sus tainability metrics from cr adl e t o gr av eevirtual.uaslp.mx/habitat/innobitat01/cahs/ss arq...

27
Mendoza, Argentina March 24-27 2013 from cradle to grave sustainability metrics

Upload: phunglien

Post on 15-Apr-2018

219 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: sus tainability metrics from cr adl e t o gr av eevirtual.uaslp.mx/Habitat/innobitat01/CAHS/SS Arq Arista...Alfredo Iriarte Garcia Amalia Sojo Ana Quiros Anderi da Silva Anna Lucia

Mendoza, ArgentinaMarch 24-27

2013

from cradle to gravesustainability metrics

Page 2: sus tainability metrics from cr adl e t o gr av eevirtual.uaslp.mx/Habitat/innobitat01/CAHS/SS Arq Arista...Alfredo Iriarte Garcia Amalia Sojo Ana Quiros Anderi da Silva Anna Lucia

Proceedings of the Vth International Conference on Life Cycle Assessment, CILCA2013

2

Copyright @ Facultad Regional Mendoza, Universidad Tecnológica Nacional, 2013. Todos los derechos de este volumen están reservados. Sólo está permitida la reproducción parcial o total con fines Académicos siempre que se mencione el origen.

Primera edición: Marzo de 2013

Diseño de Tapa: Gabriela Barón (UTN)

Logotipo de Tapa: Mercedes Civit (Ludwig Morris)

ISBN 978-950-42-0146-5

Editores

Alejandro Pablo Arena

Bárbara Civit

Roxana Piastrellini

Page 3: sus tainability metrics from cr adl e t o gr av eevirtual.uaslp.mx/Habitat/innobitat01/CAHS/SS Arq Arista...Alfredo Iriarte Garcia Amalia Sojo Ana Quiros Anderi da Silva Anna Lucia

Proceedings of the Vth International Conference on Life Cycle Assessment, CILCA2013

3

Impreso en la Argentina - Printed in Argentina

Queda hecho el depósito que previene la ley 11.723

Responsabilidades: El contenido y opiniones vertidas en los trabajos incluidos en este libro son responsabilidad de sus respectivos autores.

Page 4: sus tainability metrics from cr adl e t o gr av eevirtual.uaslp.mx/Habitat/innobitat01/CAHS/SS Arq Arista...Alfredo Iriarte Garcia Amalia Sojo Ana Quiros Anderi da Silva Anna Lucia

Proceedings of the Vth International Conference on Life Cycle Assessment, CILCA2013

4

Proceedings of the V International Conference on Life Cycle

Assessment - CILCA2013

CILCA 2013, Mendoza, Argentina

March 24th- 27 th, 2013

Page 5: sus tainability metrics from cr adl e t o gr av eevirtual.uaslp.mx/Habitat/innobitat01/CAHS/SS Arq Arista...Alfredo Iriarte Garcia Amalia Sojo Ana Quiros Anderi da Silva Anna Lucia

Proceedings of the Vth International Conference on Life Cycle Assessment, CILCA2013

5

Sustainability metrics, from cradle to grave

Organización General

Alejandro Pablo Arena (chair)

Bárbara Civit (co-chair)

Comité Organizador

Francesc Castells Pique (Universidad de

Rovira i Virgili, España)

Joan Rieradevall Pons (Sostenipra -

Universidad Autónoma de Barcelona,

España)

Nydia Suppen Reynaga (CADIS, México)

Cassia M. L. Ugaya (UTFPR, Brasil)

Armando Caldeira Pires (Univ. de Brasilia,

Brasil)

Gil Anderi da Silva (Univ.de Brasilia, Brasil)

Ana Quiros (Ecoglobal, Costa Rica)

Claudia Peña (CIMM, Chile)

Elena Rosa (Univ. Central de las Villas,

Cuba)

Isabel Quispe (Pontificia Univ. Católica del

Perú)

Sonia Valdivia (UNEP, Francia)

Carlos Naranjo (GAISA, Colombia)

Alejandro Pablo Arena (UTN FRM,

Argentina)

Barbara Civit (UTN FRM, Argentina)

Liliana Niveyro (FCA UNCuyo, Argentina)

Pablo Martínez (CNEA, Argentina)

Fernando Mele (UNT, Argentina)

Page 6: sus tainability metrics from cr adl e t o gr av eevirtual.uaslp.mx/Habitat/innobitat01/CAHS/SS Arq Arista...Alfredo Iriarte Garcia Amalia Sojo Ana Quiros Anderi da Silva Anna Lucia

Proceedings of the Vth International Conference on Life Cycle Assessment, CILCA2013

6

Comité Científico

Francesc Castells Pique

(España)

Joan Rieradevall Pons

(España)

Nydia Suppen Reynaga

(México)

Cassia M. L. Ugaya (Brasil)

Armando Caldeira Pires

(Brasil)

Gil Anderi da Silva (Brasil)

Ana Quiros (Costa Rica)

Claudia Peña (Chile)

Elena Rosa (Cuba)

Isabel Quispe (Perú)

Sonia Valdivia (Francia)

Carlos Naranjo (Colombia)

Alejandro Pablo Arena

(Argentina)

Barbara Civit (Argentina)

James Fava (USA)

Llorenc Mila i Canals

(Inglaterra)

Maite Aldaya (Francia)

Greg Norris (USA)

Thomas Koellner

(Alemania)

Mary Ann Curran (USA)

Martina Prox (Alemania)

Sangwon Suh (USA)

Mark Goedkoop

(Holanda)

Fernando Mele

(Argentina)

Jorge Hilbert (Argentina)

Claudio Zaror (Chile)

Miguel Brandao (España)

Edmundo Muñoz (Chile)

Patricia Güereca (México)

Comité Local

Alejandro Pablo Arena (UTN/CONICET)

Enrique Puliafito (UTN/CONICET)

Bárbara Civit (UTN/CONICET)

Roxana Piastrellini (UTN/CONICET)

José Luis Córica (UTN)

Magalí García (UTN)

Luisa Baumhauer (UTN)

Silvia Curadelli (UTN)

Juan Nuñez Mc Leod (UTN)

Miriam López (UTN)

Andrés Benito (UTN)

Eugenio Fisicaro (UTN)

Liliana Niveyro (UNCuyo)

Cecilia Rébora (UNCuyo)

Andrea Rivarola (UTN)

María Celeste Gardey (UTN)

Claudia Kolosow (UTN)

Paula Díaz Ortiz (UTN)

Gabriela Barón (UTN)

Cuerpo de Revisores

Alejandro Pablo Arena

Alfredo Iriarte Garcia

Amalia Sojo

Ana Quiros

Anderi da Silva

Anna Lucia Mourad

Armando Caldeira Pires

Assumpció Antón

Barbara María Civit

Cassia M. L. Ugaya

Celina Rosa Lamb

Claudia Peña

Claudio Alfredo Zaror

Zaror

David Gabriel Allende

Page 7: sus tainability metrics from cr adl e t o gr av eevirtual.uaslp.mx/Habitat/innobitat01/CAHS/SS Arq Arista...Alfredo Iriarte Garcia Amalia Sojo Ana Quiros Anderi da Silva Anna Lucia

