formulario fisica (2013)

91
Edwin H. Gutiérrez E. - 1 - FORMULARIO DE FÍSICA PARA EL EXAMEN DE INGRESO A LA U.M.S.F.X.CH. Cap. 1 NOTACIÓN CIENTÍFICA 6 lugares 5 700 000 = 5.7x10 6 Exp.positivo 3 lugares 0.0065 = 6.5x10 -3 Exp.negativo CIFRAS SIGNIFICATIVAS .- En una medición, son los dígitos de los que estamos seguros, más un digito dudoso. 1. Cualquier dígito diferente de cero es significativo. Ejem: 1234.56 (6 cif. signif.) 2. Ceros entre dígitos distintos de cero son significativos. Ejem: 1002.5 (5 cif. signif.) 3. Ceros a la izquierda del primer dígito distinto de cero no son significativos. Ejem: 0.000456 (3 cif. Signif.) 4. Todos los ceros a la derecha del punto decimal son significativos. Ejem: 400.00 (5 cif. signif. 5. Para los números que contengan puntos decimales, los ceros que se arrastran pueden o no pueden ser significativos. Ejem: 1000 1, 2, 3, o 4 cif. signif. 0.0010 2 cif. Signif. REDONDEO DE CIFRAS:

Upload: edwin-gutierrez

Post on 05-Dec-2014

123 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: FORMULARIO FISICA (2013)

Edwin H. Gutiérrez E. - 1 -

FORMULARIO DE FÍSICA PARA EL EXAMEN DE INGRESO A LA U.M.S.F.X.CH.

Cap. 1 NOTACIÓN CIENTÍFICA

6 lugares

5 700 000 = 5.7x106

Exp. positivo

3 lugares

0.0065 = 6.5x10-3

Exp. negativo

CIFRAS SIGNIFICATIVAS.- En una medición, son los dígitos de los que estamos seguros, más un digito dudoso.

1. Cualquier dígito diferente de cero es significativo. Ejem: 1234.56 (6 cif. signif.)

2. Ceros entre dígitos distintos de cero son significativos. Ejem: 1002.5 (5 cif. signif.)

3. Ceros a la izquierda del primer dígito distinto de cero no son significativos. Ejem: 0.000456 (3 cif. Signif.)

4. Todos los ceros a la derecha del punto decimal son significativos. Ejem: 400.00 (5 cif. signif.

5. Para los números que contengan puntos decimales, los ceros que se arrastran pueden o no pueden ser significativos. Ejem: 1000 1, 2, 3, o 4 cif. signif. 0.0010 2 cif. Signif.

REDONDEO DE CIFRAS:

1. La última cifra retenida se incrementa en 1 si el dígito descartado es mayor que 5.

Ejem: 1.86 1.9

2. El dígito descartado es menor que 5 entonces el retenido no cambia.

Ejem: 1.84 1.8

3. Cuando el dígito descartado es justamente 5 y no existen otros dígitos a su derecha. El número retenido se aumenta en 1 para convertirse en par:

Ejm: 1.35 1.4; 1.45 1.4

Page 2: FORMULARIO FISICA (2013)

- 2 - Edwin H. Gutiérrez E.

Cap. 2 MAGNITUDES Y UNIDADES

MAGNITUD FÍSICA.- Es todo aquello que puede ser medido. Ejem. L = 5 cm

Magnitud: Longitud Cantidad: 5 Unidad: cm

Ttoda magnitud física debe expresarse con una cifra y una unidad.

CLASIFICACIÓN DE LAS MAGNITUDES.- Por su origen:

a) MAGNITUDES FUNDAMENTALES.- No dependen de ninguna otra magnitud y que, en principio se pueden determinar mediante una medida directa. Son siete las magnitudes fundamentales, de las cuales tres son las de mayor aplicación:

Magnitud Dimensión Unidad Símbolo

Longitud L metro m

Masa M kilogramo kg

Tiempo T segundo s

b) MAGNITUDES DERIVADAS.- Están expresadas en función de las magnitudes fundamentales. Por ejemplo:

Velocidad (v) = desplazamiento/tiempo 1 LT

T

Lv

Aceleración (a) = velocidad/tiempo 21

LTT

LTa

Fuerza (F) = masa x aceleración 2MLTF

Nota.- La expresión entre corchetes , significa “ecuación dimensional de …”

Las magnitudes físicas se clasifican según su naturaleza en:

a) MAGNITUDES ESCALARES.- Quedan perfectamente determinadas conociendo su valor numérico y unidad. Por ejemplo:

Distancia recorrida = 300 mTiempo de clases = 2 hTemperatura ambiente = 20 ºC

Page 3: FORMULARIO FISICA (2013)

Edwin H. Gutiérrez E. - 3 -

b) MAGNITUDES VECTORIALES.- Además del valor numérico y unidad; se necesita conocer la dirección y el sentido. Por ejemplo:

Desplazamiento realizado = 300 m al norteVelocidad del aeroplano = 500 km/h hacia el SEAceleración del coche = - 2.5 m/s2

Fuerza aplicada al objeto = 80 kp con 30ºPeso de una persona = 72 kp (Esta dirigido al centro de la Tierra)

MÚLTIPLOS, SUBMÚLTIPLOS Y PREFIJOS PARA LAS UNIDADES MÉTRICAS:

Múltiplo Prefijo Símbolo Submúltiplo Prefijo Símbolo1015 peta- P 10-1 deci- d1012 tera- T 10-2 centi- c109 giga- G 10-3 mili- m106 mega- M 10-6 micro- µ103 kilo- k 10-9 nano- n102 hecto- h 10-12 pico- p

10 deca- da 10-15 femto- f

SISTEMA INTERNACIONAL DE UNIDADES (SI).- Posee siete unidades fundamentales y dos auxiliares:

MAGNITUDES FUNDAMENTALES UNIDADES BÁSICAS O FUNDAMENTALES

Nombre Símbolo

Nombre Símbolo

1.- Longitud2.- Masa3.- Tiempo4.- Temperatura termodinámica5.- Intensidad de corriente eléctrica6.- Intensidad luminosa7.- Cantidad de sustancia

LMTθIJN

metrokilogramosegundogrado kelvinamperiocandelamol

mkgsKAcd

mol

Page 4: FORMULARIO FISICA (2013)

- 4 - Edwin H. Gutiérrez E.

