portafolio interactivo digital · web viewasí, no es suficiente decir que un avión vuela a 300...

79
EJES TEMATICOS UNIDAD 1: Vectores y sus aplicaciones UNIDAD 2: Fuerzas de la naturaleza UNIDAD 3: Estática UNIDAD 4: Maquinas

Upload: others

Post on 19-Nov-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

EJES TEMATICOS

UNIDAD 1: Vectores y sus aplicaciones

UNIDAD 2: Fuerzas de la naturaleza

UNIDAD 3: Estática

UNIDAD 4: Maquinas

UNIDAD 5: Biomecánica

Page 2: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

DEPARTAMENTO DE MATEMATICAS

MODULO DE FÍSICA

UNIDAD I

PROFESOR:MIGUEL JARAMILLO VILLA

CALI – VALLE

2014

Page 3: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

LOS VECTORES Y SUS APLICACIONES 1

INTRODUCCIÓN.

Algunas cantidades físicas requieren únicamente un valor o magnitud y la respectiva unidad para quedar completamente determinadas así: Es suficiente decir 300 Kgr, 400 m, para determinar una masa y una longitud respectivamente. A estas cantidades se les denominan cantidades escalares.

Existen en cambio, otras cantidades físicas que al definirlas únicamente por su magnitud y la unidad correspondiente no quedan completamente determinadas. Así, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si viaja hacia el sur, norte, oeste o este. Una cantidad cuya dirección es esencial para su perfecta determinación, se denomina cantidad vectorial y se representa por medio de un vector.

CONCEPTO DE VECTOR.

Hasta ahora conocemos cantidades que con solo determinar el valor numérico y la unidad de medida quedan perfectamente determinadas, por ejemplo: 5 decámetros, 25 cm2, 3 kilos de arroz, 100 calorías, 20 alvéolos etc. Las cuales son cantidades escalares.

Hay otras cantidades que requieren: la magnitud, la dirección y el sentido para poder ser comprendidas totalmente y se representan por medio de una flecha ( ) Donde la longitud de la recta representa la magnitud de alguna cantidad; hacia donde apunte la flecha el sentido de dicha cantidad y el ángulo que se forme con respecto al eje horizontal determinará la dirección que esta directamente relacionado con el sentido.

Ejemplo: Un avión viaja de Cali a Bogotá con una velocidad de 440 Km / h.La magnitud de la cantidad indicada es 440 Km / h.

0 110 220 330 440 Km / h magnitud

La dirección la indica la inclinación de la recta que une a Cali y Bogotá de acuerdo al ángulo que forme con el eje X.

Sentido A Angulo a a x

El sentido lo indica hacia donde apunta la flecha. Para una mejor comprensión al referirnos a vectores hablaremos de magnitud y dirección.

Page 4: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

Recordemos: 2Los vectores se representan por una línea recta y una flecha.La longitud de la recta es proporcional al valor numérico del vector. La inclinación de la recta nos indica la dirección.La flecha indica el sentido y el punto donde termina.Los vectores sé nomenclan con letra mayúscula y una pequeña flecha encima.

IGUALDAD DE VECTORES

Dos o más vectores son iguales si tienen la misma magnitud dirección y sentido.

Ejemplo AB E M

AB = E = M

VECTORES EN EL PLANODefinición: Un vector bidimensional es una pareja ordenada de números (x, y), donde los números x, y son los componentes del vector.

1) Sí X = 4, Y = 3 R

= (X, Y) R

= (4, 3)

2) Sí X = -5, Y = 4 A

= (X, Y) A

= (-5, 4)

3) Sí X = -6, Y = -3 B

= (X, Y) B

= (-6, -3)

4) Sí X = 7, Y = -3 K

= (X, Y) K

= (7, -3) EJEMPLO: Y ordenada

-X X Abscisa

-YNOTA:

Si X = 0, Y = 0 V

= (0,0) es el vector nulo

Page 5: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

3Ubicar las anteriores coordenadas y trazar los respectivos vectores en el plano dado.

Vectores iguales:

Dos vectores A

= (a, b), B

= (c, d) son iguales si a = c y b = d, es decir, si sus respectivas componentes son iguales.

Ejemplos:

BABA

)5,2(),5,2(

FKFK

)7,3(),7,3(

Opuesto de un vector:

El opuesto de un vector A

= (a, b) es el vector A

=(-a, -b)

EJEMPLOS

)4,2()4,2( AASi

)7,3()7,3( BBSi

Definición:

La suma de dos vectores A =(a, b), B =(c, d) es el vector A + B =(a + c, b + d)

Ejemplos

)10,5()64,32()6,3(),4,2( BABABA

)4,4()26,37()2,3(),6,7( KMKMKM

Definición:

La diferencia de dos vectores A

= (a, b), B

= (c, d) es el vector que se

obtiene cuando se suma A

y el opuesto de B

. A

B

= A

+ ( B

) = (a, b) + (-c, -d) = (a - c, b - d)

Ejemplos:

)1,7()43,25()4,2(),3,5(

)2,4()97,84()9,8(),7,4(

FKFKFK

BABABA

Page 6: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

Definición: 4Si k es un escalar (un número) y A

= (a, b) es un vector, entonces el producto

de k y A

es el vector: Ak

= (ka, kb).

Ejemplos:

)15,6(3)5,2(33)5,2(

)12,24(6)2,4(66)2,4(

TTTSi

RRRsi

Operaciones con vectores

Suma:

La norma general para sumar vectores gráficamente, consiste en colocarlos de tal forma que el extremo final de uno ( flecha) se una al origen del otro, teniendo en cuenta que en esta nueva posición los vectores deben conservar su magnitud, dirección y sentido originales.

La suma de A

+ B

es un vector R

, que comúnmente se llama vector resultante, dibujado desde el origen de A

hasta el extremo de B

o desde el

origen de B

hasta el extremo de A

. La magnitud de R

se halla midiendo su longitud en el diagrama y haciendo la conversión respectiva de acuerdo a la escala empleada.

En la suma de vectores se distinguen los siguientes casos:

Vectores de igual dirección y sentido.

Ejemplo: sumar los vectores A

y B

de tres y cinco unidades respectivamente.

3 u 5 u

8 u

A

+ B

= R

3 u + 5 u = 8 u

La resultante R es un vector con la misma dirección y sentido de los sumandos, su punto inicial coincide con el de A y el punto final coincide con el de B. La magnitud es igual a la suma de las magnitudes de los vectores dados.

Page 7: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

Vectores con igual dirección y diferente sentido. 5

Ejemplo: sumar los vectores D

y F

de 2 y –3 unidades respectivamente.

2 u - 3 u

-1 u

D

+ F

= R

2 u + (- 3u) = -1

1) Vectores con diferente dirección y sentido.

Para sumarlos gráficamente, se coloca el extremo final de uno con el extremo inicial del otro. El vector resultante estará representado en magnitud, dirección y sentido por la recta

Que une el origen del primero con el punto final del segundo.

Ejemplo: sumar los vectores X

yZ

de magnitud 3 y 4 unidades.

X

Z

3 u 4 u

R

Nota:

Si los dos vectores que se suman son perpendiculares. La resultante se obtiene utilizando el teorema de Pitágoras. En caso contrario se aplica el teorema del coseno.

Teorema de Pitágoras: h2 = c2 + c2

Teorema del coseno: a2 = b2 + c2 – 2bc cos A

Resolver el ejemplo anterior si el ángulo que se forma entre los vectores dados es de 43ºSolución: R2 = X2 + Y2 – 2XY cos 43º R2 = 32 + 42 - 2 (3) (4) (0.73135)

6,1725 R

)

6,1725 R

=2.72 u

Page 8: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

Ejemplo: 6

Una persona camina 4 m hacia el norte y luego 3 m al oriente, ¿cuál es su desplazamiento resultante?.

Solución

Y

3 m

X

m4 R

mRR

R

YXR

525

34 22

222

Suma de tres o más vectores con diferente dirección y sentido.

Método del polígono: para sumar tres o más vectores se procede así: desplazamos uno de los vectores dados y a continuación se colocan los demás vectores manteniendo sus características:

Ejemplo: sumar los vectores A

, B

,C

, de 4, 2 y 2 unidades respectivamente.

B

C

B

A

+ + - A

C

R

PRODUCTO DE UN VECTOR POR UN ESCALAR.

Multiplicar o dividir un vector por un escolar, multiplicar o dividir su magnitud sin cambiar la dirección, por lo tanto el nuevo vector es paralelo al vector original.

Ejemplo:

A

A

2 A

2 B

B

2

B

3

Page 9: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

COMPONENTES RECTANGULARES 7

Así como se suman dos o más vectores para obtener un vector resultante, necesariamente todo vector puede ser descompuesto en dos o más vectores llamados “Componentes". El hecho de sustituir un vector dado o por dos o más vectores, es lo que se conoce con el nombre de descomposición de un vector.

Ejemplo:

Vr = 22 VbVx

Vr yV

Vx = Vr cos A ) A Vy = Vr sen A

xV

Entre las múltiples posibilidades de descomposición de un vector, tiene especial importancia el caso en que los vectores componentes forman entre su ángulo recto.

R

B

90º

A

Esta manera de descomposición puede lograrse fácilmente, aprovechando un sistema de coordenadas cartesianas, para lo cual se hace coincidir el origen del vector con el origen del plano cartesiano; la dirección de los componentes vendrá a coincidir con la dirección de los ejes X y Y. Y

R

yR

X o Rx X

Y

Page 10: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

8

Una vez situado el vector que se va a descomponer dentro del sistema coordenado, para encontrar los componentes basta proyectar el vector sobre cada uno de los ejes X y Y. La dirección del vector dado se toma en todos los casos con respecto al eje X. Y

xA

yA

A

A

seno Ø

Ø - X A coseno Ø X

Y

como se ve el valor de las magnitudes de los vectores componentes dado por las expresiones:

xA

= A

coseno Ø

yA

= A

seno Ø

Ejemplos: El vector A

tiene un valor de 20 unidades forma un ángulo con el eje X de 30o. Hallar el valor de los componentes rectangulares.

A

= 20 unidades

xA

= A coseno غ Ø = 30º

xA

= 20 coseno 30º

xA

= 20 x 0.90 = 18 unidades

xA

= 18 unidades

yA

= A seno Ø

yA

= 20 x seno 30º

yA

= 20 x 0.50 = 10 unidades

yA

= 10 unidades

Y

yA

20 Ø = 30º

- X, o xA

X

Page 11: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

9

Ejemplo: la componente en Y de un vector es de 27 unidades y la componente en X es de 43 unidades, hallar el vector resultante y el ángulo que forma la resultante con el eje de las X.

2)(R

2)( xR

2)( yR

2)(R

22 )72( )34(

2)(R

1.849 + 729

2)(R

2578

77,50578.2 RR = 50,77 unidades

El ángulo que forma R

con el eje X

será:

Tangente RxRyX

Tangente 628,0

4327

X

Tangente X = 0, 628; X = 32º 92

NORMA O MAGNITUD DE UN VECTOR

La norma o magnitud de un vector se simboliza colocándolo entre barras así:

A

, se lee norma del vector A y se calcula

22 )()( yAxAA

Ejemplo: Calcular la norma del vector C

(6,4)

22 CyCxC

22 )4()6( C

1636 C

52C

unidadesC 2,7

Y

yR

R

yR

X

X, xR

X

Y

Y

4

C

6 X

Page 12: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

10TALLER DE FÍSICA 1

VECTORES, PRODUCTO ESCALAR Y PRODUCTO VECTORIAL

1. Un hombre camina 10 Km al Norte y luego 8 Km en dirección 60º al sur del este. Calcular el desplazamiento resultante.

V2=8Km

60° V1=10Km

Desplazamiento

RESPUESTA

KmVRKmVR

KmVR

KmKmKmVR

KmKmKmKmVR

VVVVVR

16.984 284 22

80 264 2100 22º60cos)8)(10(2)8( 2)10( 22

cos21222

21

2

2. Determine los componentes horizontal y vertical de las siguientes fuerzas:

a) FR = 200 N 53º

200N

Vx

53°Vy

N

N

VR

VVV

x

x

x

3,120

º53cos200

º53cos

N

senN

senVR

VVV

y

y

y

7,159

º53200

º53

Page 13: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

11

b) FR = 320 lb. , 150º

Vx

Vy30° 150°

° lbCoslbX 12.27730*320

lbSenlbY 160º30*320

3. Un aeroplano vuela a 60 Km. En una dirección 50º noroeste. Cual es el componente hacia el este del movimiento del avión. Cual es el componente hacia el norte.

Respuesta N

Vx Fr =60 Km

50º Vy O E

S

EKm

km

VR

NKm

senKm

senVR

VVV

VVV

y

y

y

x

x

x

56,38

º50cos60

º50cos

96,45

º5060

º50

Page 14: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

124. Sobre un cuerpo actúan dos fuerzas, una de 80 Kgf y otra de 100 Kg-f. Determine el valor de la fuerza resultante si el ángulo entre ellas es:

a) 0º

F1 = 80 Kgf F2 = 100 Kgf

Fr = 180Kg-f

b) 60º

F2=100Kgf

FR

60°

F1= 80Kgf

Se utiliza la formula del coseno, pero con (180° ), porque se va a hallar la fuerza resultante.

KgfFRKgfFR

KgfFR

KgfKgfFR

KgfKgfKgfFR

KgfKgfKgfKgfFR

FFFFFR

2,15624400

24400

)8000(16400

º120cos16000100006400

)º60º180(cos)100)(80(2)100()80(

)º180cos(2

2

22

222

2222

222

2122

21

2

Page 15: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

13(c) a 90º

Se utiliza la formula del teorema de Pitágoras, porque es un ángulo de 90°.

F1= 80Kgf

FR

90° F2=100

(d) a 150º

F2 = 100Kgf

FR = ?

150°

F1 = 80Kgf

Como se va a hallar la fuerza resultante se utiliza la formula del coseno, pero con (180° ).

KgfFRKgfFR

KgfFR

KgfKgfFR

KgfKgfKgfFR

KgfKgfKgfKgfFR

FFFFFR

43,502544

2544

1385616400

º30cos16000100006400

)º150º180cos()100)(80(2)100()80(

)º180cos(2

2

22

222

2222

222

2122

21

2

KgfFR

FR

FR

Kgf

KgfkgfFFFR

128

16400

)100()80(2

22

2

2

2

1

Page 16: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

14

(e) a 180º

F1 = 80 Kgf F2 = 100Kgf

KgfFR

FR

KgfKgf

KgfKgfFR

KgfKgfKgfFRKgfKgfFR

FFFFFR

20

400

16000100006400

)º180º180(cos)100)(80(2(80(

)º180cos(2

400

)100)

2

22

2222

222

21

2

2

2

1

2

5. Las siguientes dos fuerzas actúan sobre un objeto pequeño: 100 N. Horizontalmente hacia la izquierda y 200 N. Hacia la derecha a un ángulo de 37º sobre la horizontal. Determine las fuerzas resultantes.

200 N Vx

Vy 37° 37°

100N

Se descomponen en los vectores Vx y Vy, y se utiliza el teorema de Pitágoras.

NFRNNFR

NSenNY

NNCosNX

36.134)36.120()73.59(

36.120º37*200

73.59100º37*200

222

Page 17: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

156. Sobre un objeto actúan las siguientes fuerzas: 200 lb. Horizontalmente a la derecha, 150 lb. Hacia abajo y a la derecha un ángulo de 60º bajo la horizontal y 50 lb. Hacia arriba y hacia la derecha a un ángulo de 37º sobre la horizontal. Determinar la fuerza resultante y la dirección de su línea de acción.

Vx 50lb = F1 Vy 37º F2=200lb

60°

Vy

150lb = F3 Vx

lbRlblbR

lbR

lblblby

lbSenlbSeny

lblblblbx

lbCoslbCoslbx

37.33004.99629.99180

)81.99()93.314(

81.9990.129090.30

º601503750

93.3147593.39200

º60150º3750200

22

22

El vector resultante es 330.37 lb, y el ángulo se halla con la ecuación de la tangente. Con estos dos datos se puede obtener la nueva grafica de la resultante.

Vx

Fr = 330.37 lb Vy

º58.1731692757.0

93.3148.99

TanglblbTang

Page 18: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

167. Dos fuerzas una de 50 Kgf y otra desconocida tiene por resultante una fuerza de 90 Kgf. Determinar el valor de la fuerza desconocida si el ángulo entre las fuerzas es:

a) 0º

F1 = 50Kg-f b=?

FR = 90Kg-f

(b) 60º

FR = 90Kgf

F2 30° 60°

F1= 50 Kgf

Se utiliza la formula del coseno, y se despeja la F2, de la siguiente manera:

KgfKgfF

KgfKgfKgfF

CosKgfKgfkgfKgfF

FRCosFFRFF

96.5278.2805

22.779481002500

º30)90)(50(2)90()50(

º302

22

22222

2222

122

12

2

c ) a 90º

FRF2=?

90° F1= 50Kgf

FR= F1 F2

F2 = FR F1

F2 = 90 Kgf 50Kgf

F2 = 40 Kgf

Page 19: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

17Entonces despejamos la F2, de la formula: FR² = F1² F2².

KgfFKgfF

KgfKgfF

FKgfKgf

83.745600

25008100

)()50()90(

2

22

2222

22

22

d) 120° FR

F1= 90Kgf 60

F2= 50Kgf

KgfFRKgfFR

KgfKgfKgfFR

CosKgfKgfKgfKgfFR

10.786100

450081002500

º60)90)(50(2)90()50(

2

2222

222

e) 180º F2 = ? Kgf

F1= 50Kgf FR = 90 Kgf

FR = F1 F2F2 = FR F1F2 = 90 Kgf ( 50 Kgf ) = 140 Kgf

8. Dos fuerzas una de 30 N y otra de 40 N. Tienen por resultante una fuerza de: (determinar en cada caso el ángulo de las fuerzas)

a) 70 N F2

FR

F1

18

120°

Page 20: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

º1801

124002400

240025004900

240016009004900

)40)(30(2)40()30()70(

1

2

222

2222

222

Cos

CosN

CosNNN

CosNNNN

CosNNNNN

(b) 46N

´47.8016.0

16.2400/384

240025002116

240016009002116

)40)(30(2)40()30()46(

1

22

222

2222

222

°

Cos

CosCosNN

CosNNN

CosNNNN

CosNNNNN

(c) 50N

º900

02400/02400/25002500

240016009002500

)40)(30(2)40()30()50(

1

22

2222

222

Cos

CosCosNNNN

CosNNNN

CosNNNNN

(d) 60N

º15.117

45833.02400

1100

24001100

240016009003600

)40)(30(2)40()30()60(

2

22

2222

222

°

CosNN

CosNN

CosNNNN

CosNNNNN

f) 10N

01

124002400

24002500100

24001600900100

)40)(30(2)40()30()10(

1

2

2

222

2222

222

Cos

NNCos

CosNNN

CosNNNN

CosNNNNN

19

Page 21: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

9.Calcular la resultante de las siguientes fuerzas: 350 lb a 60º, 180 lb a 150º, 200 lb a 240º y 250 lb a 330º. Los ángulos están medidos con respecto al eje de la “x” y en sentido de las agujas del reloj.

200lb -330º 250lb

-240º

-60º -150º 180lb 350lb

200lb

250lb

60º 30º 60º 60º 350lb 180lb

lbRlblbR

lblbR

lbFy

lblblblbFy

lbSenlblbSenlbSenFy

lbFx

lbSenlbCoslbCoslbCosFx

52.1657.183929006

)62.135()9.94(

9.94

2.1739010.303125

º60200º60cos180º60350º30250

62.135

º60180º60200º60350º30250

22

222

20

Page 22: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

10. Un vector tiene una magnitud de 500 y forma un ángulo de 53º con el eje positivo de la “x”. Expresa el vector en función de vectores unitarios. Vy V = 500

53° Vx

En el vector se expresa 0k, porque no tiene vector en el eje Z.

11. Un vector tiene una magnitud de 600 y forma un ángulo de 55º con el eje positivo de la “x”. Expresar el vector en función de vectores unitarios.

Vx V=600

Vy 55°

PROBLEMAS DE VECTORES EN TERCERA DIMENSIÓN, PRODUCTO ESCALAR Y PRODUCTO VECTORIAL

Si la Componente del vector de la figura 1.3 son Ax = 20, Ay = 20 y Az = 40,

determinar la magnitud de este vector y los ángulos y

Z

Ay = 20

Az = 40

Y Ax = 20

X 21

Ax = A COS SEN

kjiVVzkVyjVxiV

uuSeny

uuCosx

0400300

400º53500

300º53500

kjiVVzkVyjVxiV

uuSeny

uuCosx

0491344

5.491º55600

1.344º55600

º451

12020

º26.35816493.0

816493.099.48

4099.48402020

1

1

222

222

TanAxAyTan

CosAAzCos

A

AzAyAxA

Page 23: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

Ay = A SEN SEN

Az = A COS

COS = Az/A

Determinar el producto escalar y el ángulo entre los vectores

A= 2i+5j-3k B= 4i+4j+2k

A.B = ABCos

º6.5556429.0

56429.0)3245.6)(1644.6(

22.3245.6)2()4()4(

1644.6)3()5()2(

22.)6(208.

)23()45()24(..

1

222

222

222

222

Cos

ABBACos

B

BzByBxB

A

AzAyAxA

BABA

xxxBAAzBzAyByAxBxBA

3. Determinar el producto vectorial y el ángulo entre los vectores

A = 7i+3j-4K B= 2i-3j-2k

AXB = AB Sen

Sen = ABAxB

232223212134123117

kji

22

Page 24: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

32

37

22

47

23

43

kji

V = I ( -6-(12)) – j(-14-(-8)+ k (-21-6)

V = - 18 i + 6j - 27k

AXB = 222 CzBjXi

AXB = 222 )27()6()18( = 33

AXB = 222 )4()3()7( = 8.6023

B = 1231.4)2()3()2( 222

´29º689304.0

4681.3533

)1231.4)(6023.8(33

ABAxBSen

23Problemas propuestos

Page 25: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

1. Un hombre camina 20Km al Sur y luego 8 Km en dirección 40 º al sur del este. Calcular el desplazamiento resultante.

2. Un hombre camina 20Km al Sur y luego 12Km en dirección 40 º al norte del este. Calcular el desplazamiento resultante.

3. Determine los componentes horizontal y vertical, el angulo que forma con el eje indicado y graficar de las siguientes fuerzas:a. 150 N Y 52º con el eje x.b. 43 dinas y 81º con el eje y.c. 1500 dinas y 56º con eje xd. 345 N y 35º con el eje xe. 1600 N y 71º con el eje y.f. 324 lbf y 55º con eje y.g. 432 kgf y 64º con el eje x

4. Sobre un cuerpo actúan dos fuerzas, una de 80 Kgf y otra de 100 Kgfgraficar y determinar el valor de la fuerza resultante si el ángulo entre ellas es:

a. 145ºb. 70ºc. 115ºd. 225º.e. 49º5. Las siguientes dos fuerzas actúan sobre un objeto pequeño:150 N. Horizontalmente hacia la izquierda y 230 N. Hacia la derecha a un ángulo de 48ºº sobre la horizontal. Determine las fuerzas resultantes. Efectuar grafica

6. Las siguientes dos fuerzas actúan sobre un objeto pequeño; 350 N. Horizontalmente hacia la derecha y 210 N. Hacia la izquierda un ángulo de 48º sobre la horizontal. Determine las fuerzas resultantes. Efectuar grafica.

7. Sobre un objeto actúan las siguientes fuerzas 185 lb. Horizontalmente a la derecha, 130 lb. Hacia abajo y a la derecha un ángulo de 40º bajo la horizontal y 700 lb. Hacia arriba y hacia la derecha a un ángulo de 67º sobre la horizontal. Determinar la fuerza resultante y la dirección de su línea de acción. Graficar.

8. 6. Sobre un objeto actúan las siguientes fuerzas: 100 lb. Horizontalmente a la izquierda, 250 lb. Hacia el suroeste con un ángulo de 60º bajo la horizontal y 50 lb. Hacia el noreste con un ángulo de 37º sobre la horizontal. Determinar la fuerza resultante y la dirección de su línea de acción graficar.

9.Calcular la resultante de las siguientes fuerzas: 250 lb a 60º, 180 lb a 170º, 160 lb a 240º y 250 lb a 330º. Los ángulos están medidos con respecto al eje de la “x” y en sentido de las agujas del reloj. Y graficar con la respectiva dirección

Page 26: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

DEPARTAMENTO DE MATEMATICA

MODULO DE FÍSICA

UNIDAD II

PROFESOR:MIGUEL JARAMILLO VILLA

CALI – VALLE

2007

UNIDAD II 25

Page 27: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

FUERZAS DE LA NATURALEZA

1. PESO DE LOS CUERPOS-FUERZA DE GRAVEDAD.

Siempre hemos observado que todos los cuerpos cercanos a la superficie terrestre caen con una aceleración g = 9,8 m/seg2 con dirección al centro de la tierra.

En virtud de la segunda ley de Newton esta aceleración corresponde a la acción de una fuerza que actúa hacia el centro de la tierra, llamada “Fuerza de gravedad o peso de los cuerpos”.Si llamamos por W el peso de un cuerpo entonces: W = mg según la segunda ley de Newton.De lo anterior se deduce que masa y peso son magnitudes diferentes.

mg

2. FUERZA NORMAL.Cuando un cuerpo se apoya sobre una superficie, esta, soporta la acción del peso de aquél.En virtud de la tercera ley de Newton la superficie reacciona con una fuerza de igual magnitud y de sentido, contrario. Esta fuerza recibe el nombre de fuerza normal.

Entonces a) Si la superficie de apoyo es horizontal y si llamamos por N la

fuerza normal se tiene que: mgN

b) Si la fuerza de apoyo está inclinada respecto a la horizontal la fuerza normal tendrá un valor de: cosmgN N

N

mg cos mg

3. FUERZA DE TENSIÓN 26

mg

mg

TT

Page 28: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

es la ejercida por una cuerda, considerada de masadespreciable e inextensible, sobre un cuerpoque está ligado a ella. La tensión se representa conun vector dirigido a lo largo de la cuerda.

4. FUERZA DE CONTACTO O FUERZAS DE ROZAMIENTO.

Si dos cuerpo se hallan en contacto superficial y uno de ellos desliza o resbala sobre el otro, experimentalmente se encuentra que hay una fuerza resistente que se opone al movimiento. Esta resistencia se manifiesta cuando se aplica una fuerza para iniciar el movimiento y para mantenerlo. Si la fuerza motriz cesa, el cuerpo resbalante se detiene por la acción de la fuerza resistente.Llamamos a esta fuerza resistente “FUERZA DE ROZAMIENTO”.

Se halla experimentalmente que esta fuerza de roce es independiente del área de las superficies en contacto, depende del grado de pulimento de las superficies, de las interacciones moleculares y proporcional a la fuerza normal. N

N fr

F mg sen fr

mg

rozamiento de ecoeficient el es donde N.f N α f rr

El rozamiento es mayor cuando el cuerpo está en la inminencia del movimiento y menor cuando el cuerpo está en movimiento.

Llamado por e y d los coeficientes de rozamiento estático y cinético

respectivamente se verifica que: dμeμ

También se encuentra experimentalmente que d depende de la velocidad relativa de las superficies rozantes, pero a velocidades menores de 20 m/seg es aproximadamente constante.

Ejemplo: Un bloque de piedra de 200 kg-f de peso descansa sobre un piso de madera. Se aplica una fuerza horizontal para moverlo. En el momento en el que el dinamómetro marca 80 kg-f el bloque comienza a moverse. Se observa luego que para mantener el movimiento el dinamómetro solo marca 78,6kg-f. Cuales son los coeficientes de roce estático y cinético?

Solución:

mg cos

Page 29: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

Sabemos que la fuerza de roce

Nrf

Nμrfeμ

27a) La fuerza externa que se aplica es igual a la fuerza de roce en todo instante y de sentido contrario. Por lo tanto el valor de la fuerza de roce es el mismo que el de la fuerza externa aplicada. Entonces:

0,4fkg 200

fkg 80eμ

b) Igualmente el coeficiente cinético se calcula así:

0,393fkg 200fkg 78,6

5. FUERZAS ELASTICAS RECUPERADORAS.

Consideraremos un resorte hecho de un material como el acero. Si aplicamos una fuerza externa podemos deformarlo ya sea comprimiendo o estirándolo.

En ambos casos el resorte tiende aadquirir su forma antigua tan prontocesa de actuar la fuerza externa.

Experimentalmente se encuentra que la deformación sufrida por elresorte depende de la fuerza aplicada así:

Fuerza aplicada Deformación F--------------------------------x 2F-------------------------------2x 3F-------------------------------3x

De lo cual se deduce que la fuerza es proporcional a la deformación. Osea:kxFoxαT donde k es una constante de proporcionalidad llamada

constante HOOKE por ser el científico quien enuncio esta ley.

La fuerza que se opone a la deformación y que hace recuperar la forma del resorte se llama fuerza elástica y se debe a la naturaleza elástica de su estructura molecular y siempre estará actuando en sentido contrario al de la fuerza externa y tendrá el mismo valor que esta: Fe = -Kx

La constante de HOOKE se mide en unidades de fuerza sobre unidades de longitud.Con base en esta propiedad se construye el dinamómetro o medidor de fuerza.

Page 30: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

28 .

Ejemplo: Un resorte de constante K = 50 Nt/m se le aplica una fuerza de 100Nt. Cuanto se estira?

Solución: De acuerdo a la ley de HOOKE 2m

50Nt/m100Nt

kFxKxF

6. FUERZA CENTRIPETA Y CENTRÍFUGA.

Cuando una partícula describe un movimientocircular uniforme, posee una aceleracióndirigida hacia el centro de la trayectoria demagnitud v2/r. Esta aceleración centrípeta estarelacionada con el cambio de la dirección de la velocidad tangencial o lineal de la partícula. La fuerza resultante que provoca esta aceleración se llama fuerza “centrípeta”.

De acuerdo con la segunda ley de Newton

am cF r

vm2

cF

2

24cF

trnm

rv2

ca

De acuerdo con la tercera ley de Newton el cuerpo que obra sobre la partícula que posee MCU debe experimentar una fuerza de reacción ejercida por la partícula sobre él.Esta fuerza de reacción tiene sentido opuesto a la fuerza centrípeta llamada fuerza “centrífuga”. Es claro tener en cuenta que la fuerza centrípeta y la fuerza centrífuga obran sobre diferentes cuerpos.

Ejemplo:Una persona cuya masa es de 72kgva en un automóvil cuya velocidades de 54km/h. Si el automóvil describeuna curva de 40m de radio, calcula lafuerza que ejerce la puerta del automóvilsobre la persona.

Solución: El automovilista siente la acción de la fuerza que ejerce el carro sobre él, que lo presiona en la dirección radial hacia el centro de la trayectoria.

camcF

.40540

)/15(72

40)/54(72cF 2

22

Ntmsegm

kgmhkmkg

rvm

v

a

Fc

Page 31: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

DEPARTAMENTO DE MATEMATICAS

MODULO DE FÍSICA

UNIDAD III

PROFESOR:MIGUEL JARAMILLO VILLA

CALI – VALLE

2007

UNIDAD III. 30

Page 32: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

ESTÁTICA.

3.1 ESTÁTICA. La estática tiene por objeto el estudio del equilibrio de los cuerpos. Consideraremos algunos ejemplos sencillos donde solo aparecen, fuerzas concurrentes o paralelas.

Una partícula esta en EQUILIBRIO cuando su aceleración es nula.Una partícula está en REPOSO cuando su velocidad es nula.

Para que una partícula esté en equilibrio es necesario que la resultante de todas las fuerzas que actúan sobre ella sea cero. En efecto, de acuerdo con el

segundo principio de la dinámica, ,.amF y como a = 0 si hay equilibrio resulta que F = 0.

Si la partícula en equilibrio no se encuentra sometida a fuerza alguna se dice que es libre. Para determinar el equilibrio de un cuerpo debemos considerar su equilibrio de traslación y su equilibrio de rotación.

3.2 PRIMERA CONDICIÓN DE EQUILIBRIO

Para asegurar el equilibrio de traslación debe cumplirse con: “La resultante de

todas las fuerzas aplicadas al cuerpo es nula” 00 FyFx

3.3SEGUNDA CONDICIÓN DE EQUILIBRIO

Para asegurar el equilibrio de rotación debe cumplirse que: “La suma de los momentos o torques de todas las fuerzas con relación a cualquier punto es

cero” 00 móT

TORQUE O MOMENTO es una magnitud vectorial que representa la capacidad rotacional de un cuerpo alrededor de un punto o eje por la acción de una fuerza sobre un cuerpo.

Page 33: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

31 .

EJEMPLO 1: Determinar las tensiones en los hilos AC (T2) y BC (T1), si el peso de M es 40 lbf.

Σ FX = ΦT1 cos 60 – T2 cos 30 = 00,5 T1 – 0,86 T2 = 0

(1)

Σ Fy = 0T1 sen 60 + T2 sen 30 – 40 = 00,86 T1 + 0,5 T2 = 4Φ

Reemplazando en (1)T1 = 1,72 (20,2 lbf)

EJEMPLO (2) Entre dos hombres llevan mediante una vara un cuerpo que pesa 80 lbf. Si el de adelante soporta un peso de 50 lbf. Que fuerza soporta el otro y cual es la posición del cuerpo si la vara es 1,5 mts de largo. ¿

Σ F = 0

F + 50 – 80 = 0

Σ Mo = 0-30 (x) + 50 (150 – x) = 0x = 93,75 cm = 0,93 m y respecto al de atrás 1,5 m – 0,93 m = 0,57

32 .

T1 = 1,72 T2

T2 = 20,2 lbf

T1 = 34,74 lbf

F = 30 lbf

Page 34: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

3.4 CENTRO DE GRAVEDAD.Llamado también baricentro es el punto de aplicación del peso. Si consideramos la atracción ejercida por la Tierra hacia cada una de las partículas de un cuerpo, es natural que nos resultaría un sistema de fuerzas paralelas elementales con distinto punto de aplicación. Si componemos todas estas fuerzas elementales encontraremos una resultante, cuya magnitud será igual a la suma de las fuerzas componentes y cuyo punto de aplicación corresponde al centro de gravedad.

3.4.1 DETERMINACIÓN DEL CENTRO DE GRAVEDAD

El centro de gravedad se puede determinar por dos procedimientos:

- Práctico- Analítico

El centro de gravedad se puede determinar, práctica o experimentalmente suspendiendo el cuerpo sucesivamente por dos puntos distintos; el punto de corte de las verticales que bajan por los puntos de suspensión, en las dos posiciones, viene a hacer el centro de gravedad.

El centro de gravedad determinado por el método analítico se aplica a cuerpos homogéneos de distintas formas y tamaños, tiene por fundamento las propiedades de simetría, por lo cual se pueden aplicar los siguientes principios o normas generales, para hallar el centro de gravedad de esos cuerpos.1. Todo cuerpo que tenga un plano o eje de simetría, tendrá en dicho plano o eje su centro de gravedad.2. Todo cuerpo que tenga centro de figura, tendrá en él su centro de gravedad.

33 .

c θ

mg

Page 35: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

3.4.2 ALGUNOS CENTROS DE GRAVEDAD.1. Barra delgada: es el punto medio2. Lámina triangular. El punto de intersección de sus medianas3. Lámina paralelográmica: el punto de intersección de sus diagonales4. Lámina circular: su centro5. Cilindro y prisma: punto medio de la recta que une los centros de sus bases6. Cono y pirámide. Sobre la recta que une el centro de la base con el vértice y a un cuarto de su longitud media a partir de la base.

3.4.3 EQUILIBRIO DE CUERPOS SUSPENDIDOS Y APOYADOS.

Un cuerpo puede encontrarse en equilibrio en tres condiciones diferentes que dan lugar a tres clases de equilibrio.

1. Equilibrio Estable : si al separarlo ligeramente de su posición de equilibrio tiende a recuperarla fig. (a)

2. Equilibrio inestable . Si al separarlo ligeramente de su posición de equilibrio tiende a alejarse cada vez más de ella. Fig. (b)

3. Equilibrio indiferente : Si al separarlo ligeramente de su posición de equilibrio, la nueva posición alcanzada es también de equilibrio quedando en ella. Fig. ©

34 .

Page 36: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

Consideremos ahora el caso de un cuerpo suspendido en equilibrio (fig. d, e, f.) En cualquiera de los tres casos P es el peso del cuerpo aplicado en su centro de gravedad G y C es el centro o eje de suspensión.

Cuando un cuerpo suspendido se encuentra en equilibrio, la vertical que pasa por el CG pasa también por el centro de suspensión.

El Equilibrio es Estable si el CG está por debajo del centro o eje de suspensión C (fig. d), porque si se desvía ligeramente el cuerpo de su posición de equilibrio, el cuerpo tiende a recuperar esta posición.

El Equilibrio es inestable: se presenta si el CG está por encima del centro o eje de suspensión (fig. e) porque si se desvía ligeramente el cuerpo de su posición de equilibrio se aleja cada vez más de ella.

El Equilibrio es indiferente: si el CG coincide con el centro o eje de suspensión (fig. f), porque si se desvía el cuerpo de su posición de equilibrio, pasa a una nueva posición de equilibrio y no hay tendencia a recuperar su posición primitiva

Si se trata de un cuerpo apoyado sobre varios puntos no situados en línea recta se llama polígono de sustentación al polígono convexo que resulta de unir sus puntos de apoyo más exteriores. Entonces el cuerpo está en equilibrio sí la vertical que pasa por su CG pasa por un punto interior del polígono de sustentación. Por ejemplo, en el caso de una silla, el polígono de sustentación es el cuadrilátero determinado por los cuatro puntos de apoyo; si el piso está tan inclinado que la vertical que pasa por el CG cae fuera del polígono de sustentación la silla cae.

Page 37: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

DEPARTAMENTO DE MATEMATICAS

MODULO DE FÍSICA

UNIDAD IV

PROFESOR:MIGUEL JARAMILLO VILLA

CALI – VALLE

2007

Page 38: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

Unidad IV. 36MAQUINAS

Máquina es todo mecanismo que es capaz de transmitir la acción de una fuerza de un lugar a otro, modificando en general la magnitud de la fuerza, su dirección o bien ambas características.

Entre las distintas fuerzas que actúan en una maquina, las más importantes son: La Fuerza Aplicada o Motriz F, que algunos llaman potencia y La Carga Q llamada también RESISTENCIA.

4.1 La fuerza Aplicada F es aquella cuya acción va a transmitir la máquina modificando, además, en general, su intensidad y dirección.

La carga o Resistencia Q es la fuerza ejercida sobre la maquina. Por el cuerpo que la maquina trata de mover, deformar, etc.

4.2 Ley de Equilibrio.

Se llama ecuación o ley de equilibrio de una maquina a la formula que relaciona la fuerza aplicada con la carga o resistencia cuando la maquina está en equilibrio. En ella aparecen en general, ciertos elementos geométricos de la maquina. Esta formula se puede obtener aplicando al sistema de fuerzas que actúa sobre la maquina, algunas de las condiciones generales usadas en el equilibrio de los sistemas de fuerzas.

En todo nuestro estudio sobre las maquinas supondremos que:

1. Los diferentes miembros que componen la maquina son cuerpos rígidos cuyo peso es despreciable.2. No existe fricción o rozamiento entre los diferentes miembros que componen la maquina.

4.3 VENTAJA MECÁNICA.

Es la relación que existe entre la carga o resistencia Q y la fuerza aplicada F, cuando la máquina se encuentra en equilibrio.

aplicadaFuerzasistenciaRe

FQMV

La ventaja mecánica obtenida supuestas condiciones ideales antes mencionadas (miembros rígidos desprovistos de peso, ausencia de fricción etc.), se llama Teórica (VMT) y se puede deducir a partir de la ley de equilibrio de la maquina. La ventaja mecánica que existe en la realidad se llama Práctica (VMP), es inferior a la teoría y solo pueden determinarse experimentalmente después de construida la maquina, dependiendo de muchos factores.

Page 39: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

37 .Se llama Eficiencia o rendimiento de un maquina a la relación entre la VMP y su VMT, de modo que:

VMTVMPE

Esta Eficiencia es siempre menor que la unidad y por esta razón suele expresarse en forma de porcentaje.

%100X

VMTVMPE

En nuestro estudio calcularemos siempre la VMT la que expresaremos simplemente por la notación VM. La VM es la característica más importante de una maquina.

4.4 PALANCA

Una palanca es una barra rígida que puede girar alrededor de un punto o eje fijo llamado punto de apoyo o fulcro.

La ley de equilibrio de la palanca será: F. p – Q · q = 0 ó F x p = Q x q

Es decir: fuerza aplicada X su brazo = Resistencia X su brazo

De donde aresistenciladeBrazofuerzaladeBrazo

qp

FQMnV

De modo que cuanto mayor sea el brazo de la fuerza aplicada en relación con el de la resistencia tanto más ventajosa será la palanca.

Las palancas son máquinas simples o barras rígidas que gira sobre un punto fijo llamado punto de apoyo. Esta compuesta por tres puntos claves : punto de apoyo, resistencia y potencia.

Page 40: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

El punto de apoyo es aquel donde gira la palanca, la resistencia es lo que queremos mover o donde esta situado lo que se lanza y la potencia donde esta aplicada la fuerza para mover la resistencia.

38 .

Fuerza

Carga

Palanca

punto de apoyo

Existen tres clases de palancas :

1. De primer genero el punto de apoyo esta ubicado entre la resistencia y la fuerza aplicada. Ej. La balanza.

2. De segundo genero la resistencia esta en el punto de apoyo y la fuerza. Ej. La carretilla

3. De Tercer genero la fuerza se ejerce entre el punto de apoyo y la resistencia. Ej. Las articulaciones de los brazos.

Las palancas manejan su fuerza en función del peso y su actividad de energía califica su rendimiento de cualquier objeto.

En el caso del rendimiento de un cuerpo por ejemplo en el peso de un ascensor que es la potencia de un motor al variar su velocidad de función; ese motor eléctrico sólo proporcionan una salida adecuada con un rendimiento razonable dentro de unas velocidades.

Las velocidades de función de los motores en el caso de un carro son limitadas por que los motores son complicados y caros.

Uno de los motores fundamentales es el músculo, primero el humano y después el animal. Los animales se domestican se entrenan y se orientan en su capacidad de trabajo al tirar cualquier cosa que uno desea que hagan.

En el trabajo de un cuerpo se hace cuando se resiste a ser movido se desplaza una cierta distancia. Por ejemplo cuando levantamos 10 kilogramo dos metros se hará el mismo trabajo, independientemente de la manera en que se levante bien sea totalmente o por partes. Se hace

Page 41: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

igualmente el mismo trabajo sobre el objeto mediante una palanca, solo importa la fuerza aplicada a lo largo de la distancia y ambas deben tener la misma dirección.

39 .La energía es la capacidad de efectuar un trabajo, lo interesante es tener en cuenta la energía y el trabajo midiéndolos en Newton por metro, en calorías o en julios. Otro caso es el de la conservación de la energía teniendo en cuenta que la energía ni se crea ni se destruye, solo se transforma. Las cuerdas resisten cuando se tira de cada uno de sus extremos; los tirantes son las estructuras que resisten la tracción y los puntales los que resisten el empuje. Los tirantes serían cables, correas, cuerdas, músculos, madera etc.En las palancas existen unas llamadas palancas anatómicas por que están en el cuerpo humano.

1. Palanca de primer genero es la cabeza : que gira sobre la columna vertebral (sobre las vértebras atlas y axis: la potencia esta en los músculos que impiden que la cabeza se vaya hacia adelante, y la resistencia es el peso de la misma cabeza.

2. Palanca de segundo genero es el pie : cuando se apoya en los dedos el punto de apoyo esta en ellos; la potencia esta en la pantorrilla (gemelos, tendón de Aquiles), y la resistencia es el peso del mismo cuerpo, aplicado al pie por medio de la espinilla.

3. Palanca de tercer genero es el brazo, cuando se sostiene un peso cualquiera en la mano, el punto de apoyo es el codo o el hombro; la resistencia es el objeto que lleva en la mano, y la potencia, los músculos que la mueven (bíceps braquial).

También se habla de las balanzas usuales como son:

- Balanzas ordinarias. Es una palanca de primer genero en el cual en su punto medio se encuentra su punto de apoyo.

- Balanza de precisión. Es la que tiene de modo excelente, las condiciones de exactitud y de sensibilidad.

- Balanza de Roberval. Se funda en el mismo principio de la balanza ordinaria.

En la ley de Arquímedes la potencia es a la resistencia como el brazo de palanca de está es al brazo de palanca de la potencia. Él con su frase “Dadme una palanca y un punto de apoyo, y yo os moveré el mundo”. Se entiende que se trataba de un punto de apoyo y de una palanca proporcionales al mismo mundo.

Page 42: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

40 .en una palanca cualquiera, la potencia y la resistencia están en razón inversa con sus brazos de palanca.

4.5CLASIFICACIÓN DE LAS PALANCAS Teniendo en cuenta la posición relativa que ocupa el punto de apoyo, respecto a la fuerza aplicada y la resistencia, las palancas pueden ser de primero, segundo y tercer genero.

En las palancas de primer género, el punto de apoyo está entre la fuerza aplicada y la resistencia; en las de segundo género la resistencia está entre el punto de apoyo y la fuerza aplicada, y en las de tercer género la fuerza aplicada está entre el punto de apoyo y la resistencia.

Como en las palancas de segundo género su VM será siempre mayor que la unidad, mientras que en las de tercer género, su VM será menor que la unidad.

4.6. TORNO

El torno esta constituido esencialmente por el cilindro C que puede girar alrededor de un eje horizontal XX' mediante la acción de una fuerza F que se ejerce en el manubrio, actuando tangencialmente a la circunferencia descrita por el extremo del manubrio. El torno se apoya por su eje en dos chumaceras, no representadas en la figura, pero situadas en A y B respectivamente.

Page 43: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

41 .

Si R es el medio del manubrio y r el del cilindro, cuando la máquina se encuentra en equilibrio, se tiene:

0M rxQRxF RrRxFy

Fuerza aplicada x radio del manubrio = Resistencia x radio del cilindro

La VM deducida será rR

FQVM

como en general el torno se diseña dé modo que R > r, tenemos que su VM es mayor que la unidad.

El torno se puede utilizar en la practica, por ejemplo, para extraer el agua de un pozo. También se puede utilizar para preparar piezas cilíndricas, pero en este caso, la resistencia le ofrece una cuchilla (buril) en contacto con el cilindro que es la misma pieza que se desea trabajar.

4.7 LA POLEA

La polea es una rueda que puede girar libremente alrededor de su eje, que es una recta perpendicular a la rueda y que pasa por su centro. Por el borde de la rueda pasa una correa o cuerda.

Las poleas pueden ser fijas o Móviles según que su eje sea fijo o móvil.

POLEA FIJA. Las fuerzas que intervienen en el equilibrio de esta polea son: fuerza aplicada F, la resistencia Q que es el peso que se quiere equilibrar cuando la polea esta en equilibrio:

Page 44: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

QFRxQRxF0rxQRxF0M

LA fuerza aplicada es igual a la resistencia. La ventaja mecánica será:

1

FQ

VM

42 .

En otras palabras la polea fija sólo puede equilibrar una fuerza de igual intensidad; lo único que se gana es comodidad al aplicar la fuerza.POLEA MÓVIL. En la polea móvil la resistencia Q es el peso que se quiere equilibrar y se aplica directamente al eje de la polea. La fuerza aplicada F actúa tangencialmente a la polea en B y se ejerce en el cordón que pasa por la garganta suponiendo que las ramas del cordón están paralelas, cuando la

polea está en equilibrio se verifica que 2QF

Aplicando la segunda condición de equilibrio

0M respecto al punto B -Q x (R) + F x (2R) = 0 2FR = QR 2F = R F = R/2

La VM será 2

2/QQ

FQVM

VM = 2

4.8 POLIPASTOS O APAREJOS.

Un aparejo es en general, una combinación de poleas fijas y móviles. Las hay de tres clases a saber: Aparejo Factorial, Aparejo potencial y Aparejo diferencial.

Page 45: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

43 .

En los aparejos factoriales, se combinan igual número de poleas fijas y móviles. En la figura, la resistencia está sostenida por seis ramas de cordel, cada una de las cuales realiza un esfuerzo igual a la sexta parte de la resistencia, de lo cual

Page 46: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

MQF

Donde M representa el número total de poleas.

El aparejo potencial, se combina un número de poleas móviles partiendo de abajo hacia arriba, reduce la fuerza necesaria para equilibrar la resistencia a la mitad de esta, la segunda polea reduce esta mitad a la cuarta parte, la tercera a la octava y así sucesivamente. En el caso de tres poleas móviles por ejemplo, la condición en equilibrio se cumple, cuando

n

n32VMdondede

2QFdondede

2Q

2x2x2QF

n = # poleas móviles

El aparejo diferencial, consta de una doble polea fija, de radios desiguales y una polea móvil, poleas que se encuentran enlazadas por una cadena sin fin o cerrada.

Cuando la polea doble fija, gira en el sentido de las agujas del reloj, la polea fija de menor radio de cordel y la más grande toma, la consecuencia es, que la resistencia se eleva. Para buscar la relación o ventaja mecánica entre la fuerza y la resistencia, basta establecer el equilibrio de momento, en efecto:

rRR2VMlay

R2)rR(QFdondede0

2RQx

2rQxFxR

4.9 PLANO INCLINADO. 44

Se denomina plano inclinado todo plano que forma con la horizontal un ángulo menor de 90°. El corte o sección de un plano inclinado es un triangulo rectángulo, en el que la hipotenusa viene a corresponder a la longitud del plano, el cateto horizontal a la base y la vertical a la altura.

Fuerza aplicada Paralela al plano. El cuerpo se sostiene en equilibrio sobre el plano mediante la acción de un sistema de fuerzas formando por el peso del cuerpo, que es la resistencia Q, la reacción N del plano sobre el cuerpo, la aplicada F, que se ejerce paralelamente al plano.

Si AB = 1 es la longitud del plano, AC = b es su base y BC = h la altura cuando el cuerpo se encuentra en equilibrio sobre el plano se verifica que F x 1 = Q x h o sea Fuerza aplicada x longitud = Resistencia x alturaQue es la ley de equilibrio del plano inclinado cuando la fuerza aplicada F es paralela al plano. La VM será:

Page 47: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

&csc

h1

FQVM

Como siempre 1>h, la VM es mayor que la unidad

Fuerza aplicada paralela a la base. Este caso es semejante al anterior con la única diferencia de que la fuerza aplicada F se ejerce paralela a la base del plano.Cuando el cuerpo está en equilibrio sobre el plano se verifica que: F x b = Q x h

que es la ley de equilibrio. La VM será &ctg

hb

FQVM

puesto que 1>b, la VM será mayor cuando la fuerza es paralela al plano, que cuando es paralela a su base.

4.10 TORNILLO

Un tornillo es un cilindro sobre el cual se ha grabado un saliente delgado, que tiene la forma de una hélice. Este borde saliente se denomina FILETE y puede ajustar en el interior de un cilindro hueco llamado Tuerca.

Cuando se da al tornillo una vuelta completa éste avanza o retrocede según el sentido de giro, una distancia igual al paso de rosca h; de modo que, también puede decirse que paso de un tornillo es lo que esto avanza o retrocede al dar una vuelta completa. El tornillo se emplea para elevar un cuerpo situado sobre su cabeza o para comprimirlo como en las prensas.

45 .La fuerza aplicada F se ejerce en el extremo del manubrio, cuyo radio es F, y actúa tangencialmente a la circunferencia descrita por el extremo del manubrio, la resistencia Q es el peso que se desea elevar y actúa según el eje del tornillo.

Estando el tornillo en equilibrio de verifica que: 2π · R · F = Q · h que es su ley de equilibrio.

La VM será hR2

FQVM

donde vemos que puede obtenerse una VM

grande si hacemos R grande y h muy pequeño.

Page 48: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

PROBLEMAS DE APLICACIÓN

1. Determinar las tensiones en los hilos AC y BC si el peso de M es 40 lbf.

2.

3. Determinar las fuerzas que la viga BA y el cable AC ejercen sobre A suponiendo que M tiene un peso de 50 kgf y que la cuerda y la viga tienen pesos despreciables.

4.

46 .3. Calcular la tensión en BC y la reacción AB si M pesa 2000 newton y AB carece de peso.

4. Calcular el ángulo ø y la tendencia en el hilo AB si M1 pesa 3000 grf y M2

pesa 4000 grf.

5. Calcular las fuerzas ejercidas en A por las barras AB y AC sí AB = AC = 20m BC = 30m y M = 200kgf.

Page 49: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

6. La viga homogénea de la figura pesa 50kgf y está articulada en A. Calcular la tensión del cable y la fuerza que hace el pivote A.

7. La viga homogénea de 75 kg y 3 mts de largo está soportada por dos cables como muestra la figura. ¿Dónde debe situarse, sobre la viga, a partir de 0 una persona de 50 kg para que la viga esté horizontal.

47 .8. Una viga homogénea de 75 kg y de 3 m de largo descansa sobre dos soportes que tienen una separación de 2m. Una persona de 50 kg parte del punto 0 y avanza hacia P.

Page 50: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

9. La VMT de una maquina es de 80. ¿Cuál es el peso de un cuerpo que puede equilibrarse con una fuerza aplicada de 10lbs? ¿Cuál será el peso si la maquina tiene una eficiencia de 0,4?

10. Una maquina tiene una VMT de 20. ¿Cuál es la eficiencia si con ella una fuerza aplicada de 40lbf solo puede equilibrarse con una fuerza de 600 lbf?

11. ¿Cuál es la VMT de una maquina cuya eficiencia es 80% si puede equilibrarse una fuerza de 560 lbf con una de 20 lbf?

12. Una barra de peso despreciable y de 2m. de longitud está apoyada en un punto a 0,6m de un extremo en el cual hay colgado un cuerpo que pesa 20 kgf. (a) cual es su VM? (b) ¿Qué fuerza es necesario ejercer en el otro extremo para equilibrar la palanca?

13. Para mover una piedra que pesa 180 kgf emplea un hombre una tabla de 3m de longitud apoyada en un punto a 30cm del extremo donde está apoyada la piedra. ¿Qué fuerza debe ejercer el hombre? ¿Cuál es su VM?

14. Un campesino saca agua de un pozo mediante un torno cuyo eje tiene un diámetro de 20 cm. y cuyo manubrio tiene 80cm. ¿Qué fuerza debe ejercer si el agua contenida en el cubo pesa 15 kgf? ¿Cuál es la VM del torno?

15. La VM de un torno es 5. si el eje tiene un radio de 4cm y la fuerza aplicada es de 10 kgf. Calcular el radio del manubrio y la resistencia equilibrada.

16. los radios de un torno son de 15cm y 5 cm. ¿Qué resistencia puede equilibrarse con una fuerza aplicada de 100 newton? ¿Cuál es su VMT?

17. En un aparejo factorial de 4 poleas móviles y 4 poleas fijas, la fuerza aplicada es de 4 kgf, ¿Cuál es el peso de un cuerpo que se equilibre con esta? ¿Cuál es su VM?

18. Cuantas poleas móviles se requieren para equilibrar una fuerza de 40 kgf, con una de 5 kgf. ?

48 .19. Un aparejo exponencial tiene 6 poleas móviles y una fija, que fuerza es necesaria aplicar para equilibrar un cuerpo que pesa 1280 lbf. ? ¿Cuál será su VM?

20. Un aparejo diferencial tiene poleas de 30 cm y 15 cm. ¿Cuál es su ventaja mecánica? Sí se quiere equilibrar una fuerza aplicada de 50 kgf, cuánto pesaría un cuerpo ubicado en el sistema que cumpla esta condición. ?

Page 51: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

21. En un aparejo diferencial se puede equilibrar una fuerza de 24 kgf con una de 57,6 kgf, que valor tienen los radios de la polea fija doble si el radio mayor es 2,4 veces el menor. ? ¿Cuál es su VM?

22.Un plano inclinado tiene 9 m de longitud y 3 m de altura. ¿Cuál es su VM con la fuerza paralela al plano?. ¿Qué fuerza es necesario ejercer paralelamente al plano para equilibrar un cuerpo que pesa 240 kgf?

23. la base de un plano inclinado es de 12m y la altura de 5m. ¿Qué fuerza es necesario aplicar paralelamente a la base para equilibrar un cuerpo que pesa 100 kgf? ¿Qué fuerza haría falta si se aplicara paralela al plano?

24. un hombre es capaz de ejercer una fuerza de 50 kgf. ¿Qué longitud debe tener la tabla más corta que él puede subir con seguridad un barril que pesa 150 kgf hasta el camión cuya plataforma está a 1,2 m sobre la calle?

25. Dos planos inclinados tienen la misma altura están dispuestos de modo que sus alturas coinciden. El primero tiene una longitud de 2,2m y el segundo de 1,6m. En cada plano se encuentra un cuerpo estando ambos unidos por un hilo que pasa por el vértice común de los dos planos. Si los cuerpos están en equilibrio y el primero pesa 12 kgf. ¿Cuánto pesa el segundo? ¿Cuál es la VM de la maquina formada?

26. En una prensa de tornillo se desea obtener una VM de 1000; si el paso de rosca es de 2mm ¿Cuál debe ser el radio de la circunferencia que ha de recorrer el punto de aplicación de la fuerza aplicada?

27. ¿Cuál es la VM de un tornillo milimétrico si su radio es 8 cm? ¿Cuál es la fuerza necesaria para equilibrar una resistencia de 70 newton?

Page 52: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si

DEPARTAMENTO DE MATEMATICAS

MODULO DE FÍSICA

UNIDAD V

PROFESOR:MIGUEL JARAMILLO VILLA

Tomado de la 1a. Edición en español De fisica para ciencias de la vidaDe : McGraw-Hill y escrita por:

David JouJoseph Enric LlebotCarlos Perez Garcia

CALI – VALLE

2007

Page 53: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si
Page 54: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si
Page 55: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si
Page 56: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si
Page 57: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si
Page 58: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si
Page 59: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si
Page 60: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si
Page 61: Portafolio Interactivo Digital · Web viewAsí, no es suficiente decir que un avión vuela a 300 Km/ h sino que también es necesario indicar la dirección, ya que es diferente si