Proceedings of the Vth International Conference on Life Cycle Assessment, CILCA2013

7

Elena Rosa

Fausto Freire

Fernando Daniel Mele

Francesc Castells Pique

Gabriela baron

Gerardo Javier Arista

Greg Norris

Irma Mercante

Isabel Quispe

J Adolfo Almeida Neto

Joan Rieradevall Pons

Leonor Patricia Guereca

Llorenc Mila i Canals

Luiz Kulay

Maite Aldaya

María Dolores Bovea

Miguel Brandão

Mireya Gonzalez

Montserrat Nunez

Nydia Suppen Reynaga

Pablo Martinez

Paulo Sergio Moreira

Soares

Rafael Rafael Pazeto

Alvarenga

Ronaldo Francisco Santos

Herrero

Roxana Piastrellini

Sangwon Suh

Silvia Palma Rojas

Comunicación

Elba Pescetti (UTN/CONICET)

Florencia Ruggeri (UTN)

Gestión tecnológica

Javier Gustavo Gitto (UTN)

José Luis Córica (UTN)

Diseño

Mercedes Civit (Ludwig Morris)

Gabriela Barón (UTN FRM)

Compaginación

Juan Nuñez Mc Leod

Protocolo

Silvana Scarpetta (UTN FRM)

Page 8: sus tainability metrics from cr adl e t o gr av eevirtual.uaslp.mx/Habitat/innobitat01/CAHS/SS Arq Arista...Alfredo Iriarte Garcia Amalia Sojo Ana Quiros Anderi da Silva Anna Lucia

Proceedings of the Vth International Conference on Life Cycle Assessment, CILCA2013

8

PROLOGO

En nombre del Comité Organizador de la V Conferencia Internacional sobre Análisis de Ciclo de Vida – CILCA 2013, ponemos a su disposición estas Actas que recopilan las contribuciones de los distintos autores que han hado sustancia a este evento.

Desde la primera edición en Costa Rica en el año 2005, CILCA se ha convertido en una conferencia periódica, bien establecida, y reconocida a nivel internacional, que provee un marco para la difusión del conocimiento generado en los grupos de investigación, en las consultoras y en las empresas, quedando disponible para toda la comunidad. Pero no es eso lo más importante, sino el marco que brinda para la reunión, discusión, cooperación y generación de nuevas ideas, que impulsan edición tras edición nuevos proyectos y publicaciones conjuntas.

En este proceso de consolidación y crecimiento, CILCA incorpora nuevas actividades y ofrece una mayor variedad de opciones para sus participantes. Opciones no sólo académicas, sino también recreativas que ayudan a hacer más “sostenible” Cilca, a través del establecimiento y reforzamiento de relaciones. Este año, el vino mendocino será protagonista de las actividades recreativas, con visitas a bodegas, degustaciones y cenas.

A los ya clásicos cursos, sesiones técnicas orales y poster, conferencias plenarias y Mesas redondas, este año sumamos la realización de un Taller para Doctorandos, que ofrece a los tesistas un ámbito de discusión e intercambio de experiencias que enriquecerá sus trabajos de investigación con el aporte de expertos en los temas abordados..

Confiamos en que disfruten de este material tan valioso, y del exigente programa propuesto. A los que no pudieron participar del evento, esperamos que estas memorias les sean útiles, y nos auguramos encontrarlos en el próximo CILCA.

Alejandro Pablo Arena

Bárbara Civit

Marzo de 2013

Page 9: sus tainability metrics from cr adl e t o gr av eevirtual.uaslp.mx/Habitat/innobitat01/CAHS/SS Arq Arista...Alfredo Iriarte Garcia Amalia Sojo Ana Quiros Anderi da Silva Anna Lucia

Proceedings of the Vth International Conference on Life Cycle Assessment, CILCA2013

9

FOREWORD

On behalf of the Organizing Committee of the V International Conference on Life Cycle

Assessment - CILCA 2013, we provide these proceedings which collect the contributions of the

various authors, the marrow of this event.

Since the first edition in Costa Rica in 2005, CILCA has become a periodic conference, well

established and internationally recognized, which provides a framework for the dissemination

of knowledge generated by the research groups, consulting firms, and technical centres. But

the most important thing is the framework provided for the meeting for discussion,

cooperation and generation of new ideas that drive year after year new projects and joint

publications.

In this process of consolidation and growth, CILCA incorporates new activities and offers a

wider range of options for its participants. Options not only academic, but also recreational

that help make Cilca more "sustainable", through the establishment and strengthening of

networks. This year, the recreational activites will feature a starring role by the wine from

Mendoza: the visits to wineries, wine tastings, lunch at Altavista winery and dinner

accompanied with good wine are some of the optional activities included.

To the classic courses, oral and poster technical sessions, plenary lectures and panel

discussions, this year we added a PhD Workshop, which offers postgraduate students a space

for discussion and exchange of experiences that will enrich their research with input from

experts in the topics.

We hope you enjoy this valuable material, and the demanding program we propose. For those

unable to attend the event, we hope these memories will be useful, and we hope we will meet

them in the next CILCA.

Alejandro Paul Arena

Barbara Civit

March 2013

Page 10: sus tainability metrics from cr adl e t o gr av eevirtual.uaslp.mx/Habitat/innobitat01/CAHS/SS Arq Arista...Alfredo Iriarte Garcia Amalia Sojo Ana Quiros Anderi da Silva Anna Lucia

Proceedings of the Vth International Conference on Life Cycle Assessment, CILCA2013

10

CONTENTS

FULL PAPERS ................................................................................................20

Carbon and Water footprints ...........................................................................21

A new method for assessing impacts of water use in life cycle assessment .......22

Farm-gate environmental decision tool ...............................................................27

Study of embodied energy and CO2eq.as eco-efficiency descriptors of Brazilian

building materials ...............................................................................................41

Modeling carbon footprint of the Chilean apple production .................................50

Carbon Footprint of Three Walls Systems in Low Cost Housing in Colima, Mexico

...........................................................................................................................54

Assessing water footprint of companies in Colombia .........................................63

Water and energy consumption at KAUST and how to reach a null water footprint

...........................................................................................................................74

Rice water footprint in paddy systems of Entre Ríos ..........................................80

Organization´s carbon footprint ..........................................................................91

Kraftliner paper – A temporary carbon stock packaging material ........................98

The water footprint and water use efficiency in vineyards-Mendoza, Argentina 103

Design for sustainability ................................................................................ 110

Contribution of Simplified LCA to Design for Sustainability – Cases of Industrial

Application ....................................................................................................... 111

Ecolabelling, Environmental Product Declarations Type III (PCREPD) and

green purchasing ........................................................................................... 125

Communicational strategy for environmental aspects to promote the consumption

of sustainable products .................................................................................... 126

Comparison between European EPD issuing Systems and lessons learned to

Latin American Countries ................................................................................. 137