UNIDADES DERIVADAS DEL S. I. Y OTROS SISTEMAS

MAGNIT. SIMBSISTEMA

C. G. S. S. I.SISTEMA TÉCNICO

SISTEM. INGLÉS

TÉCNICO

SISTEM. INGLÉS

ABSOLUTO

Longitud L cm m m ft ft

Masa M g kg u.t.m. slug lbm

Tiempo T s s s s s

Fuerza F dyn

= g cm/s2

N

= kg m/s2

kp

= utm m/s2

lbf

=slug ft/s2pdl

= lbm ft/s2

Área A cm2 m2 m2 ft2 ft2

Volumen V cm3m3 m3

ft3ft3

Peso w dyn

= g cm/s2

N

= kg m/s2

kp

= utm m/s2

lbf

= slug ft/s2pdl

= lbm ft/s2

Trabajo W erg

= dyn.cm

J

= N. m

kpm

= kp.m

lbf.ft pdl.ft

Potencia P erg/s W

= J/s

kpm /s lbf.ft /s pdl. ft /s

Energía E erg

= dyn.cm

J

= N m

kpm

= kp m

lbf.ft pdl.ft

Densidad g/cm3kg/m3 u.t.m./m3

slug/ft3 lbm /ft3

Peso específico dyn/cm3

N/m3 kp/m3

lbf /ft3 pdl /ft3

Presión P dyn/cm2 Pa

= N/m2

kp/m2 lbf/ft2 pdl/ft2

Acelerac. gravedad g 980 cm/s2

9.8 m/s2

9.8 m/s2 32.2 ft/s2 32.2 ft/s2

Page 5: FORMULARIO FISICA (2013)

Edwin H. Gutiérrez E. - 5 -

Trabajo:

erg = ergioJ = Juliokpm = kilopondímetrolbf. ft = libra fuerza piepdl. ft = poundal pieBtu = unidad térmica británicacal = caloría kW.h = kilovatio hora

Potencia:

W = vatio o wattsHP = Horse power ( caballo de fuerza)CV = Caballo vaporkW = kilovatio o kilowattkpm/s = kilopondímetro por segundo

EQUIVALENCIAS ENTRE UNIDADES

De longitud 1 m = 100 cm 1 km = 1000 m 1 m = 3.28 ft 1 m = 39.4 in 1 ft = 12 in 1ft = 30.48 cm 1 in = 2.54 cm 1 milla terrestre = 1609 m 1 milla terrestre = 5280 ft 1 milla náutica = 1852 m1 mm = 107 Å

De masa 1 kg = 1000 g 1 kg = 2.2 lbm

1 slug = 14.59 kg1 slug = 32.2 lbm

1 utm = 9.8 kg1 lbm = 453.6 g 1 ton. métrica = 1000 kg

1000 Kp

De fuerza o peso

1 N = 105 dyn 1 lbf = 4.45 N 1 kp = 9.8 N 1 kp = 2.2 lbf

1 kp = 1000 grf

1 lbf = 32.2 pdl 1 lbf = 0.454 kp 1 tonf = 1000 kp1 tonf = 9.8 kN

De tiempo

1 hora = 3600 s1 hora = 60 min.1 día = 24 horas 1 año = 365 días

De potencia

1 W = 107 erg/s 1 HP = 76.1 kpm /s1 kpm/s = 9.8 W 1 CV = 75.1 kpm /s1 lbf ft/s = 1.36 W 1 kW = 1000 W 1 HP = 550 lbf ft/s 1 HP = 746 watts 1 CV = 735.5 W

De trabajo y energía

1 J = 107 erg.

1 kcal = 4 186 J in2 1 kpm = 9.8 J 1 lbf . ft = 1.36 J

De área

1 m² = 104 cm² 1 m² = 10.76 ft² 1 m2 = 1550 in2 1 ft2 = 929 cm2

1 in2 = 6.54 cm2

1 ft2 = 144 in2

De volumen

1 m3 = 106 cm3

1 litro = 1000 cm3 1 m3 = 35.3 ft3

1 m3 = 1000 litros 1 in3 = 16.387 cm3

1 ft3 = 1728 in3

Longitud: ft = piem = metrocm = centímetroin = pulgadakm = kilómetroÅ = Ángstrom

Masa: u.t.m. = unidad técnica de masa m = metroslug = slug lbm = libra masa kg = kilogramo g = gramo

Fuerza:

dyn = dinaN = Newtonkp = kilopondiolbf = libra fuerzapdl = poundalkgf = kp

Page 6: FORMULARIO FISICA (2013)

- 6 - Edwin H. Gutiérrez E.

1 kpm = 9.8 J 1 lbf . ft = 1.36 J 1 Btu = 1055 J 1 Btu = 778 lbf.ft 1 Btu = 0.252 kcal. m3 = 264 galones 1 cal = 3.09 lbf.ft 1 cal = 4.186 J 1 kW.h = 3.6x106 J

1 cm2 = 0.155 in2

1 in2 = 6.94x10-3 ft2

1 ft2 = 9.29x10-2 m2

1 galón = 231 in3 1 m3 = 264 galones 1 galón = 3.785 lit. 1 litro = 1 dm3

1 ft3 = 7.48 galones1 ft3 = 28.3 litros

De ángulos De temperaturas

180º = π radianes 1 revolución = 2π rad.1˚ = 60 ' 1' = 60"

325

9 CF TT

273 CK TT

)32(9

5 FC TT

460 FR TT

CONVERSIÓN DE UNIDADES.- Mediante los factores de conversión. Ejem:

1m = 100 cm: factor de conversión: cm

m

100

1 o la equivalente

m

cm

1

100

ALFABETO GRIEGO

Α α Alfa Β β Beta Ρ ρ Ro

Γ γ Gamma Δ δ Delta Τ τ Tau

Ε ε Épsilon Ζ ζ Dseta Φ φ Fi

Η η Eta Θ θ Theta Ψ ψ Psi

Ι ι Iota Κ κ Kappa Σ σ Sigma

Λ λ Lambda Μ μ My Υ υ Ípsilon

Ν ν Ny Ξ ξ Xi Χ χ Ji

Ο ο Ómicron Π π Pi Ω ω Omega

FÓRMULAS DE FIGURAS PLANAS Y CUERPOS SÓLIDOS

CuadradoÁrea:

2aA

RectánguloÁrea:

)hbA

Page 7: FORMULARIO FISICA (2013)

Edwin H. Gutiérrez E. - 7 -

a

a

a

a

Perímetro:aP 4

b

h

b

h

Perímetro:)(2 hbP

Trapeciob

a

c dh

b

a

c dh

b

a

c dh

b

a

c dh

Área:

hba

A

2

Perímetro:dcbaP

Triángulo

c

b

ah

c

b

ah

Área:

2

hbA

Perímetro:cbaP

Círculo

R

D

R

D

Área:2RA

Circunferencia:

RP 2

D = 2R

Triángulo rectángulo

ab

cA B

C

ab

cA B

C

ab

cA B

C

ab

cA B

C

Área:

2

bcA

Perímetro:cbaP

T. de Pitágoras:a2 = b2 + c2

Rombo

D

d

l

ll

l

D

d

l

ll

lÁrea:

2

* dDA

Perímetro:lP 4

Hexágono

Ap R

l

Ap R

l

Rl lAp2

3

Área:

2

2

33lA

Perímetro:lP 6

Cubo

D

d

aD

d

D

d

a

Volumen:3aV

Área:26aA

T. de Pitágoras:D2 = d2 + a2

Prisma

h

ba

h

ba

Volumen:hbaV

Área:)(2 bhahabA

Cilindro

h

R

h

R

Volumen:hRV 2

Área:

)(2

2

hRRA

hRA

t

l

Cono

R

gh

R

gh

Volumen:hRV 2

31

Área:

)( gRRA

gRA

t

l

Pirámide Volumen:hAV b *

31

Área:

EsferaVolumen:

334 RV

Page 8: FORMULARIO FISICA (2013)

- 8 - Edwin H. Gutiérrez E.

