cancer de tiroides

45
Cáncer de )roides Alejandro Román-González Medicina Interna- Hospital San Vicente Fundación Fellow Endocrinología Clínica y Metabolismo Universidad de Antioquia @alejoromanmd [email protected] endocrinologiaalejoroman.blogspot.com

Upload: alejandro-roman-gonzalez

Post on 24-Jul-2015

274 views

Category:

Health & Medicine


9 download

TRANSCRIPT

Page 1: Cancer de tiroides

Cáncer  de  )roides  

Alejandro Román-González Medicina Interna- Hospital San Vicente Fundación

Fellow Endocrinología Clínica y Metabolismo Universidad de Antioquia

@alejoromanmd [email protected]

endocrinologiaalejoroman.blogspot.com

Page 2: Cancer de tiroides
Page 3: Cancer de tiroides
Page 4: Cancer de tiroides
Page 5: Cancer de tiroides

Cáncer  de  )roides  

Diferenciado  

•  Papilar  •  Folicular  

Mal  diferenciado  

• Anaplasico  •  Pob.  diferenciado  

Otros  

• Medular  •  Linfoma  • Metástasis  

Page 6: Cancer de tiroides

Nódulo  )roideo  

•  Riesgo  de  cáncer  es  del  5%  

•  Debe  conocerse  la  función  )roidea  

•  Correlacionar  con  hallazgos  ecográficos  

Román-­‐González  A  et  al.  Iatreia  2013:  Vol.  26  (2):  197-­‐206,  abril-­‐junio  2013  

Page 7: Cancer de tiroides

EcograHa  )roidea  de  alta  resolución  

Med Clin N Am 96 (2012) 329–349

Características ecográficas para predecir malignidad Característica ecográfica Sensibilidad, % Especificidad, % VPP, % VPN, %

Microcalcificaciones 26.1-59.1 85.8-95 24.3-70.7 41.8-94.2

Hipoecogenicidad 26.5-87.1 43.4-94.3 11.4-68.4 73.5-93.8

Márgenes irregulares, ausencia del halo

17.4-77.5 38.9-85 9.3-60 38.9-97.8

Sólido 69-75 52.5-55.9 15.6-27 88-92.1

↑ flujo intranodular 54.3-74.2 78.6-80.8 24-41.9 85.7-97.4

Más alto que ancho 32.7 92.5 66.7 74.8

Page 8: Cancer de tiroides

Risk  of  Thyroid  Cancer  Based  on  Thyroid  Ultrasound  Imaging  Characteris)cs:  Results  of  a  Popula)on-­‐Based  

Study  

Smith-­‐Bindman  R  et  al.  JAMA  Intern  Med.  Published  online  August  26,  2013  

•  18  por  1000  •  Una  sola  caracterís)ca  

Riesgo  bajo  

•  2  caracterís)cas  suges)vas  •  Microcalcificaciones  •  Sólido  o  mayor  de  2  cms  

Moderado  

•  960  por  1000  •  Nódulo  sólido,  mayor  de  2  cms  y  con  microcalcificaciones    

Alto  

Page 9: Cancer de tiroides

IATREIA Vol 26(2) abril-junio 2013

201

Hallazgos en la citologíaEl reporte de la biopsia por aspirado con aguja fina (ACAF) se debe clasificar de la siguiente manera (37,38): Diagnóstico o satisfactorio: mínimo seis grupos celulares con al menos 10 células foliculares tiroideas cada uno; No diagnóstico o no satisfactorio.

Diagnóstico y criterios morfológicos según Bethesda (38)

Comprende seis categorías: 1. Benigno; 2. Atípico/Indeterminado (ASCUS, atypical squamous cell of undetermined significance); 3. Patrón folicular (Neoplasia/Lesión). 4. Sospechoso de malignidad; 5. Maligno; 6. Insatisfactorio.

Benigno

Bajo este término se agrupan las lesiones con bajo riesgo de neoplasia tiroidea. Para disminuir la tasa de falsos negativos (que normalmente es del 5%), se recomienda el seguimiento clínico con exploración ecográfica y nueva punción si hay crecimiento significativo de la lesión. Se exponen a continuación brevemente los criterios morfológicos de las lesiones que componen el grupo.

Bocio coloide o nodular: abundante coloide. Placas de células foliculares pequeñas, benignas (ausencia de las características nucleares del carcinoma papilar). Macrofolículos, macrófagos, metaplasia oncocítica.

Bocio tirotóxico-hiperfuncional: fondo hemático sin coloide. Celularidad moderada. Grupos dispersos de pequeño tamaño. Núcleos redondos y agrandados (anisocariosis) con nucléolo único. Vacuolización citoplasmática marginal en llamarada.

Tiroiditis linfocítica crónica: mezcla de células linfoides maduras y células foliculares grandes con frecuente cambio oncocítico. Ausencia de coloide. Células gigantes ocasionales.

Tiroiditis subaguda o de células gigantes: fondo inflamatorio mixto linfo-monocitario. Granulomas epitelioides. Células gigantes multinucleadas. Cambios epiteliales regresivos (degeneración gránulo-vacuolar). Ausencia de coloide.

Atípico/Indeterminado (células atípicas de significado indeterminado, ASCUS)

No se puede excluir la presencia de una neoplasia con base en los datos citológicos. Bethesda recomienda en estos casos (38), si se puede, informar si el cuadro citológico sugiere un proceso hiperplásico o uno neoplásico.