Education and Capability Development ....................................................... 150

Life Cycle approach and use of softwares in the chain of Brazilian biodiesel .... 151

UndeRstandable methOdology Bonding KnOwledge from cRadle-to-cradle for

Undergrad Students: UROBORUS ................................................................... 158

Industrial Ecology .......................................................................................... 168

Proposal for technical and environmental performance improvement actions at an

electricity cogeneration plant within the sugar/alcohol sector ............................ 169

Industrial Symbiosis in the Industrial Area of Villa El Salvador ......................... 175

Page 11: sus tainability metrics from cr adl e t o gr av eevirtual.uaslp.mx/Habitat/innobitat01/CAHS/SS Arq Arista...Alfredo Iriarte Garcia Amalia Sojo Ana Quiros Anderi da Silva Anna Lucia

11

Page 12: sus tainability metrics from cr adl e t o gr av eevirtual.uaslp.mx/Habitat/innobitat01/CAHS/SS Arq Arista...Alfredo Iriarte Garcia Amalia Sojo Ana Quiros Anderi da Silva Anna Lucia

Proceedings of the Vth International Conference on Life Cycle Assessment, CILCA2013

12

Multi-Step Decision Making on Life Cycle Assessment Methods for Industrial

Sectors ............................................................................................................. 358

Environmental and Socioeconomic LCA of Milk in Canada .............................. 366

Comparative LCAs of ceramic tiles and bricks vs concrete equivalents in the

Brazilian context ............................................................................................... 378

Sustainability assessment of chemical processes and/or products using life cycle

assessment ...................................................................................................... 384

Life Cycle Assessment of the CILCA 2007 event ............................................. 396

Life cycle assessment of Chilean copper wire rods .......................................... 402

Energy balance of IVS 4500 wind turbine through a Life Cycle Assessment .... 409

Life cycle analysis of handmade ceramic brick in chiapa de corzo, chiapas,

mexico ............................................................................................................. 422

Life cycle assessment of corn-based ethanol via dry milling in Province of Santa

Fe, Argentina ................................................................................................... 428

Analysis of the procedures for allocation criteria and the system boundaries in

LCA: study case of a toothbrush ...................................................................... 434

Evaluation of the dicalcium phosphate process with a view to environmental

performance improvement identification ........................................................... 441

LCA-based comparison of different scenarios of the application of a novel

ceramic nanofiltration membrane in the pulp industry ....................................... 447

Allocation in Brazilian milk production: a case study ......................................... 452

Importance of dry matter intake on environmental impacts of Brazilian milk

production: a case study .................................................................................. 456

Life-cycle evaluation of the ceramic block with a focus on social interest housing

......................................................................................................................... 460

LCA of lighting products: looking for methodological consistency ..................... 472

Comparison of different methods for vinasses treatment from the bioethanol

industry based on LCA ..................................................................................... 480

Life cycle assessment applied to technology for the remediation of contaminated

sites: a case study with chemical oxidation ...................................................... 490

LCI & LCA Databases ..................................................................................... 497

The need for consequential system modelling in Life Cycle Assessment for robust

decision support ............................................................................................... 498

LCADB.sudoe: Life Cycle Inventories database of the southwest of Europe .... 507

LCIA ................................................................................................................ 514

Life Cycle Impact Assessment on the land use impacts and application of

Geographic Information Systems ..................................................................... 515

Incorporation Of Risks Analysis Into The Lca Methodology: Challenges In

Petroleum Production ....................................................................................... 526

Page 13: sus tainability metrics from cr adl e t o gr av eevirtual.uaslp.mx/Habitat/innobitat01/CAHS/SS Arq Arista...Alfredo Iriarte Garcia Amalia Sojo Ana Quiros Anderi da Silva Anna Lucia

Proceedings of the Vth International Conference on Life Cycle Assessment, CILCA2013

13

LCM and Eco-efficiency ................................................................................. 533

Development of a methodology for the integration of nutritional and

environmental aspects for sustainable food consumption ................................. 534

The environmental evaluation of alternatives for energy improved performance in

printing and writing paper production by way of Life Cycle Analysis (LCA) ....... 543

Driving product stewardship: an empirical evaluation of the association between

some form of LCA implementation and environmental strategy choice in

Colombian firms ............................................................................................... 548

Life Cycle Management of Products in Embraer: challenges and persperctives

......................................................................................................................... 558

Systematic Monetization and Integration of environmental Impacts in planning

processes ......................................................................................................... 566

Life Cycle Costing .......................................................................................... 574

Economic and environmental impacts assessment along the supply chain of

anhydrous ethanol from sugarcane in Brazil ..................................................... 575

Social Responsibility and Life Cycle Sustainability Assessment ............... 584

Studying the Social Hotspots of 100 product categories with the Social Hotspots

Database .......................................................................................................... 585

Social Life Cycle Assessment of Brick Production in El Algarrobal, Mendoza,

Argentina: Preliminary Selection of Indicators .................................................. 594

Framework for social life cycle impact assessment .......................................... 600

Managing issues of responsibility across the entire product life cycle: Towards an

integrative model from the resource-based view of the firm and stakeholder

theory ............................................................................................................... 608

Environmental and Economic Hybrid Life Cycle Assessment of Bagasse-Derived

Ethanol Produced in Brazil ............................................................................... 629

Sustainability evaluation of biodiesel production using Life Cycle Assessment

performed with a specific Sustainability Index at Rio Grande do Sul, Brazil ...... 638

The use of aggregation step in Social Life Cycle Assessment: cocoa's soap case

study ................................................................................................................ 650

Sustainable Resource Management ............................................................. 658

Improvement of the Energy Balance of Microalgae Biodiesel by Integration with

anEthanol Distillery .......................................................................................... 659

Environmental viability assessment of soybean ethyl ester in vehicle use ........ 670

The state of the art on calculating abiotic resource depletion ........................... 676

Material assessment beyond geological availability .......................................... 682

LCA of logs extracted by forest management in Amazonian rainforests ........... 687

Estimating CO2 emissions in the employees transportation service of an

agricultural sector ............................................................................................. 693

Page 14: sus tainability metrics from cr adl e t o gr av eevirtual.uaslp.mx/Habitat/innobitat01/CAHS/SS Arq Arista...Alfredo Iriarte Garcia Amalia Sojo Ana Quiros Anderi da Silva Anna Lucia

Proceedings of the Vth International Conference on Life Cycle Assessment, CILCA2013

14

Waste Management and Recycling ............................................................... 699

Uncertainties in modelling impacts from the application on agricultural land of

processed organic waste .................................................................................. 700

Sustainability Assessment of Chemical Processes and/or Products using Life

Cycle Assessment ............................................................................................ 706

The Clean Development Mechanism in Wastewater Treatment Plants: The Case

of Latin America and the Caribbean ................................................................. 718

Environmental impact allocation methods and their reflection on the

attractiveness of blast furnace slag in cement industry ..................................... 725

ABSTRACTS ................................................................................................. 731

LCA Case Studies .......................................................................................... 732