Ap

apr

ha Ap

apr

ha

blt

pbl

AAA

APA

*21

T. de Pitágoras:222 hapAp

222 hra

Área:24 RA

Densidad = masa/volumen V

m

Peso específico = peso/volumen V

w

ECUACIÓN DIMENSIONAL.- Es una igualdad de tipo algebraico que expresa las relaciones existentes entre las magnitudes fundamentales y derivadas:

MAGNITUD FÓRMULA ECUACIÓN DIMENSIONAL

Área ( A ) A = long.x long. 2LA

Volumen (V) V = (long ) 3 3LLLLV

Velocidad ( v)t

xv

1 LTT

Lv

Aceleración (a)t

va

21

LTT

TLa

Fuerza ( F ) amF 2MLTF

Presión ( P )A

FP

212

2

TML

L

MLTP

Trabajo ( W ) xFW 222 TMLLMLTW

Potencia ( P )

t

WP

3222

TMLT

TMLP

Cap. 3 VECTORES

VECTOR.- El vector es una representación gráfica de una magnitud vectorial, el cual es definido a partir de cuatro de sus componentes:

Page 9: FORMULARIO FISICA (2013)

Edwin H. Gutiérrez E. - 9 -

Módulo

Línea de acción = dirección

O

A

L

1. Módulo, intensidad o magnitud.- Valor numérico del vector, o longitud del mismo (OA)

2. Dirección.- Línea de acción del vector o las líneas rectas paralelas a él ( L ). Queda determinada conociendo el ángulo θ

3. Sentido.-Está indicado por la punta de la flecha (A)4. Punto de aplicación.- Es el origen del vector ( O ) NOTACIÓN DE VECTORES:

VOA

V = Vector MóduloVVOA

Representación rectangular de vectores:

),( yx VVV

Absisa Ordenada

),( yx VVV

Absisa Ordenada

Representación polar de vectores:

Módulo Dirección

),( VV

Módulo Dirección

),( VV

SUMA DE VECTORES.- Sumar dos o más vectores, es representarlos por uno solo llamado resultante; éste vector produce los mismos efectos que todos juntos.

I. MÉTODOS GRÁFICOS:

1.- MÉTODO DEL PARALELOGRAMO.- Trazar los dos vectores componentes haciendo coincidir sus orígenes, luego se dibujar sus paralelas para formar un paralelogramo, el vector suma (resultante) estará en una de sus diagonales y su punto de aplicación coincidirá con el origen de los vectores.

A

B

A

B

R

A

B

A

B

R

2.- MÉTODO DEL TRIÁNGULO.- Trazar los dos vectores uno a continuación del otro para luego formar un triángulo, el vector suma (resultante) tiene su origen en el origen del primer vector.

Page 10: FORMULARIO FISICA (2013)

- 10 - Edwin H. Gutiérrez E.

A

B

A

BR

A

B

A

BR

3.- MÉTODO DEL POLÍGONO.- Trazar los vectores uno a continuación del otro para formar un polígono cerrado con el vector resultante, el punto de aplicación coincidirá con el origen del primer vector.

C

D

A

B

A

BR

C

D

C

D

A

B

A

BR

C

D

En el caso de que el origen del primer vector coincida con el extremo del último vector, la resultante es nula, y se dice que el sistema de vectores está en equilibrio.

RESTA DE VECTORES.- Es un caso especial de la suma de vectores, se toma en cuenta al vector opuesto y se procede de la misma forma que la suma:

A

B

B

B

A

R

A

B

B

A

A

R

R A B

R B A

- La sustracción de vectores no es conmutativa.- Para sustraer vectores, se debe trazar el vector positivo, luego dibujar a continuación el

vector negativo.- La resultante ( R

), se obtiene de la misma manera que en los anteriores casos de

vectores.

II. MÉTODOS ANALÍTICOS.- Los más utilizados, de mayor exactitud:

1. VECTORES COLINEALES Y DEL MISMO SENTIDO.- Ángulo entre vectores 0º

Page 11: FORMULARIO FISICA (2013)

Edwin H. Gutiérrez E. - 11 -

A

B

B

A

R

A

B

B

A

R

El módulo de la resultante está dado por:

R A B

2. VECTORES COLINEALES DE DIFERENTE SENTIDO.- Ángulo entre vectores 180º

A

B

B

A

R

A

B

B

A

R

El módulo de la resultante está dado por:

R A B

3. VECTORES PERPENDICULARES.- Ángulo entre vectores 90º

A

B R

A

B R

El módulo de la resultante está dado por:

Teorema de Pitágoras:

2 2R A B

Su dirección: adyacentecat

opuestocat

.

.tan tan

B

A

4. VECTORES QUE FORMAN CUALQUIER ÁNGULO.- Ángulo entre vectores α.

O A

B

R

º180

M

N

O A

B

R

º180

M

N Módulo de R

:

2 2 2 cosR A B A B

Dirección de R

:

B sensen

R

RESULTANTE MÁXIMA Y MÍNIMA.- De dos vectores, es:

- La resultante de dos vectores es máxima cuando estos se encuentran en la misma dirección y sentido ( θ = 0º )

Page 12: FORMULARIO FISICA (2013)

- 12 - Edwin H. Gutiérrez E.