En este grupo, más que en otros, es fundamental analizar conjuntamente la citología, la clínica y la radiología (triple test), así como repetir la punción siempre que se considere necesario. En 80% a 96% de los ASCUS se aclara el diagnóstico después de repetir la punción. El promedio de lesiones malignas de los ASCUS es de 5% a 10%, por lo que inicialmente no

Tabla 1. Recomendaciones para el aspirado (estudio citológico)

Características Límite de tamaño para hacer la biopsiaHistoria de alto riesgo con características ecográficas de riesgo o sin ellas Más de 5 mmAdenopatías cervicales TodosMicrocalcificaciones 1 cm o másNódulo sólido hipoecoico Más de 1 cmNódulo sólido isoecoico o hiperecoico* 1-1,5 cm o másNódulo mixto sólido-quístico con ecografía de riesgo* 1,5 cm o másNódulo mixto sólido-quístico sin ecografía de riesgo* 2,0 cm o másNódulo espongiforme* 2,0 cm o másNódulo quístico* No requiere

*Estos criterios no están incluidos en la última guía de la ATA de 2009; según ésta, se debe hacer estudio citológico de todos los nódulos mayores de un centímetro. La única excepción son los nódulos espongiformes que se estudian si son mayores de dos centímetros (alto valor predictivo positivo para lesiones benignas)

*Estos  criterios  no  están  incluidos  en  la  úl)ma  guía  de  la  ATA  de  2009;  según  ésta,  se  debe  hacer  estudio  citológico  de  todos  los  nódulos  mayores  de  un  cen`metro.  La  única  excepción  son  los  nódulos  espongiformes  que  se  estudian  si  son  mayores  de  dos  cen`metros  (alto  valor  predic)vo  posi)vo  para  lesiones  benignas)  

Nódulo  )roideo,  enfoque  y  manejo.  Revisión  de  la  literatura  

Román-­‐González  A  et  al.  Iatreia  2013:  Vol.  26  (2):  197-­‐206,  abril-­‐junio  2013  

Page 10: Cancer de tiroides

¿Que  hacer  luego  de  BACAF?  

•  Insuficiente  •  Benigno  •  Lesión/a)pia  de  significado  incierto  •  Neoplasia  Folicular  •  Sospechoso  de  malignidad  

•  Maligno  

Román-­‐González  A  et  al.  Iatreia  2013:  Vol.  26  (2):  197-­‐206,  abril-­‐junio  2013  

Page 11: Cancer de tiroides

Neoplasia  folicular.  Observar  o  tratar.    

•  Cáncer  en  20-­‐30%  

•  Conducta  estándar:  hemi)roidectomía  

•  Obje)vo:  diferencia  cáncer  de  neoplasia  

•  Riesgo  quirúrgico  

Page 12: Cancer de tiroides

Final  Pathology  Findings  Ajer  Immediate  or  Delayed  Surgery  in  Pa)ents  with  Cytologically  Benign  or  

Follicular  Thyroid  Nodules  

Manejo  quirúrgico  si:  •  Sospecha  ecográfica  de  malignidad  •  Tamaño  >  4  cms  •  Tg  >  100  ng/ml  •  Compromiso  tráquea  o  esófago  •  Expansión  el  medias)no  •  Nódulos  autónomos  •  Problema  esté)co  

World  J  Surg  (2011)  35:558–562  

Page 13: Cancer de tiroides

Final  Pathology  Findings  Ajer  Immediate  or  Delayed  Surgery  in  Pa)ents  with  Cytologically  Benign  or  

Follicular  Thyroid  Nodules  

World  J  Surg  (2011)  35:558–562  

stage II in 4 and stage III in 33. Of 125 nodules that

underwent late resection, 8 (6.4%) were pathologically

diagnosed as thyroid carcinoma: 3 papillary carcinomas(all were follicular variants of papillary carcinoma) and 5

follicular carcinomas, with pathological stage II in 6 and

stage III in 2.Table 4 indicates the relationship between pathological

diagnoses and clinical characteristics of 445 patients. There

was no significant difference in age, tumor size, or serumthyroglobulin between benign and malignant thyroid nod-

ules. However, there were significant differences in ultr-

asonographic classification and cytological findingsbetween benign and malignant nodules.

Discussion

Ultrasonography-guided FNAB is the most effectivediagnostic method for the evaluation of nodular thyroid

lesions [1–5]. Unfortunately, even nodules that are benign

cytologically can be diagnosed as malignant tumor

histopathologically after surgery [1, 2, 5–9]. However,

15–20% of cytological follicular neoplasms have been

shown to be malignant histologically [10]. We consider itunnecessary to perform surgery in all cases of benign or

follicular neoplasm; in fact, it is important to select those

patients that require surgical resection. Therefore, at ourinstitution, almost all benign or follicular tumors warrant

observation without surgery, and our criteria for surgical

indication are as described above.Overall, 45 (10.1%) of 445 patients with nodules diag-

nosed as benign or follicular tumors cytologically who

underwent immediate or late surgery in our study had amalignancy, excluding incidental occult papillary carci-

noma. The mean size of nodules was larger and the level of

serum thyroglobulin was significantly higher in patientsundergoing immediate surgery as compared to those

undergoing late surgery, according to our criteria for sur-

gical indication. In addition, nodules resected in immediatesurgery were graded in significantly higher ultrasono-

graphic classes than those resected in late surgery.

Regardless of the absence of significant differences inFNAB diagnosis between late and immediate surgery, the

frequency of malignancy in late surgery was lower than

that in immediate surgery (6.4 versus 11.6%). Late thy-roidectomy never has an adverse outcome in view of Stage

Grouping as compared with that of immediate surgery.