Land Use in drylands: Desertification risk assessment. An agricultural case study

......................................................................................................................... 733

Management of whey in small dairy industries. A life cycle analysis ................. 735

Waste Management and Recycling ............................................................... 737

Use of garlic herbaceous waste as a fiber source on growing Rabbits ............. 738

POSTERS ...................................................................................................... 740

Carbon and Water Footprints ........................................................................ 741

Green Water Footprint for agricultural exports from the Province of Buenos Aires

......................................................................................................................... 742

Water Footprint and Life Cycle Assessment frameworks: synergies and hurdles

......................................................................................................................... 752

Water footprint of soybean under different tillage practices .............................. 753

Effect of water recovery on the water footprint of cellulose production in Chile . 754

Sustainability analysis of the Colombian flower industry: LCA, environmental

indicators and benchmarking ............................................................................ 756

Carbon footprint of the Chilean raspberry production ....................................... 758

Water footprint of the tourism sector in Chacras de Coria, Mendoza, Argentina

......................................................................................................................... 759

Carbon footprint of beers of a small processing plant in Chile .......................... 760

Water footprint of a cattle breeding production system in the Argentine Pampa

......................................................................................................................... 761

Design for Sustainability ............................................................................... 763

Application of Life Cycle Assessment in Enhancing the Environmental

Characterization of Materials for Ecodesign ..................................................... 764

Page 15: sus tainability metrics from cr adl e t o gr av eevirtual.uaslp.mx/Habitat/innobitat01/CAHS/SS Arq Arista...Alfredo Iriarte Garcia Amalia Sojo Ana Quiros Anderi da Silva Anna Lucia

Proceedings of the Vth International Conference on Life Cycle Assessment, CILCA2013

15

Calculation of the ecological footprint of concrete. A tool for sustainable design

......................................................................................................................... 774

Redesign of a portable water treatment plant ................................................... 784

LCA applied case: Strategic Analysis for a Sustainable traveling exhibition ..... 786

Balancing Ecology & Economy – A case study................................................. 788

Ecodesign (ISO 14006) and Environmental Management Systems (ISO 14001):

specifications, comparisons and organizational advantages of its integration ... 789

Proposition of LCA - and LCC- based eco-efficiency indicators for selection of

concrete building structural components .......................................................... 790

Life cycle assessment of temporary structures: A framework for decision making

and evaluation .................................................................................................. 792

Inventory Of Life Cycle Of The Polymer Phb- Polyhydroxybutyrate .................. 794

Education and Capability Development ....................................................... 795

Implementation of LCA in Poland ..................................................................... 796

Laboratory of Life Cycle Assessment of Energy Systems at the IEE-USP ........ 806

Empirical guidelines to reduce errors in LCA data gathering process .......... 807

Green Economy and Sustainable Policies ................................................... 808

Factores inherentes al Análisis de Ciclo de Vida: recomendaciones de política

......................................................................................................................... 809

Sustainability Policies in Tourism Protected Areas. Case: Archipelago Los

Roques National Park ...................................................................................... 818

Operationalising sustainability: current industrial practice ................................. 819

Life cycle sustainability of wind power in Brazil ................................................ 820

Pilot Project: Neutralization of Emissions from Agribusiness through Afforestation

and Reforestation ............................................................................................. 821

Inherent factors to Life Cycle Assessment: policy guidelines ............................ 822

Industrial Ecology .......................................................................................... 823

Sustainable assessment of the pervaporation process for bioethanol

dehydration using an LCA-based approach ................................................... 824

LCA & Rural Development ............................................................................. 826

Life Cycle Assessment As A Tool To Assess The Sustainability Of Cocoa In

Colombia .......................................................................................................... 827

Biodigestors And Lca – A Contribution To The Pig Farming’s Sustainability – The

Case Of Santa Catarina (Brazil) ....................................................................... 831

LCA & Sustainable Cities............................................................................... 832

Quantifying the environmental value of building reuse...................................... 833

Cumulative energy demand estimation of SIP (structural insulated panels) homes

through LCA ..................................................................................................... 834

Page 16: sus tainability metrics from cr adl e t o gr av eevirtual.uaslp.mx/Habitat/innobitat01/CAHS/SS Arq Arista...Alfredo Iriarte Garcia Amalia Sojo Ana Quiros Anderi da Silva Anna Lucia

Proceedings of the Vth International Conference on Life Cycle Assessment, CILCA2013

16

Life Cycle Assessment of social interest housing in Mexico ............................. 835

LCA of housing in Chile .................................................................................... 836

LCA Case Studies .......................................................................................... 837

Home and ready-made meals .......................................................................... 838

Beyond Carbon Footprinting for Corporate Activities – LCA vs. Carbon Footprint

of a Canadian Bank .......................................................................................... 844

Life cycle assessment of Miscanthus pellet production in Ireland ..................... 850

LCA application in the water footprint dairy chain. Argentina case study .......... 851

Life Cycle Impacts Assessment as a support for risks management: the case of

chemotherapy drug waste in a Brazilian hospital .............................................. 852

Trade off between operating cost increment and Carbon market income due to

life cycle greenhouse gases emissions reduction ............................................. 853

Preliminary study on the environmental profile of bioethanol production from

Spartina argentinensis. Inventory phase .......................................................... 855

Environmental impact assessment of mercurial sludge generated from Chlor-

alkali Cuban plant by means of Life Cycle Analysis: Disposal or Remediation?856

Environmental impacts of used cooking oil: direct wastewater treatment or

transportation to Biodiesel production plants? .................................................. 858

LCA-based hotspot analysis of food products to inform major Chilean retailer’s

sustainability strategy ....................................................................................... 859

Management of whey in small dairy industries. A life cycle analysis ................. 861

Life Cycle Assessment of Electric Cars in Portugal .......................................... 863

Life Cycle Energy Analysis Of Rainwater Harvesting System With Reservoir

Made Of Reinforced Concrete .......................................................................... 864

Modeling the Consequential Life Cycle Assessment of Brazilian Biodiesel ....... 865

Energy Balance Analysis And Life Cycle Energy Assessment Of Sugarcane

Bagasse Ethanol Production And Electricity Generation ................................... 867

Definition of the allocation rules in the PCR of basic metals based on a case

study ................................................................................................................ 869

Life cycle assessment of cellulose production from pine and eucalyptus wood in

Chile ................................................................................................................. 871

LCA methodology to guide Green Process Innovation: A case study of Brazilian

MDF industry .................................................................................................... 872

Potentiality of Life Cycle Assessment to determine points of inefficiency in

agribusiness systems: a case study for the sugar and ethanol agro industry of

Tucumán .......................................................................................................... 873

Life Cycle Assessment applied to a clothing product ........................................ 874

Handprints: The Positive Counterpart to Footprints .......................................... 875

Page 17: sus tainability metrics from cr adl e t o gr av eevirtual.uaslp.mx/Habitat/innobitat01/CAHS/SS Arq Arista...Alfredo Iriarte Garcia Amalia Sojo Ana Quiros Anderi da Silva Anna Lucia

