prácticas de derive

32
Jaime Martínez Verdú Examen de Prácticas de Fundamentos de Matemáticas Ejercicio 1 1 1. Justificar la convergencia de la siguiente sucesión y calcular su límite. ) ( 1 ) 3 ( 1 ) 2 ( 1 ) 1 ( 1 n n n n n n n n n x n CONVERGENCIA Para resolver este ejercicio nos ayudaremos del siguiente resultado Una sucesión monótona es convergente si y sólo si está acotada. Primero demostraremos que la sucesión an está acotada, es decir, está acotada tanto superiormente como inferiormente. Con el paso siguiente, lo que se pretende es localizar dos sucesiones que “encierren” a la que estamos analizando de tal modo que an quede acotada por ambas: 1 2 2 lim lim ) 2 ( ) 1 ( ) 2 ( ) ( 1 ) 1 ( lim lim ) ( 2 2 ) ( lim lim ) 1 ( ) 1 ( ) ( ) ( ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) 1 ( ) 1 ( 1 ) 1 ( 1 ) 1 ( 1 ) 1 ( 1 n n n n n n n n n n n n n n n n n a M a m que tiene se y Usando DERIVE Usando n n n M DERIVE Usando n n n n m M n n n a n n n n m n n n n n n n n n n n n n n n n a n n n n n n n n n n n a

Upload: jaime-martinez-verdu

Post on 18-Dec-2014

14.737 views

Category:

Education


2 download

DESCRIPTION

En este fichero comparto mis prácticas de la asignatura de Fundamentos de Matemáticas de la Universidad Miguel Hernández de Elche donde se resuelven diversos problemas matemáticos empleando DERIVE. Los ejercicios son: -Justificar la convergencia de una sucesión y calcular su límite. -Deducir la suma de la siguiente serie. -Encontrar los valores de p para los que la una serie es de términos positivos y estudiar, para dichos valores, el carácter de la misma. -Calcular el radio y el intervalo de convergencia, así como la suma de dicho intervalo, de una serie de potencias. Estudiar también el carácter de la serie en los extremos del intervalo de convergencia. -Dada una función: Hallar los extremos relativos de f y clasificarlos. Hallar, justificando previamente la existencia, los extremos absolutos de f en R. Calcular el volumen comprendido entre las gráficas de f y el plano z = 0 sobre el recinto R. También incluye un conjunto de funciones customizadas para resolver este tipo de ejercicios.

TRANSCRIPT

Page 1: Prácticas de DERIVE

Jaime Martínez Verdú

Examen de Prácticas de Fundamentos de Matemáticas Ejercicio 1 1

1. Justificar la convergencia de la siguiente sucesión y calcular su límite.

)(

1

)3(

1

)2(

1

)1(

1

nnnnnnnnnxn

CONVERGENCIA

Para resolver este ejercicio nos ayudaremos del siguiente resultado

Una sucesión monótona es convergente si y sólo si está acotada.

Primero demostraremos que la sucesión an está acotada, es decir, está acotada tanto superiormente como inferiormente. Con el paso

siguiente, lo que se pretende es localizar dos sucesiones que “encierren” a la que estamos analizando de tal modo que an quede acotada por

ambas:

12

2limlim)2()1(

)2(

)(1)1(

limlim

)(2

2

)(limlim

)1()1()(

)()(

1

)(

1

)(

1

)(

1

)1()1(

1

)1(

1

)1(

1

)1(

1

nnn

nnn

nn

n

nn

n

nnn

n

n

aMamquetieneseyUsando

DERIVEUsandonn

nM

DERIVEUsandonnn

nm

Mnn

na

nnn

nm

nnn

n

nnnnnnnnnnnna

nn

n

nnnnnnnna

Page 2: Prácticas de DERIVE

Jaime Martínez Verdú

Examen de Prácticas de Fundamentos de Matemáticas Ejercicio 1 2

Usando DERIVE se ha confeccionado una gráfica donde se puede observar que la sucesión an estará situada dentro de la región de color

morado y, por ser monótona y acotada (tal y como se puede observar en la gráfica), podemos afirmar que es convergente. Los puntos superiores

hacen referencia a Mn mientras que los inferiores representan la sucesión mn.

Como la sucesión está acotada y es monótona creciente, se puede afirmar que es una sucesión convergente.

Page 3: Prácticas de DERIVE

Jaime Martínez Verdú

Examen de Prácticas de Fundamentos de Matemáticas Ejercicio 1 3

LÍMITE

x(n) := SUM(1/SQRT(n·(n + k)), k, 1, n) LIM(x(n), n, +inf)

Lo primero que se ha intentado es utilizar DERIVE para calcular dicho límite pero el programa es incapaz de hallarlo ya que aparece una

advertencia que nos avisa de falta de memoria. Para evitarlo, se ha empleado el CRITERIO DE STOLZ donde se tiene que

.,limlim

11

1

3

1

2

1

1

1

limlim

1

1

1

STOLZDECRITERIOelusarpodemosquelopornb

quesabeseademásynnnnquepuestonbbporquecreciententeestrictameesb

nb

nnnnna

creciententeestrictameesbybcuandobb

aa

b

a

nn

n

nnn

n

n

n

n

n

nn

nn

nn

n

n

El código de DERIVE empleado ha sido el siguiente:

a(n) := SUM(1/SQRT(n + k), k, 1, n) b(n) := SQRT(n) LIM((a(n+1)-a(n))/(b(n+1)-b(n)), n, +inf)

Se obtiene que el límite es .828,0)12(2

Page 4: Prácticas de DERIVE

Jaime Martínez Verdú

Examen de Prácticas de Fundamentos de Matemáticas Ejercicio 2 1

2. Deducir la suma de la siguiente serie para cualquier valor pN, p 2.

1

1

nnnp

Usando DERIVE ser puede deducir la suma de dicha serie. Para obtener la solución a este problema hemos realizados los siguientes

pasos:

Primeramente, haremos clic con el botón izquierdo sobre el menú Definir. Una vez hecho esto, aparecerá una submenú donde podremos

elegir la opción Definir dominio de una variable… Después de seleccionar la variable p, elegiremos como dominio los números enteros y en un

intervalo cerrado-abierto que se caracterizará por:

Inferior: 2

Superior: +inf

De este modo, habremos incluido a la variable p dentro de un rango de valores tal y como advierte una línea que aparece justo después de

aceptar en la etiqueta de Dominio de una variable. La línea que muestra DERIVE es la siguiente:

p : Real [2, +)

Finalmente introducimos la siguiente expresión y hacemos clic en el botón para obtener la suma.

