión importantísima

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

O-

5 unidades

O+

6 unidades

A+

3 unidades

A-

2 unidades

B+

2 unidades

B-

2 unidades

NÚMERODELPACIENTE

GRUPOSANGUÍNEO

GRUPO SANGUÍNEO QUEPUEDE ACEPTAR

SANGRE QUE SERECOMIENDA PARALA TRANSFUSIÓN(una solución al problema;hay otras solucionesposibles)

SANGREDISPONIBLE

© 2005 Todos los derechos reservados. America’s Blood Centers.

Laboratorio: Una decisión importantísima

35

Nombre: ________________________________________________

Preguntas de laboratorio

1. Si tienes grupo sanguíneo O Rh negativo, ¿por qué es especialmente importante que dones sangre?

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

2. ¿Por qué es importante que los hospitales tengan siempre más sangre disponible que la necesaria para un día?

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

3. En el problema del accidente, ¿hay suficiente sangre para los pacientes? ¿Qué hubiera pasado si los pacientes tuvieran otros tipos de sangre?

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

4. Propón una solución para una situación de crisis en la que no hay suficiente sangre para todos los pacientes durante una emergencia.

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

5. ¿Qué criterios deben usar los médicos para decidir quiénes recibirán transfusiones cuando la sangre disponible no es suficiente?

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

6. ¿Qué puedes hacer para asegurar que el centro de sangre de tu comunidad siempre tenga sangre disponible para los pacientes de tu

localidad? Haz una lista de todas las acciones posibles.

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

Alvéolos Pequeñas cavidades de lospulmones formadas por la dilatación terminalde diminutos conductos de aire.Anticuerpo Proteína producida pordeterminados tipos de glóbulos blancos(linfocitos), en el cuerpo, para responder a unainvasión de una sustancia extraña.Antígeno Sustancia que al ser introducidaen el cuerpo estimula una respuestainmunológica.Aorta Vaso sanguíneo principal del sistemaarterial que lleva la sangre desde el ventrículoizquierdo del corazón a todo el cuerpo,excepto a los pulmones.Arteria Vaso sanguíneo que lleva sangredel corazón a cualquier parte del cuerpo.Bacteria Organismo unicelular esférico, enespiral o en forma de bastón que se presentaen forma individual, en cadenas y en racimos.Bazo Órgano altamente vascularizado,glandular y sin conductos que, en los humanos,se encuentra en el extremo cardiaco delestómago, y que actúa fundamentalmentecomo fuente productora de linfocitosmaduros, como elemento para la eliminaciónde glóbulos rojos viejos y como reserva desangre.Bronquios Las ramificaciones principalesde la tráquea.Capilares Los pequeñísimos vasossanguíneos entre las terminaciones de lasarterias y los extremos iniciales de las venas.Células madre Células que al dividirse sereemplazan a sí mismas y que dan lugar acélulas que se diferencian en uno o más tiposespecializados, como determinadas células B ylinfocitos T.Citoplasma Sustancia gelatinosa querodea el núcleo de una célula y que contienecasi todos los orgánulos celulares.Diferenciación (de células o tejidos)Evolución de una forma relativamente genéricaa otra especializada durante el desarrollo.Eritrocito Glóbulo rojo.Fagocito Cualquier tipo de célula queingiere y destruye partículas extrañas.Fagocitosis Ingestión de una célulamenor o de un fragmento de célula.Fibrina La proteína insoluble resultante dela coagulación sanguínea.Germen Cualquier microorganismo causantede una enfermedad.Glóbulos blancos Una de varias célulasincoloras del sistema inmune que circulanprincipalmente en la sangre y en la linfa.Glóbulos rojos Células de la sangre que,en los mamíferos, son discos cóncavos a amboslados y sin núcleo, que contienen hemoglobinay que llevan oxígeno a las células y tejidos, ydevuelven el dióxido de carbono a los órganosrespiratorios.Granulocito Un glóbulo blanco que tienegránulos prominentes en el citoplasma y un

núcleo de dos o más lóbulos.Hemoglobina Proteína portadora deoxígeno de los glóbulos rojos que les confieresu color rojo y que suministra oxígeno a lostejidos.Inmunidad Condición que confiere unaresistencia natural o adquirida a unadeterminada enfermedad.Leucocito Un glóbulo blanco.Linfocito Un tipo de glóbulo blanco quetiene un núcleo esférico rodeado de una finacapa de citoplasma no granulado.Linfocito B Linfocito que participa en laproducción de anticuerpos.Linfocito T Linfocito que colabora en lapreparación del linfocito B para que produzcaanticuerpos o que está directamenteinvolucrado en la destrucción de célulasextrañas, como las células de los tumores.Médula ósea Tejido vascular blando ygraso ubicado en las cavidades de los huesos,que es un centro de producción de glóbulosrojos.Megacariocito Célula grande de lamédula ósea con un núcleo lobulado (conlóbulos); es la fuente productora de plaquetas.Mitosis Forma usual de división celular.Monocito Un glóbulo blanco circulatorioque se forma en la médula ósea y en el bazo yque ingiere partículas extrañas de gran tamañoy residuos celulares.Núcleo Parte de la célula que alberga lainformación genética en forma de ADN. Lascélulas bacterianas no tienen núcleo.Nutriente Sustancias que dan sustento aun organismo.Orgánulo Parte especializada de unacélula con una función específica.Plaquetas Células pequeñas no nucleadas(sin núcleo) que forman el primer tapón parafrenar una hemorragia.Plasma Parte líquida de la sangre o de lalinfa diferenciada de sus elementos ensuspensión.Quimotaxis Alejamiento o acercamientode una célula a un estímulo químico.Sangre El fluido que circula en el sistemavascular principal de los seres humanos y deotros vertebrados; en los humanos, consta deplasma en el que van suspendidos los glóbulosrojos, los glóbulos blancos y las plaquetas.Transfusión Transferencia directa desangre, plasma y sustancias afines a un vasosanguíneo.Vaso Tubo o conducto como, porejemplo, las arterias o las venas, que contiene oconduce sangre u otro tipo de fluido corporal.Vena Conducto que se ramifica y que llevasangre desde las distintas partes del cuerpohasta el corazón.Virus Minúsculo objeto compuesto deARN o ADN y que está rodeado de unacápsula proteica.