- La resultante de dos vectores es mínima, cuando estos se encuentran en la misma dirección; pero de sentidos contrarios ( θ = 180º )

MULTIPLICACIÓN DE VECTORES.- Se presentan tres casos diferentes:

a) MULTIPLICACIÓN DE UN ESCALAR POR UN VECTOR.- El producto de una cantidad escalar por un vector, se escribe como Ak

, es un nuevo vector cuya magnitud es k

veces la magnitud de A

. El nuevo vector tiene el mismo sentido que A

si k es positivo y sentido opuesto si k es negativo. Ejms:

A

AAk

2

A

AAk

21

A

AAk

2

A

AAk

2

A

AAk

21

A

AAk

2

b) PRODUCTO ESCALAR DE VECTORES.- Dos vectores A

y B

que forman un

ángulo entre sí, se pueden multiplicar escalarmente, se lo representa con un punto: BA

(Vector A multiplicado escalarmente con el vector B), el resultado es un escalar.

cosB

B

A

cosB

B

A

cosA B A B

El producto escalar de dos vectores es una cantidad escalar

c) PRODUCTO VECTORIAL DE VECTORES.- El producto vectorial de dos vectores

A

y B

se representa con una aspa: AB

(Vector A multiplicado vectorialmente con el

vector B), da como resultado otro vector C

.

BAC

B

A

BAC

B

A

ABC

'

B

A

ABC

'

B

A

Para calcular el módulo del vector BA

se utiliza la siguiente relación:

Page 13: FORMULARIO FISICA (2013)

Edwin H. Gutiérrez E. - 13 -

senBAC

El producto vectorial de dos vectores no es conmutativo, es una cantidad vectorial

La dirección de C

o 'C

es perpendicular al plano formado por A

y B

, cuyo sentido es el que avanza un tornillo derecho siguiendo el ángulo de los vectores.

COMPONENTES RECTANGULARES DE UN VECTOR.- Son las proyecciones rectangulares de un vector sobre los ejes coordenados.

y

x

A

xA

yA

y

x

A

xA

yA

Se puede expresar un vector en función de otros dos ubicados sobre los ejes X e Y.

yx RRR

Los módulos de éstas componentes se obtienen a partir de las funciones trigonométricas:

Componente horizontal Componente verticalcosxA A

yA Asen

El módulo del vector, en función de sus componentes: 2 2x yA A A

SUMA DE VECTORES CONCURRENTES POR DESCOMPOSICIÓN.- Se aplica a varios vectores:

- Descomponer los vectores en sus componentes rectangulares- Hallar la resultante en el eje X y Y, por el método de vectores colineales- Hallar el módulo del vector resultante aplicando el teorema de Pitágoras.

2 2

x yR V V tan y

x

V

V

Cap. 4 CINEMÁTICA TRASLACIONAL

Page 14: FORMULARIO FISICA (2013)

- 14 - Edwin H. Gutiérrez E.

MECÁNICA.- Estudia el movimiento de los objetos. La mecánica por lo general se divide en tres partes: cinemática, dinámica y estática.

MOVIMIENTO.- Cambio de posición continúo que experimentan los objetos con respecto a un sistema o punto de referencia.

TRAYECTORIA.- Línea que un móvil describe durante su movimiento. Los movimientos con las trayectorias más estudiadas son:

Trayectoria rectilínea Trayectoria parabólica Trayectoria circular

DISTANCIA RECORRIDA.- Magnitud escalar, se define como la longitud de la trayectoria.

DESPLAZAMIENTO.- Magnitud vectorial, se define como el segmento dirigido que une dos posiciones de un movimiento.

Ejem.- Un automóvil avanza 300 km al este y retorna 100 km. la distancia recorrida es de 400 km, mientras que el desplazamiento es de 200 km dirigido hacia el este.

Distancia recorrida = 300 km + 100 km = 400 km

Desplazamiento = posición final - posición inicial ∆x = x2 – x1 = 300 km – 100 km = + 200 km

RAPIDEZ.- La rapidez es una magnitud escalar que relaciona la distancia recorrida con el tiempo.

RAPIDEZ MEDIA: tandis cia recorrida

Rapidez mediatiempo empleado

Page 15: FORMULARIO FISICA (2013)

Edwin H. Gutiérrez E. - 15 -

xv

t

m

s

cm

s

km

h

RAPIDEZ INSTANTÁNEA.- Es la rapidez en cualquier instante.

VELOCIDAD.- La velocidad es una magnitud vectorial que relaciona el cambio de posición (o desplazamiento) con el tiempo.

VELOCIDAD MEDIA: desplazamiento efectuado

Velocidad mediatiempo empleado

xv

t

0

0

tt

xx

t

xv

x0 , t0 = Posición y tiempo iniciales

x , t = Posición y tiempo finales

Tomando los valores iniciales: x0 = 0 y t0 = 0, la ecuación anterior se convierte en:

xv

t

VELOCIDAD INSTANTÁNEA.- Es la velocidad en cualquier instante. Indica qué tan rápido y en qué dirección, va un móvil en un momento dado.

RAPIDEZ Y VELOCIDAD: La rapidez es módulo de la velocidad

Ejm. Un automóvil viaja por una carretera con una velocidad de 20 m/s rumbo al norte:

nortealsmV /20

Rapidez: solo módulo

Velocidad: módulo, dirección y sentido

nortealsmV /20

Rapidez: solo módulo

Velocidad: módulo, dirección y sentido

Page 16: FORMULARIO FISICA (2013)

- 16 - Edwin H. Gutiérrez E.

ACELERACIÓN.- Es una magnitud vectorial. Relaciona los cambios de la velocidad con el tiempo en el que se producen.

Aceleración debido al cambio en la magnitud de la velocidad:

Aceleración debido al cambio en la dirección de la velocidad:

La dirección permanece constante, la rapidez (módulo de la velocidad) varía en forma uniforme.

smv /10

smv /10

smv /10

ca

ca

ca

smv /10

smv /10

smv /10

ca

ca

ca

La rapidez permanece constante, la dirección de la velocidad varía continuamente.

ACELERACIÓN MEDIA: var

var

iación de velocidadaceleración

iación de tiempo

0v

v

a0v

v

a

va

t

0v va

t

2

m

s

2

cm

s

CLASIFICACIÓN DEL MOVIMIENTO SEGÚN LA RAPIDEZ.- Tomando en cuenta la rapidez, los movimientos pueden clasificarse en uniformes y variados.

a) MOVIMIENTO RECTILÍNEO UNIFORME (M. R.U.):

x

mv

mv

0x xx

mv

mv

0x x

xv

t

se caracteriza por tener: Velocidad = Constante Aceleración = 0

Page 17: FORMULARIO FISICA (2013)

Edwin H. Gutiérrez E. - 17 -

GRAFICAS DEL M. R. U.

Desplazamiento –vs– tiempox(m)

t(s)

10Recta que pasa por el origen (x0 = 0)

El punto de corte con el eje x, nos da la posición inicial del móvil x0 = 10 m.

0

Velocidad positiva

x(m)

t(s)

10Recta que pasa por el origen (x0 = 0)

El punto de corte con el eje x, nos da la posición inicial del móvil x0 = 10 m.