Proceedings of the Vth International Conference on Life Cycle Assessment, CILCA2013

17

Life Cycle Assessment of Concrete Blocks Masonry: Processes Contribution

Analysis............................................................................................................ 876

Big Affect from Little Wooden Tongue Depressors ........................................... 877

Comparison between internal combustion and electric vehicles in Brazil using Life

Cycle Assessment ............................................................................................ 878

Life cycle assessment of Jatrophacurcas cultivation in tropical regions destinated

to biodiesel production ..................................................................................... 879

Environmental Evaluation of an Intensive Production System in the Central Basin

of Argentina employing the Extended Life Cycle Assessment (LCA) ................ 881

Physic-mechanical and environmental comparison of Compressed Earth Blocks

stabilized with cement and lime ........................................................................ 882

Post-consumer PET bottles Life Cycle Inventory (LCI) in Mexico ..................... 883

LCI & LCA Databases ..................................................................................... 885

LCA of Buildings in Mexico: Advances, Limits and Catalysts ............................ 886

Life Cycle Inventory Of Milk Production At An Experimental Unit In Itapetinga –

BA .................................................................................................................... 891

The World Food LCA Database (WFLDB) project: towards more accurate food

datasets ........................................................................................................... 896

Life cycle inventory of electronic waste treatment: Brazilian case ..................... 897

LCA-based tools for data collection and data processing towards a National Life

Cycle Inventory for the Chilean Food & Agriculture Sector ............................... 898

Estimating environmental impacts by means of FADN data. Comparison with

horticultural LCA results ................................................................................... 900

Life Cycle Assessment of soybean oil in Brazil ................................................. 902

Inventory of ammonia emission (NH3) from livestock production in Chile ......... 903

The transportation of oil in biodiesel production in Bahia / Brazil and its

importance in Life Cycle Assessment ............................................................... 904

The influence of transportation modal in the life cycle of copper in Brazil ......... 905

LCIA ................................................................................................................ 906

Urea formaldehyde resin: impacts on the productive life cycle of wood panels . 907

Soybean Oil’s Enviromental Impacts andLand ................................................. 908

The use of optional elements of the Life Cycle Impacts Assessment: literature

review .............................................................................................................. 909

LCM and Eco-efficiency ................................................................................. 910

Life Cycle Management of chemicals – How far are we? ................................. 911

Life Cycle Costing .......................................................................................... 912

Life cycle cost analysis of four bioclimatic strategies aimed at saving water and

energy in direct evaporative cooling equipment ................................................ 913

Page 18: sus tainability metrics from cr adl e t o gr av eevirtual.uaslp.mx/Habitat/innobitat01/CAHS/SS Arq Arista...Alfredo Iriarte Garcia Amalia Sojo Ana Quiros Anderi da Silva Anna Lucia

Proceedings of the Vth International Conference on Life Cycle Assessment, CILCA2013

18

Social Responsibility and Life Cycle Sustainability Assessment ............... 915

Excessive Caribbean Medical Traveling: Analysis and Suggestions for a Lower

the Carbon Footprint ........................................................................................ 916

Sustainable Resource Management ............................................................. 917

LCA of locally produced feeds for Peruvian aquaculture .................................. 918

Potential environmental impacts of the production of antivenom immunoglobulins

in a brazilian official laboratory ......................................................................... 920

Water consumption analysis for Life Cycle Assessmentin a dairy cattle farm ... 921

Energy consumption analysis in a dairy cattle farm .......................................... 922

Waste Management and Recycling ............................................................... 923

Life Cycle Concept in Waste Management in the Oil & Gas Offshore Exploration

Activities ........................................................................................................... 924

Life Cycle Inventory of Municipal Solid Waste Incineration (MSWI) in Spain and

Portugal............................................................................................................ 933

Car recycling management in the frame of LCM ............................................... 941

Recovery of manganese from spent alkaline batteries: use of MnOx as catalyst

for VOCs elimination ........................................................................................ 942

Municipal Solid Waste Management: A Regional Proposal .............................. 943

Effects of biodynamic preparations on the development of compost from manure

and agro- industrial residues ............................................................................ 944

LCA- C&DW: An environmental assessment tool in the waste management of the

construction sector ........................................................................................... 946

LCA as a tool of Decision making processfor the Environmental Improvement of

wastewater treatment in Latin American and the Caribbean ............................. 947

Life Cycle Assessment of Integrated Management of PET bottles generated in

the municipality of Ecatepec de Morelos .......................................................... 948

Improving the Utilization of Garlic Herbaceous Waste in the Diet of Breeding

Cows ................................................................................................................ 950

Life Cycle Assessment of Municipal Solid Waste Management of San Miguel,

Buenos Aires, Argentina ................................................................................... 951

DOCTORAL WORKSHOP ........................................................................... 952

Integración de ACV y técnicas de optimización. Caso de estudio: Bioetanol a

partir de maíz ................................................................................................... 953

El Valor Intangible Del Desarrollo Tecnológico: Aspectos Ambientales ............ 955

Análisis de Ciclo de Vida de la Gestión de los Residuos Sólidos Urbanos de San

Miguel, Buenos Aires, Argentina ...................................................................... 958

Análisis del Ciclo de Vida del Manejo Integral de las botellas de PET que se

generan en el Municipio de Ecatepec de Morelos ............................................ 960

Page 19: sus tainability metrics from cr adl e t o gr av eevirtual.uaslp.mx/Habitat/innobitat01/CAHS/SS Arq Arista...Alfredo Iriarte Garcia Amalia Sojo Ana Quiros Anderi da Silva Anna Lucia

Proceedings of the Vth International Conference on Life Cycle Assessment, CILCA2013

19

Technological Parametrized Lifecycle Analysis Method For Wall Insulation ..... 962

Energía y Huella de Carbono de Edificios Habitacionales en México: Escenarios

de Mitigación Ante el Cambio Climático ........................................................... 966

Envolventes De Hormigon Liviano Sustentable: Diseño Y Propiedades Para El

Ahorro Energetico ............................................................................................ 969

PLENARY CONFERENCE .......................................................................... 971

La Comunicación Estratégica del Pensamiento de Ciclo de Vida desde la

perspectiva regional y mundial ......................................................................... 972

Global LCI for primary copper .......................................................................... 974

From foundations to the building - a blueprint of LCA in Mexico ....................... 975

The Bhutan-UN International Project to Create a New Paradigm for Sustainable

Development .................................................................................................... 976

Interoperability in LCA: problems and solutions ................................................ 977

Contributing To Rio+20: A Unep/Setac Life Cycle Sustainability Assessment

Approach .......................................................................................................... 978

ROUND TABLE ............................................................................................. 980

PCR Guidance Development Process and its Importance to the Latin American

Region ............................................................................................................. 981

Product category rules in emerging regions: the global trade of mineral raw

materials .......................................................................................................... 988

The development of Product Category Rules in order to ensure a Green

Economy in emerging regions .......................................................................... 990

ADDENDUM………………………………………………………………….. 998

Consistent calculation of multiple system models and improved integration of regionalized data in a background inventory database………………………….. 999

Page 20: sus tainability metrics from cr adl e t o gr av eevirtual.uaslp.mx/Habitat/innobitat01/CAHS/SS Arq Arista...Alfredo Iriarte Garcia Amalia Sojo Ana Quiros Anderi da Silva Anna Lucia

Proceedings of the Vth International Conference on Life Cycle Assessment, CILCA2013

274

Comparative LCA industrialized and craft supplies vs. alternative materials for sustainable housing.