SUM(1/(n·p^n), n, 1, +inf)

Se obtiene como resultado que la suma de dicha serie es:

)1

ln(1

1

p

p

npnn

Page 5: Prácticas de DERIVE

Jaime Martínez Verdú

Examen de Prácticas de Fundamentos de Matemáticas Ejercicio 3 1

3. Encontrar los valores de p para los que la siguiente serie es de términos positivos y estudiar, para dichos valores, el carácter de la misma.

1 1121n np

n

p

n

p

n

BÚSQUEDA DE VALORES DE p

Obviamente, para que la serie sea coherente y tenga sentido, los valores de p deben ser de la siguiente forma

*1

nn

p

y por ello ya hemos descartado un rango de valores importante.

También sabemos que para que una serie sea considerada de términos positivos, es necesario que todas sus sumas parciales sean mayores

que cero. Por lo tanto, si al menos una de sus sumas parciales es negativa, se puede afirmar que la serie no se puede clasificar dentro de las series

de términos positivos. Por ello, fijémonos en un término cualquiera, como por ejemplo, la primera de las sumas de Sn.

,1

11

pS necesariamente, para que la serie sea de términos positivos, p – 1 > 0, por lo que se tiene que p debe ser mayor que la unidad.

Llegados a este punto, vamos a demostrar que para cualquier valor de p mayor a la unidad, la serie es de términos positivos. Para ello,

utilizaremos el principio de inducción matemática.

Se cumple que la serie es positiva para n = 1, o sea

01

11

pS porque p > 1

Page 6: Prácticas de DERIVE

Jaime Martínez Verdú

Examen de Prácticas de Fundamentos de Matemáticas Ejercicio 3 2

Supongamos que la serie es cierta para un valor entero arbitrario k (pero fijado k>=1). Para demostrar lo que pretendemos, debe

cumplirse que

101)1(01)1(

010111

0

1)1(

1

0

01)1(

1

1

1

12

1

1

1

1)1(

1

1

1

12

1

1

1

112113

3

12

3

1

3

12

2

1

2

1

1

?01)1(

1

1

1

12

1

1

1

112113

3

12

3

1

3

12

2

1

2

1

1¿

0112113

3

12

3

1

3

12

2

1

2

1

1

1

0

11

1

0

1

1

ppipi

kkkk

pi

k

S

pk

k

kp

k

p

k

p

kS

pk

k

kp

k

p

k

p

k

kp

k

p

k

p

k

ppppppS

pk

k

kp

k

p

k

p

k

kp

k

p

k

p

k

ppppppS

kp

k

p

k

p

k

ppppppS

k

i

kk

k

i

k

k

k

k

k

k

Como la serie tiene todos sus términos positivos (demostrado mediante inducción matemática) para valores de p mayores que la unidad,

ya tenemos información suficiente para analizar su carácter y afirmar que para p > 1 la serie es de términos positivos.

Page 7: Prácticas de DERIVE

Jaime Martínez Verdú

Examen de Prácticas de Fundamentos de Matemáticas Ejercicio 3 3

ANÁLISIS DEL CARÁCTER DE LA SERIE

Para analizar si la serie es convergente o divergente, usaremos el criterio del cociente o de D’alembert, de modo que necesitaremos

emplear DERIVE para resolver el siguiente límite

)(

1121

1)1(

1

1

1

12

1

1

1

limlim1121

1

1

DERIVEUsandop

e

np

n

p

n

p

n

pn

n

np

n

p

n

p

n

y

y

np

n

p

n

p

n

nn

n

n

COCIENTEDELCRITERIO

n

Según este criterio, la serie será convergente siempre y cuando dicho límite sea inferior a la unidad. Por lo tanto, para los valores de p

siguientes se tiene

NINFORMACIÓDANOCRITERIOELep

CONVERGESERIELAep

DIVERGESERIELAep

1

Para el caso cuando p = e se va a emplear el CRITERIO DE COMPARACIÓN POR PASO A LÍMITE con la serie ARMÓNICA

GENERALIZADA:

)(1

1121limlim

1

1121 11

DERIVEUsando

n

np

n

p

n

p

n

x

y

ncon

np

n

p

n

p

nComparamos

nn

n

n

LÍMITEALPASOPOR

NCOMPARACIÓDECRITERIO

nn

Por lo tanto, como La serie ARMÓNICA GENERALIZADA diverge y el límite obtenido es infinito, podemos afirmar que para p = e la

serie que estamos analizando es divergente.

CONVERGESERIELAepyDIVERGESERIELAep 1

Page 8: Prácticas de DERIVE

Jaime Martínez Verdú

Examen de Prácticas de Fundamentos de Matemáticas Ejercicio 4 1

4. Calcular el radio y el intervalo de convergencia, así como la suma de dicho intervalo, de la siguiente serie de potencias. Estudiar también

el carácter de la serie en los extremos del intervalo de convergencia.

RADIO DE CONVERGENCIA.

Sean las siguientes series de potencias de las cuales vamos a calcular sus respectivos radios de convergencia:

DERIVEUsando

n

n

a

ax

nxa

n

n

nn

n

n

IACONVERGENCDERADIOn

nn

n

n

n2

1

12

1

1)1(2

1

limlim)1(12

1)1(

11

11

2

2

1

11

DERIVEUsando

n

nn

n

nn

b

bx

n

nnxb

nn

n

n

IACONVERGENCDERADIOn

n

n

n

n 0

!2

3

)!1(2

3)1()1(

limlim)1(!2

3)1(

2

2

1

1

2

1

0

11

Por lo tanto, se sabe que el radio de convergencia de la serie total es el mínimo de los dos obtenidos, o sea, el radio de convergencia de la

serie inicial es 2 y por lo tanto, al tratarse de una serie de potencias centrada en el punto x = -1, se conoce también su intervalo de convergencia.

n

nn

xn

nn

n)1(

!2

3

12

1

1

2

Page 9: Prácticas de DERIVE

Jaime Martínez Verdú

Examen de Prácticas de Fundamentos de Matemáticas Ejercicio 4 2

INTERVALO DE CONVERGENCIA

El intervalo de convergencia donde la serie de potencias inicial es absolutamente convergente es el siguiente:

1,321,21, xxxxx

Fuera de este intervalo de valores, es conocido que la serie es divergente.

SUMA DE LA SERIE

Es conocido que

21

1

2

1

2

2

1

1 )1(!2

3

12

1)1(

!2

3)1(

12

1llx

n

nn

nfinitosx

n

nnlyx

nlSI

n

n

nn

nn

nn

Utilizando el programa DERIVE se ha conseguido obtener el valor de la primera suma directamente, mientras que el de la segunda se ha

obtenido después de realizar varias transformaciones. Se han obtenido los siguientes valores:

)(

1

1)2

1ln(2

)1(12

1

1

1 Ax

xx

xn

l n

nn

)(2

3)64()1(

!2

3 12

1

2

2 Bexx

xn

nnl

x

n

n

SUMA_TOTAL := SUMA_SERIE_1 + SUMA_SERIE_2

2

3)64(

1

1)2

1ln(2

)1(!2

3

12

1 12

21

1

2

x

n

n

n

exx

x

xx

llxn

nn

n

Page 10: Prácticas de DERIVE

Jaime Martínez Verdú

Examen de Prácticas de Fundamentos de Matemáticas Ejercicio 4 3

PASOS EN DERIVE PARA OBTENER EL RESULTADO (A).