0

Velocidad positiva

Velocidad –vs– tiempo

b) MOVIMIENTO RECTILÍNEO UNIFORMEMENTE VARIADO (M. R. U. V.):

x

0v

v

a

x

0v

v

a

Se caracteriza por:

Velocidad = variableAceleración = cte.

v0 = Velocidad iniciala = Aceleración

v = Velocidad finalx = Desplazamiento

ECUACIONES DEL M. R. U. V.- Son de tipo vectorial:

- Si la velocidad y la aceleración tienen sentidos opuestos, el móvil desacelera, va frenando.

- Si la velocidad y la aceleración tienen igual sentido, el móvil acelera, aumenta su rapidez.- Si el móvil parte del reposo, la velocidad inicial es cero.- Si el móvil va frenando y se detiene, la velocidad final es cero.

a) Velocidad en función del tiempo: 0v v a t

b) Velocidad en función al desplazamiento: 2 20 2v v a x

c) Desplazamiento en función del tiempo: 210 2x v t a t

d) Desplazamiento en función del tiempo: 0

2

v vx t

d) Velocidad media o promedio: x

vt

2

ov vv

Page 18: FORMULARIO FISICA (2013)

- 18 - Edwin H. Gutiérrez E.

GRÁFICAS DEL M. R. U. V.

Desplazamiento –vs– tiempo

x

t

Velocidad –vs– tiempo

t

v

Aceleración –vs– tiempo

t

a

CAÍDA LIBRE.- Casi todos sabemos que todos los objetos, cuando se sueltan, caen hacia la Tierra con aceleración casi constante.

ACELERACIÓN DE LA GRAVEDAD.- Símbolo: g.

En los Polos: 9.83 m/s2 En el Ecuador: 9.77 m/s2

El valor promedio de la aceleración de la gravedad, en los diferentes sistemas es:

g = 980 cm/s2 g = 9.8 m/s2 g = 32.2 ft/s2

- El valor de g sobre la Tierra disminuye ligeramente conforme aumenta la altitud. - El valor de g sobre la Tierra disminuye ligeramente con la altura.

ECUACIONES DE LA CAÍDA LIBRE.- Se utilizan las ecuaciones del M.R.U.V. Para establecer una ecuación correcta, debemos tomar en cuenta lo siguiente:

- La aceleración de la gravedad, es siempre negativa, ya sea si el objeto se lanza hacia arriba o hacia abajo.

- Elegir un nivel o punto de referencia, que será siempre el punto inicial de lanzamiento.- Los vectores velocidad serán positivos, si tienen sentido hacia arriba; y negativos si

tienen sentidos hacia abajo.- Los desplazamientos serán positivos si se encuentran por encima del nivel de

referencia; y negativos si estuvieran por debajo.

v vg g

Y

v vg g

Y

0v v g t

2 20 2v v g h

210 2h v t g t

Page 19: FORMULARIO FISICA (2013)

Edwin H. Gutiérrez E. - 19 -

IMPORTANTE.- OTRA FORMA DE RESOLVER PROBLEMAS DE CAÍDA LIBRE, ES CONSIDERANDO COMO:

- Un movimiento con aceleración positiva cuando el objeto desciende (puesto que su velocidad aumenta); y como

- Un movimiento uniformemente retardado cuando sube (puesto que su velocidad disminuye):

ALTURA MÁXIMA Y TIEMPO DE ASCENSO:

Altura máxima: 20

max 2

vh

g

Tiempo de ascenso: 0vt

g

Tiempo de vuelo: 02V

vt

g

0v

0v

0vv

hmax

0v

0v

0vv

hmax

v = vo + g t v = vo - g t

Movimiento en descenso Movimiento en ascenso

Page 20: FORMULARIO FISICA (2013)

- 20 - Edwin H. Gutiérrez E.

Cap. 5 ESTÁTICA

FUERZA NETA.- Cuando varias fuerzas actúan sobre un objeto, nos interesa saber el efecto combinado, es decir, la fuerza neta.

Fuerza neta es el vector suma o resultante ( ΣF ), de todas las fuerzas que actúan sobre un objeto o sistema.

La fuerza neta es cero cuando fuerzas iguales en magnitud actúan en sentidos opuestos; lo que significa que su resultante es cero, se dice que tales fuerzas son fuerzas equilibradas.

1F

2F

1F

2F

1F

2F

1F

2F

Fuerza neta cero(Fuerzas equilibradas)

1 2

0neta

neta

F F F

F

La estática estudia las condiciones cuando la fuerza neta es nula.

Una fuerza neta diferente de cero, se refiere a una fuerza no equilibrada; y una fuerza no equilibrada produce aceleración.

1F

2F

1F

2F

1F

2F

netaF

1F

2F

netaF

Fuerza neta diferente de cero(Fuerzas no equilibradas) 021 FFFneta

netaFa

netaFa

Fuerza neta diferente de cero produce aceleración

La dinámica estudia las condiciones cuando la fuerza neta es diferente de cero.

CONCEPTO DE ESTÁTICA.- Estudia las condiciones que deben cumplir las fuerzas que actúan sobre un objeto o sistema, para que éste se encuentre en equilibrio.

Page 21: FORMULARIO FISICA (2013)

Edwin H. Gutiérrez E. - 21 -

EQUILIBRIO.- Un objeto se encuentra en equilibrio cuando la fuerza neta o resultante que actúa sobre un cuerpo y el momento resultante son nulos. Existen dos clases de equilibrio.

Equilibrio estático

0v

0v

Equilibrio cinético

v

v

.

0

ctev

a

v

v

.

0

ctev

a

El objeto no se mueve (en reposo). El objeto se mueve en línea recta a velocidad constante.

PRINCIPIO DE INERCIA: Newton relacionó el concepto de inercia con la masa. En un principio, él llamó masa a una cantidad de materia, pero posteriormente la redefinió como sigue:

La inercia se define, como la resistencia que ofrece un cuerpo a cambiar su estado de reposo o de movimiento rectilíneo uniforme.

La masa es una medida de la inercia

PRIMERA LEY DE NEWTON (Ley de inercia).- Como consecuencia del principio de inercia:

“Todo cuerpo permanece en reposo o se desplaza con movimiento rectilíneo uniforme, siempre que la fuerza neta actuante sobre él sea nula”

1ra. CONDICIÓN DE EQUILIBRIO.- Un objeto se encontrará en equilibrio cuando la fuerza resultante que actúa sobre él, sea igual a cero.

1F

4F

3F

2F

1F

4F

3F

2F

1F

4F

3F

2F1F

4F

3F

2F

Page 22: FORMULARIO FISICA (2013)

- 22 - Edwin H. Gutiérrez E.

TERCERA LEY DE NEWTON (Ley de acción y reacción).- Debe haber dos cuerpos interactuando:

“A toda acción le sigue una reacción de igual valor pero de sentido contrario”.

