hidrogel de lidocaÍna e prilocaÍna encapsulados em nanocÁpsulas de...

61
UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ODONTOLOGIA DE PIRACICABA BRUNO VILELA MUNIZ HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE POLI(ÉPSILON-CAPROLACTONA) PARA ANESTESIA TÓPICA ORAL . PIRACICABA 2018

Upload: others

Post on 19-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

UNIVERSIDADE ESTADUAL DE CAMPINAS

FACULDADE DE ODONTOLOGIA DE PIRACICABA

BRUNO VILELA MUNIZ

HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA

ENCAPSULADOS EM NANOCÁPSULAS DE

POLI(ÉPSILON-CAPROLACTONA) PARA ANESTESIA

TÓPICA ORAL .

PIRACICABA

2018

Page 2: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

BRUNO VILELA MUNIZ

HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA

ENCAPSULADOS EM NANOCÁPSULAS DE

POLI(ÉPSILON-CAPROLACTONA) PARA ANESTESIA

TÓPICA ORAL .

Tese apresentada à Faculdade de

Odontologia de Piracicaba da Universidade

Estadual de Campinas como parte dos

requisitos exigidos para a obtenção do título de

Doutor em Odontologia, na Área de

Farmacologia, Anestesiologia e Terapêutica.

Orientadora: Prof.ª. Drª. Michelle Franz Montan Braga Leite

Co-orientadora: Prof.ª. Drª. Maria Cristina Volpato

ESTE EXEMPLAR CORRESPONDE À

VERSÃO FINAL DA TESE DEFENDIDA

PELO ALUNO BRUNO VILELA MUNIZ, E

ORIENTADO PELA PROFª. DRª.

MICHELLE FRANZ MONTAN BRAGA

LEITE E CO-ORIENTADO PELA PROF.ª.

DRª. MARIA CRISTINA VOLPATO.

PIRACICABA

2018

Page 3: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes
Page 4: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes
Page 5: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

AGRADECIMENTOS

À Universidade Estadual de Campinas (UNICAMP), na pessoa do Magnífico

Reitor Prof. Dr. Marcelo Knobel.

À Faculdade de Odontologia de Piracicaba (FOP), na pessoa de seu diretor Prof.

Dr. Guilherme Elias Peçanha Henriques.

Ao Departamento de Ciências Fisiológicas da FOP-UNICAMP, na pessoa de seu

Chefe Prof. Dr. Francisco Carlos Groppo.

À Coordenadoria Pós-Graduação (CPG) da FOP-UNICAMP, na pessoa de sua

coordenadora Profa. Dra. Cinthia Maria Tabchoury.

Ao Programa de Pós-Graduação em Odontologia (PPGO) da FOP-UNICAMP, na

pessoa de seu coordenador Prof. Dr. Marcelo de Castro Meneghim.

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pela

bolsa de doutorado concedida.

À Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), pelo auxílio

financeiro (2012/06974-4) para a realização deste trabalho.

À professora Michelle Franz Montan Braga Leite, minha orientadora, que ensinou

as responsabilidades, os percalços e atalhos para coordenar um laboratório de pesquisa sem

nunca o deixar parar. Nossas reuniões sempre foram pautadas pelo respeito, compreensão,

atenção, exigência e excelência na orientação. Devo agradecer imensamente pelo apoio,

especialmente nos momentos difíceis, e dizer, sem nenhuma ressalva, que levo para a vida

inteira uma grande amiga.

À minha co-orientadora, Profª. Drª. Maria Cristina Volpato, pela retidão, prontidão

e eterna orientação.

Page 6: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

Ao Prof. Dr. Leonardo Fernandes Fraceto e Profa. Eneida de Paula pela parceria e

oportunidade de colaboração e ensinamentos envolvendo a caracterização das formulações

testadas no presente trabalho e disponibilidade em ajudar sempre que solicitado.

À Dra. Lígia Nunes de Morais Ribeiro, pela ajuda com os testes de validação,

interpretação dos resultados e disponibilidade e prontidão de sempre!

Aos professores da Área de Farmacologia, Anestesiologia, e Terapêutica, Prof. Dr.

Francisco Carlos Groppo, Prof. Dr. Pedro Luiz Rosalen, Prof. Dr. Eduardo Dias de Andrade e

Prof. Dr. José Ranali, pelos ensinamentos e conversas sobre os mais diversos assuntos.

Aos técnicos dos laboratórios de Farmacologia e Fisiologia Eliane Melo (Ely), José

Carlos Gregório (Zé) e Fábio Padilha (Fabinho) pela bela amizade, conversas entusiasmadas,

solicitude e orientações.

À Maria Elisa dos Santos, pela alegria e carinho no exercício de suas funções,

sempre solicita para atender, com gentileza e dedicação a todos.

À Sra. Érica Alessandra Sinhoreti, à Sra. Ana Paula Carone e à Sra. Raquel

Quintana Sachi, membros da CPG da FOP-UNICAMP, e à Srta. Elisa dos Santos, secretária do

PPGO da FOP-UNICAMP pela cordialidade, solicitude e presteza de seus serviços.

Aos professores das bancas de qualificação primeira e segunda fase, Prof. Dr. Pedro

Luiz Rosalen, Profª Drª Karina Cogo, Prof. Dr. Cleiton Pita, Profª Dr.ª Laura Oliveira e Profª

Drª Nathalie Melo.

À Cristália Produtos Químicos Farmacêuticos LTDA pela doação dos anestésicos

locais Lidocaína e Prilocaína utilizados nessa tese.

Page 7: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

AGRADECIMENTOS ESPECIAIS

Aos meus pais queridos, Edson e Val, pelo amor incondicional, que é combustível

para que eu possa seguir meus projetos, pela preocupação, pelo zelo, incentivo e orgulho. Pela

atuação basilar nas decisões mais importantes da minha vida. Vocês me incentivaram a estar

aqui e buscar sempre crescimento pessoal e profissional.

A minha joia, o ser único em minha vida, minha irmã Mariane, que de alguma

maneira foi o grande propulsor em minha vida. Me ensinando a viver desde o primeiro minuto

e norteando meus ideais.

Aos meus familiares: tios Jussara, Gera, Val, Leandro, Gilberto, Ana e, em especial,

Irene; primos Maurício, Augusto, Fabinho e Fernando, que sempre me apoiaram e contribuíram

na minha formação, e propiciaram belos momentos juntos.

Em especial aos meus avós Meiri e Marcos, por sempre confiarem e alimentarem o

meu desejo pelo conhecimento, sem nunca perder o bom humor e alegria.

A minha noiva Larissa Motta, pelo apoio, incentivo, carinho, amor e confiança. Um

alento a todas as minhas preocupações.

Aos meus amigos de mestrado, doutorado e demais professores da farmacologia:

Ana Paula Bentes, Bruno Bueno, Bruna Benso, Carina Denny, Irlan Almeida (Iran), Karina

Cogo, Luciano Serpe, Marcelo Franchin, Marcos Cunha, Laila Facin, Jonny Burga, Lívia

Galvão, Luciana Berto, Paula Sampaio, Sérgio Rochelle, Talita Graziano e Verônica Freitas,

pelo companheirismo e a certeza de levar essas amizades pelo resto da vida.

Em especial aos meus amigos mais do que especiais, Jaiza, Stephany, Camilinha,

Cleiton, Luiz Eduardo, Diogo (Gazé), Augusto (Gutão), Felipe (Anacleto), Klinger com quem

sempre pude contar em todos os momentos e contribuíram enormemente com o

desenvolvimento desse projeto (contribuição laboral ou moral), sem nunca perder o bom humor.

Page 8: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

Aos meus amigos da terrinha, Thiago, Luis Gustavo, Israel, Higor e Marcão, por

compartilharem das minhas insanidades.

Agradeço também as pessoas, amigos e família que não foram citados aqui, mas

estiveram na torcida pela realização e sucesso deste trabalho, obrigada!

À terrinha, Itararé - SP, onde cresci e aprendi a ser feliz.

Page 9: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

RESUMO

Anestésicos tópicos são comumente aplicados na mucosa oral para redução ou prevenção da

dor durante a realização de procedimentos médicos ou odontológicos, porém não há um

anestésico tópico ideal para uso em mucosa oral com eficácia garantida na maioria dos casos,

em baixas concentrações e com baixo tempo de latência. O objetivo do presente trabalho foi

desenvolver e avaliar hidrogéis à base de Carbopol® Ultrez 10 contendo os anestésicos locais

lidocaína e prilocaína (5%) encapsulados (CNLP) em nanocápsulas de poli (ε-caprolactona)

(PCL) ou não (CLP) para uso tópico na mucosa oral. As nanocápsulas em suspensão foram

caracterizadas em termos de tamanho, índice de polidispersão (PDI), carga superficial

(potencial zeta-ZP), análise de rastreamento da partícula (NTA), estabilidade físico-química,

análise estrutural, eficiência de encapsulação (EE%) e cinética de liberação in vitro. As

formulações semissólidas foram submetidas à análise reológica, propriedades mecânicas

(dureza, compressibilidade, coesividade e adesividade), estabilidade acelerada, cinética

liberação in vitro, avaliação da capacidade mucoadesiva in vitro (força de destacamento)

citotoxicidade em cultura de células HaCat e FGH, e capacidade de permeação in vitro através

do epitélio de mucosa jugal e palatina. As formulações foram avaliadas quanto à eficácia

anestésica tópica em ratos Wistar, em modelo de tail-flick. As nanocápsulas desenvolvidas

apresentaram tamanho de aproximadamente de 400 nm, PDI ≤ 0.262, ZP -20 a -25 mV,

contendo 2.9x1012 part./mL avaliado pelo método NTA, com estabilidade físico-química

durante 180 dias. As nanocápsulas apresentaram altos níveis de encapsulação tanto da lidocaína

quanto da prilocaína (83% e 72%, respectivamente) e apresentaram cinética de liberação com

modelagem matemática semi-empírica (Korsmeyer-Peppas, R2 ≥ 0,985; LDC n = 0.82, PLC n

= 0.72). As formulações de hidrogéis apresentaram fluxo pseudoplástico não-newtoniano,

característicos de géis, além de boas propriedades mecânicas, capacidade mucoadesiva e estável

por 6 meses. As formulações apresentaram menor citotoxicidade nas células avaliadas em

relação à formulação comercial (EMLA®), e apresentaram menor fluxo de permeação dos

anestésicos locais através dos epitélios de mucosa oral. Além disso, a formulação de anestésicos

locais encapsulados apresentou melhor eficácia anestésica tópica em relação ao EMLA. Em

conclusão, o presente estudo desenvolveu uma formulação semissólida para liberação

sustentada de anestésicos locais para uso em mucosa oral com boas propriedades mecânicas,

estável, mucoadesivo e com boa eficácia e duração anestésica in vivo, sendo um potencial

candidato para futuros testes em humanos. Esses dados abrem perspectivas para uma melhora

na qualidade da anestesia tópica.

Palavras-chave: Lidocaína, Prilocaína, Nanocápsulas de poli(ε-caprolactona), Hidrogel,

Mucosa oral, Anestesia tópica, Odontologia

Page 10: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

ABSTRACT

Topical anesthetics are commonly applied to the oral mucosa for reduction or prevention of

pain during medical or dental procedures, but there is no topical anesthetic ideal for use in oral

mucosa with efficacy guaranteed in most cases in low concentrations and with low time latency.

The objective of the present work was to develop and evaluate Carbopol-based hydrogels

containing local anesthetics lidocaine and prilocaine (5%) encapsulated (CNLP) or not (CLP)

in poly (ε-caprolactone) (PCL) nanocapsules for topical use in Oral mucosa. The suspension

nanocapsules were characterized in terms of size, polydispersity index (PDI), surface charge

(zeta-ZP potential), particle tracking analysis (NTA), physicochemical stability, structural

analysis, encapsulation efficiency) and in vitro release kinetics. Semi-solid formulations were

submitted to rheological analysis, mechanical properties (hardness, compressibility,

cohesiveness and adhesiveness), accelerated stability, in vitro release kinetics, in vitro

mucoadhesive capacity (posting strength) cytotoxicity in HaCat and HGF cell culture, and

capacity of in vitro permeation through the epithelium of jugal mucosa and palatine. The

formulations were evaluated for topical anesthetic efficacy in rats. The nanocapsules developed

had a size of approximately 400 nm, PDI ≤ 0.262, ZP -20 a -25 mV, containing 2.9x1012

part./mL evaluated by the NTA method, with physico-chemical stability for 180 days. The

nanocapsules had high levels of encapsulation of both lidocaine and prilocaine (83% and 72%,

respectively) and presented a semi-empirical release mechanism (Korsmeyer-Peppas, R2 ≥

0.985). The hydrogel formulations showed a non-Newtonian pseudoplastic flow, characteristic

of a semisolid pharmaceutical form, besides good mechanical properties, mucoadhesive

capacity and stable for 6 months. The formulations had lower cytotoxicity in the cells evaluated

in relation to the commercial formulation (EMLA®), and presented lower permeation flux of

the local anesthetics through oral mucosa epithelia. In addition, the formulation of encapsulated

local anesthetics presented better anesthetic efficacy than EMLA. In conclusion, the present

study developed a semi-solid formulation for sustained release of local anesthetics for use in

oral mucosa with good mechanical properties, stable, mucoadhesive and with good efficacy and

in vivo anesthetic duration, being a potential candidate for future human trials. These data open

perspectives for an improvement in the quality of topical anesthesia.