Gerardo Javier Arista González 12, Jorge Aguillón Robles13, Fernando González Maza14.

1 Facultad del Hábitat, Universidad Autónoma de San Luis Potosí, Niño Artillero 150, Zona Universitaria, CP

78290, San Luis Potosí, México, Tel (55)444-826-2481 Fax.(55)444-826-2312. 2 Ph.D. in Architecture, Investigator Professor, [email protected]

3 Master Bioclimatic Design, Investigator Professor, [email protected]

4 Applicant to obtain the title of Architect, [email protected]

Abstract

The intention of this article is to present to the reader the results of an investigation that tries to

identify and to quantify the environmental impacts that generate some industrialized inputs and

elaborated others of a handcrafted way widely used in the construction of housings, and the

enormous environmental advantages that it represents to diminish the use or substitution of these

conventional materials for alternate inputs, since it is the adobe stabilized also tabitec called

(Partition of stabilized and compressed land).

The study and comparative analysis between the proposed materials carries out with the

methodological support of the LCA, Life cycle of analysis and the application of the software

Simapro 7.2, which there allows the identification and evaluation of environmental impacts in the

different categories of analysis that offers this program.

The results of the comparative show that the handcrafted partition is a highly pollutant material

for the burning tire (EPA, 1997), followed distantly by the block that for his content of cement

generates significant impacts, whereas the adobe in his two versions constitutes a more amicable

material with the environment, nevertheless the extraction of clay for his production.

One concludes that to achieve a more sustainable building in the production of social massive

housing there will have to be checked the materials and constructive systems with which nowadays

the institutional housing takes place in Mexico.

Key words: analysis of life cycle, sustainable building, alternate materials of construction, adobe.

1.- Introduction.

Today the massive industrialization of housing in Latin America is a source of predation, pollution

and emission of toxic substances that are generating serious environmental impacts. The

construction industry is one of the largest generators of the current environmental crises-half by

the depletion of natural resources. According to international data, construction consumes about

25% of forests and 40% of rocks, gravel and sand used in the world annually. (Salas, 1997)

This paper will address the problem of environmental impact caused by the construction industry

in the city of San Luis Potosi, mainly in the production of inputs such as partition and block, to

meet the demand for these inputs in its core market, which is the social housing, which from the

year 2010 and according to the official guidelines (CONAVI, 2008) must necessarily be built with

Page 21: sus tainability metrics from cr adl e t o gr av eevirtual.uaslp.mx/Habitat/innobitat01/CAHS/SS Arq Arista...Alfredo Iriarte Garcia Amalia Sojo Ana Quiros Anderi da Silva Anna Lucia

Proceedings of the Vth International Conference on Life Cycle Assessment, CILCA2013

275

ecological criteria also include eco technologies to encourage savings in energy consumption

resulting from inhabiting these homes.

The methodology of LCA, Life Cycle Analysis, provides an option to analyze and quantify

environmental impacts of materials like cement block and brick craftsmanship so widely used in

the construction of social housing, and establish a comparative analysis with other inputs as

alternate the tabitec, adobe clay tablet made from stabilized and establishing a new thermal option,

economic and sustainable for low-income families living spaces requiring self build with

alternative materials and techniques.

The research hypothesis states that by using the LCA methodology, as applied in construction

materials, can be determined quantitatively the impacts caused by the use of certain conventional

inputs and define with more certainty, which are the most suitable materials for building

sustainable and allows, in decisions taken Designer parameters scientific and less subjective they

need to take into account not only the aesthetic, utilitarian, and functional space or object

generated, but their decision-making should consider materials, production processes and building

systems that are less aggressive friendlier to the environment and, in general, generate less impact

on the planet where we live.

Moreover, the energy use in the construction industry is one of the indicators of increased

environmental impact, as it is a factor in any production process. Energy consumption in its many

processes results in CO2 emissions, gas that can assess the environmental impact of the different

sources involved in the process. The steady increase in CO2 emissions and other greenhouse gases

(GHG) increase the concentration of these compounds in the atmosphere, causing artificially

increase the greenhouse effect, which is partly the source of global climate change (Suppen Van

Hoof, 2005).

2.- METHOD: ANALYSIS OF COMPARATIVE LIFE

CYCLE

2.1. - Defining objectives and scope

The objective of this analysis concerns the definition and quantification of the main environmental

impacts caused by the production of building materials used in the construction of housing and are

responsible for air pollution emissions. To address this stage defined the objectives and scope of

the LCA and they described other important purposes such as:

Set compare products, their life cycles and functions performed,

Set lar environmental reasons for the development of comparative analysis,

Being a comparative analysis should define the functional unit,

Detailed Description of the limits of comparative analysis to be performed.

The target of the investigation concerns the urgent need to assess the impacts to human health and

ecosystems causing materials used as inputs in the production of products such as wall and block,

traditionally used in the city of San Luis Potosi to institutional housing construction and compare

the results with the tabitec, alternative materials based compressed earth without cooking.

Page 22: sus tainability metrics from cr adl e t o gr av eevirtual.uaslp.mx/Habitat/innobitat01/CAHS/SS Arq Arista...Alfredo Iriarte Garcia Amalia Sojo Ana Quiros Anderi da Silva Anna Lucia

Proceedings of the Vth International Conference on Life Cycle Assessment, CILCA2013

276

The limits of this study are defined between the stages of life cycle known as the "cradle to gate",

meaning that the analysis considered only from the stages of raw material extraction,

transportation, input production, its transportation and placement and does not consider the stages

of use of the dwelling as such and disposed of it.

2.2. - Functional unit and reference flows.

General functions of the panels to be compared: Isolate, separate and define living spaces indoors

and under certain conditions as outer shell analysis.

General functions of the panels to be compared:

Isolate, separate and define living spaces indoors and under certain conditions as outer shell analysis.

Function relevant: Separate living spaces interior and

exterior spaces eventually;

What are they? Construction elements that serve

structural support and support for housing;

Pot life: 50 years;

Dimensions: 1 m2;

Frequency of use: Continuous.

Functional Unit:

"Separate living spaces through a

constructive component of 1 m2 of wall

surface, able to withstand structural

loads from the weight of the roof and /

or a second floor mezzanine of a

dwelling that considered useful life of

50 years”. Certain functional unit are calculated reference flow, in the amount of each product to fulfill this

functional unit, and from these data starts data collection to define the LCV, life cycle inventory.

Fig 1. - Definition of the functional unit.