Therefore, we considered that our criteria for surgicalindication in cytologically diagnosed benign or follicular

thyroid nodules are appropriate.

Whether nodule size should be used as a separate cri-terion for recommending surgical therapy or determining

Table 2 Clinical characteristics of patients at initial diagnosis

Immediate surgery (n = 320) Late surgery (n = 125) p Value

Age (years)a 45.4 ± 13.3 (19–69) 46.6 ± 14.5 (11–74) 0.834

Gender (male/female)a 28/292 7/118 0.361

Tumor size (mm)a 46.3 ± 18.0 (10.0–109.0) 36.6 ± 13.7 (11.0–93.0) \0.001

Serum thyrogloblin (ng/ml)a 779 ± 1,599 (10–8,000) 258 ± 595 (1–4,604) \0.001

Ultrasonographic classificationb

Class 2 152 103 \0.001

Class 3 138 20

Class 4 30 2

FNAB diagnosisc

Benign 259 107 0.247

Indeterminate 61 18

Periods from initial biopsy to surgery (months)a 4.8 ± 2.8 (1.4–8.2) 73.8 ± 54.2 (18.3–258.0) \0.001

Data were means ± SD or numbers

Values in parentheses were interquartile rangesa p values for t-testb p values for Fisher’s exact test: class 2 versus classes 3–4c p values for chi-square test

Table 3 Pathological relationship between immediate and late sur-gical treatment

Total Benign Malignant

PC FC Total

Immediate surgery 320 283 10 27 37 (11.6%)

Late surgery 125 117 3 5 8 (6.4%)

Total 445 400 13 32 45 (10.1%)

PC papillary carcinoma; FC follicular carcinoma

560 World J Surg (2011) 35:558–562

123

Page 14: Cancer de tiroides

Clinical  Presenta)on  of  Pa)ents  with  a  Thyroid  Follicular  Neoplasm:  Are  there  Preopera)ve  Predictors  

of  Malignancy?    •  Malignidad  – Masculino  – Historia  familiar  –  Radiación  

•  Benignidad  –  >  45  años  – Hiper)roidismo  –  Síntomas  –  >  4  cms  –  Bocio  mul)nodular  

Najafian    A  et  a.  Ann  Surg  Oncol  2015  

Page 15: Cancer de tiroides

Fisher’s exact test was used to compare differences

between the follicular lesion and neoplasm groups withregard to the incidence of surgery, rate of malignancy, and

pathologic and demographic parameters. Chi-square anal-

ysis was used to compare the size of nodules betweengroups. P values of B0.05 were considered significant.

Evaluation of each pathologist’s reporting pattern and

correlation between the cytopathology diagnosis and thehistologic diagnosis from biopsy of surgical specimens

were also compared to determine the utility of the patho-logic classification follicular neoplasm.

RESULTS

During the 17-year period of interest, 540 thyroid nod-

ules in 540 patients were classified as indeterminate for

malignancy on FNA biopsy, that is, 410 (75.9%) lesionswere categorized as follicular lesions and 130 (24.1%) as

follicular neoplasms (Fig. 1). Surgical resection and his-

tologic evaluation of the index nodule was performed in297 (55.0%) of the initial 540 patients: 199 (48.5%) with

follicular lesions and 98 (75.4%) with follicular neoplasms

(P = 0.007) (Table 2). Histologic evidence of differentiatedthyroid cancer was found in 35 (11.8%) of the 297 thyroid

specimens: 14 (7.0%) of 199 follicular lesions and 21

(21.4%) of 98 follicular neoplasms (P = 0.0005) (Table 2).The 35 carcinomas included 27 follicular carcinomas (18

with a cytologic diagnosis of neoplasm; 9 diagnosed as

lesion) and 8 papillary thyroid carcinomas (3 classified asneoplasm; 5 classified as lesion) (Fig. 1). Follicular nod-

ules of uncertain malignant potential were also identified in

six cases (three as neoplasm; three as lesion). Over time,the rate of follicular carcinoma by year was constant (most

often two per year throughout the study). Similarly, the rate

of papillary thyroid carcinoma averaged 0–1 per year.

Patient sex and age, and nodule size were comparablebetween groups of patients diagnosed with follicular lesion

and follicular neoplasm; this was true in the subgroup of

patients who underwent surgical resection as well(Table 3). In the group of patients with a cytopathologic

diagnosis of follicular neoplasm who underwent surgery,

malignant thyroid nodules were more likely to be largerthan benign nodules (mean, 3.4 cm versus 2.6 cm; P =

0.03). The incidence of malignancy in follicular neoplasms

increased with nodule size, from 11.8% for nodules 1.1–2.0 cm to 27.6% for nodules 2.1–3.0 cm, 25.0% for nod-

ules 3.1–4.0 cm, and 37.5% for nodules [4.0 cm

(Table 4). In the follicular lesion group who underwentsurgery, benign lesions were larger than malignant ones,

with mean diameters of 2.8 and 2.3 cm, respectively,

although the difference was not significant (P = 0.15).Other characteristics, including patient age and sex, were

similar between subgroups of patients with benign and

malignant nodules in both the follicular lesion and follic-ular neoplasm groups.

During the study period, 22 pathologists rendered the

cytologic diagnoses in these 540 patients. The meannumber of reports completed by each pathologist was 24.5

(median 20, range 1–95). Fourteen of the 22 pathologists

gave a diagnosis of indeterminate thyroid nodule from anFNA biopsy ten or more times (that is, they had a high

volume of such diagnoses). These 22 pathologists com-

pleted an average of 36.6 reports each, which accounted for513 (95.0%) of the indeterminate diagnoses in this study.