Keywords: Lidocaine; prilocaine; polymeric nanocapsules; hydrogel; oral mucosa; topical

anesthesia; local anesthetics

Page 11: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

SUMÁRIO

1 INTRODUÇÃO ................................................................................................................ 12

2 ARTIGO: Hybrid Hydrogel and Polymeric nanocapsules co-loaded with lidocaine

and prilocaine aiming topical intraoral anesthesia ............................................................. 16

3 CONCLUSÃO .................................................................................................................. 55

REFERËNCIAS ..................................................................................................................... 56

ANEXOS ................................................................................................................................. 60

Anexo 1 - Certificado de aprovação do estudo pela CEUA.................................................60

Anexo 2 - Comprovante de submissão do trabalho..............................................................61

Page 12: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

12

1 INTRODUÇÃO

Anestésicos tópicos são comumente aplicados na mucosa oral para redução ou

prevenção da dor durante a realização de diversos procedimentos na área da saúde como injeção

da solução de anestésico local, colocação de bandas para realização de isolamento absoluto,

extração simples de dentes decíduos, procedimentos cirúrgicos realizados na mucosa oral

(como biópsia ou drenagem de abcesso por exemplo), intubação endotraqueal, e endoscopia

digestiva (Lee, 2016).

A lidocaína, anestésico local do tipo amino-amida, foi disponibilizada comercialmente

a partir de 1948, e desde então, é o anestésico local padrão ouro para comparação nessa classe

de fármacos devido a sua boa eficácia, reduzida alergenicidade, baixo custo e boa segurança

clínica (Moore & Hersh, 2010; Ogle & Mahjoubi, 2012). Para uso tópico, a lidocaína está

disponível comercialmente nas concentrações de 2, 4, 5 e 10% em forma de pomadas, geleia,

creme e sprays para uso em mucosas (Lee, 2016).

Desenvolvido em 1980, e aprovado nos EUA pelo FDA (Food and Drug

Administration), em 1992, o EMLA® (mistura eutética de lidocaína a 2,5% e prilocaína a 2,5%,

AstraZeneca) vem sendo testado para uso em mucosa oral (Svensson et al., 1992; Donaldson &

Meechan, 1995; Vickers et al., 1997; McMillan et al., 2000; Sohmer et al., 2004; Abu Al-Melh

et al., 2005; Al-Melh & Andersson, 2007; Al-Melh & Andersson, 2008; Franz-Montan et al.,

2015).

Embora seja utilizada na cavidade oral, segundo a bula do fabricante, a formulação

comercial EMLA® foi desenvolvida para uso dermatológico e apresenta indicação apenas para

mucosa genital, porém não para outros tipos de mucosa, como a oral por exemplo. Nesse tipo

de mucosa, apresenta eficácia em reduzir a dor à punção, mas não a dor decorrente da injeção

da solução anestésica em mucosa palatina (Franz-Montan et al., 2012). A formulação também

apresenta algumas características organolépticas como gosto amargo (pH = 9.0), sensação de

queimação durante a aplicação e baixa viscosidade, que podem dificultar sua aceitação pelos

pacientes (Meechan & Donaldson, 1994). Sendo assim, não há um anestésico tópico ideal para

uso em mucosa oral com eficácia garantida na maioria dos casos, em baixas concentrações e

com baixo tempo de latência (Meechan, 2002; Franz-Montan et al., 2012; Franz- Montan et al.,

2017).

Os sistemas de liberação de fármacos (drug delivery systems) tem como objetivos

principais melhorar a biodisponibilidade, reduzir a toxicidade e, dessa maneira, aumentar o

índice terapêutico dos fármacos. Assim, os anestésicos locais (AL) são alvos de pesquisas

Page 13: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

13

visando a encapsulação, associação ou complexação dos mesmos em sistemas de liberação

sustentada, baseados em ciclodextrinas, lipossomas e biopolímeros (micro ou nanopartículas

poliméricas), buscando a melhora na eficácia e diminuição da toxicidade (de Araújo et al., 2013;

Pitorre et al., 2017).

As micro e nanopartículas poliméricas tem se tornado um dos sistemas de liberação de

fármacos mais estudados devido à elevada estabilidade em temperatura ambiente e em

temperatura corporal e pela possiblidade de uso por diversas vias (oral, tópica intraoral,

dérmica, ocular e parenteral) (Soppimath et al., 2001; Schaffazick et al., 2003; Andrade et al.,

2014; Shah et al., 2014; Negi et al., 2015; Basha et al., 2015; Ribeiro et al., 2016; Manaia et al.,

2017; Pham et al., 2018).

As nanopartículas poliméricas são esferas coloidais sólidas, que variam de 10 a 1000

nm, e podem ser classificadas, dependendo da composição e organização estrutural, em

nanoesferas ou nanocápsulas. As nanoesferas são compostas por matriz polimérica densa e as

nanocápsulas por núcleo oleoso envolto por uma parede polimérica. O fármaco pode estar

dissolvido na matriz polimérica, no núcleo ou adsorvido à parede polimérica (Schaffazick et

al., 2003; Singh & Lillard, 2009; Mora-Huertas et al., 2010).

O grupo de pesquisa ao qual este projeto está vinculado, caracterizou a encapsulação de

benzocaína, lidocaína e articaína em nanocápsulas sintetizadas com diferentes polímeros, como

o poli(D,L-lactídeo-co-glicolídeo), poli(L-lactídeo) e o poli(épsilon-caprolactona), e

demonstrou que essas associações apresentaram boa estabilidade, liberação sustentada in vitro

e melhora da eficácia anestésica in vivo (de Melo et al., 2011; Moraes et al., 2011; De Melo et

al., 2012; Ramos Campos et al., 2013; Silva de Melo et al., 2014; Melo et al., 2018).

A nanocápsula de poli(épsilon-caprolactona) é considerada um sistema de liberação

promissor tendo em vista que o polímero é biodegradável e biocompatível, utilizado para

encapsulação de diversos fármacos (Woodruff & Hutmacher, 2010). Além disso, podem ser

empregadas tanto para formulações líquidas, quanto semissólidas como os hidrogéis (Woodruff

& Hutmacher et al., 2010; Pohlmann et al., 2013; Melo et al.,2018).

Um hidrogel pode ser definido como uma preparação semissólida formada por uma rede

tridimensional obtida a partir de ligações cruzadas de um polímero ou copolímero em um

veículo líquido aquoso, no qual adquire consistência viscosa, impedindo a sedimentação de

partículas nele incorporado (Kopecek, 2007; Annabi et al., 2014; Sahoo et al., 2014; Sharpe et

al., 2014).

Existem diversos polímeros utilizados para formar hidrogéis, sendo os polímeros

carboxivinílicos ou carbômeros (carbopols) um dos mais utilizados. Os carbopols são

Page 14: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

14

considerados materiais com baixo potencial tóxico e irritante, sem nenhuma evidência de

hipersensibilidade à sua estrutura (Sahoo et al., 2014). Esse tipo de polímero aniônico deve

sofrer um processo de neutralização durante o seu preparo com uma base, a fim de se adquirir

a viscosidade desejável (da Silva et al., 2008).

Sendo assim, uma tendência atual é a criação de sistemas híbridos compostos por

exemplo de um hidrogel e um sistema nanoparticulado, como as nanopartículas poliméricas.

Um sistema híbrido é constituído de dois materiais distintos formando uma única formulação

com propriedades físico-químicas e biológicas únicas inalcançável pelos componentes quando

separados (Merino et al., 2015; Gao et al., 2016). Essa dupla interface 3D (Figura 1) atrai

atenção para enfrentar desafios biológicos e médicos, permitindo a criação de materiais com

propriedades superiores de liberação sustentada e direcionada do fármaco no local do

tratamento (Gao et al., 2016).

Figura 1. Ilustração esquemática das nanopartículas inseridas na rede de um hidrogel.

Nosso grupo de pesquisa demonstrou a eficácia clínica de diversas formulações à base

de Carbopol® Ultrez10 contendo AL como benzocaína, lidocaína e ropivacaína encapsulados

em lipossomas convencionais como anestésico tópico prévio à anestesia local em mucosa oral

em voluntários sadios (Franz-Montan et al., 2007; Franz-Montan et al., 2010a; Franz-Montan

et al., 2010b; Franz-Montan et al., 2015).

Em decorrência da eficácia demonstrada para o anestésico tópico EMLA® em anestesia

de mucosa oral (McMillan et al., 2000; Al-Melh & Andersson, 2007 e 2008; Franz-Montan et

al., 2015) e da melhor eficácia in vivo de benzocaína associada à nanocápsulas de poli(épsilon-

caprolactona) (De Melo et al., 2012) a hipótese do presente trabalho foi que a utilização desse

sistema de liberação contendo lidocaína e prilocaína associados ao hidrogel à base de Carbopol®

apresentasse boa eficácia anestésica tópica.

Nesse contexto, o objetivo deste trabalho foi avaliar a estabilidade, as características

físico-químicas e perfil de liberação dos anestésicos locais lidocaína (2,5%) e prilocaína (2,5%)

Page 15: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

15

em nanocápsulas de poli(épsilon-caprolactona) em suspensão; e avaliar a estabilidade,

citotoxicidade, propriedades mecânicas, reológicas e mucoadesivas, perfil de liberação e de

permeação, e eficácia in vivo desse sistema formulado em um hidrogel à base de Carbopol®

objetivando aplicação tópica em mucosa oral.

Page 16: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

16

MANUSCRIPT SUBMITTED TO SCIENTIFIC REPORTS

HYBRID HYDROGEL AND POLYMERIC NANOCAPSULES CO-LOADED

WITH LIDOCAINE AND PRILOCAINE AIMING TOPICAL INTRAORAL

ANESTHESIA

Authors:

Bruno Vilela Muniz¹. MSc, PhD student

Diego Baratelli². MSc

Stephany Di Carla¹. MSc student

Luciano Serpe¹. PhD

Camila Batista da Silva¹. PhD

Viviane Aparecida Guilherme3. PhD

Lígia de Morais Ribeiro Nunes3. PhD

Cintia Maria Saia Cereda3. PhD

Eneida de Paula³. PhD, Full Professor

Maria Cristina Volpato1. PhD, Full Professor

Francisco Carlos Groppo¹. PhD, Full Professor

Leonardo Fernandes Fraceto². PhD, Associate Professor

Michelle Franz-Montan1*. PhD, Assistant Professor

1 Department of Physiological Sciences, Piracicaba Dental School, University of Campinas –

UNICAMP, Piracicaba, São Paulo, Brazil

² São Paulo State University – UNESP, Institute of Science and Technology of Sorocaba,

Department of Environmental Engineering, Sorocaba, São Paulo, Brazil

Page 17: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

17

³ Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas

– UNICAMP, Campinas, São Paulo, Brazil

*Corresponding author:

Michelle Franz-Montan

Av. Limeira 901, Bairro Areião, 13414-903, Piracicaba, São Paulo, Brazil

Tel.: 55 19 2106 5306; FAX: 55 19 2106 5306; E-mail: [email protected]

Page 18: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

18

Abstract

This study reports the development of nanostructured hydrogels for the sustained release of the

eutectic mixture of lidocaine and prilocaine (both at 2.5%) for oral topical use. The local

anesthetics, free or encapsulated in poly(ε-caprolactone) nanocapsules, were incorporated into

Carbopol® hydrogel. The nanoparticle suspensions were characterized in vitro in terms of

particle size, polydispersity, and surface charge, using dynamic light scattering measurements.

The nanoparticle concentrations were determined by nanoparticle tracking analysis. Evaluation

was made of physicochemical stability, structural features, encapsulation efficiency, and in

vitro release kinetics. The Carbopol® hydrogels were submitted to rheological, accelerated

stability, and in vitro release tests, as well as determination of mechanical and mucoadhesive

properties, in vitro cytotoxicity towards FGH and HaCat cells, and in vitro permeation across

buccal and palatal mucosa. Anesthetic efficacy was evaluated using Wistar rats. Nanocapsules

were successfully developed that presented desirable physicochemical properties and a

sustained release profile. The hydrogel formulations were stable for up to 6 months under

critical conditions and exhibited non-Newtonian pseudoplastic flows, satisfactory

mucoadhesive strength, non-cytotoxicity, and slow permeation across oral mucosa. In vivo

assays revealed higher anesthetic efficacy in tail-flick tests, compared to a commercially

available product. In conclusion, the proposed hydrogel has potential for provision of effective

and longer-lasting superficial anesthesia at oral mucosa during medical and dental procedures.

These results open perspectives for future clinical trials.

Keywords: Local anesthetics, topical anesthesia, oral mucosa, polymeric nanocapsules,

hydrogel, lidocaine, prilocaine.

Page 19: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

19

1. Introduction

Topical anesthetics are applied superficially to reduce or control pain in medical and

dental procedures such as local anesthesia injection, placement of orthodontic bands, simple

extraction of primary teeth, rubber-dam clamp placement, biopsies, abscess incision,

endotracheal intubation, and endoscopy (Lee, 2016). Nevertheless, variables such as the class

and concentration of the anesthetic agent, pH, additives, contact time at the mucosa, duration

of action, and site of application influence the success of superficial anesthesia (Meechan,

2008).

Lidocaine (LDC) and prilocaine (PLC) are amine-amide local anesthetics (LAs) widely

used in biomedical procedures worldwide (Lee, 2016). When these LAs are combined, they

form an eutectic mixture that is commercially available as EMLA®, a topical formulation

originally designed for dermal use, with proven effectiveness inside the oral cavity

(Daneshkazemi et al., 2016). However, the formulation also presents organoleptic

characteristics such as a bitter taste (pH = 9.0) and a burning sensation during application, which

can hinder its acceptance by patients (Meechan & Donaldson, 1994). The advantages and

disadvantages of EMLA® led to the development of new formulations containing the eutectic

mixture of LDC and PLC in drug delivery systems such as mucoadhesive films and

nanostructured lipid carriers, aiming at topical oral application (Couto et al., 2017; Ribeiro et

al., 2016).