The functional unit, previously established (Fig. 1) to determine the exact quantification of inputs

and outputs for each input and output to analyze. Is the extent through which is defined a reference

of what and how large are the inputs and outputs to the system. Meanwhile the reference flow is,

in turn, the quantities of each input needed to cover the intended functional unit, which, for the

selected case study, is a section of 1 m2 in the three individual products: the traditional common

septum, the cement block with industrialized production processes and tabitec (compressed earth

without cooking) with semi-industrialized processes for their manufacture.

Figure 2 shows the reference flows of each product to be analyzed, necessary to satisfy 1 m2 of

wall (functional unit) therefore reference flows are determined for each comparable parts

according to the unit containing functional, whereas between the pieces, regardless of their

separation is required dimensions of 1 cm. approx. which corresponds to the thickness of the

mortar used for the jointing piece.

Functional unit Raw Materials Reference Flows

Functional Unit Materials Raw Materials Reference Flows

1m2

Craft whith Septum

6x12x24

Clay silt, sand

and water.

60 pc. / M2

1.5 a 2 Kg / pc.

Cement Block

12x 20x40

Cement,

Sand and Water.

12.5 pc. / M2

12.28 Kg / pc.

Tabitec 12x15x30

Selected Clay cal

or cement and

water.

22 pc. / M2

16 Kg / pc.

Fig. 2 - Definition of reference streams.

For purposes of this comparative analysis are seen three different mortars for the jointing of the

pieces of each in a thickness comparable to 1cm. in varying proportions which are described

below:

1:5 lime-sand mortar for jointing parts common septum,

Page 23: sus tainability metrics from cr adl e t o gr av eevirtual.uaslp.mx/Habitat/innobitat01/CAHS/SS Arq Arista...Alfredo Iriarte Garcia Amalia Sojo Ana Quiros Anderi da Silva Anna Lucia

Proceedings of the Vth International Conference on Life Cycle Assessment, CILCA2013

277

Mortar cement-lime-sand 1:1:5 for jointing parts hollow cement block,

Clay-lime mortar for jointing 1:10 parts tabitec or stabilized adobe.

Regardless stroke that the walls may be considered uncoated, ie finished apparent, if this analysis

considers three types of coatings with thickness approximately 1 cm. one for each comparable and

different proportions of which are mentioned immediately:

Flattening plaster on both sides for common partition sample;

Leveling mortar cement-lime-sand 1:1:10 on both sides for sample block;

Flatten with clay on both sides to sign tabitec or stabilized adobe.

2.3. ICV: Life Cycle Inventories.

During this phase of stroke were quantified all inputs and outputs including matter and energy, as

in the case of the wall of mud, all emissions tested system that may have an impact on human

health or the environment. As provided in ISO 14041 (1998) this stage involves data collection

and calculation procedures to identify and quantify all adverse environmental effects and also

called environmental burdens that are associated with the defined functional unit.

The block wall inventory is recorded the presence of emissions from cooking in clay brick ovens

using craft supplies such as tires, sawdust, manure and other waste that is burned with fuel oil or

used oil, and are causing emissions of highly toxic gases and particles harmful to human health

and the environment. Moreover, the presence of materials such as lime and gypsum correspond to

inputs used in the jointing mortars and finishing parts, respectively. Similarly, the presence of

fuels such as electricity, diesel and natural gas fuels concerns by factory production equipment

such as vibro-compressors, etc..

The inventory of inputs block wall highlights the presence of materials such as cement, which is

the essential raw material in the production of the block, and its weight amount so indicates. In

itself, the presence of materials such as lime, cement also concerns the use of these inputs in the

production of mortars used in both wall lining M2 as the jointing parts.

In turn, in Tables 3 and 4 present machining adobe inventories (tabitec), in the first table using

cem.-lime (3% -3%) as inputs stabilizers and the second using only lime ( 6%), and also in the

presence both inventories necessary electric power to perform the hydraulic compression tabitec

parts.

Moreover, in the inventories carried out highlights the fact that the bulk of matter corresponds to

inputs aggregates weighing almost 200 kg. The functional unit of matter, which is a significant

amount of soil and sand extraction on ecosystems where banks are located exploitation of raw

materials.

In turn, the amount by weight of cement input decreases by almost 50% of the volume required to

block the manufacture and processing of the grout from the one used in the stabilization of adobe.

Conversely, the amount by weight of the lime used for the jointing mortar coating and the partition

wall and the coating of the block representing 75% and 34% respectively on the lime used in the

stabilization of using only adobe this input.

Page 24: sus tainability metrics from cr adl e t o gr av eevirtual.uaslp.mx/Habitat/innobitat01/CAHS/SS Arq Arista...Alfredo Iriarte Garcia Amalia Sojo Ana Quiros Anderi da Silva Anna Lucia

Proceedings of the Vth International Conference on Life Cycle Assessment, CILCA2013

278

In both cases the use of raw materials such as cement and lime production that require high

temperatures, represents the generation of toxic emissions and use of fossil fuels for heat

production.

2.4. LCIA: Impact assessment of the life cycle.

The implementation of this phase is defined by ISO 14042 (2000) and the current study only

considered mandatory testing modalities such as: classification and characterization.

Both the value table in Figure 3 as the graph of Figure 4 are seen characterization impacts caused

by different inputs, highlighting those generated by cement block in the categories of climate

change, ozone layer , etc., the septum in organic and inorganic respiratory and adobe arising in two

versions in the categories of carcinogens and land use.

Similarly, in the eco-points table in Fig 5 and Fig 6 of stand single score, by volume, the impact

generated by the septum into the categories of respiratory acidification inorganic and /

eutrophication, and the consumption of fossil fuels in the block walls and adobe, mainly caused by

transport.

Page 25: sus tainability metrics from cr adl e t o gr av eevirtual.uaslp.mx/Habitat/innobitat01/CAHS/SS Arq Arista...Alfredo Iriarte Garcia Amalia Sojo Ana Quiros Anderi da Silva Anna Lucia

Proceedings of the Vth International Conference on Life Cycle Assessment, CILCA2013

279

Fig 6. Impacts of eco-indicators of 1 m2 of wall block, brick and adobe machining.

2.5. - Results and Discussion

2.5.1. - Identification of significant aspects

The study shows the evolution of stroke of 1 m2 of wall block, brick and adobe machining

(tabitec) structured around a distinction between the components defined in the target and the

various inputs, outputs and impacts presented by each, being significant the following:

1. - The impacts caused by the burning of residual sawdust MJ 93.42 and 0.99 kg of used tires

needed for the preparation of solid brick pieces 52.29 for 1 m2 artisanal brick wall that emit at

10.24 kg CO2 atmosphere, 0.07 kg of CH4, N2O 1.40 kg, 0.04 kg and 0.01 kg VOC PST, causing

approximately 53.27% of all damages calculated, 42.52% for respiratory effects and 10.92%

inorganic acidification and eutrophication.