The other eight pathologists completed the remaining 27

(5.0%) reports, averaging 3.4 reports each (low volume).The frequency of using the terms follicular lesion and

follicular neoplasm varied between pathologists. For the 16

540 thyroidfine-needle aspirations

410 lesions75.9%

130 neoplasms24.1%

199 surgery48.5%

211 observation51.5%

32 observation24.6%

98 surgery75.4%

185 benign93.0%

14 malignant7.0%

21 malignant21.4%

77 benign78.6%

9 follicularcarcinomas

5 papillarycarcinomas

18 follicularcarcinomas

3 papillarycarcinomas

FIG. 1 Flow chart showing classification of thyroid fine-needleaspirations (FNA) biopsies, clinical triage, and histologic diagnosis onsurgical specimens

TABLE 2 Classification of thyroid fine-needle aspiration (FNA)biopsies as lesion versus neoplasm with incidence of surgery andsurgical pathologic diagnosis

Triaged Thyroid FNA biopsy diagnosis P value

Lesion (N = 410) Neoplasm (N = 130)

Surgerya 199 (48.5%) 98 (75.4%)

No surgeryb 211 (51.5%) 32 (24.6%) P = 0.007

Surgical specimen diagnosis

Benignc 185 (93.0%) 77 (78.6%)

Malignantd 14 (7.0%) 21 (21.4%) P = 0.0005

a Surgical intervention (hemi- or total thyroidectomy) performed atour institutionb No surgical intervention at our institution by the time of this studyc Benign includes adenoma, hyperplasia, and lesions of uncertainmalignant potentiald Malignant includes malignancy in nodule that had undergone FNAbiopsy; diagnoses included follicular and papillary carcinomas(incidental microcarcinomas were excluded)

Correlating Indeterminate Thyroid FNAs 3149

Ann  Surg  Oncol  (2009)  16:3146–3153  

Page 16: Cancer de tiroides

Caso  clínico  

•  Paciente  de  50  años,  mujer,  nódulo  )roideo  de  2.5  cms,  sólido,  BACAF  sospechoso  de  malignidad.  Su  conducta  es:  

A.  Escribir  a  [email protected]  B.  Remisión  a  cirugía  para  manejo  quirúrgico  C.  Repe)r  ACAF  D.  Observación  E.  A  y  B  son  correctas.    

Page 17: Cancer de tiroides

Carcinoma  Papilar  de  Tiroides  

•  Neoplasia  endocrina  más  frecuente  

•  Más  común  80%    

•  Más  en  mujeres  

•  Más  mortalidad  en  hombres  

•  Mortalidad  estable  

•  Aumento  de  la  incidencia  •  Causa  

Page 18: Cancer de tiroides
Page 19: Cancer de tiroides
Page 20: Cancer de tiroides
Page 21: Cancer de tiroides
Page 22: Cancer de tiroides
Page 23: Cancer de tiroides

Pregunta  de  examen  •  ¿Cuales  son  las  caracterís)cas  microscópicas  del  carcinoma  papilar?  

•  Hendiduras  nucleares  •  Pseudoinclusiones  intranucleares  •  Croma)na  pálida  •  Células  epiteliales  con  nucleos  sobrepuestos,  aumentadas  de  tamaño  

•  Grupos  papilares  •  Coloide  en  ¨chicle¨  •  Cuerpos  de  psammoma    •  Células  gigantes  

Page 24: Cancer de tiroides

Variantes  

•  Folicular  •  Oncoci)ca  •  Células  claras  •  Cribiforme  o  morular  •  Macro-­‐folicular  •  Sólida  •  Células  altas  •  Columnar  •  Esclerosante  difusa  •  Warthin  

Agresivos  Células  altas  Columnar  

Esclerosante  difuso  Folicular  

Page 25: Cancer de tiroides

Aumento  en  incidencia  

JAMA Otolaryngol Head Neck Surg. 2014;():. doi:10.1001/jamaoto.2014.1!

Page 26: Cancer de tiroides

Epidemiología  

JAMA Otolaryngol Head Neck Surg. 2014;():. doi:10.1001/jamaoto.2014.1!

Page 27: Cancer de tiroides

Fisiopatología  y  factores  de  riesgo  

ME65CH09-Udelsman ARI 13 December 2013 17:53

INTRODUCTIONThe normal thyroid gland is composed histo-logically of two main parenchymal cell types.Follicular cells line the colloid follicles, concen-trate iodine, and produce thyroid hormones.These cells give rise to both well-differentiatedcancers (i.e., papillary and follicular) andanaplastic thyroid cancer. The second celltype, the C or parafollicular cell, produces thehormone calcitonin and is the cell of origin formedullary thyroid carcinoma (MTC).

Epidemiology and PathogenesisThe diagnosis of thyroid cancer, specificallypapillary thyroid cancer (PTC), has increasedrapidly, with a 240% increased incidence overthe past three decades (1). Although the ma-jority of newly diagnosed thyroid cancers aresmall PTCs, increased incidences have beenexhibited for all sizes and stages of PTC in bothgenders and in all ethnic groups (2). PTC is themost common endocrine malignancy, account-ing for 96.0% of total new endocrine cancersand 66.8% of deaths due to endocrine cancers(3). Per cancer statistics, 60,200 new casesof thyroid cancer will be diagnosed in 2013,with 1,850 deaths due to the disease (3). Thediscrepancy between the total number of casesof thyroid cancer and deaths reflects the rela-

Table 1 Summary of most common currently known genetic alterations identified in nonfamilial thyroid cancer derivedfrom follicular cellsa