Primeramente, haremos clic con el botón izquierdo sobre el menú Definir. Una vez hecho esto, aparecerá una submenú donde podremos

elegir la opción Definir dominio de una variable… Después de seleccionar la variable x, elegiremos como dominio los números reales y en un

intervalo abierto-abierto que se caracterizará por:

Inferior: -3

Superior: 1

De este modo, habremos incluido a la variable x dentro de un rango de valores tal y como advierte una línea que aparece justo después de

aceptar en la etiqueta de Dominio de una variable. La línea que muestra DERIVE es la siguiente:

x : Real (-3, 1)

Finalmente introducimos ambas expresiones y hacemos clic en el botón para obtener la suma.

k(n):= (x + 1)^n/(2^n·(n + 1))

SUMA_SERIE_1 := SUM (k(n), n, 1, +inf)

Se obtiene como resultado que la suma de dicha serie es:

1

1)2

1ln(2

)1(12

1

1

x

xx

xn

n

nn

Page 11: Prácticas de DERIVE

Jaime Martínez Verdú

Examen de Prácticas de Fundamentos de Matemáticas Ejercicio 4 4

PASOS EN DERIVE PARA OBTENER EL RESULTADO (B).

Cambiaremos la forma de la serie:

2222222

2

1

2

)1(52

1)1(

!

3)1(

)!1(

2)1(

)!2(

1)1(5

2

1)1(

!2

3)1(

2

5)1(

!2

3

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n abcxxn

xn

xn

xxn

nnxx

n

nn

Primeramente, haremos clic con el botón izquierdo sobre el menú Definir. Una vez hecho esto, aparecerá una submenú donde podremos

elegir la opción Definir dominio de una variable… Después de seleccionar la variable x, elegiremos como dominio los números reales y en un

intervalo abierto-abierto que se caracterizará por:

Inferior: -3

Superior: 1

De este modo, habremos incluido a la variable x dentro de un rango de valores tal y como advierte una línea que aparece justo después de

aceptar en la etiqueta de Dominio de una variable. La línea que muestra DERIVE es la siguiente:

x : Real (-3, 1)

Introducimos la siguiente expresión y hacemos clic en el botón para obtener la suma.

a(n):= 3*(x + 1)^n/n!

SUMA_1 := SUM(a(n), n, 2, +inf)

Se obtiene como resultado que la suma de dicha serie es:

))2((3)1(!

3 1

1

xexn

x

n

n

1

:1_n

naSUMA

Page 12: Prácticas de DERIVE

Jaime Martínez Verdú

Examen de Prácticas de Fundamentos de Matemáticas Ejercicio 4 5

Introducimos la siguiente expresión y hacemos clic en el botón para obtener la suma.

b(n):= 2*(x + 1)^n/(n - 1)!

SUMA_2 := SUM(b(n), n, 2, +inf)

Se obtiene como resultado que la suma de dicha serie es:

)1)(1(2)1(!

1

1

x

n

n exxn

n

Introducimos la siguiente expresión y hacemos clic en el botón para obtener la suma.

d(n):= (x + 1)^n/(n - 2)!

SUMA_3 := SUM(d(n), n, 2, +inf)

Se obtiene como resultado que la suma de dicha serie es:

12

2

)1()1()!2(

1

x

n

n exxn

Por lo tanto, se tiene que

SUMA_SERIE_2 := 1/2*( 5*(x + 1) + SUMA_1 + SUMA_2 + SUMA_3)

2

3)64()1()1)(1(2))2((3)1(5

2

1)1(5

2

1)1(

!2

3 121211

2221

2

x

xxx

n

n

n

n

n

n

n

n exxexexxexabcxx

n

nn

1

:2_n

nbSUMA

1

)1(:3_n

ndxSUMA

Page 13: Prácticas de DERIVE

Jaime Martínez Verdú

Examen de Prácticas de Fundamentos de Matemáticas Ejercicio 4 6

EXTREMOS DEL INTERVALO DE CONVERGENCIA

Primero trataremos el caso cuando x = -3 donde tenemos la siguiente serie

Si demostramos que las dos siguientes series en las que se puede subdividir la serie definida en la expresión (1) son convergentes, quedará

demostrado que (1) también lo es

?)2(

!2

3)2(

12

1¿

1

2

1

esconvergentsonn

nny

nseriesAmbas n

n

n

nn

Empezaremos por la primera de ambas

11cot)1(

1

1

1

)1()2(

12

1

11yentreadaaEstác

ceroaconvergeyedecrecientEsn

d

nn n

n

n

n

nn

nn

Aplicando el CRITERIO DE LEIBINZ podemos afirmar que esta serie es convergente ya que es de la forma

adaaEstád

ceroaconvergeyedecrecientEscdc

n

n

n

nncot1

Y según el CRITERIO DE LEIBINZ

1)2ln()()2(

12

1

1

VALEDERIVEUsandoSUMASUYECONVERGENTSERIEUNAESn

n

nn

)1()2(

!2

3

12

1)13(

!2

3

12

1

1

2

1

2n

nn

n

nn n

nn

nn

nn

n

Page 14: Prácticas de DERIVE

Jaime Martínez Verdú

Examen de Prácticas de Fundamentos de Matemáticas Ejercicio 4 7

Para analizar el carácter de la serie restante necesitaremos emplear el CRITERIO DE D’ALEMBERT O DEL COCIENTE ya que si el

siguiente límite es inferior a la unidad podemos afirmar que dicha serie es convergente:

)(0

)2(!2

3

)2()!1(2

3)1()1(

limlim)2(!2

32

12

1

1

2

DERIVEUsando

n

nn

n

nn

y

y

n

nn

n

n

nn

n

n

COCIENTEDELCRITERIO

n

n

Como el resultado obtenido al calcular el límite es inferior a 1, por el CRITERIO DE D’ALEMBERT

ECONVERGENTSERIEUNAESn

nn

n

n

1

2

)2(!2

3

Por lo tanto, podemos afirmar que la serie expresada en (1) es convergente.