TEOREMA DE LAMY .- Aplicable a tres fuerzas coplanares en equilibrio:

“Si un sólido se encontrase en equilibrio bajo la acción de tres fuerzas coplanares y concurrentes, el valor de cada una de las fuerzas es directamente proporcional al seno del ángulo que se le opone”.

1F

3F

2F

1F

3F

2F

DIAGRAMA DE CUERPO LIBRE (DCL).- Es representar para cada cuerpo por separado las fuerzas que actúan sobre él.

1. Dibujar el objeto que se estudia, con todas las fuerzas sobre él.- Se aísla el objeto de todo el sistema.- Se representa el peso (w) del objeto mediante un vector vertical hacia abajo.- Si existiesen superficies de contacto, se representa la fuerza normal (N) mediante un

vector perpendicular a dichas superficies y empujando hacia el objeto.- Si hubiesen cuerdas o cables, se representa la tensión (T) mediante un vector que está

siempre jalando al cuerpo, previo corte imaginario.- Si existiesen barras comprimidas, se representa la compresión mediante un vector

que esta siempre empujando al cuerpo, previo corte imaginario.2. Elegir un sistema de ejes coordenados, para un plano inclinado el eje x paralelo al plano.3. Descomponer las fuerzas sobre los ejes.4. Aplicar las condiciones de equilibrio.

NOTA: Para resolver un problema de equilibrio se puede elegir una de las tres formas:

1er. Método: Aplicando la 1ra. Condición de equilibrio: 0xF y 0yF

2do. Método: Aplicando el teorema de Lamy: 31 2 FF F

sen sen sen

3er. Método: Las tres fuerzas sumadas vectorialmente forman un triángulo. Aplicando relaciones trigonométricas:

Page 23: FORMULARIO FISICA (2013)

Edwin H. Gutiérrez E. - 23 -

FUERZA DE ROZAMIENTO.- Es una fuerza que se opone al movimiento o posible movimiento; se encuentra en las superficies de contacto, depende del grado de aspereza entre ellas.

a) ROZAMIENTO ESTÁTICO ( fs ).- Varía desde un valor mínimo (cero) hasta un valor máximo, cuando uno de los cuerpos está a punto de moverse (movimiento inminente)

N

0F0sf

N

0F

N

0F0sf

No hay rozamiento

N

1sf 1FN

1sf 1F

Hay rozamiento

N

2sf 2FN

2sf 2F

Hay rozamiento

11 sfF 22 sfF

12 FF ; 12 ss ff N

maxsf 3F

N

maxsf 3F

Movimiento inminente

La fuerza F llega a un valor, tal que el bloque empieza a moverse, en ese instante la fuerza de rozamiento es máxima (movimiento inminente).

N

sf F

w

N

sf F

w

Nf ss 0

La fuerza de rozamiento estática máxima se determina con la siguiente expresión:

μs = Coeficiente estático de rozamientoN = Fuerza normal

b) ROZAMIENTO CINÉTICO ( fk ).- Al quedar el bloque en movimiento, la fuerza de rozamiento se hace menor que fs, a esta nueva fuerza se le denomina fuerza de rozamiento cinética, fk.

La fuerza de rozamiento cinética es constante.

N

kfF

w

N

kfF

wEn movimiento

μk = Coeficiente estático de rozamientoN = Fuerza normal

Page 24: FORMULARIO FISICA (2013)

- 24 - Edwin H. Gutiérrez E.

ALGUNOS DATOS ACERCA DEL ROZAMIENTO.- Se consideran los siguientes aspectos:

- Las fuerzas de fricción son directamente proporcionales a la fuerza normal.- Las fuerzas de fricción pueden variar, seleccionando adecuadamente las superficies que

se ponen en contacto.- Para un mismo cuerpo las fuerzas de fricción son independientes del área de contacto.- La fuerza de fricción estática fs resulta mayor que la cinética fk:

fk < fs además μk < μs

REPRESENTACIÓN GRÁFICA DE LA FUERZA DE FRICCIÓN –VS– FUERZA EXTERNA.- El rozamiento estático llega a ser un tanto mayor que el rozamiento cinético.

TORQUE O MOMENTO DE UNA FUERZA .- Es una magnitud vectorial. Se denomina momento de una fuerza respecto de un punto, al producto vectorial del vector posición r

por el vector fuerza F

.

X

F

r

Y

O

d

X

F

r

Y

O

d

rFM

El torque o momento, nos da a conocer la capacidad para producir rotación una fuerza sobre el objeto que ejerce acción.

- La dirección del vector M

es perpendicular al plano de rotación y se encuentra en el eje de rotación, el sentido se determina con la regla de la llave y el tornillo, o la regla de la mano derecha.

- El módulo del torque o momento se determina multiplicando el módulo de la fuerza ( F) y el brazo de palanca ( d ).

- Se define brazo de palanca ( d ), a la distancia mínima que existe entre el eje de rotación y la recta de acción de la fuerza. ( F ) y ( d ) deben ser siempre perpendiculares entre sí.

Page 25: FORMULARIO FISICA (2013)

Edwin H. Gutiérrez E. - 25 -

F

r

A

O

Línea de acción

de la fuerza

Bra

zo d

e

la f

uer

za

d

F

r

A

O

Línea de acción

de la fuerza

Bra

zo d

e

la f

uer

za

d

Momento positivo

Momento negativo

Momento positivo

Momento negativo

CASOS ESPECIALES.- Para mayor comprensión sobre el cálculo de los brazos de palanca:

F

M

d

F

M

d

senL

L

F

M

senL

L

F

M

L

F L

F

dFM senLFdFM 0)0( FdFM

TEOREMA DE VARIGNON.- Establece lo siguiente:

“El momento de la fuerza resultante de dos o más fuerzas concurrentes o paralelas, con respecto a un punto cualquiera del cuerpo afectado, es igual a la suma de los momentos de cada fuerza respecto del mismo punto”

Momento resultante = Suma de momentos individuales

00 )()( iR MM

RESULTANTE GRÁFICA Y ANALÍTICA DE DOS FUERZAS PARALELAS.- El método gráfico para encontrar la resultante de dos fuerzas paralelas tiene dos formas de solucionar:

1ra. Forma:

- Trazar el vector mayor cambiado de sentido, en el punto de aplicación del vector menor.- Trazar el vector menor manteniendo su sentido, en el punto de aplicación del mayor. - Unir con una línea recta los extremos de los vectores trasladados.- La intersección de la línea trazada y la recta de unión entre los vectores, dará el punto de

aplicación del vector resultante.

Page 26: FORMULARIO FISICA (2013)

ΣMo = 0

- 26 - Edwin H. Gutiérrez E.