Genetic alteration Well-differentiated thyroid cancer

Intermediate/poorlydifferentiatedthyroid cancer Anaplastic thyroid cancer

PTC FTCRET/PTC rearrangement 13–25% 0% 0–13% 0%BRAF mutation 29–69% 0% 0–13% 0–12%NTRK1 rearrangement 5–13% Unknown Unknown UnknownRAS mutation 0–21% 40–53% 18–27% 20–60%PPARG rearrangement 0% 25–63% 0% 0%CTNNB1 mutation 0% 0% 0–25% 66%TP53 mutation 0–5% 0–9% 17–38% 67–88%

aAbbreviations: BRAF, B-type Raf kinase; CTNNB1, β-catenin; FTC, follicular thyroid carcinoma; NTRK1, neurotrophic tyrosine kinase receptor,type 1; PPARG, peroxisome-proliferator-activated-receptor-γ; PTC, papillary thyroid cancer; RET, rearranged in transformation.

tively indolent nature and excellent long-termsurvival associated with thyroid malignancies.

Radiation exposure to the thyroid gland inchildhood, age, female sex, and family historyare risk factors that increase the incidence ofwell-differentiated thyroid cancer. Exposure ofradiation to the thyroid may occur either fromexternal sources or from ingestion of radioac-tive material. Within the first decade after theChernobyl accident, some regions of Belarusshowed a 100-fold increase in thyroid cancer inindividuals below the age of 15 at the time ofexposure (4), reflecting the importance of ageat exposure in the development of radiation-associated thyroid cancer (5).

Epidemiological studies have demonstrateda four- to ten-fold increased risk of well-differentiated thyroid cancer in first-degreerelatives of subjects with this neoplasia (6).In contrast to the well-described molec-ular pathology associated with MTC, themolecular and clinical genetics of follicularcell–derived thyroid cancer are less clear.Well-differentiated thyroid cancer can both beinherited in an autosomal dominant fashion asthe main feature in some syndromes and havean increased incidence in other tumor suscep-tibility syndromes (7). Table 1 summarizesthe most common known genetic alterationsidentified in nonfamilial thyroid cancer derivedfrom follicular cells.

126 Carling · Udelsman

Ann

u. R

ev. M

ed. 2

014.

65:1

25-1

37. D

ownl

oade

d fr

om w

ww

.ann

ualr

evie

ws.

org

Acc

ess

prov

ided

by

Uni

vers

ity

of T

oron

to L

ibra

ry o

n 01

/28/

15. F

or p

erso

nal u

se o

nly.

Annu.  Rev.  Med.  2014.  65:125–37  

Page 28: Cancer de tiroides

Desenlaces  

•  60850  casos  nuevos  al  año  •  Muertes  1850  (3%  anual)  •  Recurrencia  loco-­‐regional    •  Micro  vs  macro-­‐metástasis  regionales  •  2-­‐3%  metástasis  distantes  

“Si  me  da  cáncer  que  sea  de  )roides”  

Page 29: Cancer de tiroides

Remover  el  tumor  

• Cirugía  

Yodo  radioac)vo  

• Depende  

Supresión  de  TSH  

• Factor  trófico  

Page 30: Cancer de tiroides

ME65CH09-Udelsman ARI 13 December 2013 17:53

Hyoid bone

Commoncarotid artery

Superior hornof thymus

ThymusRecurrent laryngeal nerve

External branch of superior laryngeal nerve

VIVI

VIIVII

IIBIIBIBIBIIAIIA IAIA

IIIIIIVAVA VIVI

VBVBIVIV

VIIVII

a b

Figure 1The thyroid gland and lymphatic node basins. (a) Schematic representation of the lymphatic node basins of theneck. The lateral neck lymph node compartments (levels II–V) and the central neck compartment (level VI).(b) Schematic illustration of the anatomical borders of the central neck compartment (level VI). The superiormargin is at the level of the hyoid bone, the inferior margin is at the level of the brachiocephalic vessels,and the lateral margins are at the medial aspect of the common carotid arteries. The central neck (level VI)contains the precricoid (Delphian), pretracheal, paratracheal, and perithyroidal nodes, including those alongthe recurrent laryngeal nerves and the external branch of the superior laryngeal nerve. The parathyroidglands are also normally located in the central neck. Reprinted with permission from Reference 34.

patients older than 45 years; and selected pa-tients with stage I disease, especially those withlarger tumors (>1.5 cm), multifocality, residualdisease, nodal metastasis, vascular invasion,and intermediately differentiated histology (5).

The dosing of 131I for ablation is controver-sial. Low-dose ablation with less than 30 mCi isoften administered on an outpatient basis. Thisapproach should be reserved for low-risk youngpatients who may benefit from an overall lowerradiation exposure and who accept the fact thatseveral low radioiodine doses may be necessarybefore successful ablation. Higher ablativedoses ranging from 100 to 200 mCi should beused preferentially for older high-risk patients,particularly those with an incomplete resectionof the primary tumor, an invasive primarytumor, tumors of intermediate differentiation,or metastases. Dosimetry can be employed

with the goal of deriving the dose of 131I thatwill deliver no more than 200 cGy to theblood, with no more than 120 mCi retained at48 h or 80 mCi in the presence of pulmonarymetastases. Recently, two studies showed thatlow-dose radioactive iodine ablation is likelysufficient for the vast majority of patients with“low-risk” differentiated thyroid cancer (34,35).