A continuación trataremos el caso cuando x = 1 donde tenemos la siguiente serie

Si demostramos que una de las dos siguientes series de términos positivos diverge y la otra converge, entonces la serie (1) será divergente

?2

!2

32

12

1¿

1

2

1

divergentecuályeconvergentesn

nny

nserieslasCuál n

n

n

nn

)2()2(

!2

3

12

1)11(

!2

3

12

1

1

2

1

2n

nn

n

nn n

nn

nn

nn

n

Page 15: Prácticas de DERIVE

Jaime Martínez Verdú

Examen de Prácticas de Fundamentos de Matemáticas Ejercicio 4 8

Empezaremos por la primera de ambas

11 1

12

12

1

n

n

nn nn

Aplicando el CRITERIO DE COMPARACIÓN POR PASO AL LÍMITE podremos deducir que

11

1

1

1

nn ny

ntienen el mismo carácter.

Como el siguiente límite resulta tener el valor 1, según este criterio se tiene que ambas series tienen el mismo carácter, o sea, ambas son

divergentes.

)(11

1

1

lim DERIVEUsando

n

nn

)(

12

12

1

11

DAGENERALIZAARMÓNICASERIEDIVERGENTEESn

porqueDIVERGENTESERIEUNAESn n

n

nn

Para analizar el carácter de la serie restante necesitaremos emplear el CRITERIO DE D’ALEMBERT O DEL COCIENTE ya que si el

límite es inferior a 1, entonces la serie tiene carácter convergente:

)(0

2!2

3

2)!1(2

3)1()1(

limlim2!2

3lim

2

12

1

2

DERIVEUsando

n

nn

n

nn

y

y

n

nn

n

n

nn

n

n

COCIENTEDELCRITERIOn

n

Como el resultado obtenido es un valor menor a la unidad se sabe que por el CRITERIO DEL COCIENTE

Page 16: Prácticas de DERIVE

Jaime Martínez Verdú

Examen de Prácticas de Fundamentos de Matemáticas Ejercicio 4 9

ECONVERGENTSERIEUNAESn

nn

n

n

1

2

2!2

3

Por lo tanto podemos afirmar que la serie expresada en (2) es divergente.

En definitiva podemos decir que la serie

ES ABSOLUTAMENTE CONVERGENTE EN EL INTERVALO 1,3

ES DIVERGENTE EN EL INTERVALO ,13, U

n

nn

xn

nn

n)1(

!2

3

12

1

1

2

-3 0 1

CONVERGENTE

DIVERGENTEDIVERGENTE

Page 17: Prácticas de DERIVE

Jaime Martínez Verdú

Examen de Prácticas de Fundamentos de Matemáticas Ejercicio 5 1

5. Dada la función

Se pide:

a) Hallar los extremos relativos de f y clasificarlos.

Como la función es continua y derivable (está formada por suma y producto de funciones continuas e infinitamente derivables por tratarse

de polinomios), se puede afirmar que los extremos relativos estarán entre los puntos críticos de la función.

Búsqueda de los PUNTOS CRÍTICOS:

Para hallar cuales son los puntos críticos asociados a f, hemos implementado una función que calculará automáticamente cuales son los

puntos críticos. La función y sus características son las siguientes:

)13(473:),( 232 yyxxyyxyxf

Page 18: Prácticas de DERIVE

Jaime Martínez Verdú

Examen de Prácticas de Fundamentos de Matemáticas Ejercicio 5 2

Una vez definida en DERIVE esta función, deberemos introducir y definir la función f para, posteriormente, usarla como

argumento de BUSCA_PUNTOS_CRITICOS() y averiguar cuales son sus puntos críticos. EL código de programa ha sido el siguiente:

BUSCA_PUNTOS_CRITICOS_R_2(ff) := SOLVE(DIF(ff, x, 1) = 0 AND DIF(ff, y, 1) = 0, [x, y])

Mifuncion(x, y) := 3·x^2·y - 7·x·y + 4·x·(y^3 + 3·y^2 + 1)

BUSCA_PUNTOS_CRITICOS_R_2(Mifuncion(x, y))

Y se obtiene como resultado la siguiente lista de puntos críticos (se han aproximado los valores):

x = -1.420017573 y = 0.3922419785 x = 2.890519658 y = -1.927741029

x = 4.169497914 y = -0.2645009485 x = 0 y = 0.2844323505 - 0.4464296022·î

x = 0 y = 0.2844323505 + 0.4464296022·î x = 0 y = -3.568864701

A continuación evaluaremos cada punto usando una serie de funciones elaboradas tal y como se muestra en los siguientes esquemas

Page 19: Prácticas de DERIVE

Jaime Martínez Verdú

Examen de Prácticas de Fundamentos de Matemáticas Ejercicio 5 3

Usando estas funciones únicamente tenemos que despejar los valores adecuados como argumentos para analizar y clasificar los distintos

extremos.

Page 20: Prácticas de DERIVE

Jaime Martínez Verdú

Examen de Prácticas de Fundamentos de Matemáticas Ejercicio 5 4

EVALUA_PUNTO_EN_R_2(Mifuncion(x, y), -1.420017573, 0.3922419785) SE TRATA DE UN PUNTO DE SILLA

EVALUA_PUNTO_EN_R_2(Mifuncion(x, y), 2.890519658, -1.927741029) SE TRATA DE UN MÁXIMO RELATIVO

EVALUA_PUNTO_EN_R_2(Mifuncion(x, y), 4.169497914, -0.2645009485) SE TRATA DE UN PUNTO DE SILLA

EVALUA_PUNTO_EN_R_2(Mifuncion(x, y), 0, 0.2844323505 - 0.4464296022·î) NO SE PUEDE EVALUAR

EVALUA_PUNTO_EN_R_2(Mifuncion(x, y), 0, 0.2844323505 + 0.4464296022·î) NO SE PUEDE EVALUAR

EVALUA_PUNTO_EN_R_2(Mifuncion(x, y), 0, -3.568864701) SE TRATA DE UN PUNTO DE SILLA

Nota:

Puesto que estamos trabajando con una función cuyo dominio se extiende solamente dentro de los números reales, no tiene sentido

evaluar puntos críticos que están dentro del campo de los números complejos. Esta es la razón por la cual se ha advertido mediante la frase “NO

SE PUEDE EVALUAR” durante la clasificación de puntos anterior.

Page 21: Prácticas de DERIVE

Jaime Martínez Verdú

Examen de Prácticas de Fundamentos de Matemáticas Ejercicio 5 5

Si se considera el recinto

b) Hallar, justificando previamente la existencia, los extremos absolutos de f en R.