2. - The environmental impacts of fossil fuel consumption account for about 26.32% of all

environmental damage caused by the four walls tested prototypes;

a. 6.12% of the total impact is caused by using 7.66 kg of cement needed for the preparation of

spare block 11.61 for 1 m2 of wall.

b. 4.98% of the damage to the environment are caused by the use of 5.06 kg and 5.06 kg cement

lime used in the production of parts adobe cem 5.24 - 1 m2 of lime mud wall.

c. 6.21% is caused by the transport of the various inputs required for the development of the

basic elements required for the 5 m2 of wall, only 1.79% is for transport of materials for cem.

adobe-lime and 1.68% for moving block the necessary materials.

3. - The damage to health by inorganic respiratory effects without considering the production of

handmade bricks represent about 10.81% of the total estimated impacts for Eco-gauge 99 (H),

7.67% caused by the inputs of the various materials required for preparing prototypes.

a. 1.87% by the use of 127.91 kg and 7.66 kg of sand cement to manufacture the parts needed

for the construction of 1 m2 of wall block.

b. 2.32% for the use of land and 100.43 kg 26.67 kg of gypsum for the manufacture of bricks

for 1 m2 of wall and its lining.

Page 26: sus tainability metrics from cr adl e t o gr av eevirtual.uaslp.mx/Habitat/innobitat01/CAHS/SS Arq Arista...Alfredo Iriarte Garcia Amalia Sojo Ana Quiros Anderi da Silva Anna Lucia

Proceedings of the Vth International Conference on Life Cycle Assessment, CILCA2013

280

c. 1.64% by the use of earth 158.40 kg, 5.06 kg and 5.06 kg of cement lime to the base of the

wall elements adobe cem. - Lime.

4. - The 3.82% of total impacts recorded in the study contribute to climate change;

5. - The damage to the environment by use of soil and exposure to carcinogens represent a total of

1.82% and 1.53% of the impact values respectively. Most are caused by land use and parts and

coatings using adobe and cement blocks to develop.

2.5.2. - Sensitivity Analysis

For the sensitivity analysis we compared the results obtained using the Eco-gauge 99 (H) with the

results calculated by the methodology Impact 2002 and reached the following conclusions:

1. - Inorganic Respiratory effects caused by burning sawdust and tires for production of handmade

bricks required for 1 m2 of wall impacts remain elevated a total of 58.08% of the calculated

impact, increasing by 15.56% with respect to the Eco-gauge assessment.

2. - The fossil fuel consumption impacts a 17.66% less according to the methodology Impact 2002

for the same category, reaching 8.58% of total estimated damage to the environment;

a. Using cement blocks making represents 2.04%, 4.09% lower than the Eco-gauge

calculations.

b. The use of lime and cement-lime cem. adobes impact on a 1.69%, 3.29% less than the same

indicator in the previous methodology.

c. Transportation necessary for the development of the core elements required for the 5 m2 of

wall impacts the environment as fossil fuel consumption by only 1.81% of the total, 4.40%

less than the impacts recorded in the first assessment.

3. - The respiratory effects without considering inorganic solid brick production scale are 0.44%

higher in the methodology Impact 2002 with 11.26% of the total estimated impacts, the inputs of

materials needed to prepare basic elements of the five walls different impacts only 0.34% less,

being 7.34%.

The use of cement and lime to the elements based on the methodology of Impact 2002 raises the

impacts generated by the blocks, the cem. adobe adobe-lime and lime 0.49%, 0.43% and 0.18%

respectively, up from Eco-gauge impacts 99. In turn, the bricks and adobe soil using mainly in

reducing impacts 1.12% and 0.32% respectively.

4. - The contribution to climate change is highly valued by the methodology Impact 2002, the

values of these categories represent 16.95% of the estimated impacts;

a. Using 7.66 kg of cement blocks in manufacturing for 1 m2 of wall represents 3.81% of the

total, 2.97% higher than the values calculated by Eco-gauge.

b. The cement and lime used in cem.-lime bricks represent 3.51% of the total, 2.74% more hits

than the previous assessment.

c. The production of 1 m2 of brick wall represents 3.32% of the total estimated damage to the

environment, 2.53% more than the calculation of Eco-gauge for the same category.

d. The use of lime in the lime bricks equivalent to 2.10% of total 2002 Impact impacts, whereas

Eco-gauge are not considered because their values do not exceed 1%.

Page 27: sus tainability metrics from cr adl e t o gr av eevirtual.uaslp.mx/Habitat/innobitat01/CAHS/SS Arq Arista...Alfredo Iriarte Garcia Amalia Sojo Ana Quiros Anderi da Silva Anna Lucia

Proceedings of the Vth International Conference on Life Cycle Assessment, CILCA2013

281

3. – CONCLUSIONS

The extraction, manufacturing and construction of a brick wall m2 environmental impacts almost 4

times the extraction, manufacture and construction of a retaining wall block m2, almost 5 times the

extraction, manufacture and construction of an m2 cem. adobe wall-lime, and more than seven

times what the same activities would impact the construction of an adobe wall m2 cal

methodology according to the Eco-gauge 99 (H).

The impacts of mining, manufacturing and construction of a brick wall m2 according to the

methodology Impact 2002 rising to be about 5, 6 and 10 times greater impact than the same

activities for the development of a m2 of wall block, adobe cem. - lime and lime mud respectively.

The brick production has registered the biggest impacts of research in inorganic respiratory effects

category. In addition to the effects described above on the subject of impact assessment, according

to EPA reports, uncontrolled burning of open tire delivers a series of dangerous gases and heavy

metals including polynuclear aromatic hydrocarbons, dioxins and furans that are the most toxic

chemicals known and the main causes of cancer if the use of oil burned as fuel could reduce these

effects, emissions caused by burning liquids such generate hazardous gases and heavy metals, and

the same consequences.

In the production of blocks or any mechanized adobes for building walls are significantly reduced

(by 40 thousand per cent) the chances of contracting respiratory effects according to the Eco-gauge

inorganic. The environmental damage by fossil fuel consumption represents the highest values in

both assessments, although the methodology in 2002 IMPACT 3 times lower than that in the Eco-

gauge.

4.- References

CONAVI; (2008) Criterios e indicadores para desarrollos habitacionales sustentables; México DF:

Comisión Nacional de la Vivienda, INFONAVIT: http://portal.infonavit.org.mx

EPA (1997) Emisiones al Aire de la Combustión de Llantas Usadas, Office of Air Quality

Planning and Standards y Centro de Información sobre Contaminación de Aire (CICA) U.S. –

México, Visita 09-11-12, <http://www.epa.gov/ttn/catc/dir1/tire_esp.pdf>

NMX-SAA-14044-IMNC-2008, (2008) Gestión Ambiental, ACV, Requisitos y Directrices,

Norma Mexicana IMNC, México D.F.

SALAS Espíndola, Hermilo, (1997), El impacto del ser humano en el planeta, Edamex, México.

SUPPEN Nydia, VAN HOOF Bart, 2005, Conceptos básicos del Análisis de Ciclo de Vida y su

aplicación en el Ecodiseño, CADIS, México.