To optimize uptake by both normal residualthyroid and thyroid cancer, the traditionalpractice has been to render patients hypothy-roid with a goal of increasing their serumlevels of TSH. To accomplish this, thyroidreplacement after thyroidectomy is oftenperformed by administering triiodothyronine(T3), which has a much shorter half-life thanthat of thyroxine (T4), and discontinuing it twoweeks before treatment. In response to this

www.annualreviews.org • Thyroid Cancer 131

Ann

u. R

ev. M

ed. 2

014.

65:1

25-1

37. D

ownl

oade

d fr

om w

ww

.ann

ualr

evie

ws.

org

Acc

ess

prov

ided

by

Uni

vers

ity o

f T

oron

to L

ibra

ry o

n 01

/28/

15. F

or p

erso

nal u

se o

nly.

Manejo  quirúrgico  inicial  

•  Guias  2009:  )roidectomia  total  •  Hemi)roidectomia:  tumor  <  1  cm  •  Guías  nuevas:  •  Hemi)roidectomia  si  el  tumor  es    <  4  cms  con  histología  favorables  •  Menos  cirugías  de  completación  •  Menos  vaciamientos  centrales  

Román-­‐González  A  et  al.  Qué  podemos  esperar  de  las  guías  ATA  2014  en  el  manejo  de  cáncer  temprano  de  )roides.  Some)do  a  Revista  Colombiana  de  Endocrinología  2015.    

Page 31: Cancer de tiroides

Yodo  radioac)vo  •  Yodo  radioac)vo  

–  Estadio  III/IV  –  Estadio  II  en  >  45  años    –  Estadio  I  casos  seleccionados  

•  Ventajas  del  I  •  Dosis  más  bajas  (30  mCi)  •  Rh  TSH  •  Dieta  baja  en  yodo  •  Tiroglobulina  pre  yodo  

Román-­‐González  A  et  al.  Qué  podemos  esperar  de  las  guías  ATA  2014  en  el  manejo  de  cáncer  temprano  de  )roides.  Some)do  a  Revista  Colombiana  de  Endocrinología  2015.    

Page 32: Cancer de tiroides

Estadificación  

Riesgo  bajo     Riesgo  intermedio   Riesgo  alto  

Sin  metástasis   Invasión  microscópica  en  tejido  blando  peri  

)roideo  

Invasión  macroscópica  

Resección  macroscópica   Metástasis  linfá)ca   Resección  incompleta  

Sin  invasión  loco  regional   Histología  agresiva   Metástasis  a  distancia  

Histología  no  agresiva  

Invasión  vascular  

Sin  captación  de  I131  

Page 33: Cancer de tiroides

Supresión  con  levo)roxina  

– TSH  factor  trófico  para  el  tejido  )roideo  Células  neoplásicas  

– Supresión  depende  del  riesgo  del  paciente  – Por  favor  no  ajuste  la  dosis  si  no  sabe  el  riesgo  – Pacientes  de  alto  riesgo  o  con  enfermedad  persistente  TSH  <0,1  mUI/L  

–  Libres  de  enfermedad  5  años  (bajo  riesgo)  0.1  a  0.5  luego  0,3-­‐2,0  mUI/L  

Page 34: Cancer de tiroides

Estadifación  dinámica  Respuesta  excelente  

 

Respuesta  Indeterminada  (buena)    

Respuesta  incompleta  

Tg  supresión   <  0.2  ng/ml   Detectable,    pero  <  1  ng/mL  

>  1  ng/mL  

Tg  es)mulada   <  1  ng/ml   <  10  ng/mL   >  10  ng/mL  Tendencia  Tg   baja   En  descenso   Estable  o  en  ascenso  

An)-­‐Tg   Ausente   Nega)vo  o  en  descenso   Posi)vo  o  en  ascenso  E.  fisico   Normal   Normal   Enfermedad  palpable  Imagen   Nega)va   Clinicamente  

insignificante  Posi)va  

Estimado de Bajo riesgo

Estimado Enfermedad estable

Estimado Riesgo en ascenso

Page 35: Cancer de tiroides

Seguimiento  

Bajo   Intermedio     Alto  Tg  suprimida   3-­‐6  meses   3-­‐6  meses  

 3-­‐6  meses    

Tg  es)mulada   6-­‐12  meses   6-­‐12  meses    

Depende  de  la  TG  

EcograHa     6-­‐12  meses    

6-­‐12  meses    

6-­‐12  meses    

TSH   0.1-­‐0.5mU/L    

<  0.1mU/L    

<0.1mU/L    

Page 36: Cancer de tiroides

Bajo   Intermedio     Alto  Tg  suprimida   6  meses   6  meses  

 6  meses    

Tg  es)mulada   No  es  necesaria   12-­‐18  meses    Cuando  ?  

No  es    necesaria  

EcograHa     12  meses    

12  meses    

6-­‐12  meses    

TSH   0.3-­‐2mU/L    

<  0.1mU/L    

<0.1mU/L    

Seguimiento  

Page 37: Cancer de tiroides

Excelente   Bioquímica  incompleta  

Estructural  incompleta  

indeterminada  

Tg  suprimida  

12  meses   6-­‐12  meses    

3-­‐6  meses    

 12  meses  

Tg  es)mulada  

No   Cada  2  -­‐3  años  si  la  Tg  <0.6  

No  es    necesaria  

Puede  reclasificar  al  paciente  

EcograHa     3-­‐5  años    

1-­‐5  años    

1-­‐5  años    

6-­‐12  meses  por  5  años  

TSH   0.5-­‐2mU/L   <  0.1mU/L   <0.1mU/L   0.1-­‐0.5  mU/L    

Seguimiento  

Page 38: Cancer de tiroides

¿Se  puede  hacer  observación  en  cáncer  de  )roides?  

Muchos  de  los  microcarcinomas  de  bajo  riesgo  no  crecen  o  lo  hacen  lentamente.  Una  cirugía  para  estos  casos  sería  sobretratamiento.    No  es  tarde  hacer  una  cirugía  si  se  encuentra  crecimiento  o  compromiso  ganglionar  durante  el  seguimiento  ac)vo.    En  contraste  de  los  Carcinomas  de  )roides  clínicos,  los  MC  en  adultos  mayores  tendrán  menor  probabilidad  de  progresión  que  en  jóvenes.      

Ito  Y.  NonoperaTve  management  of  low-­‐risk  differenTated  thyroid  carcinoma.    Curr  Opin  Oncol  2015,  27:15–20    

Page 39: Cancer de tiroides

Clasificación  de  los  microcarcinomas  

1.  Causando  síntomas  clínicos  (Clínicamente  sintomá)co)  

2.  Descubierto  a  par)r  de  una  metástasis  ganglionar  o  a  distancia  

3.  Hallado  incidentalmente  luego  de  cirugía  por  una  condición  benigna  

4.  Detectado  por  estudios  de  imágenes  (incidental)  

5.  Revelado  durante  la  autopsia  (latente)  

Page 40: Cancer de tiroides

Differences  in  the  Recurrence  and  Mortality  Outcomes  Rates  of  Incidental  and  Nonincidental  Papillary  Thyroid  Microcarcinoma:  A  Systema)c  Review  and  Meta-­‐Analysis  of  21  329  Person-­‐Years  

of  Follow-­‐up  

PTMC was 3% (95% CI, 2–5%). There was a clear dif-ference between the two groups: recurrence in the incidentalgroup(0.5%;4/854;95%CI,0–1%)wassignificantly lowerthan the nonincidental group (7.9%; 173/2669; 95% CI,5–11%). The conditional odds ratio (OR) for recurrence inthe nonincidental group was 14.7 (95% CI, 5.6–54.8, P !.001) compared with the incidental group.

All four recurrences in the incidental group involvedlymph nodes. In the nonincidental group, lymph nodeswere involved in 80% of recurrences (122/153) (Figure 2).Thyroid recurrences were noted in 23 cases (15%, 23/153), of which six were in the contralateral thyroid lobe.It was not possible to ascertain from the data whether the

contralateral lobe recurrences weretrue recurrences or second primariesdue to multifocal disease. Distant me-tastases were recorded in 21 recurrentcases (13.7%), of which 14 were re-portedinthesamestudybySugitanietal(17).

Significant heterogeneity was de-tected due to the nature of poolingretrospective cohort data (I2 "84.2%, P ! .001). To explore theheterogeneity within the noninci-dental group, a sensitivity analysiswas performed by removing twostudies that seemed to include sub-jects who were substantially morelikely to suffer recurrence (17, 26).Even after excluding these studies,the recurrence in the nonincidentalgroup (4%; 95% CI, 2–5%), re-mained significantly higher than forthe incidental group (0.1%), with an

OR " 9.2 (95% CI, 3.5–34.42; P ! .001).

MortalityAll studies reported all-cause mortality, with an overall

incidence of 0.1% (95% CI, 0.0–0.4%). None of the stud-ies of subjects with incidental PTMC reported any deathsamong 854 patients. There were deaths reported in onlythree studies of nonincidental cases, with 17 deaths among2669 subjects. Although there were statistically significantdifferences found in mortality between the groups (P ".02), the absolute numerical differences were small.

Sensitivity analysisFurther sensitivity analyses were carried out on the two

primary outcomes by including those studies with at least50 subjects, and resulted in similar findings to the previousanalyses (plots available from the authors).

Secondary outcomes

Characteristics of subjects with incidental and non-incidental PTMCAverage size of lesion (mm). Only seven studies reporteddata on the variability of the average lesion size (Figure3A). The overall pooled estimate of lesion size for all sub-jects combined was 5.7 mm (95% CI, 4.9–6.5). The av-erage lesion size for the incidental PTMC group was 4.6mm (95% CI, 4.0–5.2) and the average lesion size for thenonincidental group was 6.9 mm (95% CI, 6.4–7.5). Sub-group analysis suggested there was a clear difference inaverage lesion size between the two groups (P ! .001), but

StudyIncidental PTMC

Wada N, 2003Dietlein M,2005Lo CY, 2006Roti E,2006Schonberger J, 2007Sakorafas GH, 2007Gülben K, 2008Pazaitou-Panayiotou K, 2008Lin JD,2008Besic N, 2009Pisanu A, 2009Xu YN, 2010Summary (I-squared = 0%, p = 0.999)

Non - incidental PTMCWada N, 2003Roti E,2006Lo CY, 2006Schonberger J, 2007Cappelli C, 2007Pazaitou-Panayiotou K, 2008Lin JD, 2008Besic N, 2009Pisanu A, 2009Abboud B, 2010Sugitani I, 2010Xu YN, 2010Ito Y, 2010Moon HJ,2011Summary (I-squared = 89.6%, p < 0.001)

Recurrenceproportion

1/1550/200/750/520/540/271/810/30

2/1260/107

0/730/54

4/854

6/2594/191

13/1103/13

48/1023/102

20/2097/147

3/760/12

21/561/123

32/105912/288

173/2669

0.0060.0000.0000.0000.0000.0000.0120.0000.0160.0000.0000.0000.000

0.0230.0210.1180.2310.4710.1250.0960.0480.0390.0000.3750.0080.0300.0420.079

lower0.0000.0000.0000.0000.0000.0000.0000.0000.0020.0000.0000.0000.000

0.0080.0060.0640.0500.3700.0270.0590.0190.0080.0000.2490.0000.0210.0220.049

95% CIsupper0.0350.1680.0480.0680.0660.1280.0670.1160.0560.0340.0490.0660.011

0.0500.0530.1940.5380.5720.3240.1440.0960.1110.2650.5150.0440.0420.0720.109

wgts%

20.5 0.9

11.0 5.4 5.8 1.6 5.7 1.9 8.7

22.210.5 5.8100

10.210.1 7.1 1.3 4.8 2.9 8.8 9.1 8.1 3.4 3.4

10.110.610.0100

0 0.1 0.2 0.3 0.4 0.5

Recurrence Proportion

Figure 1. Forest plot for incidence of recurrence for nonincidental and incidental PTMCsubjects, using random effects meta-analysis (21). Confidence intervals for proportions werecalculated using an exact method for the binomial distribution.

7/1226/32

11/112/21

33/36/7

33/34848/48

1/36/13

44/45/6

22/211/111/1

0 10 20 30 40 50Number of recurrences

Summary 122/153Moon HJ,2011

Ito Y, 2010Xu YN, 2010

Sugitani I, 2010Pisanu A, 2009Besic N, 2009

Pazaitou K, 2008Cappelli C, 2007

Schonberger J, 2007Lo CY, 2006Roti E,2006

Wada N, 2003 Non-Incidental

6Summary 4/4

Lin JD,2008Gülben K, 2008Wada N, 2003

Incidental

Proportion of recurrences involving lymph nodes

Subjects with recurrence in lymph nodesSubjects with recurrence in other locations

Figure 2. Total number and sites of recurrences (lymph nodes vsother sites) for incidental (upper) and nonincidental (lower) PTMCsubgroups. In total, there were 4/854 (0.5%) and 122/2460 (5.0%)recurrences in the incidental and nonincidental subgroups respectively(P ! .001).

2838 Mehanna et al Incidental and Nonincidental PTMC J Clin Endocrinol Metab, August 2014, 99(8):2834–2843

The Endocrine Society. Downloaded from press.endocrine.org by [${individualUser.displayName}] on 28 January 2015. at 18:29 For personal use only. No other uses without permission. . All rights reserved.

J  Clin  Endocrinol  Metab  99:  2834  –2843,  2014  

Page 41: Cancer de tiroides

1  a  2  veces  por  año  

Crecimiento  ≥3  mm  

Aparición    De  Ganglios  

(TG  en  aspirado)  

TomograHa  cuando  el  nódulo  tenía  ecos  fuertes  posteriores  

Observación  en  micro-­‐carcinoma  

Ito  Y.  NonoperaTve  management  of  low-­‐risk  differenTated  thyroid  carcinoma.    Curr  Opin  Oncol  2015,  27:15–20    

Page 42: Cancer de tiroides

Progresión=crecimiento  de  2  mm.  N=162.    70%  estable  

Metástasis  ganglionares:  1.2%  

Ito  Yet  al.    An  observa)on  trial  without  surgical  treatment  in  pa)ents  with  papillary  microcarcinoma  of  the  thyroid.  Thyroid  2003;  13:381–388.  

Segundo  reporte  Crecimiento  (progresión)  del  nódulo  a  5  años:  6.7%  

Aparición  de  nuevos  ganglios  cervicales:  1.7%  

Ito  Y  et  al.  A  therapeu)c  strategy  for  incidentally  detected  papillary  microcarcinoma  of  the  thyroid.  Nat  Clin  Pract  Endocrin  Metab  2007;  3:240–248.  

Incidencia  de  crecimiento  del  tumor  a  10  años:  8.0%    N=1235  pacientes  

Ito  Y  et  al.  Pa)ent  age  is  significantly  related  to  the  progression  of  papillary  microcarcinoma  of  the  thyroid  under  observa)on.  Thyroid  2014;  24:27–34.  

Page 43: Cancer de tiroides

230  pacientes  Crecimiento  del  tamaño  7.3%  Metástasis  ganglionares  1.3%  

No  se  demostraron  datos  longitudinales.  

Sugitani  I  et  al.  Three  dis)nctly  different  kinds  of  papillary  thyroid  microcarcinoma  should  be  recognized:  our  treatment  strategies  and  

outcomes.  World  J  Surg  2010;  34:1222–1231.  

Sugitani  I,  Fujimoto  Y,  Yamada  K.  Associa)on  between  serum  thyrotropin  concentra)on  and  growth  of  asymptoma)c  papillary  thyroid  microcarcinoma.  

World  J  Surg  2014;  38:673–678.  

322  pacientes  Seguimiento  entre  2  y  22  años  de    observación  

Aumento  del  tamaño  en  16  de  322:  5%  Compromiso  ganglionar:  3  de  322:1%  

Page 44: Cancer de tiroides

               Haugen  et  al.  ATA  guidelines  2014,  Thyroid  2014  (in  press)  

Observación  de  microcarcinomas:  Recomendación  12  

•  Pacientes  con  tumores  de  muy  bajo  riesgo  •  Alto  riesgo  quirurgico  •  Expecta)va  de  vida  corta  •  Comorbilidades  medicas  o  quirurgicas  a  corregir  antes  de  cirugía  

Page 45: Cancer de tiroides

La  frase  más  peligrosa  en  el  lenguaje  es  “siempre  lo  hemos  hecho  así”  

Grace  Hopper  Valverde,  Vivae  imagines  par)um  corporis  humani,  1566