Primero dibujamos el recinto donde se restringen los extremos absolutos:

y = x + 3 y = -x + 3 y = x2 - 9

A continuación, comprobaremos si algún punto crítico de los anteriores pertenece a dicho recinto

x = -1.420017573 y = 0.3922419785 x = 2.890519658 y = -1.927741029

x = 4.169497914 y = -0.2645009485 x = 0 y = -3.568864701

Para realizar estas comprobaciones nos hemos ayudado de DERIVE. Para ello, cada vez que analicemos si un punto pertenece a dicho

recinto realizaremos los siguientes pasos:

}9,3,3:),{(: 2 xyxyxyyxR

Page 22: Prácticas de DERIVE

Jaime Martínez Verdú

Examen de Prácticas de Fundamentos de Matemáticas Ejercicio 5 6

Primero introduciremos la expresión de la recta y x+3. Posteriormente, haremos clic sobre la opción Simplificar que aparece en la barra

de menús. Podremos comprobar que emerge un submenú donde elegiremos la opción Sustituir variable. A continuación, aparecerá una etiqueta

donde podremos dar valores a las variables que se han declarado y damos sobre el

botón simplificar. Si una vez definidos los valores de x e y DERIVE devuelve true,

eso significa que el punto está por debajo de la recta y podemos continuar

evaluando.

Posteriormente, introduciremos la expresión de la recta y - x+3.

Nuevamente, haremos clic sobre la opción Simplificar que aparece en la barra de

menús. Podremos comprobar que emerge un submenú donde elegiremos la opción

Sustituir variable. A continuación, aparecerá una etiqueta donde podremos dar

valores a las variables que se han declarado y damos sobre el botón simplificar. Si

una vez definidos los valores de x e y DERIVE devuelve true, eso significa que el

punto está por encima de la recta y podemos continuar evaluando.

Finalmente, introduciremos la expresión de la parábola y - x2 - 9. Nuevamente, haremos clic sobre la opción Simplificar que aparece en

la barra de menús. Podremos comprobar que emerge un submenú donde elegiremos la opción Sustituir variable. A continuación aparecerá una

etiqueta donde podremos dar valores a las variables que se han declarado y damos sobre el botón simplificar. Si una vez definidos los valores de

x e y DERIVE devuelve true, eso significa que el punto está por encima de la recta y podemos continuar evaluando.

Obviamente si en alguno de los pasos el programa da como contestación un false, eso significa que al menos no cumple una de las

condiciones y, por lo tanto, no está en el recinto.

PUNTOS QUE PERTENECEN PUNTOS QUE NO PERTENECEN

x = -1.420017573 y = 0.3922419785 x = 4.169497914 y = -0.2645009485

x = 0 y = -3.568864701 x = 2.890519658 y = -1.927741029

Por lo que se llega a la conclusión de que tanto x = -1.420017573 y = 0.3922419785 como x = 0 y = -3.568864701 son candidatos a ser

extremos absolutos condicionados por la región R.

Page 23: Prácticas de DERIVE

Jaime Martínez Verdú

Examen de Prácticas de Fundamentos de Matemáticas Ejercicio 5 7

Para acabar la búsqueda de candidatos, necesitamos averiguar cuales son los extremos de la función f(x,y) al proyectar cada una de las

rectas y la parábola sobre dicha función. Es decir, crearemos una nueva función a partir de la cuál se buscarán sus extremos para cada caso.

A continuación, vamos a comentar el método de búsqueda de los extremos de cada una de las funciones. Buscaremos cuales son sus

puntos críticos ya que los extremos estarán clasificados como puntos críticos por tratarse f(x) de una función continua y derivable. Se ha

implementado esta función con la finalidad de facilitar el proceso de búsqueda. La función se declara a continuación.

Nombre

de la función

)(

~

xx

f

BUSCA_PUNTOS_CRITICOS_R(ff) := SOLVE(DIF(ff, x, 1) = 0 , x, real)

Page 24: Prácticas de DERIVE

Jaime Martínez Verdú

Examen de Prácticas de Fundamentos de Matemáticas Ejercicio 5 8

Caso y = x + 3 Primeramente definiremos una nueva función al sustituir el valor de y en la función f(x, y).

MIFUNCION_1 := SUBST(Mifuncion(x, y), y, x + 3)

El código de programa empleado para hallar sus puntos críticos ha sido el siguiente:

BUSCA_PUNTOS_CRITICOS_R(MIFUNCION_1)

Apareciendo las siguientes soluciones x = -2.546343733 x = -6.232441862 x = -0.783714403

x = -2.546343733 y = 0.453656267

x = -6.232441862 y = -3.232441861 Usando DERIVE y sustituyendo variables se obtienen las componentes en el eje y

x = -0.783714403 y = 2.216285597

)199182514()3,(:)(~ 23 xxxxxxfxf

Page 25: Prácticas de DERIVE

Jaime Martínez Verdú

Examen de Prácticas de Fundamentos de Matemáticas Ejercicio 5 9

Caso y = - x + 3 Primeramente definiremos una nueva función al sustituir el valor de y en la función f(x, y).

MIFUNCION_2 := SUBST(Mifuncion(x, y), y, -x + 3)

El código de programa empleado para hallar sus puntos críticos ha sido el siguiente:

BUSCA_PUNTOS_CRITICOS_R(MIFUNCION_2)

Apareciendo las siguientes soluciones x = 0.912103814 x = 4.485082688 x = 3.040313497

x = 0.912103814 y = 2.087896185

x = 4.485082688 y = -1.485082687 Usando DERIVE sustituyendo variables se obtienen las componentes en el eje y

x = 3.040313497 y = -0.040313497

)199164454()3,(:)(~~ 23 xxxxxxfxf

Page 26: Prácticas de DERIVE

Jaime Martínez Verdú

Examen de Prácticas de Fundamentos de Matemáticas Ejercicio 5 10

Caso y = - x2 - 9 Primeramente definiremos una nueva función al sustituir el valor de y en la función f(x, y).

MIFUNCION_3 := SUBST(Mifuncion(x, y), y, x^2 - 9)

El código de programa empleado para hallar sus puntos críticos ha sido el siguiente:

BUSCA_PUNTOS_CRITICOS_R(MIFUNCION_3)