Several approaches have been adopted for optimization of the effective loading of LAs

into polymeric nanoparticles. The encapsulation of benzocaine, lidocaine, and articaine in

polymeric nanoparticles composed of poly(lactide-co-glycolide), poly-L-lactide, and poly-ε-

caprolactone resulted in long-term stability, sustained release, and increased anesthetic efficacy

in vivo (de Melo et al., 2011; Moraes et al., 2011; de Melo et al., 2012; Ramos Campos et al.,

2013; Silva de Melo et al., 2014; Melo et al., 2018).

Polymeric nanocapsules consist of an oily core and an ultrathin polymeric wall,

providing particles smaller than 1 μm (Fessi et al., 1989). Poly-ε-caprolactone (PCL) is among

the biodegradable polymers most widely employed for the preparation of nanocapsules, due to

its desirable properties for incorporation in semisolid drug delivery systems, such as

hydrophobicity and biocompatibility (Woodruff & Hutmacher, 2010).

Hydrogels are three-dimensional polymer networks cross-linked by physical or

chemical agents, which can absorb large amounts of biological fluids. Their useful properties

include biocompatibility, flexibility, and suitable rheological behavior, enabling their use in a

wide range of applications including wound healing and topical delivery of active molecules at

Page 20: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

20

the skin and mucosa (Alves et al., 2011; Singh & Lee, 2014). Carbopol® is an acrylic acid

copolymer employed as a matrix in several semisolid formulations, with interesting properties

such as mucoadhesion, which promotes adherence to the mucus layer, leading to prolonged

residence times of incorporated drugs (Netsomboon & Bernkop-Schnürch, 2016; Singh & Lee,

2014). Carbopol® formulations containing benzocaine (Franz-Montan et al., 2010), lidocaine

(Franz-Montan et al., 2015), or ropivacaine (Franz-Montan et al., 2007, 2010, 2012)

encapsulated in liposomes were shown to be effective in promoting topical anesthesia in the

human oral mucosa.

The objective of the present study was to evaluate the performance of a hybrid system

based on poly(ε-caprolactone) nanocapsules in Carbopol® hydrogel, which was developed for

the topical oral delivery of 5% lidocaine-prilocaine.

2. Results and Discussion

2.1. Characterization of poly(ε-caprolactone) nanocapsules

The encapsulation of different LAs using other polymeric nanocapsules has been

described previously (Campos et al., 2013; Melo et al., 2014; Moraes et al., 2011; You et al.,

2017), with the aim of prolonging analgesia and minimizing side effects (de Paula et al., 2012).

Particle size and polydispersity index (PDI) are critical parameters of nanostructured systems

that influence drug encapsulation efficiency, formulation stability, and release behavior

(Mohanraj & Chen, 2007). The surface charge of nanoparticles (zeta potential, ZP) can be used

as a predictive index of particle stability, as well as to elucidate the location of the active

molecules in the nanocapsule (Berbel Manaia et al., 2017). The nanoparticle concentration is

another parameter that affects the stability and biological activity of drug delivery systems

(Ribeiro et al., 2018).

The results obtained for particle size, PDI, ZP, nanoparticle concentration, and pH,

according to time, for nanocapsules with and without LAs, are provided in Figure S1

(Supplementary Material). For the freshly prepared samples (Day 0), the analyzed parameters

of the suspensions containing LDC+PLC were similar to those reported elsewhere for poly(ε-

caprolactone) nanocapsules containing LAs (Melo et al., 2018).

The nanocarrier showed high encapsulation capacities for both LDC (83±3%) and PLC

(72±3%), indicating its superior performance, compared to polymeric nanospheres that usually

present lower encapsulation efficiencies due to the absence of the oily inner core (Jones &

Grainger, 2009). The higher EE% for LDC than for PLC could be explained by the higher

octanol/water partition coefficient of LDC (P = 304), compared to PLC (P = 129), for the

Page 21: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

21

molecules in their neutral forms (Strichartz et al., 1990). Hence, PLC would be more likely to

interact with the aqueous phase and the polymer matrix of the nanocapsules, while LDC would

exhibit better interaction with the oily nucleus (de Melo et al., 2011), due to its greater

hydrophobicity.

The stability of the formulation during 180 days of storage at room temperature (25 C)

is also shown in Figure S1. Changes in the mean diameter of the nanocapsules were detected

after 90 days of storage (p < 0.05). The PDI values confirmed that the monodisperse size

distribution was maintained until the end of the experiment, as required for this type of

formulation.

Another factor indicating the stability of the system was the high ZP modulus, reflecting

repulsion among the nanocapsules in suspension (Mohanraj & Chen, 2006). The nanoparticles

containing LDC and PLC presented satisfactory ZP values throughout the storage period, with

continued inter-particle repulsion that could be attributed to the presence of PVA, which could

form a barrier around the nanocapsules, resulting in steric stabilization (Ramos Campos et al.,

2013).

Nanoparticle tracking analysis (NTA) is a technique for monitoring the physicochemical

stability of nanoparticulate systems that can provide unique information concerning the particle

concentration (Ribeiro et al., 2018). In the present case, there were no significant changes in

nanoparticle concentration (p > 0.05) throughout the study period, corroborating the other

stability parameters determined by DLS, hence confirming the stability of the system.

The pH decreased over time (p < 0.01), as reported previously (Ramos Campos et al.,

2013), indicating degradation of the polymers and formation of acidic products by hydrolysis

of the polymer chains, suggesting a possible lack of stability and breakdown of the

nanocapsules. However, considering the observed stability of the particle size distribution, the

polymer hydrolysis did not affect the structural properties of the nanoparticles. The morphology

of the nanocapsules was confirmed by transmission electron microscopy (Figure 1).

Page 22: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

22

Figure 1. Transmission electron micrographs of PCL with (a, b) and without (c, d) LDC+PLC,

at two different magnifications (10,000x and 60,000x).

The micrographs revealed some differences between the nanocapsules with and without

LDC+PLC. The spherical core-shell structure for the nanocapsules with the LAs

(PCL/LDC+PLC) (Figures 1a and 1b) suggested that the LDC and PLC bases were incorporated

into the hydrophobic core, as previously reported for lidocaine-loaded poly(ε-caprolactone)-

poly(ethylene glycol) nanoparticles (Yin et al., 2009).

The ATR-FTIR technique was used to investigate the interactions among the

nanocapsules and the LAs. The FTIR-ATR spectra (Figure 2a) of the poly(ε-caprolactone)

nanocapsules (denoted NP) and the LAs showed typical bands of the molecules (Gehrcke et al.,

2018; Ribeiro et al., 2016). In the spectrum of the NP formulation, a band at 1580-1450 cm-1

could be attributed to C=C vibrations, while a band at 1735-1650 cm-1 corresponded to C=O

and a band at 3000-2800 cm-1 was related to C-H of saturated carbons (Campos et al., 2013; de

Melo et al., 2014). The spectroscopic profile of the polymeric nanoparticles remained similar

after encapsulation of PLC+LDC. The bands in the region 2950-3305 cm-1 for the pure LAs

completely disappeared in the spectrum of the NP/LDC+PLC formulation, indicating

dissolution of the compounds in the nanocapsule core and the maintenance of particle integrity.

Page 23: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

23

4000 3500 3000 2500 2000 1500 1000 500

LDC

3248 3019

2965 2925

2800

16571499

15

95

1374

1209

10

67

98

8

760

PLC3303

3233

1646

14

91 748

1610

1524

1138

941

30

35

2965

2878

2830

1374

1280

731847

1113

1253

1378

1469

17512870

29443442

NP

1171

756

1113

11621245

1303

13

781461

15

14

15

931693

17432870

2944

Tra

nsm

ita

nce

(a

.u.)

NP/LDC-PLC

3467

0 50 100 150 200 250

69 °C

LDC

43 °C

PLC

NP-LDC/PLC

44 °C

184 °C

H

ea

t F

low

(W

/g)

Temperature (°C)

NP

53 °C

191 °C

EXO up

Figure 2. FTIR-ATR spectra (a) and DSC analysis (b) of the poly(ε-caprolactone) nanocapsules

(NP and NP/LDC-PLC), lidocaine (LDC), and prilocaine (PLC).

DSC is a thermoanalytical technique that can provide information concerning

polymorphic changes in materials (Knopp et al., 2016). The calorimetry results (Figure 2b)

b

a

Page 24: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

24

revealed the endothermic peaks corresponding to the melting points of the substances at 43 C

(PLC), 69 C (LDC), and 53 C (PCL) (Ribeiro et al., 2016; Youm et al., 2012). The PCL/LDC-

PLC formulation showed a lower melting point (44 C), compared to PCL, confirming the

interaction among the components.

Figure S2 (Supplementary Material) shows the in vitro release of LDC and PLC from

the PCL/LDC+PLC formulation, compared to the LAs free in solution. A burst release effect

was observed for the LAs in solution, with 50% release of the drugs within the first 30 min.

Complete release of the free LAs occurred within 4 h, while the release of the encapsulated

drugs did not reach 100%, even after 18 h. The faster release of PLC was in agreement with its

lower encapsulation efficiency, compared to LDC.

As shown in Table S1 (Supplementary Material), the mathematical model that provided

the best description of LDC and PLC release from the nanocapsules was the semi-empirical

Korsmeyer-Peppas model, which is commonly applied to nanostructured systems. This

mathematical model has been used previously to describe the release of LDC and PLC loaded

in polymeric nanospheres (Ramos-Campos et al., 2013). Based on the values of the release

exponent (n), the release of the LAs from the nanocapsules could be characterized as being due

to non-Fickian anomalous transport (0.45 < n < 0.89) (Peppas & Sahlin, 1989). Hence, there

was more than one diffusion mechanism involved, with rapid diffusion of non-encapsulated

LAs and slow diffusion of encapsulated LAs, with the latter requiring the compounds to cross

the physical polymer barrier in order to be released (Ferrero et al., 2010).

2.2. Characterization of the hydrogels

2.2.1. Rheological studies

Rheological analysis can be used to assist in elucidating the potential of innovative

pharmaceutical formulations (Lee et al., 2009). Figure 3 shows the rheological behaviors (flow

curve profiles) of Carbopol® hydrogels containing LDC and PLC (5%), free or associated with

the poly(ε-caprolactone) nanocapsules (CLP and CNLP, respectively), in comparison to

EMLA®.

Page 25: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

25

Figure 3. Rheological profiles showing the shear stress as a function of shear rate for the

Carbopol® hydrogels containing LDC and PLC (5%), free or associated with the poly(ε-

caprolactone) nanocapsules (CLP and CNLP, respectively), in comparison with the commercial

formulation composed of the eutectic mixture of LDC and PLC (EMLA®). The inset shows the

hysteresis areas. For each formulation, the upper and lower curves correspond to ascending and

descending measurements, respectively. The SD values were below 5%.

For all formulations, the rheograms reflected non-Newtonian pseudoplastic flows. The

viscosity depends on the shear rate (Lippacher et al., 2004). In other words, when the shear rate

increases with increasing shear stress (Lee et al., 2009), typical properties of semi-solid

formulations are observed (Ourique et al., 2011).

Thixotropy is a rheological indicator of viscosity. This parameter can be calculated by

measuring the area contained in the hysteresis loop of the rheological curves, as shown in Figure

3 (Lee et al., 2009). A larger hysteresis area was found for the non-encapsulated LDC-PLC

Carbopol® hydrogel, suggesting delayed recovery of its structure (Gaspar & Campos, 2003).

An intermediate hysteresis area value is desirable in order to improve the shelf-life and provide

good spreadability of semisolid formulations, as observed for the CNLP hydrogel and EMLA®.

Knowledge of thixotropic properties can help in increasing the retention times of topically

applied formulations, leading to better therapeutic efficacy (Lee et al., 2009).

Page 26: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

26

2.2.2. Mechanical and mucoadhesive properties

The mechanical properties obtained by texture profile analysis (TPA) for all the

hydrogels are shown in Table 1.

Table 1. Mean (±SD) values obtained for the mechanical properties and mucoadhesive

strengths of Carbopol® hydrogels containing LDC and PLC (5%), free or encapsulated in

poly(ε-caprolactone) nanocapsules (CLP and CNLP, respectively), in comparison with

EMLA®.

Mechanical properties Mucoadhesive strength

Formulation

Hard.

(N)

Comp.

(N.mm)

Cohes. Adhes. (N.mm) Detachment force (N)

CNLP 0.383±0.028a 1.390±0.168a 0.694±0.016a 0.165±0.021a 0.024±0.005a,b

CLP 0.186±0.011b 0.727±0.040b 0.747±0.027b 0.123±0.006b 0.022± 0.004a

EMLA® 0.133±0.007c 0.500±0.030c 0.852±0.016c 0.173±0.006a 0.032±0.004b Hard.: hardness; Comp.: compressibility; Cohes.: cohesiveness; Adhes.: adhesiveness. Different letters indicate

significant differences among the hydrogels for each parameter evaluated (ANOVA/Tukey-Kramer test, p < 0.05).

Each parameter was analyzed separately (n = 5).

An ideal semisolid formulation for use on the oral mucosa should have properties that

enable easy application and spreading, determined by hardness and compressibility,

respectively. Its permanence at the desired site without disintegrating can be predicted by higher

values of adhesiveness and cohesiveness (Calixto et al., 2018; Cubayachi et al., 2015).

The TPA results indicated that the CNLP hydrogel possessed good mechanical

properties (Eiras et al., 2017; Jones et al., 2002). The presence of the poly(ε-caprolactone)

nanocapsules increased hardness (p < 0.05) and compressibility (p < 0.05), with the values

obtained being within the range reported to be ideal for topical oral application (Jones et al.,

2000). The cohesiveness and adhesiveness values were also satisfactory and were comparable

to those reported for other semisolid formulations designed for topical application to the oral

mucosa (Cubayachi et al., 2015; Karavana et al., 2012).