FUERZAS PARALELAS EN EL MISMO SENTIDO:

Módulo del vector resultante:

Punto de aplicación: Teorema de Varignon:

0 0( ) ( )R iM M

x d - x

d

1F

2FR

Ox d - x

d

1F

2FR

O

CUPLA O PAR DE FUERZAS.- Se denomina así a un sistema de dos fuerzas paralelas, de igual módulo y de sentidos contrarios. La suma de las fuerzas es cero, sin embargo el momento resultante no es nulo.

F

F

M

d

F

F

M

d M F d

2da. CONDICIÓN DE EQUILIBRIO.- Un cuerpo sólido y rígido permanece en equilibrio, cuando la sumatoria de todos los momentos respecto a un punto es igual a cero.

Un objeto se encontrará en equilibrio mecánico, cuando se cumplan las dos condiciones de equilibrio:

“La suma de fuerzas es igual a cero”“La suma de momentos es igual a cero”

R = F1 + F2

Page 27: FORMULARIO FISICA (2013)

Fneta = m a

ΣF = m a

Edwin H. Gutiérrez E. - 27 -

Cap. 6 DINÁMICA

SEGUNDA LEY DE NEWTON.- Una fuerza neta diferente de cero, se refiere a una fuerza no equilibrada; una fuerza no equilibrada produce aceleración.

a) Relación entre la fuerza y la aceleración:

mnetaF

a

mnetaF

a

m netaF2

a2

m netaF2

a2

“A mayor fuerza, mayor aceleración” Fa

b) Relación entre la masa y la aceleración:

mnetaF

a

mnetaF

a

mnetaF

a21

mmnetaF

a21

m

“A mayor masa, menor aceleración”

m

a1

“La aceleración que adquiere una partícula sometida a una fuerza neta, es directamente proporcional a la fuerza resultante e inversamente proporcional a la masa de dicha partícula, y tiene la misma dirección y sentido de la fuerza”

mnetaF

a

mnetaF

a

Fuerza resultante = masa * aceleración

Fuerzas a favor de “a” - Fuerzas en contra de “a” = masa * aceleración

CONCEPTO DE DINÁMICA.- Es una parte de la mecánica que estudia el movimiento de los cuerpos tomando en cuenta las causas que lo produce.

Page 28: FORMULARIO FISICA (2013)

w = m g

- 28 - Edwin H. Gutiérrez E.

MASA (m).- De manera más inmediata, la masa puede definirse como la cantidad de materia contenida en un cuerpo. Es una magnitud escalar.MASA INERCIAL,- Medida de la inercia de un cuerpo; es decir, la resistencia que ofrece un objeto a cambiar su estado de reposo o de movimiento rectilíneo uniforme.

La masa según 2da. Ley de newton: .3

3

2

2

1

1 ctea

F

a

F

a

Fmi

UNIDADES DE MASA:

Magnitud Sistemac. g. s.

S. I. SistemaTécnico

S. InglésTécnico

S. Inglésabsoluto

Masagramo

( g )

kilogramo

( kg )

unidad técnica de masa

( u. t. m. )

slug

( slug )

libra masa

( lbm )

1 kg = 1000 g 1 slug = 32.2 lbm 1 ton. métrica = 1000 kg

1 kg = 2.2 lbm 1 lbm = 453.6 g

1 slug = 14.59 kg 1 utm = 9.8 kg

UNIDADES DE FUERZA.- Al ser la fuerza una magnitud derivada, sus unidades son una combinación de las unidades fundamentales, cuyos nombres son:

Magnitud

Sistemac. g. s.

S. I. SistemaTécnico

S. Inglés Técnico

S. InglésAbsoluto

Fuerzaó

peso

dina ( dyn )

= g cm/s2

Newton ( N )

= kg m/s2

kilopondio( kp )

= utm m/s2

libra-fuerza( lbf )

= slug ft/s2

poundal( pdl )

= l bm ft/s2

1 N = 105 dyn 1 kp = 2.2 lbf 1 lbf = 32.2 pdl1

1 kp = 9.8 N 1 gf = 980 dyn

1 kp = 1000 gf l lbf = 4.45 N

Una fuerza de 1 N le proporciona a una masa de 1 kg una aceleración de 1 m/s2

NOTA: El kilopondio ( kp ) se denomina también kilogramo fuerza ( kgf ) , que tiene un submúltiplo llamado gramo fuerza ( gf ) o pondio, que es el peso de 1 gramo masa.

PESO (w).- Es una magnitud vectorial, se define como la fuerza de atracción gravitatoria que ejerce un planeta sobre los cuerpos que se encuentran sobre ella.

Page 29: FORMULARIO FISICA (2013)

Edwin H. Gutiérrez E. - 29 -

w = Pesom = Masag = Aceleración de la gravedad

ww

MEDICIONES DE PESOS Y MASAS.- Experimentalmente:

Masas: Balanzas de doble platillo, basado en el equilibrio de un cuerpo rígido.

Pesos: Balanzas monoplatillo, basado en el equilibrio de una partícula.

w 1w

2L

2L

O

w 1ww 1w

2L

2L

O

T

gmw

T

gmw

gmgm

ww

ww

M

LL

O

1

1

2120

0

gmT

gmT

Fy

0

0

DIFERENCIAS ENTRE MASA Y PESO

CARACTERÍSTICAS DE MASA CARACTERÍSTICAS DE PESO- Es la cantidad de materia que tiene un

cuerpo. - Es una magnitud escalar. - Se mide con la balanza. - Su valor es constante, es decir,

independiente de la altitud y latitud. - Sus unidades de medida son el gramo

(g) y el kilogramo (kg). - Sufre aceleraciones

- Es la fuerza que ocasiona la caída de los cuerpos.

- Es una magnitud vectorial. - Se mide con el dinamómetro. - Varía según su posición, es decir,

depende de la altitud y latitud. - Sus unidades de medida en el S.I. son

la dina y el Newton. - Produce aceleraciones.

PLANO INCLINADO.- Se descompone el peso; se calcula la normal (fuerza); se determina la fuerza de rozamiento y se aplica la segunda ley de Newton.

Page 30: FORMULARIO FISICA (2013)

- 30 - Edwin H. Gutiérrez E.

cos

cos

( cos )

x

x k

k

k

k

k

F m a

w f m a

w sen N m a

m g sen m g m a

g sen g a

a g sen

N

kf

senwcosw

wx

y

N

kf

senwcosw

wx

y

Cap. 7 TRABAJO POTENCIA Y ENERGÍA

TRABAJO REALIZADO POR UNA FUERZA CONSTANTE (W).- Mecánicamente, trabajo comprende fuerza y desplazamiento.