Apareciendo las siguientes soluciones x = -3.089153559 x = -1.014513277 x = -2.581492392 x = 1.045704352 x = 2.654983451 x = 2.984471424

x = -3.089153559 y = 0.5428697110

x = -1.014513277 y = -7.970762810

x = -2.581492392 y = -2.335897030 Usando DERIVE sustituyendo variables se obtienen las componentes en el eje y

x = 1.045704352 y = -7.906502408

x = 2.654983451 y = -1.951062874

x = 2.984471424 y = -0.092930319

)1877277493964()93,(:)(

~~~ 23462 xxxxxxxxfxf

Page 27: Prácticas de DERIVE

Jaime Martínez Verdú

Examen de Prácticas de Fundamentos de Matemáticas Ejercicio 5 11

Una vez obtenidos todos los posibles candidatos a extremos absolutos, calcularemos sus imágenes y evaluaremos cuál es la mayor y cuál

la menor:

x = -1.420017573 y = 0.392241978 Mifuncion(-1.420017573, 0.3922419785) -2.372808905

x = 0 y = -3.568864701 Mifuncion (0, -3.568864701) 0

x = -2.546343733 y = 0.453656267 Mifuncion (-2.546343733, 0.4536562670) -0.514404645

x = -6.232441862 y = -3.232441861 Mifuncion (-6.232441862, -3.232441861) -482.0810488

x = -0.783714403 y = 2.216285597 Mifuncion (-0.783714403, 2.216285597) -67.21381177

x = 0.912103814 y = 2.087896185 Mifuncion (0.912103814, 2.087896185) 76.44956599

x = 4.485082688 y = -1.485082687 Mifuncion (4.485082688, -1.485082687) 34.88427869

x = 3.040313497 y = -0.040313497 Mifuncion (3.040313497, -0.040313497) 11.95979534

x = -3.089153559 y = 0.542869711 Mifuncion(-3.089153559, 0.5428697110) 2.022376924

x = -1.014513277 y = -7.970762810 Mifuncion(-1.014513277, -7.970762810) 1196.290122

x = -2.581492392 y = -2.335897030 Mifuncion(-2.581492392, -2.335897030) -136.6540513

x = 1.045704352 y = -7.906502408 Mifuncion(1.045704352, -7.906502408) -1246.829379

x = 2.654983451 y = -1.951062874 Mifuncion(2.654983451, -1.951062874) 48.02613335

x = 2.984471424 y = -0.092930319 Mifuncion(2.984471424, -0.092930319) 11.69581795

Como el valor máximo es 1196.290122, se tiene que el punto (-1.014513277, -7.970762810) es el máximo absoluto.

Como el valor mínimo es -1246.829379, se tiene que el punto (1.045704352, -7.906502408) es el mínimo absoluto.

Page 28: Prácticas de DERIVE

Jaime Martínez Verdú

Examen de Prácticas de Fundamentos de Matemáticas Ejercicio 5 12

c) Calcular el volumen comprendido entre las gráficas de f y el plano z = 0 sobre el recinto R.

INT(INT(3·x^2·y - 7·x·y + 4·x·(y^3 + 3·y^2 + 1), y, x^2-9,3+x), x, -3, 0) 507663/280

INT(INT(3·x^2·y - 7·x·y + 4·x·(y^3 + 3·y^2 + 1), y, x^2 - 9, 3 - x), x, 0, 3) - 640827/280

Hemos decidido transformar el recinto R de esa manera ya que la función f(x, y) al pasar de un subrecinto a otro cambia de signo (tal y

como muestra la gráfica) por lo que tendremos que sumar los valores absolutos de ambas integrales.

RK R

yxdyyxxyyxyxdyxfzyxdKV ),())13(473(),()0),((),,(1)( 232

39,30:),(

39,03:),(:

2

2

2

1

21xyxxyxR

xyxxyxRURRR

3

0

3

9

2320

3

3

9

232

232232232

22

21

))13(473())13(473(

),())13(473(),())13(473(),())13(473(

x

x

x

x

FUBINIDETEOREMAELPOR

RRR

dydxyyxxyyxdydxyyxxyyx

yxdyyxxyyxyxdyyxxyyxyxdyyxxyyx

4

16407

280

64082

280

507663

Page 29: Prácticas de DERIVE

TEMA DE SUCESIONES:

Criterio del Cociente SUCESIONES_COCIENTE(aa) := LIM(ABS(SUBST(aa, n, n + 1)/SUBST(aa, n, n)), n, +inf)

Criterio de Stolz (∞/∞ y 0/0) SUCESIONES_STOLZ_1(aa,bb) := LIM((SUBST(aa,n,n+1)-SUBST(aa,n,n))/(SUBST(bb,n,n+1)-SUBST(bb,n,n)),n, +inf)

Criterio de Stolz (∞0) SUCESIONES_STOLZ_2(aa,bb) := LIM((SUBST(aa, n, n + 1)/SUBST(aa, n, n))^(1/(SUBST(bb, n, n + 1) - SUBST(bb, n, n))), n, +inf)

Criterio de Euler (1∞) SUCESIONES_EULER_1(aa,bb) := EXP(LIM(SUBST (bb,n,n)*(SUBST (aa,n,n)-1), n, +inf))

Criterio de Euler (00 y ∞0) SUCESIONES_EULER_2(aa,bb) := EXP(LIM(SUBST (bb,n,n)*LN(SUBST (aa,n,n)), n, +inf))

TEMA DE SERIES:

SERIE_DE_RAZON_R(penkito):=(SUBST(penkito,n,1)-LIM(penkito,n,+inf))/(1-SUBST(penkito,n,1))

Criterio de d’Alembert COCIENTE(aa):=LIM(SUBST(aa,n,n+1)/SUBST(aa,n,n),n,+inf)

Criterio de Cauchy RAIZ(aa):=LIM(SUBST(aa,n,n)^(1/n),n,+inf)

Criterio de Logarítmico LOGARITMICO(aa):=LIM(LN(1/aa)/LN(n),n,+inf)

Criterio de Raabe RAABE(aa):= LIM(n*(1- COCIENTE(aa)),n,+inf)

Criterio de Condensación de Cauchy CRITERIO_DE_CONDENSACION(penkito):=SUBST(penkito,n,2^n)

Criterio de Comparación paso a límite CRITERIO_DE_PASO_AL_LIMITE(aa,bb):=LIM(aa/bb,n,+inf)

Page 30: Prácticas de DERIVE

DERIVADA_PARCIAL_DE_ORDEN_1(ff) := DIF(ff, x, 1)*(xx-x) + DIF(ff, y, 1)*(yy-y)

DERIVADA_PARCIAL_DE_ORDEN_2(ff) := DIF(ff, x, 2)*(xx-x)^2 + DIF(DIF(ff, y, 1), x, 1)*(xx-x)*(yy-y) + DIF(DIF(ff, x, 1), y,

1)*(yy-y)*(xx-x) + DIF(ff, y, 2)*(yy-y)^2

DERIVADA_PARCIAL_DE_ORDEN_3(ff) := DIF(ff, x, 3)*(xx-x)^3 + DIF(DIF(ff, x, 1), y, 2)*(xx-x)*(yy-y)^2 + DIF(DIF(ff, x, 2), y,

1)*((xx-x)^2)*(yy-y) + DIF(DIF(DIF(ff, x, 1), y, 1), x, 1)*((xx-x)^2)*(yy-y) + DIF(DIF(DIF(ff, y, 1), x, 1), y, 1)*((yy-

y)^2)*(xx-x) + DIF(DIF(ff, y, 2), x, 1)*((yy-y)^2)*(xx-x) +DIF(DIF(ff, y, 1), x, 2)*(yy-y)*(x-x)^2 + DIF(ff, y, 3)*(xx-x)^3

DERIVADA_PARCIAL_DE_ORDEN_4(ff) := DIF(ff, x, 4)*(xx-x)^4 + DIF(DIF(ff, y, 1), x, 3)*((xx-x)^3)*(yy-y) + DIF(DIF(DIF(ff, x, 1),

y, 1), x, 2)*((xx-x)^3)*(yy-y) + DIF(DIF(ff, y, 2), x, 2)*(xx-x)^2*(yy-y)^2 + DIF(DIF(DIF(ff, x, 2), y, 1), x, 1)*((xx-x)^3)*(yy-

y) + DIF(DIF(DIF(DIF(ff, x, 1), y ,1), x, 1), y, 1)*(xx-x)^2*(yy-y)^2 + DIF(DIF(ff, y, 3), x, 1)*(xx-x)*(yy-y)^3 +

DIF(DIF(DIF(ff, y, 1), x, 2), y, 1)*((xx-x)^2)*(yy-y)^2 + DIF(DIF(DIF(ff, x, 1), y, 2), x, 1)*((yy-y)^2)*(xx-x)^2 + DIF(DIF(ff,

x, 3), y, 1)*(yy-y)*(xx-x)^3 + DIF(DIF(DIF(DIF(ff, y, 1), x ,1), y, 1), x, 1)*((yy-y)^2)*(xx-x)^2 + DIF(DIF(DIF(ff, y, 2), x, 1),

y, 1)*(yy-y)^3*(xx-x) + DIF(DIF(DIF(ff, y, 1), x, 1), y, 2)*((yy-y)^3)*(xx-x) + DIF(DIF(ff, x, 2), y, 2)*((yy-y)^2)*(xx-x)^2 +

DIF(DIF(ff, x, 1), y, 3)*((yy-y)^3)*(xx-x) + DIF(ff, y, 4)*(yy-y)^4

POLINOMIO_TAYLOR_1(ff, x0, y0) := SUBST(SUBST(ff, y, y0), x, x0) + SUBST(SUBST(DERIVADA_PARCIAL_DE_ORDEN_1(ff), y, y0), x, x0)

POLINOMIO_TAYLOR_2(ff, x0, y0) := SUBST(SUBST(ff, y, y0), x, x0) + SUBST(SUBST(DERIVADA_PARCIAL_DE_ORDEN_1(ff), y, y0), x, x0) +

(1/2)*SUBST(SUBST(DERIVADA_PARCIAL_DE_ORDEN_2(ff), y, y0), x, x0)

POLINOMIO_TAYLOR_3(ff, x0, y0) := SUBST(SUBST(ff, y, y0), x, x0) + SUBST(SUBST(DERIVADA_PARCIAL_DE_ORDEN_1(ff), y, y0), x, x0) +

(1/2)*SUBST(SUBST(DERIVADA_PARCIAL_DE_ORDEN_2(ff), y, y0), x, x0) + (1/6)*SUBST(SUBST(DERIVADA_PARCIAL_DE_ORDEN_3(ff), y, y0), x,

x0)

POLINOMIO_TAYLOR_4(ff, x0, y0) := SUBST(SUBST(ff, y, y0), x, x0) + SUBST(SUBST(DERIVADA_PARCIAL_DE_ORDEN_1(ff), y, y0), x, x0) +

(1/2)*SUBST(SUBST(DERIVADA_PARCIAL_DE_ORDEN_2(ff), y, y0), x, x0) + (1/6)*SUBST(SUBST(DERIVADA_PARCIAL_DE_ORDEN_3(ff), y, y0), x,

x0) + (1/24)*SUBST(SUBST(DERIVADA_PARCIAL_DE_ORDEN_3(ff), y, y0), x, x0)

El definitivo polinomio de Taylor

POLINOMIO_TAYLOR(ff, y0, x0, orden) := IF(orden = 1, SUBST(SUBST(ff, y, y0), x, x0) +

SUBST(SUBST(DERIVADA_PARCIAL_DE_ORDEN_1(ff), y, y0), x, x0), IF(orden = 2, SUBST(SUBST(ff, y, y0), x, x0) +

SUBST(SUBST(DERIVADA_PARCIAL_DE_ORDEN_1(ff), y, y0), x, x0) + (1/2)·SUBST(SUBST(DERIVADA_PARCIAL_DE_ORDEN_2(ff), y, y0), x, x0),

IF(orden = 3, SUBST(SUBST(ff, y, y0), x, x0) + SUBST(SUBST(DERIVADA_PARCIAL_DE_ORDEN_1(ff), y, y0), x, x0) +

(1/2)·SUBST(SUBST(DERIVADA_PARCIAL_DE_ORDEN_2(ff), y, y0), x, x0) + (1/6)·SUBST(SUBST(DERIVADA_PARCIAL_DE_ORDEN_3(ff), y, y0), x,

x0), IF(orden = 4, SUBST(SUBST(ff, y, y0), x, x0) + SUBST(SUBST(DERIVADA_PARCIAL_DE_ORDEN_1(ff), y, y0), x, x0) +

(1/2)·SUBST(SUBST(DERIVADA_PARCIAL_DE_ORDEN_2(ff), y, y0), x, x0) + (1/6)·SUBST(SUBST(DERIVADA_PARCIAL_DE_ORDEN_3(ff), y, y0), x,

x0) + (1/24)·SUBST(SUBST(DERIVADA_PARCIAL_DE_ORDEN_3(ff), y, y0), x, x0), "No hemos diseñado el algoritmo para un polinomio de

taylor de orden mayor que 4"))))

Page 31: Prácticas de DERIVE

Búsqueda de extremos relativos para funciones en R

BUSCA_PUNTOS_CRITICOS_R(ff) := SOLVE(DIF(ff, x, 1) = 0 , x, real)

EVALUA_PUNTO_EN_R(ff, x0):= IF(SUBST(DIF(ff, x, 2), x, x0)<0, "El punto es un máximo relativo",IF(SUBST(DIF(ff, x, 2), x, x0)>0, "El punto es un mínimo relativo", "Se trata de un

punto de inflexión"))

Búsqueda de extremos relativos para funciones en R2

BUSCA_PUNTOS_CRITICOS_R_2(ff) := SOLVE(DIF(ff, x, 1) = 0 AND DIF(ff, y, 1) = 0, [x, y])

MATRIZ_HESSIANA_EN_R2(ff):=[DIF(ff, x, 2),DIF(DIF(ff, y, 1), x, 1);DIF(DIF(ff, x, 1), y, 1),DIF(ff, y, 2)]

MATRIZ_HESSIANA_EN_R_2(ff, x0, y0) := SUBST(SUBST(MATRIZ_HESSIANA_EN_R2(ff), x, x0), y, y0)