Lista de materiales

La siguiente es una lista de los materialesnecesarios para realizar todas lasdemostraciones y las actividades delaboratorio que se sugieren en esta guía.

· aceite vegetal o de maíz (1 botella)

· bicarbonato de sodio

· blanqueador de cloro o amoníaco

· bolsas de plástico para merienda con cierre

· cilindro graduado de 10 mL (o también,cilindro de 1 L o jeringa de 60 cc)

· cola

· colorante de repostería amarillo

· copos de cereal crocante de arroz

· cristales de azúcar coloreada de rojo (3 envases)

· cuentas de vidrio o de plástico transparente (esféricas y de formas irregulares)

· estetoscopios (pueden ser de fabricacióncasera, véase la pág. 12)

· globos

· golosinas de cereal de arroz y malvavisco

· Kit de clasificación de sangre simulada

· lentejuelas rojas (bolsa grande)

· marcador

· palillos escarbadientes

· rojo del Congo en polvo

· popotes/pajitas/cañitas

· portaobjetos preparados con frotis de sangre humana teñida con tintura de Wright

· portaobjetos preparados con frotis de secciones transversales de arterias y venas

· regla en el sistema métrico

· solución o polvo de azul de bromtimol,indicador del PH

· tubos de ensayo

· vasos de plástico transparentes

· vinagre

Random House Webster’s Unabridged Dictionary, 1998 ed. D. Michael Strong, Ph.D. Interview Dorling Kindersley Ultimate Visual Dictionary of Science Richard Counts, M.D. ReviewF u e n t e s

GL

OSA

RIO

GlosarioT É R M I N O S R E L AC I O N A D O S U S A D O S E N E S TA G U Í A

36 © 2005 Todos los derechos reservados. America’s Blood Centers.

LIST

A D

E M

ATER

IALE

S

RecursosSitios Web recomendados

America's Blood Centerswww.AmericasBlood.org

Cells Alivewww.cellsalive.com (en inglés)

La donación de sangrewww.bsburgos.org/donacion_de_sangre.htm

Organización Panamericana de la Saludwww.paho.org

Dennis Kunkel Microscopy, Inc. (en inglés)www.denniskunkel.com

Human Anatomy Online (en inglés)www.innerbody.com

Nobel e-Museum: Play the Blood Typing Game! (en inglés)nobelprize.org/medicine/educational

Se agradece especialmente a las siguientespersonas y entidades por su generosacontribución y esfuerzo:

Chiron Foundation, Florida's Blood Centers, Inc., Johnson& Johnson, Merck Company Foundation, Puget SoundBlood Center, Abbott Laboratories, Baxter Healthcare,Blood Systems Foundation, Eli Lilly and Company, RocheDiagnostics, Carter BloodCare, Coffee Memorial BloodCenter, y Gulf Coast Regional Blood Center.

Mi Sangre, Tu Sangre tiene el respaldo del Departamentode Salud y Servicios Humanos de Estados Unidos, elInstituto Nacional del Corazón, los Pulmones y la Sangrede los Institutos Nacionales de Salud, la AsociaciónEstadounidense de Hospitales y la OrganizaciónPanamericana de la Salud.

Guía del Maestro para Escuela Intermedia ySecundaria, Créditos

Director del Programa MSTS de America's Blood Centers:Matt Granato, LL.M., MBA

Maestra escritora y consultora:Diane Sweeney, M.A. Biology InstructorAutora, Biology: Exploring Life Lab Manual

Traducción al español de la Guía del Maestro:Delza Pereira y Paula SotoDelza Pereira & AssociatesTranslation and Editorial Services

Producción del video MSTS y Diseño Gráfico del Logo:Palazzo Intercreative

Ilustraciones:Jeff Mihalyo, John Silver, Les Currie

Imágenes de Microscopio Electrónico:Dennis Kunkel, PhD.Pacific Biomedical Research Center, University of Hawaii

Diseño de la Guía del Maestro:

Mi Sangre, Tu Sangre®

© 2005 Todos los derechos reservados. America’s Blood Centers.

America’s Blood Centers 725 15th St. NW, Suite 700

Washington, DC 20005www.AmericasBlood.org

1-888-USBLOOD