flujo permanente en conductos a presión

3
GODOY TUCTO THALIA FLUJO PERMANENTE EN CONDUCTOS A ECUACIONES FUNDAMENTALES GODOY TUCTO THALIA FIC FIC 5. CONCLUSIONES Y RECOMENDACIONES Un fluido sin fricción es no viscoso y sus procesos de flujo son reversibles y libres de pérdidas. Se recomienda definir el tipo de flujo con el que se trabaja y de acuerdo al tipo se usara las respectivas formulas presentadas. 6. REFERENCIA BIBLIOGRÁFICA MOOT, R. (2006). Mecánica de fluidos (6° edición). México: Pearson educación. https://alojamientos.uva.es/guia_docente/ uploads/2012/389/51453/1/Documento6 7. anexo FLUJO PERMANENTE EN CONDUCTOS A PRESION TABLA DE CONTENIDO 1. RESUMEN EJECUTIVO………………………….………………….1 2. OBJETIVOS……………………………....………………….….........1 3. MARCO TEORICO………………………………...….……………...2 4. ANALISIS…………………………………………..…………………3 5. CONCLUSIONES Y RECOMENDACIONES………….....................4 6. REFERENCIA BIBLIOGRAFICA…………………..……………….4 7. ANEXO……………………………………………..….…...................4 1. RESUEMEN EJECUTIVO En flujo a presión se considera generalmente que el flujo es permanente e independiente del tiempo; es decir, las características hidráulicas (presión, velocidad, etc.) en cualquier sección no cambian con el tiempo. La velocidad en un punto en contacto con el sólido

Upload: godoyt

Post on 14-Jan-2017

354 views

Category:

Education


0 download

TRANSCRIPT

Page 1: flujo permanente en conductos a presión

GODOY TUCTO THALIA FLUJO PERMANENTE EN CONDUCTOS A PRESION ECUACIONES FUNDAMENTALES GODOY TUCTO THALIA

FIC FIC

5. CONCLUSIONES Y RECOMENDACIONES

Un fluido sin fricción es no viscoso y sus procesos de flujo son reversibles y libres de pérdidas.

Se recomienda definir el tipo de flujo con el que se trabaja y de acuerdo al tipo se usara las respectivas formulas presentadas.

6. REFERENCIA BIBLIOGRÁFICA

MOOT, R. (2006). Mecánica de fluidos (6° edición). México: Pearson educación.

https://alojamientos.uva.es/guia_docente/uploads/2012/389/51453/1/Documento6

7. anexo

FLUJO PERMANENTE EN CONDUCTOS A PRESION

TABLA DE CONTENIDO

1. RESUMEN EJECUTIVO………………………….………………….12. OBJETIVOS……………………………....………………….….........13. MARCO TEORICO………………………………...….……………...24. ANALISIS…………………………………………..…………………35. CONCLUSIONES Y RECOMENDACIONES………….....................46. REFERENCIA BIBLIOGRAFICA…………………..……………….47. ANEXO……………………………………………..….…...................4

1. RESUEMEN EJECUTIVO

En flujo a presión se considera generalmente que el flujo es permanente e independiente del tiempo; es decir, las características hidráulicas (presión, velocidad, etc.) en cualquier sección no cambian con el tiempo. La velocidad en un punto en contacto con el sólido (paredes de la tubería) es cero por la teoría de capa límite. La velocidad máxima, independientemente del tipo de flujo, mayormente pueden ser turbulento o laminar.

ABSTRAC

In pressurized flow it is generally considered that the flow is constant and independent of time ; that is, the hydraulic characteristics ( pressure, speed, etc.) in any section not change over time . The velocity at a point in contact with the solid ( pipe wall ) is zero boundary layer theory . The maximum speed , regardless of flow , mostly can be turbulent or laminar .

2. OBJETIVOS

Establecer las ecuaciones fundamentales de un flujo permanente en conductos a presión.

Relacionar las ecuaciones con el tema a conocer.

Page 2: flujo permanente en conductos a presión

GODOY TUCTO THALIA FLUJO PERMANENTE EN CONDUCTOS A PRESION ECUACIONES FUNDAMENTALES GODOY TUCTO THALIA

FIC FIC

3. MARCO TEORICO

DISTRIBUCION DEL ESFUERZO CORTANTE:

En el esquema, para el cuerpo libre cilíndrico que se muestra, se cumple en la dirección del movimiento: Σ F = m x a = 0 Porque siendo el flujo uniforme, la aceleración es nula.

DISTRIBUCION DE LAS VELOCIDADES EN EL FLUJO LAMINAR: Se define flujo laminar al flojo que se mueve en capas o laminas deslizándose una fina capa con solo un intercambio molecular de cantidad de movimiento.Por su viscosidad: se deduce la distribución de la velocidad en un canal muy ancho:

DISTRIBUCION DE VELOCIDAD EN EL FLUJO TURBULENTO: Se define a un flujo turbulento por tener un movimiento de partículas fluidas muy errático con un violento intercambio transversal de cantidad de movimiento.

Por sus contornos hidráulicamente lisos:

Por sus contornos hidráulicamente rugosos:

PERDIDAS DE CARGA FRICCIONALES La pérdida de carga que tiene lugar en una conducción representa la pérdida de energía de un flujo hidráulico a lo largo de la misma por efecto del rozamiento. Las principales fórmulas empíricas empleadas en el cálculo de la pérdida de carga en tuberías son:

1. Darcy-Weisbach: la más tradicional para el cálculo de las pérdidas de carga por fricción en una tubería. Δf = f · (L / D) · (v2 / 2g)

En función al caudal: Δf = 0,0826 · f · (Q2 /D5) · L

2. Hazen-Williams: esta fórmula sólo es válida para agua que fluye a temperaturas ordinarias (5º - 25º) y no considera el efecto de la viscosidad de un fluido distinto que circule por una tubería, por tanto,

incluir el efecto del rozamiento interno del fluido y el efecto del rozamiento de éste con las paredes de la tubería.

Δf = 10,674 · [Q1,852/ (C1,852 · D4,86 )] · L

3. Fair-Whipple-Hsiao: es la fórmula utilizada por normativa en Chile para el cálculo de pérdidas de carga en redes de agua potable.

Δf = 676,745 · [Q1,751/ (D4,753)] · L (Agua fría)

PÉRDIDAS DE CARGA SINGULARESEs otro tipo de pérdidas que se originan en puntos singulares de las tuberías estos se deben a fenómenos de turbulencia pueden expresarse en función de la altura de velocidad corregida mediante un coeficiente empírico (K).

Δs = K · (v2 / 2g)El coeficiente "K" depende del tipo de singularidad y de la velocidad media en el interior de la tubería.

PERDIDA POR VÁLVULA:Estas pueden ser por las siguientes válvulas como la válvula de compuerta, válvula esférica, válvula rotatoria, válvula de retención, válvula angular¸ compuerta radial con conducto rectangular, esclusa en conducto rectangular, válvula de aguja, válvula de chorro hueco.

FACTORES DE PÉRDIDA FRICCIONAL:Se mencionó que se requiere incluir el efecto del rozamiento interno del fluido y el efecto del rozamiento de éste con las paredes de la tubería, en las fórmulas de pérdidas de carga para distintos tipos de fluidos. Los factores más importantes que inciden en la pérdida de carga friccional son:

Viscosidad del fluido en movimiento (Viscosidad Dinámica) Densidad del fluido Rugosidad de la tubería Diámetro de la tubería Temperatura del fluido

4. ANÁLISIS

Perdida de carga en una longitud L: