unidad v

40
AROMATICIDAD, BENCENO. SUSTITUCIÓN ELECTROFÍLICA Propiedades físicas: - Los hidrocarburos aromáticos son no polares (éter dietílico, tetracloruro de carbono o hexano). - Forma azeótropos con el agua. (91% de benceno y 9% de agua y destila a 69,4ºC). - Puntos de ebullición y fusión típicos de compuestos orgánicos no polares. -Los compuestos que se encuentran en el alquitrán de los cigarrillos, contienen cuatro o más anillos bencénicos fusionados son carcinógenos. - El benceno también es carcinógeno. benzantraceno

Upload: qcaorg1

Post on 08-Jul-2015

2.062 views

Category:

Documents


1 download

DESCRIPTION

Para tercer Certamen

TRANSCRIPT

Page 1: Unidad V

AROMATICIDAD, BENCENO. SUSTITUCIÓN ELECTROFÍLICA

Propiedades físicas:

- Los hidrocarburos aromáticos son no polares (éter dietílico, tetracloruro de carbono o hexano).

- Forma azeótropos con el agua. (91% de benceno y 9% de agua y destila a 69,4ºC).

- Puntos de ebullición y fusión típicos de compuestos orgánicos no polares.

-Los compuestos que se encuentran en el alquitrán de los cigarrillos, contienen cuatro o más anillos bencénicos fusionados son carcinógenos.

- El benceno también es carcinógeno.

benzantraceno

Page 2: Unidad V

Estabilidad del anillo bencénico.

H2

Pt

H2

Pt

+ + 28,6 kcal/mol

ciclohexeno ciclohexano

+ 49,8 kcal/mol+ 225º35 atm

- La hidrogenación de benceno libera 36 kcal/mol menos que la hidrogenación del hipotético ciclohexatrieno. (energía de resonancia).

- Energía de resonancia es la energía perdida (estabilidad ganada) por la deslocalización completa de los electrones en el sistema pi.

- En términos de reactividad química, significa mucha energía para que se produzca una reacción en que haya pérdida de la aromaticidad. (ej.: el benceno no experimenta la mayoría de las reacciones de los alquenos).

Page 3: Unidad V

Requisitos para la aromaticidad

- La molécula debe ser cíclica y plana.

- Cada átomo del anillo debe tener un orbital p perpendicular al plano del anillo. (deslocalización completa de los electrones pi).

- Regla de Hückel: un anillo plano debe tener 4n+2 electrones pi. (n= número entero). Un anillo con 2, 6,10 ó 14 electrones pi puede ser aromático.

- Una manera conveniente para determinar si un compuesto es aromático es por la posición de absorción en el espectro de resonancia de RMN de los protones unidos a los átomos del anillo.

Page 4: Unidad V

SUSTITUCIÓN ELECTROFÍLICA AROMÁTICA

■ La sustitución electrofílica aromática es la reacción más importante de los compuestos aromáticos. Es posible introducir al anillo muchos sustituyentes distintos por este proceso. Si se elige el reactivo apropiado pueden efectuarse reacciones de bromación, cloración, nitración, sulfonación, alquilación y acilación, estas seis son reacciones directas, y a partir de ellas se pueden introducir otros grupos.

■ En este capítulo estudiaremos estas seis reacciones, más las que se puedan obtener a partir de ellas, como así mismo la introducción de un segundo sustituyente.

Page 5: Unidad V

■ La reacción más importante de los compuestos aromáticos es la sustitución electrofílica aromática. Es decir la introducción de un electrófilo (E+).

■ Seleccionando las condiciones y los reactivos apropiados, el anillo aromático se puede halogenar, nitrar, sulfonar, acilar y alquilar. Todas estas reacciones y muchas otras proceden a través de un mecanismo similar.

Page 6: Unidad V
Page 7: Unidad V

Halogenación del Benceno

■ El benceno es normalmente inerte en presencia de halógenos, debido a que los halógenos no son lo suficientemente electrófilos para destruir su aromaticidad. Sin embargo, los halógenos pueden activarse mediante ácidos de Lewis como los haluros de hierro, FeX3 o de aluminio, AlX3, para dar electrófilos más potentes.

■ Mecanismo de la Bromación:

■ 1) Activación del bromo por un ácido de Lewis (FeBr3)

Br Br FeBr3

Br Br+

Fe Br+

Br Fe 3Br3Br

:.. ..

..:

..:..

.. ..

.. ..

....:

Page 8: Unidad V

■ 2) Ataque electrófilo sobre el benceno por bromo activado

■ 3) El FeBr4- formado en la etapa anterior actúa ahora como

base abstrayendo el protón del catión hexadienilo.

■ En resumen, la halogenación del benceno se hace más exotérmica al pasar del I2 (endotérmica) a F2 (explosiva). Las cloraciones y bromaciones se consiguen utilizando ácidos de Lewis como catalizadores que polarizan el enlace X-X y activan el halógeno aumentando su poder electrófilo.

H

Br Br+

Fe Fe 4Br3Br

H

Br:..

.. ..

..+ +

+

Fe 4Br

H

Br

Br

BrH FeBr3+

+

+ +

Page 9: Unidad V

Nitración del Benceno:

■ Los anillos aromáticos se pueden nitrar por reacción con una mezcla de ácido nítrico y ácido sulfúrico concentrado. Se piensa que en ésta reacción el electrófilo es el ion nitronio, NO2

+, que se genera a partir del ácido nítrico por protonación y pérdida de agua.

■ Mecanismo de la Nitración:

■ 1) Activación del ácido nítrico por el ácido sulfúrico (formación del ion nitronio)

OH

O

N+

O 3H-OSO H

OH2

+

O

N+

O3

SO HO

OH2

NO2

: _ + +

-

+

Page 10: Unidad V

■ 2) Ataque electrófilico sobre el ion nitronio

■ 3) Abstracción del protón por parte de la base conjugada del ácido sulfúrico.

■ La nitración de anillos aromáticos es una reacción de particular importancia, debido a que los nitroarenos que se producen pueden reducirse con reactivos como hierro o cloruro estañoso para formar aninoarenos (anilina).

NO2

H

H

NO2+ +

+

H

NO2 3SO HO

NO2

H SO2 4

+

+ +

Page 11: Unidad V

Sulfonación del Benceno:

■ El ácido sulfúrico concentrado no reacciona con el benceno a temperatura ambiente excepto por protonación. Sin embargo, una forma más reactiva, llamada “ácido sulfúrico fumante” da lugar a un ataque electrófilico por SO3. El ácido sulfúrico fumante comercial se prepara por adición de aproximadamente un 8% de trióxido de azufre (SO3), a ácido sulfúrico concentrado. El electrófilo reactivo es HSO3

+ o SO3 neutro, dependiendo de las condiciones de reacción.

Page 12: Unidad V

Mecanismo de la Sulfonación:

■ La sulfonación es reversible, tiene utilidad sintética, debido a que el sustituyente ácido sulfónico puede utilizarse como grupo protector para dirigir la sustitución.

H3

SO

HS O

O

O

3SO H

++ -

ácido bencenosulfónico 95%

3SO H

OH2 4H SO

2

100ºC

,

Page 13: Unidad V

Alquilación del Benceno: Reacción de Friedel-Crafts

■ En 1877, Charles Friedel[1] y James Crafts[2]descubrieron que los haloalcanos reaccionan con benceno en presencia de cloruro de aluminio, para dar el producto de alquilación. La reacción de Friedel-Crafts es una sustitución electrofílica aromática en la cual el anillo aromático ataca a un carbocatión electófilico. El carbocatión se genera cuando el catalizador AlCl3 ayuda al halogenuro de alquilo a ionizarse, de forma muy similar a como el FeBr3 cataliza las bromaciones aromáticas polarizando al bromo.

Page 14: Unidad V

Mecanismo de la Alquilación:■ 1) Activación del haloalcano

■ 2) Ataque electrófilo

■ 3) Pérdida del protón

■ Las alquilaciones de Friedel-Crafts intramoleculares pueden utilizarse para la construcción de un nuevo anillo fusionado con el núcleo bencénico.

δAlCl

3R-CH -X

2R-CH -X

2AlCl

3

.. ..

..:

.. + _ -++

δAlCl

3R-CH -X

2AlCl

3

H H

CH -R2 X

..

.._ -++

++

+

AlCl3

H

CH -R2 X AlCl

3

CH -R2

HX

+

+ + +

Page 15: Unidad V

■ Acilación de Friedel-Crafts

■ La reacción consiste en la introducción del grupo acilo -COR, al anillo aromático. El mecanismo de la acilación de Friedel-Crafts es similar al de la alquilación. El electrófilo reactivo es un catión de acilo estabilizado por resonancia, el cual se genera por reacción entre el cloruro de acilo y el AlCl3.

Page 16: Unidad V

■ A diferencia de las alquilaciones, las acilaciones nunca proceden más de una vez en un anillo , debido a que el acilbenceno producido es siempre menos reactivo que el material de partida no acilado.

Mecanismo de la Acilación:

■ Las reacciones anteriormente comentadas se pueden resumir dela siguiente forma:

AlCl3C

O

R Cl AlCl3

C

O

R ClC

O

R C

O

R

AlCl4

..:..+ ..

..-+

..:

+

+

catión acílico

+-

H

C

O

RAlCl

3

AlCl4

HC

O

R CO

R

ClH+:

++

-

+

+

Page 17: Unidad V

Electrófilo (XÅ) Reactivo Reacción

R+ RBr + AlCl3 Alquilación Friedel-Crafts

ROH + H+

Alqueno + H+

RCO+ RCOCl + AlCl3 Acilación Friedel-Crafts

NO2+ HNO3 + H2SO4 Nitración

Cl+ Cl2 + FeCl3 Cloración

Br+ Br2 + Fe Bromación

HOSO2+ H2SO4 Sulfonación

ClSO2+ ClSO2OH Clorosulfonación

H

RX

X

R

+

Page 18: Unidad V

■ Para la preparación de otros derivados monosustituidos, distintos a los ya mencionados se procede a partir de alguno de ellos, empleando las reacciones químicas clásicas, como oxidación, reducción, etc. Las cuales se resumen a continuación en una especie de tabla

Y X ReactivoReducción-NO2 -NH2 H2, Pd/C (o)

Sn, HCl, conc.

-COR -CH(OH)R NaBH4

-COR -CH2R Zn/Hg, HCl, conc.

H2, Pd, Etanol

Oxidación:-CH2Cl -CHO hexamina

-CH2R -CO2H KMnO4

-CH3

-COR -OCOR R’CO3H

Sustitución:-CH3 -CCl3 Cl2, PCl5-CH3 -CH2Br NBS, CCl4-CCl3 -CF3 SbF3

-CN -CO2H HO-, H2O

-Br -NH2 NH2- Na+, NH3

Y

R

X

R

Page 19: Unidad V

Otras reacciones importante del anillo benceno son:

■ Reducción de Birch:

■ Hidrogenación Catalítica de anillos Aromáticos:

■ Sustitución Aromática a través de intermedios Bencino

Li, NH (o Na)

Etanol

3

H /Rh/C

Etanol

2

Cl

NaNH , NH liq.

-NaCl32

NH3

NH2

Page 20: Unidad V

Síntesis de Bencenos Disustituidos:

■ Una de las formas más seguras de adquirir dominio de la química orgánica es resolver problemas de síntesis. La habilidad para planear una síntesis satisfactoria en varios pasos de una molécula compleja requiere un conocimiento práctico de los usos y las limitaciones de varios cientos de reacciones orgánicas. Es necesario saber no sólo que reacciones emplear, sino también cuándo utilizarlas. El orden en que se realizan las reacciones con frecuencia es crítico para el éxito del método total.

■ Ejemplo: Sintetizar el ácido p-bromobenzoico a partir de benceno.

■ Es necesario preguntarse “¿Cuál es un precursor inmediato del ácido p-bromobenzoico?”

Page 21: Unidad V

■ El análisis sintético hacia atrás (retrosintético) revela dos rutas válidas que van del benceno al ácido p-bromobenzoico.

■ Un segundo ejemplo de interés es la síntesis del 4-cloro-1-nitro-2-propilbenceno a partir de benceno, en principio hay tres posibles precursores disustiutidos, pero sólo uno de ellos es el adecuado.

Br COOH?

CH Cl

3

2

BrKMnO4

CH3

Br

FeBr

AlCl3

3

CH Cl

AlCl3

3

3

2Br

FeBr

CH

Br

3 CO H

Br

2

benceno

Page 22: Unidad V

Cl

NO2

Cl

HNO3

H SO2 4

2NO

2NO

Cl

Este anillo se encuentra desactivado y no experimenta la alquilación de Friedel-Crafts

Esta molécula no formael isómero deseado por la reacción de cloración

XX

p-cloronitrobenceno m-cloropropilbenceno o-nitropropilbenceno

Page 23: Unidad V

■ La síntesis final es una ruta de cuatro pasos a partir del benceno:

O

CH CH CCl3 2

AlCl3

O

Cl2FeCl3

O

Cl

H ,Pd/CEtanol

2

ClHNO3

H SO2 4

2NO

Cl

Page 24: Unidad V

■ A continuación se realizara un pequeño estudio, para ver como se produce la entrada de un segundo grupo (E), dada que esta queda sujeta a presencia del grupo ya presente en anillo bencénico (G). Los sustituyentes en el anillo de benceno afectan tanto la reactividad del anillo hacia posteriores sustituciones como la orientación de estas últimas. Los grupos pueden clasificarse en tres categorías: activadores orientadores orto-para, desactivadores orientadores orto-para, y desactivadores orientadores meta.

Page 25: Unidad V

H

G

E

H

G

E

H

G

E

G

E

G

E

G

H

E

G

H

E

G

H

E

G

E

G

E

G

EH

G

EH

G

EH

G

E

G

E

+

+ +

+

orto

+ + + +

+ meta

+ ++

+

+

para

Page 26: Unidad V

■ La entrada y dirección del electrófilo (E) en la sustitución electrofilica aromática en bencenos monosustituidos (G) queda gobernada por la naturaleza química del grupo G, los cuales a su vez se clasifican en activantes fuertes (orientadores orto-para), activantes moderados (orientadores orto-para), activantes débiles (orientadores orto-para), desactivantes débiles (orientadores orto-para), desactivantes fuertes (orientadores meta), a continuación se muestran algunos de ellos en orden decreciente, de acuerdo a su poder activante o desactivante.

Page 27: Unidad V

Dirección Grupo Activaciónorto-para -NH2 , -NHR , -NR2 Activantes fuertes

-OH , ORorto-para -NHCOR, -OCOR Activantes moderados

Alquenosorto-para -R (alquilo) Activantes débiles

-feniloorto-para -F , -Cl , -Br , -I Desactivante débilesmeta -CX3 (X = F, Cl, etc.) Desactivantes fuertes

-COOH, -COOR, -COR-COH, -SO3H; -NO2;

-NR+3 , -CN

Page 28: Unidad V

■ La bromación electrófilica, del metilbenceno (tolueno) da sustitución orto y para.

■ La bromación no es un caso particular; la nitración y la sulfonación dan los mismos resultados cualitativos, sustitución principalmente en las posiciones orto y para , en la molécula del benceno. Explicación mecanistica para el caso del bromo:

CH3

Br

CH3

Br

CH3

Br

CH3

Br

2FeBr3

CCl4+ +

39% 1% 60%

Page 29: Unidad V

H

CH3

Br

H

CH3

Br

H

CH3

Br

CH3

Br

CH3

Br

CH3

H

Br

CH3

H

Br

CH3

H

Br

CH3

Br

CH3

Br

CH3

BrH

CH3

BrH

CH3

BrH

CH3

Br

CH3

Br

2

2

2

FeBr3

FeBr3

FeBr3

++ +

+

orto

++ +

+ meta

++

+

+

para

carbocatión 3ºmuy estable

carbocatión 3ºmuy estable

Page 30: Unidad V

■ Sólo el ataque en las posiciones orto y para da lugar a un catión hexadienilo en el que una estructura resonante tenga la carga positiva adyacente al sustituyente alquilo, dejando un carbocatión terciario, en cambio en meta ninguna de las formas resonantes deja un carbocatión terciario, por tal motivo predominan los productos orto y para dado que el intermedio es más estable, a su vez el mayoritario es el para por efectos estéricos.

■ Los sustituyentes desactivantes por efecto inductivo orientan en meta, como por ejemplo la nitración del trifluorometilbenceno, en donde el único producto es el meta.

■ explicación mecanistica:

C C

N

HNO3

2

F3

H SO4 O2

F3

único producto

Page 31: Unidad V

H

C

N

H

C

N

H

C

N

O2O2O2

F3

F3

F3

C C

N

C

H

N

C

H

N

C

H

N O2O2O2

F3

F3

F3C C

N

C

NH

C

NH

C

NH O2

F3 F

3F

3C C

N

HNO3

2

F

F

F

3

3

3

HNO3

HNO3

H SO4

2H SO

4

2H SO

4

O2

O2 O2

O2

O2

F3

F3

F3

+ +

+

orto

+ +

+ meta

+

+

+

para

carbocatión 3ºmuy estable

carbocatión 3ºmuy estable

Page 32: Unidad V

■ Ahora el ataque en orto y para están más desfavorecidos, dado que hay intermedios inestables, el ataque se produce en meta, de esta manera se evita la formación de intermedios inestables.

■ Los halógenos retiran densidad electrónica por efecto inductivo mientras que son donadores por resonancia, globalmente el efecto inductivo prevalece y los haloarenos están desactivados, sin embargo la sustitución electrófila tiene lugar principalmente en las posiciones orto y para.

Page 33: Unidad V

REGLAS PARA PREDECIR LA ORIENTACIÓN EN LOS BENCENOS DISUSTITUIDOS

■ 1.- Si todos los sustituyentes se refuerzan entre si, la entrada del tercer grupo no genera ningún tipo de problemas.

■ Ejemplos:

CH3

CH3

O

CH3

N2

CH3

CH3

O

CH3

N2

Br2

FeBr3

CH3

CH3

Br

3

AlCl3

O

CH3

N

CH3

O

2

CH COCl

Page 34: Unidad V

■ 2.- Si un orientador orto-para y uno meta no se están reforzando, el orientador orto-para controla la orientación del tercer grupo. (El grupo entrante se dirige principalmente orto hacia el orientador meta.)

■ Ejemplos:

Cl

NO2

CH3

NO2

Principal Principal

Cl

NO2

CH3

NO2

Cl2/ FeCl3

Cl

NO2

Cl

CH3

SO3H

NO2

SO3/H2SO4

Page 35: Unidad V

■ 3-. Un grupo fuertemente activador, que compite con un grupo débilmente activador,controla la orientación.

■ Ejemplos:

OCH3

CH3

OH

CH3

(o,p-moderado)

(o,p-débil)

(o,p-fuerte)

(o,p-débil)

OCH3

CH3

OH

CH3HNO3/H2SO4

OCH3

CH3

NO2 Br2

FeBr3

OH

CH3

Br

Page 36: Unidad V

■ 4-. Cuando compiten dos grupos débilmente activadores o desactivadores o dos grupos fuertemente activadores o desactivadores, se obtienen cantidades considerables de ambos isómeros, hay muy poca preferencia.

■ Ejemplo:

Cl

CH3

Cl

CH3

(o,p-débil)

(o,p-débil) (o,p-débil)

+

Cl

CH3

Cl

CH3

Br

Br2

FeBr3

Cl

CH3

Br

+

Page 37: Unidad V

■ 5.- En la posición de impedimento estérico, entre los sustituyentes meta hay muy poca sustitución.

Otras reacciones de interés:

CH3

CH3

Ar-CH3

Cl2,calor

CrO3

(CH3CO)2O

Ar-CHCl2

Ar-CH(OOCCH3)2

H2O/HArCHO

aldehído

+

Ar-XMg

Ar-Mg-XCO2 Ar-COOMgX

HAr-COOHác. carboxílico

+

éter

Ar-CNH3O Ar-COOH

+

Page 38: Unidad V

■ ¿Cuidado con los fenoles? Son activantes fuertes, si se emplean directamente provocan la polisustitución, si se desea obtener un compuesto disustituido a partir de ellos se debe proteger el grupo alcohol como acetato, de esa manera conserva su poder orientador pero disminuye su poder activador.

■ Para obtener el para-bromobenceno a partir de fenol se debe proceder de la siguiente manera:

OH

Br2

FeBr3

CH3

Br

Br Br

Page 39: Unidad V

OH

Ac2O/Py

OAc

Br2

FeBr3

OAc

Br

OAc

Br

NaOH/H2O

OH

Br

OH

Br

+

+mayoritario

Page 40: Unidad V

■ El mismo cuidado hay que tener con el Anilina, dado que el grupo amino es un activante fuerte, problema que puede evitarse protegiéndolo como amida.

NH2

Ac2O/Py

NH2

Br Br

Br

Br2

FeBr3

NHCOCH3

Br

NHCOCH3

Br

NaOH/H2O

NH2

Br

NH2

Br

NH2 NHCOCH3

Br2

FeBr3+

+

mayoritario