EVALUA_PUNTO_EN_R_2(ff, x0, y0) := IF(DET(MATRIZ_HESSIANA_EN_R_2(ff, x0, y0)) < 0, "Es un punto de ensilladura", IF(DET(MATRIZ_HESSIANA_EN_R_2 (ff, x0, y0)) = 0,

"Es necesario usar el método de las regiones", IF(SUBST(SUBST(DIF(ff, x, 2), x, x0), y, y0) > 0, "Se trata de un mínimo relativo", IF(SUBST(SUBST(DIF(ff, x, 2), x, x0), y, y0) < 0, "Es un

máximo relativo", "No tenemos suficiente información"))))

Método de las regiones:

REGIONES(ff, x0, y0):=FACTOR(ff-SUBST(SUBST(ff, x, x0), y, y0),x,y)

Búsqueda de extremos relativos para funciones en R3

BUSCA_PUNTOS_CRITICOS_R_3(ff) := SOLVE(DIF(ff, x, 1) = 0 AND DIF(ff, y, 1) = 0 AND DIF(ff, z, 1) = 0, [x, y,z])

MATRIZ_HESSIANA_EN_R3(ff):=[DIF(ff, x, 2),DIF(DIF(ff, y, 1), x, 1),DIF(DIF(ff, z, 1), x, 1);DIF(DIF(ff, x, 1), y, 1),DIF(ff, y, 2),DIF(DIF(ff, z, 1), y, 1);DIF(DIF(ff, x, 1), z, 1),DIF(DIF(ff,

y, 1), z, 1),DIF(ff, z, 2)]

MATRIZ_HESSIANA_EN_R_3(ff, x0, y0, z0) :=SUBST( SUBST(SUBST(MATRIZ_HESSIANA_EN_R3(ff), x, x0), y, y0), z, z0)

EVALUA_PUNTO_EN_R_3(ff, x0, y0, z0) := IF(DET(MATRIZ_HESSIANA_EN_R3(ff, x0, y0, z0)) < 0, "Es un punto de ensilladura", IF(DET(MATRIZ_HESSIANA_EN_R3 (ff, x0, y0,

z0)) = 0, "Es necesario usar el método de las regiones", IF(SUBST(SUBST(SUBST(DIF(ff, x, 2), x, x0), y, y0), z, z0) > 0, "Se trata de un mínimo relativo", IF(SUBST(SUBST(SUBST(DIF(ff,

x, 2), x, x0), y, y0), z, z0) < 0, "Es un máximo relativo", "No tenemos suficiente información"))))

Page 32: Prácticas de DERIVE

Búsqueda de extremos absolutos para funciones en R

BUSCA_PUNTOS_CRITICOS_R(ff) := SOLVE(DIF(ff, x, 1) = 0, x, Real)·IF(DIF(ff, x, 1) = 0, " Los puntos críticos son los siguientes:", "La función no tiene puntos críticos")

EVALUA_SI_CUMPLE_LA_RESTRICCION_EN_R(restriccion, x0):=IF(SUBST(restriccion, x, x0), "Este punto es un posible candidato a ser un extremo condicionado por la restricción",

"Este punto no cumple la restricción y por lo tanto no es candidato a ser extremo absoluto")

BUSCA_CANDIDATOS_A_EXTREMOS_ABSOLUTOS_1_EN_R(ff, restriccion):=SOLVE(DIF(ff + y*restriccion, x, 1) = 0 AND retriccion=0,[x, y])”El valor que importa es x”

BUSCA_CANDIDATOS_A_EXTREMOS_ABSOLUTOS_2_EN_R(restriccion):=SOLVE(DIF(restriccion, x, 1) = 0 AND retriccion=0,[x])

Búsqueda de extremos absolutos para funciones en R2

BUSCA_PUNTOS_CRITICOS_R_2(ff) := SOLVE(DIF(ff, x, 1) = 0 AND DIF(ff, y, 1) = 0, [x, y]) IF(DIF(ff, x, 1) = 0 AND DIF(ff, y, 1) = 0, " Los puntos críticos son los siguientes:", "La

función no tiene puntos críticos")

EVALUA_SI_CUMPLE_LA_RESTRICCION_R2(restriccion, x0, y0):=IF(SUBST(SUBST(restriccion, x, x0),y, y0), "Este punto es un posible candidato a ser un extremo condicionado por la

restricción", "Este punto no cumple la restricción y por lo tanto no es candidato a ser extremo absoluto")

BUSCA_CANDIDATOS_A_EXTREMOS_ABSOLUTOS_1_R2(ff, restriccion):=SOLVE(DIF(ff + z*restriccion, x, 1) = 0 AND DIF(ff + z*restriccion, y, 1) = 0 AND retriccion=0,[x, y, z])

”El valor que importa es (x, y)”

BUSCA_CANDIDATOS_A_EXTREMOS_ABSOLUTOS_2_R2(restriccion):=SOLVE(DIF(restriccion, x, 1) = 0 AND DIF(restriccion, y, 1) = 0 AND retriccion=0,[x, y])

Búsqueda de extremos absolutos para funciones en R3

BUSCA_PUNTOS_CRITICOS_R_3(ff) := SOLVE(DIF(ff, x, 1) = 0 AND DIF(ff, y, 1) = 0 AND DIF(ff, z, 1) = 0, [x, y,z]) IF(DIF(ff, x, 1) = 0 AND DIF(ff, y, 1) = 0 AND DIF(ff, z, 1) = 0, "

Los puntos críticos son los siguientes:", "La función no tiene puntos críticos")

EVALUA_SI_CUMPLE_LA_RESTRICCION_EN_R3(restriccion, x0, y0, z0):=IF(SUBST(SUBST(SUBST(restriccion, x, x0),y, y0), z, z0), "Este punto es un posible candidato a ser un

extremo condicionado por la restricción", "Este punto no cumple la restricción y por lo tanto no es candidato a ser extremo absoluto")

BUSCA_CANDIDATOS_A_EXTREMOS_ABSOLUTOS_1_R3(ff, restriccion):=SOLVE(DIF(ff + t*restriccion, x, 1) = 0 AND DIF(ff + t*restriccion, y, 1) = 0 AND DIF(ff + t*restriccion, z,

1) = 0 AND retriccion=0,[x, y, z, t]) ”El valor que importa es (x, y, z)”

BUSCA_CANDIDATOS_A_EXTREMOS_ABSOLUTOS_2_R3(restriccion):=SOLVE(DIF(restriccion, x, 1) = 0 AND DIF(restriccion, y, 1) = 0 AND DIF(restriccion, z, 1) = 0 AND

retriccion=0,[x, y])