The mucoadhesive strength, evaluated in terms of the detachment force, represents the

force required to detach the hydrogel from the mucosal surface. The detachment force obtained

for CNLP was similar to that for the commercial formulation (p > 0.05) and higher than for

CLP (p < 0.05) (Table 1). These results indicated that the presence of the nanocapsules did not

affect the mucoadhesive properties of Carbopol®, in agreement with the findings of Frank et al.

(2017), who also observed that the presence of poly(ε-caprolactone) nanocapsules did not alter

the mucoadhesive capacities of carboxymethylcellulose and chitosan gels.

Page 27: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

27

2.2.3. Accelerated stability study

Accelerated stability testing was used to observe possible physicochemical changes

(weight loss, LA dosage, and pH) that could occur during storage of the hydrogels as a result

of degradation of components of the formulation. The study was performed at constant

controlled temperature (40 ± 2 oC) and humidity (75 ± 5% RH), for up to 6 months, according

to the ICH procedure (ICH Expert Working Group, 2003). As can be seen in Table S2

(Supplementary Material), storage did not affect the physicochemical properties of the CNLP

formulation (p > 0.05), indicative of good stability.

2.2.4. In vitro release kinetics and mathematical modeling

The profiles of LDC and PLC release from the hydrogels are shown in Figures S3(a)

and S3(b), respectively. The release kinetics data, as evaluated by the determination coefficient

values of the applied mathematical models, are shown in Table S3 (Supplementary Material).

The Weibull mathematical model provided the best description of the release

mechanism (R2 ≥ 0.946). This model consists of an empirical equation that is often used to

describe the process of drug delivery using spherical media (Zhou et al., 2014). Based on the

“b” value, the release of LDC in the absence of nanocapsules (CLP, b = 0.95) was according to

a non-Fickian process (0.75 < b < 1) involving a combination of more than one release

mechanism. This indicated that the local anesthetic was associated with the Carbopol® structure

and depended on relaxation of the structure for its release and subsequent diffusion to the

external environment. In the case of PLC (CLP, b = 0.13), the compound showed a disordered

distribution in the spaces between the three-dimensional structures of the gel (b < 0.35). In the

presence of the nanocapsules (CNLP), the release of LDC (b = 0.72) changed to Fickian release

(0.69 < b < 0.75), indicating that it occurred by diffusion between the gel layers. However, in

this formulation, the release of PLC (b = 0.93) changed to non-Fickian transport (0.75 < b < 1),

indicating the existence of two release mechanisms, with swelling and relaxation of the

nanocapsule polymers, followed by subsequent diffusion from the hydrogel to the external

medium (Papadopoulou et al., 2006).

2.2.5. In vitro permeation studies

The parameter values for permeation of LDC and PLC from the different hydrogel

formulations across oral epithelia (palatal = keratinized model; buccal = non-keratinized model)

are shown in Table 2.

Page 28: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

28

Table 2. Mean (±SD) values of the steady-state flux (Jss) and lag time for permeation of

lidocaine (LDC) and prilocaine (PLC), free or associated with poly(ε-caprolactone)

nanocapsules (CLP and CNLP, respectively), from Carbopol® hydrogels across porcine buccal

and palatal mucosal epithelium, in comparison to EMLA®.

Epithelium

Local

anesthetic Formulation Jss (µg.cm−2.h−1) Lag time (h) R2

Buccal mucosa

LDC

CNLP 160.88±31.20a 0.57±0.11a 0.993±0.005

CLP 248.03±14.60b 0.34±0.20a.b 0.997±0.002

EMLA® 280.32±44.43b 0.09±0.04b 0.997±0.002

PLC

CNLP 172.24±20.99c 0.50±0.15 0.993±0.008

CLP 168.14±20.40c 0.28±0.09 0.997±0.003

EMLA® 283.27±43.46d 0.27±0.14 0.995±0.002

Palatal mucosa

LDC

CNLP 119.63±8.83a 0.00±0.00 0.991±0.003

CLP 207.18±25.79b 0.21±0.21a 0.996±0.003

EMLA® 316.82±16.93c 0.00±0.00 0.994±0.003

PLC

CNLP 92.10±8.75d 0.00±0.00 0.994±0.002

CLP 118.06±13.05e 0.17±0.05 # 0.995±0.006

EMLA® 338.33±16.3f 0.00±0.00 0.995±0.004

PLC: prilocaine; LDC: lidocaine; Jss: steady state flux; R2: coefficient of determination of the linear regression

model. Different letters indicate a significant difference (p < 0.05, ANOVA/Tukey test). Each permeation

parameter was analyzed separately for each local anesthetic. Mean ± SD (n = 6).

Due to its similarity with human tissues in terms of structure, lipids, and permeability,

porcine buccal mucosa is frequently used for in vitro drug permeation studies (Diaz-Del

Consuelo et al., 2005). The palatal mucosa was selected because of its keratinized layer, which

provides a more effective permeation barrier and simulates the application site used in clinical

studies (Franz-Montan et al., 2016).

The fluxes of the two LAs were significantly lower (p < 0.05) for CNLP than for the

commercial EMLA® formulation. This could be explained by the high degree of encapsulation

of the drugs in the PCL nanocapsules (Table 2), which decreased the supply of the free drugs

crossing the barrier. In addition, the permeation fluxes were influenced by the nature and

composition of the formulations tested, which altered the solubility and partitioning of the

drugs, compared to the commercial formulation, which is a cream (de Araujo et al., 2010; Franz-

Montan et al., 2015; Moghadam et al., 2013).

Considering the fluxes of the LAs across the buccal mucosa, LDC showed a significant

effect of encapsulation, since both CLP and EMLA® presented higher LDC fluxes (p > 0.05),

compared to CNLP, suggesting that the high encapsulation degree of LDC (83%) reduced its

rate of transfer across the barrier, as reported elsewhere (Maestrelli et al., 2009; Puglia et al.,

2011). On the other hand, the PLC flux was only influenced by the composition of the

Page 29: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

29

formulations, as evidenced by the lower fluxes observed for both CNLP and CLP (p < 0.05),

compared to EMLA®.

For the palatal mucosa, both LAs presented fluxes in the decreasing order EMLA® >

CLP > CNLP (p < 0.05) (Table 2), suggesting that for the keratinized barrier model, the

composition and nature of the formulation significantly influenced transport of the drugs

through the barrier. The higher rate of permeation of EMLA® across the keratinized barrier

could be explained by the presence of polyoxyl hydrogenated castor oil surfactant in the

formulation (EMLA® cream, 5 mg/g, AstraZeneca), which was found by Moghadam et al.

(2013) to disorganize the lipid barrier of the stratum corneum, hence facilitating drug transfer.

The lag times obtained for the LAs with the buccal mucosa (Table 2) showed no

difference between LDC in CNLP and in CLP (p > 0.05). However, both hydrogels showed

slower transfer of LDC, compared to EMLA® (p < 0.05). On the other hand, the transfer of PLC

showed no influence of formulation or encapsulation (p > 0.05). Considering the palatal mucosa

(Table 2), both LDC and PLC presented a longer lag time when present in the CLP formulation

(p < 0.01), while their permeation was immediate when present in the CNLP and EMLA®

formulations. This feature could result in faster onset of topical anesthesia in keratinized

mucosa. In previous work, permeation parameters determined in vitro were correlated to the

efficacy (in humans) of topical anesthetics present in a liposomal Carbopol® system (Franz-

Montan et al., 2013; 2015).

2.3. In vitro cytotoxicity assays

Biological studies are essential for provision of detailed information about the contact

of drugs with the oral mucosa surface. In viability tests, FGH and HaCat cells are considered

important cellular models for the testing of potential irritants (Benavides et al., 2004). The

results of the cell viability tests are shown in Figures 4(a) and 4(b).

Page 30: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

30

G e l c o n c e n t r a t io n ( m g /m L )

Ce

ll v

iab

ilit

y (

%)

0 2 0 4 0 6 0 8 0 1 0 0

0

2 0

4 0

6 0

8 0

1 0 0

E M L A

C a r b o p o l

C a rb o p o l N a n o

C L P

C N L P

G e l c o n c e n t r a t io n ( m g /m L )

Ce

ll v

iab

ilit

y (

%)

0 2 0 4 0 6 0 8 0 1 0 0

0

2 0

4 0

6 0

8 0

1 0 0 E M L A

C a r b o p o l

C a rb o p o l N a n o

C L P

C N L P

Figure 4. Cell viability determined using the MTT test after exposure of (a) FGH and (b) HaCat

cells to the hydrogel formulations (n = 9).

The presence of the PCL nanocapsules (CNLP) did not alter the cellular toxicity,

compared to the toxicity found for the free drugs (CLP). Considering the FGH cells, 2 h of

exposure resulted in no statistically significant effects on cell viability for any of the hydrogel

formulations. These results were in agreement with previous work concerning evaluation of the

side effects of local anesthetic formulations (Blumenthal et al., 2006).

Protective effects (higher than 60%) were observed for the hydrogel formulations based

on PCL/LDC+PLC, for both HaCat and FGH cells, up to the maximum concentrations

evaluated. Similar behavior has been reported for PCL nanocapsule formulations containing

lidocaine, compared to free lidocaine (2%) (Ramos Campos et al., 2013). This is a highly

desirable feature of nanostructured formulations used as drug delivery systems. Finally,

PCL/LDC+PLC or LDC+PLC incorporated into the Carbopol® hydrogel presented lower

cytotoxicity than the commercially available formulation (EMLA®), representing an additional

advantage of this new drug delivery system intended for topical application to the oral mucosa.

b

a

Page 31: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

31

2.4. Evaluation of in vivo anesthetic efficacy

The tail-flick test is an in vivo model commonly reported in the literature as being

effective for evaluation of the antinociceptive activity of topical formulations (de Araujo et al.,

2010), so it was therefore selected here for determination of the effectiveness of the hydrogels.

The anesthetic efficacy results are shown in Figure 5.

Figure 5. Analgesia time courses, durations, areas under the efficacy curves (AUC5-90), and

effect ratios for the tail-flick tests employing the different hydrogels. The data are shown as a

percentage of the maximum possible effect (%MPE). ** p < 0.01; a CNLP versus EMLA®;

Kruskal-Wallis/Dunn test. Median (minimum-maximum) (n = 6). The effect ratios were

calculated by dividing the AUC for CNLP or CLP by the AUC for EMLA®.

The CNLP formulation showed significant improvements in the duration of anesthesia

(p < 0.01) and the maximum possible effect (p < 0.01), compared to the commercial formulation

(Figure 6). Considering the AUC5-90, CNLP presented a 2.43-fold higher anesthetic efficacy,

compared to the commercial formulation. Sharma et al. (2017) found that the eutectic LDC-

PLC (5%) mixture associated with a thermoresponsive mixed micellar nanogel, used for topical

anesthesia, presented a 1.25-fold greater effect, relative to EMLA®, supporting the present

findings. Puglia et al. (2011) reported lower permeation flux and higher anesthetic activity for

0

20

40

60

80

100

120

0 20 40 60 80 100

(%M

PE

)

Time (min)

EMLA

CLP

CNLP

Formulations Analgesia

Duration

(%EMP) Effect Fold

(min) AUC5-90 EMLA CLP

CNLP 60 (60-75) a** 4266.5 (3545.8-5875.0)a** 2.43 1.18

CLP 45 (30-75) 3600.9 (1614.8-5375.0) 2.05 1

EMLA 30 (15-45) 1758.1 (1562.5-2068.5) 1 0.49

Page 32: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

32

an LDC formulation associated with nanostructured lipid carriers, compared to the non-

encapsulated drug.

Considering that the non-encapsulated formulations showed faster initial action, as

observed for the maximum possible effect at the first evaluation time (Figure 7), the improved

anesthetic efficacy of the CNLP hydrogel was probably due to reduced loss of the LAs to the

systemic circulation. Consequently, the encapsulation of the drugs acted to increase the

residence time of effective amounts of the compounds at the free nerve endings.

Conclusions

Lidocaine (2.5%) and prilocaine (2.5%) were successfully loaded into poly(ε-

caprolactone) nanocapsules, resulting in a hydrogel with desirable characteristics including

stability and a satisfactory permeability profile. The new formulation showed improved

mechanical, rheological, and mucoadhesive properties, together with lower cytotoxicity and

higher in vivo anesthetic efficacy, compared to the commercial product. The formulation

developed in this work has the potential to provide effective and longer-lasting superficial

anesthesia at the oral mucosa during medical and dental procedures. These results open

perspectives for future clinical trials.

Page 33: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

33

Materials and Methods

2.5. Chemical agents

Local anesthetics in the base form (LDC and PLC) and capric/caprylic triglyceride

(Myritol® 318) were kindly donated by Cristália (Itapira, SP, Brazil) and Chemspecs (São

Paulo, SP, Brazil), respectively. Carbopol® Ultrez 10 was purchased from Lubrizol (San Diego,

CA, USA); Nipagin from Chemco (Hortolândia, SP, Brazil); acetone and chloroform from

Synth (Labsynth, Diadema, SP, Brazil); poly(vinyl alcohol) (PVA, MW 30,000-70,000),

polycaprolactone (PCL, MW 70,000-90,000), triethanolamine, glycerine, phosphoric acid,

ammonium hydroxide, uranyl acetate, polysorbate 80 (Tween 80), and MTT Assays from

Sigma-Aldrich (Merck KGaA, Darmstadt, Germany); acetonitrile from J.T. Baker

(Phillipsburg, NJ, USA); anhydrous dibasic sodium phosphate, anhydrous monobasic sodium

phosphate, anhydrous monobasic potassium phosphate, sodium chloride, and potassium

chloride from Dinâmica (Dinâmica Química Contemporânea, Diadema, SP, Brazil). Ultrapure

water from a Milli-Q system (Millipore, Bedford, MA, USA) was used to prepare all solutions.

The commercially available topical anesthetic product composed of the eutectic mixture of

LDC and PLC (5%) (EMLA® cream, AstraZeneca, Brazil) was used as the positive control in

some experiments, as detailed below.

2.6. Analytical procedures

Simultaneous quantification of LDC and PLC was performed using an HPLC system

(Thermo Electron Corporation, Waltham, MA, USA) equipped with an automatic sampler

(Surveyor Autosampler Plus Lite, Thermo Electron Corporation) and a Surveyor UV-VIS Plus

detector (Thermo Electron Corporation). ChromeQuest 5.0 software (Thermo Fisher Scientific,

Waltham, MA, USA) was used for data collection. The local anesthetics were separated on a

Phenomenex Gemini C18 reversed-phase column (5 µm, 150 x 4.60 mm). The mobile phase

consisted of a mixture of acetonitrile:buffer (25 mM NH4OH, pH 7.0, adjusted with H3PO4) at

a ratio of 40:60 (v:v), pumped at 1.2 mL/min. The injection volume was 200 µL. Detection of

the LAs was performed at a wavelength of 220 nm (Franz-Montan et al., 2015).

2.7. Preparation of poly(ε-caprolactone) (PCL) nanocapsules containing 2.5%

lidocaine (LDC) and 2.5% prilocaine (PLC)

Polymeric nanocapsules composed of poly(ε-caprolactone) (PCL) and containing the

eutectic mixture of LDC (2.5%) and PLC (2.5%) (PCL/LDC+PLC) were prepared using an oil-

in-water emulsion/solvent evaporation method (Melo et al., 2018). Briefly, LDC (250 mg), PLC

Page 34: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

34

(250 mg), and capric/caprylic triglycerides (200 mg) were dissolved in acetone (10 mL) and

mixed with chloroform (20 mL) containing the polymer (400 mg), followed by ultrasonication

(1 min, 90 W). The aqueous phase (50 mL) containing PVA (175 mg) was then added to the

pre-emulsion obtained and the mixture was ultrasonicated (8 min, 90 W). The resulting

emulsion was rotary-evaporated to 5 mL, in order to remove the solvents. The resultant

PCL/LDC+PLC samples were stored in a dryer at 4 °C before use.

2.8. Preparation of porcine oral mucosa

Porcine oral mucosa was prepared according to the methodology described previously

(Franz-Montan et al., 2016). Pig maxillae (from 5-months-old Landrace pigs weighing around

75-80 kg) were obtained in a local slaughterhouse, immediately after slaughter, stored in ice-

cold isotonic phosphate buffer (pH 7.4), and transported to the laboratory within 1 h.

For the in vitro permeation studies, samples of palatal (keratinized mucosa model) and

buccal (from the cheek region, non-keratinized mucosa model) mucosa were separated from

the underlying tissue using a scalpel and were washed with saline. Intact mucosa was immersed

in deionized water at 60 °C for 2 min. The epithelium was carefully separated from the

connective tissue and was used immediately (Franz-Montan et al., 2016).

In the mucoadhesive strength experiment, porcine buccal mucosa from the cheek was

used. The cheek was removed with a scalpel and washed in distilled water. The underlying

muscle layer was smoothed and retained, in order to support the mucosa. The tissues were kept

in isotonic phosphate buffer (pH 7.4) and were rapidly used in the experiments (Cubayachi et

al., 2015).

All the experiments involving porcine oral mucosa were performed with mucosa from

at least three different animals.

2.9. Characterization of poly(ε-caprolactone) nanocapsules

2.9.1. Determination of particle size, polydispersity, and surface charge

The nanoparticle average diameter (nm) and polydispersity index (PDI), determined by

dynamic light scattering (DLS), together with the surface charge (zeta potential, ZP), were

measured using a Zetasizer ZS-90 particle analyzer (Malvern Instruments, Malvern, UK). The

PCL suspensions (with and without LDC+PLC) were analyzed in triplicate at 25 °C, on three

different days, using a scattering angle of 90° (Melo et al., 2018).

2.9.2. Nanoparticle concentration

Page 35: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

35

The nanoparticle concentration was determined by nanoparticle tracking analysis

(NTA), using an LM20 instrument (NanoSight, Amesbury, UK) equipped with a 532 nm laser.

The nanoparticle concentration (particles/mL) was obtained in real time, at room temperature,

based on light scattering and the individual Brownian motion tracks of the nanoparticles

(Ribeiro et al., 2018). Using a sterile syringe, the formulation was injected into the sample

chamber until the liquid filled the tip of the syringe. The measurements (n = 3) were performed

over a period of 6 months.

2.9.3. Physicochemical stability of nanoparticles in suspension

The stabilities of the formulations containing PLC and LDC were evaluated by

measuring the nanoparticle size, PDI, ZP, concentration, and pH after 7, 15, 30, 60, 90, 120,

150, and 180 days of storage at room temperature (25 C) (Mora-Huertas et al., 2010).

2.9.4. Structural analyses

2.9.4.1. Attenuated total reflectance-Fourier transform infrared (FTIR)

analysis

Infrared analyses (ATR-FTIR) were performed of the PCL nanocapsules with and

without LDC+PLC. LDC and PLC were also analyzed in their free forms. The spectra were

obtained using FTIR spectrophotometers (Bruker IFS 66 v/S or Perkin Elmer Spectrum 65

instruments) fitted with ATR cells and operated in reflectance mode, in the range 4500-500 cm-

1, with steps of 2 cm-1.

2.9.4.2. Differential scanning calorimetry (DSC) analysis

The same formulations were also submitted to DSC measurements performed using a

TA Q20 calorimeter equipped with a cooling system. After calibrating the equipment with

indium, 5 mg portions of the samples were placed in aluminum pans and the thermal profiles

were obtained in the temperature range from 0 to 250 °C, at a heating rate of 10 °C/min, under

a flow of nitrogen.

2.9.5. Determination of nanoparticle morphology

The morphologies of the PCL nanoparticles with and without LDC+PLC were evaluated

by transmission electron microscopy (TEM), using an EM-900 instrument (Carl Zeiss, Jena,

Germany) operated at 80 kV. Briefly, the samples were diluted, deposited onto copper grids

Page 36: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

36

coated with carbon film, contrasted using uranyl acetate (2%), dried at room temperature, and

analyzed.

2.9.6. Encapsulation efficiency (EE%)

The encapsulation efficiencies of LDC and PLC in PCL were determined by the method

combining ultrafiltration and centrifugation (Melo et al., 2018). The EE% values were

determined from the difference between the total and free LDC and PLC concentrations,

measured in the suspension and ultrafiltrate, respectively. The PCL/LDC+PLC samples were

centrifuged for 15 min, at 28000 g, in regenerated cellulose Microcon ultrafiltration units with

a molecular exclusion pore size of 30 kDa (Millipore, Billerica, Massachusetts), followed by

quantification of the compounds using HPLC. The total amounts of LDC+PLC were

determined following dilution of the suspensions with acetonitrile to solubilize the polymers

and completely release the LAs.

2.9.7. In vitro release kinetics

The profiles of in vitro release of PLC and LDC from the PCL nanoparticles were

investigated using a two-compartment system consisting of donor (1 mL) and acceptor (80 mL)

compartments, separated by a cellulose membrane with a molecular exclusion pore size of 10

kDa (Melo et al., 2018). The system was maintained under sink conditions, with constant

magnetic stirring (300 rpm) at room temperature (25 C). Aliquots of 300 μL were periodically

withdrawn from the acceptor compartment, over a total period of 1400 min. The samples were

analyzed by HPLC. The experiment was performed in triplicate. The data were treated by the

application of different mathematical models in order to select the best model (defined by the

highest R2 value) to describe the LA release mechanism. The software used was KinetDS 3.0

(Jagiellonian University Medical College, Kraków, Poland).

2.10. Hydrogel preparation

The Carbopol® (carboxyvinyl derivative) hydrogel base (C) was prepared according to

the technique described previously (Silva et al., 2008), using the following components:

Carbopol® (2%, gelling agent); Propylene glycol (5%, solvent and wetting); Methylparaben

(0.2%, preservative); Glycerin (8%, wetting and emollient agent); Deionized water (solvent);

Triethanolamine (pH 7,0, alkalinizing agent). For preparation of the Carbopol® hydrogel with

or without 2.5% LDC and 2.5% PLC associated with the poly(ε-caprolactone) nanocapsules,

the resulting hydrogel (placebo) was immediately mixed with nanocapsule suspensions with

Page 37: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

37

(CNLP) or without (CN) the local anesthetics (50:50, v/v) at the desired final drug

concentration (5% w/w LDC+PLC). Carbopol® hydrogel containing free 2.5% LDC and 2.5%

PLC (CLP) was prepared by dissolving appropriate amounts of the local anesthetics (5% w/w

LDC+PLC) in the propylene glycol during hydrogel preparation.

2.11. Characterization of the hydrogel formulations

2.11.1. Rheological measurements

Rheological measurements were performed using a Haake RheoStress 1 rheometer

(Thermo-Haake, Germany) with plate-plate geometry (plate diameter of 20 mm). The hydrogel

formulations were submitted to continuous variation of shear rate from 0 to 300 s-1, and the

resulting shear stress was measured. The tests were performed in triplicate (n = 3) at a constant

temperature (25 ± 1 oC) maintained by a thermostatically-controlled water bath. The rheological

behaviors of the hydrogel formulations were evaluated from curves obtained by plotting the

shear stress (Pa) as a function of shear rate (s-1) (Melo et al., 2018).

2.11.2. Mechanical properties of the hydrogels

The mechanical properties (hardness, compressibility, cohesiveness, and adhesiveness)

of the hydrogel formulations were determined using a texture analyzer (Model TA-XT Plus,

Stable Micro Systems) operated in texture profile analysis (TPA) mode. A 10 mL beaker was

filled with approximately 10 g of each formulation (to a fixed height) and the samples were left

in a water bath at 37 °C for 24 h for removal of air bubbles. The analytical probe (10 mm

diameter) was compressed twice into each sample, to a depth of 5 mm, at a rate of 2.0 mm.s-1,

with a delay period of 15 s between the end of the first compression and the beginning of the

second compression.

2.11.3. Accelerated stability study

The hydrogels were placed in a stability chamber with controlled temperature and

humidity (40 °C and 75% relative humidity). The parameters evaluated were the anesthetic

dosage, pH, and weight loss (ICH Expert Working Group, 2003).

Determination of the dosages of lidocaine and prilocaine in the formulations

The dosages of the LAs in the hydrogels were measured by diluting appropriate amounts

of the semisolid formulations, followed by HPLC analyses, as described previously.

pH analysis

Page 38: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

38

The pH values of the hydrogel formulations were determined by potentiometric

measurements using an Analyzer Model 300M pH meter equipped with an electrode for

semisolids.

Weight loss test

The percentage weight loss throughout the study was calculated using the following

equation:

% weight loss = [(MWI-MWS)×3]/MWI x 100

where, MWI is the mean initial weight, MWS is the mean weight at subsequent times (3 or 6

months), and 3 is the correction factor to 75% RH (ICH Expert Working Group, 2003).

2.11.4. In vitro release kinetics of the hydrogels and mathematical modeling

The release of the LAs from the hydrogels (CLP and CNLP) was evaluated using a

Franz-type vertical diffusion system (Manual Transdermal System, Hanson Research

Corporation, Chatsworth, CA, USA) with permeation area of 1.77 cm2 and a 7 mL volume

acceptor. The hydrogels (CNLP and CLP) were applied under infinite dose conditions (using

300 mg) over a dialysis membrane with a molecular exclusion pore size of 1,000 Da. The

system was maintained at 37 °C, under magnetic stirring (300 rpm) (Melo et al., 2018). Aliquots

of 300 µL were withdrawn from the acceptor compartment for HPLC analysis, with the volume

being maintained constant by addition of the same volume of fresh buffer solution. Samples

were collected at predetermined intervals during a period of 24 h, in triplicate.

KinetDS 3.0 software was used to analyze the release curves and the best kinetic model

was selected based on the coefficient of determination (R2).

2.11.5. In vitro permeation studies

In vitro permeation assays were performed with porcine buccal and palatal mucosal

epithelium, using the same Franz-type vertical diffusion system described above (Franz-

Montan et al., 2016) .

The epithelium was positioned on a 0.45 μm cellulose filter with the connective side of

the tissue facing the filter, due to its fragility, hence reducing the release of impurities into the

acceptor compartment, without altering the permeation of the LAs (Franz-Montan et al., 2016).

The hydrogels (CNLP and CLP), epithelium, and membrane filter were clamped

between the donor and acceptor compartments. The acceptor compartment was filled with

PBS:alcohol (70:30, v/v) that had been filtered and degassed. The acceptor medium was

Page 39: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

39

selected according to the solubility of the LAs, in order to maintain sink conditions whereby

the concentrations of the drugs in this compartment never reached 10% of their solubility (LDC

= 17.95 mg/mL; PLC = 21.89 mg/mL).

The experiment was performed at 37 °C during 5 h, under magnetic stirring (350 rpm).

At predetermined intervals, 300 μL volumes of the samples were collected and the same

volumes of fresh acceptor medium were added. The samples were analyzed by HPLC, as

described previously.

For each cell, the cumulative amounts of the LAs transported across the mucosal

epithelium, per unit of area, was plotted against time. The steady-state fluxes (Jss) of the LAs

were calculated from the slopes of the linear portions of the curves. The lag times were obtained

from the intercepts on the time axis. All experiments were conducted six times (Franz-Montan

et al., 2016).

2.12. In vitro evaluation of mucoadhesive strength

The mucoadhesive strengths of the formulations were evaluated by measuring the force

required to detach them from pig buccal mucosa, using the same texture analyzer described

above, in accordance with Cubayachi et al. (2015). The buccal mucosa was positioned

horizontally at the lower end of the TPA probe and the formulation was placed at the upper end.

Prior to the mucoadhesion testing, the buccal mucosa was hydrated with 50 µL of artificial

saliva for 5 min. The analytical probe was then lowered until it made contact with the mucosa

surface. The rupture tensile strength was determined by applying a compressive force of 0.5 N

for 30 s and then moving the probe at a constant speed of 1.0 mm.s-1. The force required to

detach the formulation from the mucosa surface was determined from the curve of force plotted

against distance. All the measurements were performed at ambient temperature (21 ± 1 °C), in

quintuplicate.

2.13. In vitro cytotoxicity assays

The cytotoxicities of the hydrogel formulations were evaluated by the MTT (a yellow

tetrazole) reduction test with human epithelial cells (HaCaT) and human gingival fibroblasts

(FGH). Viable cells were exposed for 2 h to the hydrogel formulations (CNLP and CLP)

containing the local anesthetics at different concentrations (ranging from 0.312 to 5 mg/mL of

LDC and PLC). The formulations contained from 6.25 to 100 mg/mL of hydrogel. The same

amounts of hydrogel (6.25 to 100 mg/mL) free of local anesthetics (CN and C) were diluted

and used as placebos. The percentages of viable cells were determined after incubation in the

Page 40: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

40

presence of MTT for 3 h at 37 °C, with measurement of the amount of MTT converted to

insoluble formazan by mitochondrial dehydrogenases (Ferreira et al., 2017; Oliveira et al.,

2014). A 100 μL volume of ethanol was added to each well in order to dissolve the formazan

crystals, resulting in a purple solution.

The fraction of viable cells was obtained by quantification of the original formazan

using a microplate reader (BioTek Instruments Inc., Winooski, VT, USA) operated at a

wavelength of 570 nm, with conversion of the value to the percentage of viable cells.

2.14. In vivo anesthetic efficacy evaluation

The experiments were conducted after approval by the Animal Ethics Committee of

UNICAMP (protocol #2850-1) and in accordance with the Principles of Laboratory Animal

Care (NIH publication #85-23, revised in 1985). Male adult Wistar rats (200-250 g) obtained

from the Multidisciplinary Center of Biological Investigation of Laboratory Animals (CEMIB-

UNICAMP) were kept in cages under light/dark cycles of 12 h, at 25 ± 2 °C, and were provided

with water and food ad libitum for at least 7 days before the experiments. The Wistar rats were

divided into groups of 6 animals and each animal was used only once in the experiment.

The topical anesthetic efficacies of the hydrogels containing LDC and PLC were

assessed using the tail-flick test, as previously described by Grant et al. (1993) and modified by

De Araujo et al. (2010). Briefly, the animals were positioned in an acrylic confinement

chamber, while maintaining free the distal portion of the tail (5 cm). The time required for tail

removal (latency) following exposure to the heat produced by an incandescent lamp (55 °C)

was considered as the aversive response, generating a baseline that was recorded for each

animal prior to the start of the experiment. In order to avoid injury due to thermal insult, a

maximum time of 15 s (cut-off value) was established for contact with the heat source.

Approximately 0.5 g portions of the hydrogels and the commercial formulation (EMLA®) were

applied 2 cm from the tail base, with the aid of Micropore™ protective tape, for 2 min. The

formulations were then removed and nociceptive stimulus was applied to the same region.

Measurements were performed immediately after formulation removal and then every 15 min

until the animal returned to its baseline pain response. After the tail-flick test, the animals were

sacrificed by deep general anesthesia. Analgesia was defined as an at least 50% increase in the

time required for tail removal, compared to the observed baseline value. Calculation of the

maximum possible effect (%MPE) was performed by subtracting the baseline from the latency

time and dividing the resulting value by the cut-off minus the baseline. The value obtained was

multiplied by 100.

Page 41: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

41

2.15. Data analysis

The results from the suspension and hydrogel characterizations, the in vitro permeation

tests, and the mucoadhesion tests were statistically evaluated using the Student’s t-test, or by

analysis of variance (ANOVA) followed by Tukey’s post-hoc test. These analyses were

performed with Biostat 5.0 for Windows® software (Instituto Mamirauá, Belém, PA, Brazil).

The results of the in vitro cytotoxicity assays and the in vivo tests were analyzed using the

Kruskal-Wallis test followed by the Dunn post-hoc test. These analyses were performed with

GraphPad Prism 6.0 software (GraphPad, San Diego, CA). Statistical significance was defined

as p < 0.05.

Acknowledgments

Financial support was provided by the São Paulo State Research Foundation (FAPESP,

grants #2012/06974-4 and #2013/22326-5). B.V.M. received a doctorate scholarship from

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil). The authors

are grateful to the PhD students Camila Cubayachi for help with the mucoadhesion studies and

Ana Laís Nascimento Vieira for assistance during the accelerated hydrogel stability tests.

Page 42: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

42

References

1 Alves, M. P., Raffin, R. P. & Fagan, S. B. Rheological Behavior of Semisolid

Formulations Containing Nanostructured Systems. In: Nanocosmetics and

Nanomedicines New Approaches for Skin Care. [s.l.] Springer. p. 37–48 (2011).

2 Araujo, D. R. De, Padula, C., Cereda, C. M. S., Tófoli, G. R., Brito, R. B., Paula, E. De,

Nicoli, S., Santi, P. Bioadhesive films containing benzocaine: Correlation between in

vitro permeation and in vivo local anesthetic effect. Pharm. Res. 27, 1677–1686 (2010).

3 Benavides, T., Mitjans, M., Martínez, V., Clapés, P., Infante, M. R., Clothier, R. H.,

Vinardell, M. P. Assessment of primary eye and skin irritants by in vitro cytotoxicity

and phototoxicity models: An in vitro approach of new arginine-based surfactant-

induced irritation. Toxicology 197, 229–237 (2004).

4 Berbel Manaia, E., Paiva Abuçafy, M., Chiari-Andréo, B. G., Lallo Silva, B., Oshiro-

Júnior, J. A., Chiavacci, L. Physicochemical characterization of drug nanocarriers. Int.

J. Nanomedicine. 12, 4991–5011 (2017).

5 Blumenthal, S., Borgeat, A., Pasch, T., Reyes, L., Booy, C., Lambert, M., Schimmer,

R. C., Beck-Schimmer, B. Ropivacaine decreases inflammation in experimental

endotoxin-induced lung injury. Anesthesiology. 104, 961–969 (2006).

6 Calixto, L. S., Infante, V. H. P. & Maia Campos, P. M. B. G. Design and

Characterization of Topical Formulations: Correlations Between Instrumental and

Sensorial Measurements. AAPS PharmSciTech. 2018 Feb 20. doi: 10.1208/s12249-018-

0960-0 (2018).

7 Campos, E. V. R., Melo, N. F. S. De, Paula, E. De, Rosa, A. H., Fraceto, L. F. Screening

of Conditions for the Preparation of Poly( -Caprolactone) Nanocapsules Containing the

Local Anesthetic Articaine. J. Colloid Sci. Biotechnol. 2, 106–111 (2013).

8 Couto, R. O. Do, Cubayachi, C., Calefi, P. L., Lopez, R. F. V., Pedrazzi, V., Gaitani, C.

M. De, Freitas, O. De. Combining amino amide salts in mucoadhesive films enhances

needle-free buccal anesthesia in adults. J Control Release. 28, 205–215 (2017).

9 Cubayachi, C., Couto, R. O. Do, Gaitani, C. M. De, Pedrazzi, V., Freitas, O. De, Lopez,

R. F. V. Needle-free buccal anesthesia using iontophoresis and amino amide salts

combined in a mucoadhesive formulation. Colloids Surf B Biointerfaces. 136, 1193–

1201 (2015).

10 Daneshkazemi, A., Abrisham, S. M., Daneshkazemi, P., Davoudi, A. The efficacy of

eutectic mixture of local anesthetics as a topical anesthetic agent used for dental

Page 43: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

43

procedures: A brief review. Anesth Essays Res. 10, 383-387 (2016).

11 Diaz-Del Consuelo, I., Jacques, Y., Pizzolato, G. P., Guy, R. H., Falson, F. Comparison

of the lipid composition of porcine buccal and esophageal permeability barriers.

Archives of Oral Biology. 50, 981–987 (2005).

12 Eiras, F., Amaral, M. H., Silva, R., Martins, E., Lobo, J. M. S., Silva, A. C.

Characterization and biocompatibility evaluation of cutaneous formulations containing

lipid nanoparticles. Int J Pharm. 519, 373–380 (2017).

13 Ferreira, L. E. N., Muniz, B. V., Burga-Sánchez, J., Volpato, M. C., Paula, E. De, Rosa,

E. A. R., Groppo, F. C. The effect of two drug delivery systems in ropivacaine

cytotoxicity and cytokine release by human keratinocytes and fibroblasts. J Pharm

Pharmacol. 69, 161–171 (2017).

14 Ferrero, C., Massuelle, D., Doelker, E. Towards elucidation of the drug release

mechanism from compressed hydrophilic matrices made of cellulose ethers. II.

Evaluation of a possible swelling-controlled drug release mechanism using

dimensionless analysis. J Control Release. 141, 223–233 (2010).

15 Fessi, H., Puisieux, F., Devissaguet, J. P., Ammoury, N., Benita, S. Nanocapsule

formation by interfacial polymer deposition following solvent displacement. Int J

Pharm. 55, R1–R4 (1989).

16 Frank, L. A., Chaves, P. S., D’amore, C. M., Contri, R. V., Frank, A. G., Beck, R. C.

R., Pohlmann, A. R., Buffon, A., Guterres, S. S. The use of chitosan as cationic coating

or gel vehicle for polymeric nanocapsules: Increasing penetration and adhesion of

imiquimod in vaginal tissue. Eur J Pharm Biopharm. 114, 202–212 (2017).

17 Franz-Montan, M., Baroni D., Brunetto, G., Sobral, V. R., da Silva, C. M., Venâncio,

P., Zago, P. W., Cereda, C. M., Volpato, M. C., de Araújo, D. R., de Paula, E., Groppo,

F. C. Liposomal lidocaine gel for topical use at the oral mucosa: characterization, in

vitro assays and in vivo anesthetic efficacy in humans. J Liposome Res. 25, 9-11(2015).

18 Franz-Montan, M., Cereda, C. M. S., Gaspari, A., Silva, C. M. G. Da, Araújo, D. R. De,

Padula, C., Santi, P., Narvaes, E., Novaes, P. D., Groppo, F. C., Paula, E. De.

Liposomal-benzocaine gel formulation: correlation between in vitro assays and in vivo

topical anesthesia in volunteers. J Liposome Res. 23, 54–60 (2013).

19 Franz-Montan, M., Paula, E. De, Groppo, F. C., Silva, A. L. R., Ranali, J., Volpato, M.

C. Liposome-encapsulated ropivacaine for intraoral topical anesthesia. Oral Surg Oral

Med Oral Pathol Oral Radiol Endod. 110, 800–804 (2010).

20 Franz-Montan, M., Paula, E. De, Groppo, F. C., Silva, A. L. R., Ranali, J., Volpato, M.

Page 44: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

44

C. Liposomal delivery system for topical anaesthesia of the palatal mucosa. Br J Oral

Maxillofac Surg. 50, 60–64 (2012).

21 Franz-Montan, M., Serpe, L., Martinelli, C. C. M., Silva, C. B. Da, Santos, C. P. Dos,

Novaes, P. D., Volpato, M. C., Paula, E. De, Lopez, R. F. V., Groppo, F. C. Evaluation

of different pig oral mucosa sites as permeability barrier models for drug permeation

studies. Eur J Pharm Sci. 81, 52–59 (2016).

22 Franz-Montan, M., Silva, A. L. R., Cogo, K., Bergamaschi, C. De C., Volpato, M. C.,

Ranali, J., Paula, E. De, Groppo, F. C. Liposome-Encapsulated Ropivacaine for Topical

Anesthesia of Human Oral Mucosa. Anesthesia & Analgesia. 104, 1528–1531 (2007).

23 Franz-Montan, M., Silva, A. L. R., Fraceto, L. F., Volpato, M. C., Paula, E. De, Ranali,

J., Groppo, F. C. Liposomal encapsulation improves the duration of soft tissue

anesthesia but does not induce pulpal anesthesia. J Clin Anesth. 22, 313–317 (2010).

24 Gaspar, L. R., Campos, P. M. B. G. M. Rheological beha v ior and the SPF of

sunscreens. Int J Pharm. 250, 35–44 (2003).

25 Gehrcke, M., Sari, M. H. M., Ferreira, L. M., Barbieri, A. V., Giuliani, L. M., Prado, V.

C., Nadal, J. M., Farago, P. V., Nogueira, C. W., Cruz, L. Nanocapsules improve indole-

3-carbinol photostability and prolong its antinociceptive action in acute pain animal

models. Eur J Pharm Sci. 111, 133–141 (2018).

26 Grant, G. J., Zakowski, M. I., Vermeulen, K., Langerman, L., Ramanathan, S., Turndorf,

H. Assessing local anesthetic effect using the mouse tail flick test. J Pharmacol Toxicol

Methods. 29, 223–226 (1993).

27 ICH Expert Working Group. ICH Guideline Q1A(R2) Stability Testing of New Drug

Substances and Products. In: International Conference on Harmonization. [s.l: s.n.]. p.

24.

28 Jones, C. F., Grainger, D. W. In vitro assessments of nanomaterial toxicity. Adv Drug

Deliv Rev. 61, 438–456 (2009).

29 Jones, D. S., Lawlor, M. S., David Woolfson, A. Examination of the flow rheological

and textural properties of polymer gels composed of poly(methylvinylether-comaleic

anhydride) and poly(vinylpyrrolidone): Rheological and mathematical interpretation of

textural parameters. J Pharm Sci. 91, 2090–2101 (2002).

30 Jones, D. S., Woolfson, A. D., Brown, A. F. Textural analysis and flow rheometry of

novel, bioadhesive antimicrobial oral gels. Pharm Res. 14, 450-457 (1997).

31 Jones, D. S., Woolfson, A. D., Brown, A. F., Coulter, W. A., Mcclelland, C., Irwin, C.

R. Design, characterisation and preliminary clinical evaluation of a novel mucoadhesive

Page 45: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

45

topical formulation containing tetracycline for the treatment of periodontal disease. J

Control Release. 67, 357–368 (2000).

32 Karavana, S. Y., Gökçe, E. H., Rençber, S., Özbal, S., Pekçetin, C., Güneri, P., Ertan,

G. A new approach to the treatment of recurrent aphthous stomatitis with bioadhesive

gels containing cyclosporine A solid lipid nanoparticles: in vivo/in vitro examinations.

Int J Nanomedicine. 7, 5693–704 (2012).

33 Knopp, M. M., Löbmann, K., Elder, D. P., Rades, T., Holm, R. Recent advances and

potential applications of modulated differential scanning calorimetry (mDSC) in drug

development. Eur J Pharm Sci. 87, 164–173 (2016).

34 Lee, C. H., Moturi, V., Lee, Y. Thixotropic property in pharmaceutical formulations. J

Control Release. 136, 88–98 (2009).

35 Lee, H.-S. Recent advances in topical anesthesia. J Dent Anesth Pain Med. 16, 237–244

(2016).

36 Lippacher, A, Müller, R. H., Mäder, K. Liquid and semisolid SLN dispersions for

topical application: rheological characterization. Eur J Pharm Biopharm. 58, 561–7

(2004).

37 Maestrelli, F., Capasso, G., González-Rodríguez, M. L., Rabasco, A. M., Ghelardini,

C., Mura, P. Effect of preparation technique on the properties and in vivo efficacy of

benzocaine-loaded ethosomes. J Liposome Res. 19, 253–260 (2009).

38 Meechan, J. G. Intraoral topical anesthesia. Periodontology 2000. 46, 56–79 (2008).

39 Melo, N. F. S., Campos, E. V. R., Franz-Montan, M., Paula, E., Silva, C. M. G. D.,

Maruyama, C. R., Stigliani, T. P., Lima, R., Araujo, D. R., Fraceto, L. F.

Characterization of Articaine-Loaded Poly(ε-caprolactone) Nanocapsules and Solid

Lipid Nanoparticles in Hydrogels for Topical Formulations. J Nanosci Nanotechnol. 18,

4428-4438 (2018).

40 Melo, N. F. S. De, Araújo, D. R. De, Grillo, R., Moraes, C. M., Matos, A. P. De, Paula,

E. De, Rosa, A. H., Fraceto, L. F. Benzocaine-Loaded Polymeric Nanocapsules : Study

of the Anesthetic Activities. J Pharm Sci. 101, 1157–1165 (2012).

41 Melo, N. F. S. De, Campos, E. V. R., Gonçalves, C. M., Paula, E. De, Pasquoto, T.,

Lima, R. De, Rosa, A. H., Fraceto, L. F. Development of hydrophilic nanocarriers for

the charged form of the local anesthetic articaine. Colloids Surf B Biointerfaces. 121,

66–73 (2014).

42 Melo, N. F. S. De, Grillo, R., Guilherme, V. A., Araujo, D. R. De, Paula, E. De, Rosa,

A. H., Fraceto, L. F. Poly(lactide-co-glycolide) nanocapsules containing benzocaine:

Page 46: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

46

Influence of the composition of the oily nucleus on physico-chemical properties and

anesthetic activity. Pharm Res. 28, 1984–1994 (2011).

43 Moghadam, S. H., Saliaj, E., Wettig, S. D., Dong, C., Ivanova, M. V., Huzil, J. T.,

Foldvari, M. Effect of chemical permeation enhancers on stratum corneum barrier lipid

organizational structure and interferon alpha permeability. Mol Pharm. 10, 2248–2260

(2013).

44 Mohanraj, V. J., Chen, Y. Nanoparticles – A Review. Trop J Pharm Res. 5, 561–573

(2006).

45 Mora-Huertas, C. E., Fessi, H., Elaissari, A. Polymer-based nanocapsules for drug

delivery. Int J Pharm. 385, 113–42 (2010).

46 Moraes, C. M., Matos, A. P. De, Grillo, R., Melo, N. F. S. De, Paula, E. De, Dias Filho,

N. L., Rosa, A. H., Fraceto, L. F. Screening of formulation variables for the preparation

of poly(epsilon-caprolactone) nanocapsules containing the local anesthetic benzocaine.

J Nanosci Nanotechnol. 11, 2450–2457 (2011).

47 Netsomboon, K., Bernkop-Schnürch, A. Mucoadhesive vs. mucopenetrating particulate

drug delivery. Eur J Pharm Biopharm. 98, 76–89 (2016).

48 Oliveira, D. C. R. S. De, Silva, C. B. Da, Muniz, B. V., Volpato, M. C., Costa, A. R.,

Sinhoreti, M. A. C. Effect of 4-(N,N-dimethylamino)phenethyl Alcohol on Degree of

Conversion and Cytotoxicity of Photo-Polymerized CQ-Based Resin Composites. Braz

Dent J. 25, 538–542 (2014).

49 Ourique, A. F., Melero, A., Silva, C. D. B. Da, Schaefer, U. F., Pohlmann, A. R.,

Guterres, S. S., Lehr, C. M., Kostka, K. H., Beck, R. C. R. Improved photostability and

reduced skin permeation of tretinoin: Development of a semisolid nanomedicine. Eur J

Pharm Biopharm. 79, 95–101 (2011).

50 Papadopoulou, V., Kosmidis, K., Vlachou, M., Macheras, P. On the use of the Weibull

function for the discernment of drug release mechanisms. Int J Pharm. 309, 44–50

(2006).

51 Paula, E. De, Cereda, C. M. S., Fraceto, L. F., Araújo, D. R. De, Franz-Montan, M.,

Tofoli, G. R., Ranali, J., Volpato, M. C., Groppo, F. C. Micro and nanosystems for

delivering local anesthetics. Expert Opin Drug Deliv. 9, 1505–24 (2012).

52 Puglia, C., Sarpietro, M. G., Bonina, F., Castelli, F. Development , Characterization ,

and In Vitro and In Vivo Evaluation of Benzocaine- and Lidocaine-Loaded. J Pharm

Sci. 100, 1892–1899 (2011).

53 Ramos Campos, E. V., Silva De Melo, N. F., Guilherme, V. A., Paula, E. De, Rosa, A.

Page 47: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

47

H., Araújo, D. R. De, Fraceto, L. F. Preparation and characterization of poly(ε-

caprolactone) nanospheres containing the local anesthetic lidocaine. J Pharm Sci. 102,

215–26 (2013).

54 Ribeiro, L. N. M., Couto, V. M., Fraceto, L. F., Paula, E. Use of nanoparticle

concentration as a tool to understand the structural properties of colloids. Sci Rep. 8,

982 (2018).

55 Ribeiro, L. N. M., Franz-Montan, M., Breitkreitz, M. C., Alcântara, A. C. S., Castro, S.

R., Guilherme, V. A., Barbosa, R. M., Paula, E. De. Nanostructured lipid carriers as

robust systems for topical lidocaine-prilocaine release in dentistry. Eur J Pharm Sci. 93,

192–202 (2016).

56 Sharma, G., Kamboj, S., Thakur, K., Negi, P., Raza, K., Katare, O. P. Delivery of

Thermoresponsive-Tailored Mixed Micellar Nanogel of Lidocaine and Prilocaine with

Improved Dermatokinetic Profile and Therapeutic Efficacy in Topical Anaesthesia.

AAPS PharmSciTech. 18, 790–802 (2017).

57 Silva André Luiz Rotolo, Michelle Franz Montan, Francisco Carlos Groppo, Maria

Cristina Volpato, José Ranali, Leonardo Fernandes Fraceto, P. E. De. Pharmaceutical

composition comprising a local anaesthetic and a carboxyvinyl polymer, 2008.

Disponível em: <https://www.google.com/patents/WO2008138089A2?cl=en>. Acesso

em: 13 dez. 2017

58 Silva De Melo, N. F., Campos, E. V. R., Gonçalves, C. M., Paula, E. De, Pasquoto, T.,

Lima, R. De, Rosa, A. H., Fraceto, L. F. Development of hydrophilic nanocarriers for

the charged form of the local anesthetic articaine. Colloids Surf B Biointerfaces. 121,

66–73 (2014).

59 Singh, N. K., Lee, D. S. In situ gelling pH- and temperature-sensitive biodegradable

block copolymer hydrogels for drug delivery. J Control Release.. 193, 214–27 (2014).

60 Strichartz, G. R., Sanchez, V., Arthur, G. R., Chafetz, R., Martin, D. Fundamental

properties of local anesthetics. II. Measured octanol:buffer partition coefficients and

pKa values of clinically used drugs. Anesthesia and Analgesia. 71, 158–70 (1990).

61 Woodruff, M. A., Hutmacher, D. W. The return of a forgotten polymer -

Polycaprolactone in the 21st century. Progress in Polymer Science (Oxford). 35, 1217–

1256 (2010).

62 Yin, Q.-Q., Wu, L., Gou, M.-L., Qian, Z.-Y., Zhang, W.-S., Liu, J. Long-lasting

infiltration anaesthesia by lidocaine-loaded biodegradable nanoparticles in hydrogel in

rats. Acta Anaesthesiol Scand. 53, 1207–13 (2009).

Page 48: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

48

63 You, P., Yuan, R., Chen, C. Design and evaluation of lidocaine- and prilocaine-coloaded

nanoparticulate drug delivery systems for topical anesthetic analgesic therapy: a

comparison between solid lipid nanoparticles and nanostructured lipid carriers. Drug

Des Devel Ther. 11, 2743–2752 (2017).

64 Youm, I., Murowchick, J. B., Youan, B. B. C. Entrapment and release kinetics of

furosemide from pegylated nanocarriers. Colloids Surf B Biointerfaces. 94, 133–142

(2012).

65 Zhou, H., Shi, T., Zhou, X. Poly (vinyl alcohol)/SiO2 composite microsphere based on

Pickering emulsion and its application in controlled drug release. J Biomater Sci Polym

Ed. 25, 641–656 (2014).

Page 49: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

49

Supplementary Material

HYBRID HYDROGEL AND POLYMERIC NANOCAPSULES CO-LOADED WITH

LIDOCAINE AND PRILOCAINE AIMING TOPICAL INTRAORAL ANESTHESIA

Authors:

Bruno Vilela Muniz¹. MSc, PhD student

Diego Baratelli². MSc

Stephany Di Carla¹. MSc student

Luciano Serpe¹. PhD

Camila Batista da Silva¹. PhD

Viviane Aparecida Guilherme3. PhD

Lígia de Morais Ribeiro Nunes3. PhD

Cintia Maria Saia Cereda3. PhD

Eneida de Paula³. PhD, Full Professor

Maria Cristina Volpato1. PhD, Full Professor

Francisco Carlos Groppo¹. PhD, Full Professor

Leonardo Fernandes Fraceto². PhD, Associate Professor

Michelle Franz-Montan1*. PhD, Assistant Professor

Page 50: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

50

Figure S1. Mean (±SD) size (nm), PDI, pH, surface charge (ZP), and nanoparticle

concentration (.1012 part./mL) of poly(ε-caprolactone) nanocapsules (PCL) and nanocapsules

containing lidocaine-prilocaine (PCL/LDC+PLC), according to time, during 180 days of

storage at 25 oC. Comparison between suspensions with or without LAs (PCL/LDC+PLC vs.

PCL) for each period: Student’s t-test (p < 0.01). Variation of formulation parameters over time

(relative to Day 0): ANOVA/Tukey’s test (p < 0.05; n = 3).

Page 51: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

51

Figure S2. Percentages of (a) lidocaine (LDC) and (b) prilocaine (PLC) released from free

solution and poly(ε-caprolactone) nanocapsules (PCL/LDC+PLC), at 25 ºC (n = 3). SD values

were below 5%.

b

a

Page 52: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

52

Figure S3. Mean (SD) percentages of (a) lidocaine and (b) prilocaine released from Carbopol®

hydrogels containing LDC and PLC (5%), free or associated with poly(ε-caprolactone)

nanocapsules (CLP and CNLP, respectively), according to time, at 37 ºC (n = 3).

a

b

Page 53: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

53

Table S1. Correlation coefficient values obtained for lidocaine (LDC) and prilocaine (PLC),

using different mathematical models applied to analyze the kinetics of release from the

nanocapsules.

Release kinetics Korsmeyer-Peppas Weibull Zero

order

R2 k n R2 R2

Lidocaine PCL/LDC+PLC 0.99 0.003 0.82 0.89 0.70

Prilocaine PCL/LDC+PLC 0.98 0.007 0.72 0.88 0.66

Table S2. Mean (±SD) local anesthetic content (dosage), pH, and weight variation of the

different Carbopol® hydrogels containing LDC and PLC (5%), free or associated with poly(ε-

caprolactone) nanocapsules (CLP and CNLP, respectively), compared to EMLA®, during 6

months storage at 40 ± 2 °C and 75% RH.

Hydrogel

formulation

Time

(months)

Dosage pH ΔP

LDC PLC

CNLP

T0 2.77 ± 0.09 2.02 ± 0.04 7.324 ± 0.24 ------

T3 1.91 ± 0.03a 1.88 ± 0.03 7.100 ± 0.26 0.11 ± 0.03

T6 2.44 ± 0.37 1.87 ± 0.30 7.310 ± 0.09 0.14 ± 0.04

CLP

T0 2.77 ± 0.07 2.50 ± 0.09 7.482 ± 0.07 ------

T3 2.34 ± 0.02ª 3.17 ± 0.05 4.831 ± 0.11ª 0.09 ± 0.01

T6 2.69 ± 0.02b 2.20 ± 0.09ª 8.405± 0.21a,b 0.01 ± 0.01*

EMLA®

T0 3.15 ± 0.01 2.49 ±0.02 8.945 ± 0.26 ------

T3 2.29 ± 0.05a 2.30 ± 0.04 9.024 ± 0.29 0.27 ± 0.44

T6 2.84 ± 0.35b 2.5 ± 0.30 9.423 ± 0.26 0.01 ± 0.03

T0: time zero; T3: 3 months; T6: 6 months; ΔP: weight variation for T3 and T6, relative to T0 and T3, respectively;

*p < 0.01. Different letters indicate statistically significant differences among the times (p < 0.05): a relative to T0; b relative to T3 (ANOVA/Tukey’s test; n = 3).

Page 54: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

54

Table S3. Release kinetics mechanisms for lidocaine and prilocaine, free or associated with

poly(ε-caprolactone) nanocapsules (CLP and CNLP, respectively), contained in Carbopol®

hydrogels, as evaluated by the determination coefficient values (R2) obtained following

application of different mathematical models.

Release

kinetics

Weibull Korsmeyer-

Peppas

Zero

order

R2 K b R2 R2

Lidocaine CNLP 0.96 0.49 0.72 0.89 0.61

CLP 0.95 0.72 0.95 0.93 0.68

Prilocaine CNLP 0.94 0.50 0.93 0.72 0.60

CLP 0.94 0.54 0.13 0.74 0.65

Page 55: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

55

3 CONCLUSÃO

O encapsulamento da lidocaína (2,5%) e da prilocaína (2,5%) em nanocápsulas de

poli(ε-caprolactona) foi estável e apresentou boas características físico-químicas, estabilidade

e liberação sustentada, sendo possível a incorporação dessa suspensão em uma formulação

semi-sólida. O hidrogel de Carbopol® associado às nanocápsulas apresentou boas propriedades

mecânicas, reológicas e mucoadesivas esperadas para uma formulação tópica, além de boa

estabilidade, baixa citotoxicidade, com bom perfil de permeação e melhor eficácia anestésica

in vivo quando comparada com uma formulação comercial. Esses resultados promissores abrem

perspectivas para testes futuros em humanos, permitindo seu uso em diversas condições na área

de saúde.

Page 56: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

56

REFERËNCIAS*

Andrade LM, de Fátima Reis C, Maione-Silva L, Anjos JL, Alonso A, Serpa RC, Marreto

RN, Lima EM , Taveira SF. Impact of lipid dynamic behavior on physical stability, in vitro

release and skin permeation of genistein-loaded lipid nanoparticles. Eur J Pharm Biopharm.

2014 Sep; 88(1):40-7.

Annabi N, Tamayol A, Uquillas JA, Akbari M, Bertassoni LE, Cha C, Camci-Unal G,

Dokmeci MR, Peppas NA, Khademhosseini A. 25th anniversary article: rational design and

applications of hydrogels in regenerative medicine. Adv Mater. 2014 Jan 8; 26(1):85-123.

Armfield JM, Milgrom P. (2011). A clinician guide to patients afraid of dental injections and

numbness. SAAD Dig. 2011 Jan; 27:33-9.

Basha M, El-Alim SHA, Kassem AA, Awdan SE, Awad G. Benzocaine loaded solid lipid

nanoparticles: formulation design, in vitro and in vivo evaluation of local anesthetic effect.

Curr Drug Deliv. 2015; 12(6):680-92.

De Araújo DR, da Silva DC, Barbosa RM, Franz-Montan M, Cereda CM, Padula C, Santi P,

de Paula E. Strategies for delivering local anesthetics to the skin: focus on liposomes, solid

lipid nanoparticles, hydrogels and patches. Expert Opin Drug Deliv. 2013 Nov; 10(11):1551-

63.

De Melo NF, de Araújo DR, Grillo R, Moraes CM, de Matos AP, de Paula E, Rosa AH,

Fraceto LF. Benzocaine-loaded polymeric nanocapsules: study of the anesthetic activities. J

Pharm Sci. 2012; 101, 1157-65.

De Melo NF, Grillo R, Guilherme VA, de Araujo DR, de Paula R, Rosa AH, Fraceto LF.

Poly(lactide-co-glycolide) nanocapsules containing benzocaine: influence of the composition

of the oily nucleus on physico-chemical properties and anesthetic activity. Pharm Res. 2011

Aug; 28(8):1984-94.

Donaldson D, Meechan JG . A comparison of the effects of EMLA cream and topical 5%

lidocaine on discomfort during gingival probing. Anesth Prog. 1995; 42(1):7-10.

Franz-Montan M, Ribeiro LNDM, Volpato MC, Cereda CMS, Groppo FC, Tofoli GR, Araújo

DRD, Santi P, Padula C, Paula ED. Recent advances and perspectives in topical oral

anesthesia. Expert Opin Drug Deliv. 2017 May; 14(5):673-684.

* De acordo com as normas da UNICAMP/FOP, baseadas na padronização do International Committee of Medical

Journal Editors - Vancouver Group. Abreviatura dos periódicos em conformidade com o PubMed.

Page 57: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

57

Franz-Montan M, Baroni D, Brunetto G, Sobral VR, da Silva CM, Venâncio P, Zago PW,

Cereda CM, Volpato MC, de Araújo DR, de Paula E, Groppo FC. Liposomal lidocaine gel for

topical use at the oral mucosa: characterization, in vitro assays and in vivo anesthetic efficacy

in humans. J Liposome Res. 2015 Mar; 25(1):11-9.

Franz-Montan M, de Paula E, Groppo FC, Silva AL, Ranali J, Volpato MC. Liposome-

encapsulated ropivacaine for intraoral topical anesthesia. Oral Surg Oral Med Oral Pathol

Oral Radiol Endod. 2010a Dec;110(6):800-4.

Franz-Montan M, Silva ALR, Fraceto LF, Volpato MC, de Paula E, Ranali J, Groppo FC.

Liposomal encapsulation improves the duration of soft tissue anesthesia but does not induce

pulpal anesthesia. J Clin Anesth. 2010b Aug; 22(5):313-7.

Franz-Montan M, de Paula E, Groppo FC, Silva ALR, Ranali J, Volpato MC. Liposomal

delivery system for topical anaesthesia of the palatal mucosa. Br J Oral Maxillofac Surg. 2012

Jan; 50(1):60-4.

Franz-Montan M, Silva ALR, Cogo K, Bergamaschi CD, Volpato MC, Ranali J, de Paula E,

Groppo FC. Liposome-encapsulated ropivacaine for topical anesthesia of human oral mucosa.

Anesth Analg. 2007 Jun; 104(6):1528-31

Gao W, Zhang Y, Zhang Q, Zhang L. Nanoparticle-Hydrogel: A Hybrid Biomaterial System

for Localized Drug Delivery. Ann Biomed Eng. 2016 Jun;44(6):2049-61.

Kopecek J. Hydrogel biomaterials: a smart future? Biomaterials. 2007 Dec; 28(34):5185-92.

Lee HS. Recent advances in topical anesthesia. J Dent Anesth Pain Med. 2016 Dec;

16(4):237-244.

Mcmillan AS, Walshaw D, Meechan JG. The efficacy of EMLA and 5% lignocaine gel for

anaesthesia of human gingival mucosa. Br J Oral Maxillofac Surg. 2000 Feb; 38(1):58-61.

Meechan JG. Effective topical anesthetic agents and techniques. Dent Clin North Am. 2002

Oct;46(4):759-66.

Meechan JG, Donaldson D. The intraoral use of EMLA cream in children: a clinical

investigation. ASDC J Dent Child. 1994 Jul-Aug; 61(4):260-2.

Meechan JG, Thomason JM. A comparison of 2 topical anesthetics on the discomfort of

intraligamentary injections: a double-blind, split-mouth volunteer clinical trial. Oral Surg Oral

Med Oral Pathol Oral Radiol Endod. 1999 Mar; 87(3):362-5.

Page 58: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

58

Melo NF, Campos EV, Gonçalves CM, de Paula E, Pasquoto T, de Lima R, Rosa AH, Fraceto

LF. Development of hydrophilic nanocarriers for the charged form of the local anesthetic

articaine. Colloids Surf B Biointerfaces. 2014 Sep 1; 121:66-73.

Merino S, Martín C, Kostarelos K, Prato M, Vázquez E. Nanocomposite Hydrogels: 3D

Polymer-Nanoparticle Synergies for On-Demand Drug Delivery. ACS Nano. 2015 May

26;9(5):4686-97.

Moore PA, Hersh EV. Local anesthetics: pharmacology and toxicity. Dent Clin North Am.

2010 Oct; 54(4):587-99.

Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J

Pharm. 2010 Jan 29; 385(1-2):113-42.

Moraes CM, De Matos AP, Grillo R, De Melo NF, De Paula E, Dias Filho NL, Rosa AH &

Fraceto LF. Screening of formulation variables for the preparation of poly(epsilon-

caprolactone) nanocapsules containing the local anesthetic benzocaine. J Nanosci

Nanotechnol. 2011 Mar; 11(3):2450-7.

Ogle OE, Mahjoubi G. Local anesthesia: agents, techniques, and complications. Dent Clin

North Am. 2012 Jan; 56(1):133-48, ix.

Pitorre M, Gondé H, Haury C, Messous M, Poilane J, Boudaud D, Kanber E, Rossemond

Ndombina GA, Benoit JP, Bastiat G. Recent advances in nanocarrier-loaded gels: Which drug

delivery technologies against which diseases? J Control Release. 2017 Nov 28; 266:140-155.

Pohlmann AR, Fonseca FN, Paese K, Detoni CB, Coradini K, Beck RC, Guterres SS. Poly(ϵ-

caprolactone) microcapsules and nanocapsules in drug delivery. Expert Opin Drug Deliv.

2013 May;10(5):623-38.

Ramos Campos EV, Silva De Melo NF, Guilherme VA, De Paula E, Rosa AH, De Araújo

DR, Fraceto LF. Preparation and characterization of poly(ε-caprolactone) nanospheres

containing the local anesthetic lidocaine. J Pharm Sci. 2013 Jan; 102(1):215-26.

Ribeiro LNM, Franz-Montan M, Breitkreitz MC, Alcântara ACS, Castro SR, Guilherme VA,

Barbosa RM, Paula ED. Nanostructured lipid carriers as robust systems for topical lidocaine-

prilocaine release in dentistry. Eur J Pharm Sci. 2016 Oct 10; 93:192-202.

Sahoo S, Pani NR, Sahoo SK. Microemulsion based topical hydrogel of sertaconazole:

Formulation, characterization and evaluation. Colloids Surf B Biointerfaces. 2014 Aug 1;

120:193-9.

Page 59: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

59

Schaffazick SR, Guterres SS, Freitas LDL, Pohlmann AR. Caracterização e estabilidade

físico-química de sistemas poliméricos nanoparticulados para administração de fármacos.

Quím. Nova. 2003; 26:726-737.

Shah RM, Malherbe F, Eldridge D, Palombo EA, Harding IH. Physicochemical

characterization of solid lipid nanoparticles (SLNs) prepared by a novel microemulsion

technique. J Colloid Interface Sci. 2014 Aug 15; 428:286-94.

Sharpe LA, Daily AM, Horava SD, Peppas NA. Therapeutic applications of hydrogels in oral

drug delivery. Expert Opin Drug Deliv. 2014 Jun; 11(6):901-15.

Silva André Luiz Rotolo, Michelle Franz Montan, Francisco Carlos Groppo, Maria Cristina

Volpato, José Ranali, Leonardo Fernandes Fraceto, P. E. De. Pharmaceutical composition

comprising a local anaesthetic and a carboxyvinyl polymer, 2008. Disponível em:

<https://www.google.com/patents/WO2008138089A2?cl=en>. Acesso em: 13 dez. 2017

Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009 Jun;

86(3):215-23.

Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric

nanoparticles as drug delivery devices. J Control Release. 2001 Jan 29; 70(1-2):1-20.

Svensson P, Bjerring P, Arendt-Nielsen L, Kaaber S. Hypoalgesic effect of EMLA and

lidocaine gel applied on human oral mucosa: quantitative evaluation by sensory and pain

thresholds to argon laser stimulation. Anesth Prog. 1992; 39(1-2):4-8.

Vickers ER, Marzbani N, Gerzina TM, Mclean C, Punnia-Moorthy A, Mather L.

Pharmacokinetics of EMLA cream 5% application to oral mucosa. Anesth Prog. 1997 Winter;

44(1):32-7.

Woodruff MA, Hutmacher DW. The return of a forgotten polymer - Polycaprolactone in the

21st century. Progress in Polymer Science (Oxford). 2010; 35:1217–1256.

Page 60: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

60

ANEXOS

Anexo 1: Certificado de aprovação do estudo pela Comissão de Ética no Uso de Animais

Page 61: HIDROGEL DE LIDOCAÍNA E PRILOCAÍNA ENCAPSULADOS EM NANOCÁPSULAS DE …repositorio.unicamp.br/bitstream/REPOSIP/334988/1/Muniz... · 2019. 9. 17. · candidato para futuros testes

61

Anexo 2: Comprovante de submissão do trabalho