El trabajo (W) realizado por una fuerza constante (F) al mover un objeto es igual al producto de las magnitudes del desplazamiento (x) y la componente de la fuerza paralela al desplazamiento.

x

F

xF

yF

x

F

xF

yF

Es una magnitud escalar: cosFxxFW

CASOS PARTICULARES.- El valor numérico del trabajo puede ser positivo, negativo o nulo:

a) Si la fuerza se encuentra en sentido del movimiento (Ej. Fuerza aplicada a un objeto), el trabajo es:

F

x

movimientoF

x

movimiento

θ = 0º ; cos 0º = 1 xFWxFxFW º0coscos b) Si la fuerza es perpendicular al movimiento (Ej. Fuerza normal), el trabajo es:

Page 31: FORMULARIO FISICA (2013)

Edwin H. Gutiérrez E. - 31 -

F

x

movimientoF

x

movimiento

θ = 90º ; cos 90º = 0 0º90coscos WxFxFW

c) Si la fuerza se encuentra en sentido contrario al movimiento (Ej. Fuerza de rozamiento), el trabajo es:

F

x

movimientoF

x

movimiento

θ = 180º ; cos180 º = –1 xFWxFxFW º180coscos

Nota: Para determinar el trabajo no debe olvidarse que deberá haber simultáneamente una fuerza y un desplazamiento.

TRABAJO NECESARIO PARA ELEVAR UN OBJETO.- Se debe aplicar una fuerza vertical hacia arriba igual al peso del cuerpo.

cos cos0ºW F x wh

W wh m g h

Trabajo = peso x altura

wF h

movimiento

w

F

wF h

movimiento

w

F

TRABAJO NETO.- Llamado también trabajo total, es la suma algebraica de los trabajos realizados por cada una de las fuerzas de manera independiente.

UNIDADES DEL TRABAJO:

Magnitud Sistemac. g. s.

S. I. Sistema Técnico S. Inglés Técnico

S. Inglés absoluto

Trabajoergio( erg )

= dyn*cm

Julio( J )

= N*m

kilopondímetro( kpm )

= kp*m

libra-pie( lbf. ft )

= lbf *ft

poundal-pie( pdl.ft )

= pdl*ft

Page 32: FORMULARIO FISICA (2013)

- 32 - Edwin H. Gutiérrez E.

El Joule es el trabajo realizado por una fuerza de 1 N al producir un desplazamiento de 1 m en la dirección de la fuerza.

1 J = 107 erg. 1 lbf.ft = 32.2 pdl.ft

1 J = 0.102 kpm 1 lbf.ft = 1.36 J

1 kpm = 9.8 J 1 kpm = 9.8x107 erg

FUERZAS CONSERVATIVAS.- El trabajo realizado no depende de la trayectoria seguida, sino solamente de la posición inicial y posición final. Ejemplos de estas fuerzas son las fuerzas gravitatorias, eléctricas y elásticas.FUERZAS NO CONSERVATIVAS.- El trabajo realizado depende de la trayectoria seguida, Ejemplos de estas fuerzas son las fuerzas de rozamiento.

POTENCIA (P).- La potencia es una magnitud de tipo escalar que nos indica la rapidez con que una máquina o un sistema de fuerzas realiza un trabajo.

WP

t P F v

UNIDADES:

Magnitud Sistemac.g.s.

S. I. SistemaTécnico

S. Ingles Técnico

S. Inglesabsoluto

Potencia erg/s( Watt o vatio )

W = J/s kpm/s lbf.ft/s pdl.ft/s

1 Watt = 107 erg /s 1 kpm/s = 9.8 Watt

1 lbf. ft /s = 32.2 poundal. ft /s 1 lbf .ft /s = 1.36 Watt

1 Watt es la potencia que se desarrolla al realizar un trabajo de 1 joule en cada segundo

El Watt es una unidad muy pequeña, por eso, a veces se utilizan otas unidades mayores:

kilowatt ( kW ) Caballo fuerza ( HP) Caballo vapor ( CV )

1 kW = 1000 Watt1 HP = 746 Watt = 550 lbf. ft / s1 CV = 735.5 Watt = 75 kpm / s

/ s

EL KILOWATT-HORA.- Unidad de trabajo y energía, corresponde a la potencia que desarrolla una máquina de 1 kW durante 1 hora:

1 kW-h = (1 kW)(1 h) = (1000 W)(3600 s) = 3600000 J = 3.6x106 J

Page 33: FORMULARIO FISICA (2013)

Edwin H. Gutiérrez E. - 33 -

EFICIENCIA O RENDIMIENTO ( η ).- Es el trabajo útil generado por la energía suministrada. La eficiencia ( η ) esta dada por una fracción ( o porcentaje ):

MotorPotencia Entregada Potencia Útil

Potencia Perdida

P. E. P. U.

P. P.

MotorPotencia Entregada Potencia Útil

Potencia Perdida

P. E. P. U.

P. P.

. .*100%

.

PU

P E *100%salida

entrada

W

W

LA ENERGÍA.- La energía es una propiedad de los cuerpos que produce transformaciones en ellos mismos o en otros.

La energía nos indica la capacidad que tiene un objeto o sistema físico para realizar un trabajo.

ENERGÍA MECÁNICA Y TRABAJO.- La energía mecánica se manifiesta de dos formas: energía cinética y energía potencial

ENERGÍA CINÉTICA ( Ek ).- Forma de energía que tienen los cuerpos en movimiento.

m

v

m

v

En movimiento

21

2kE m v

Ek = Energía cinéticam = Masav = Velocidad

A mayor velocidad, mayor energía cinética

ENERGÍA POTENCIAL ( EP ).- Forma de energía que depende de la posición de un cuerpo con respecto a un nivel de referencia. Existen dos tipos de energía potencial.

a) ENERGÍA POTENCIAL GRAVITATORIA ( EPG ).- Forma de energía que posee un cuerpo debido a la altura que se encuentra, con respecto a un nivel de referencia.

m

h

m

h

En reposo

PE m g h

PE wh

EPG = Energía potencial gravitatoria m = Masa h = Altura g = Aceleración de la gravedad

Page 34: FORMULARIO FISICA (2013)

EM = Ek + EP

- 34 - Edwin H. Gutiérrez E.

w = PesoA mayor altura, mayor energía potencial

b) ENERGÍA POTENCIAL ELÁSTICA ( EPE ).- Forma de energía que posee un cuerpo sujeto a un resorte comprimido o estirado.

xk

k

Posición de equilibrio

Deformación

xk

k

Posición de equilibrio

Deformación

21

2PEE k x

EPE = Energía potencial elásticak = Constante de elasticidad del resorte x = Deformación del resorte

A mayor deformación del resorte, mayor energía potencialLa suma de la energía cinética y potencial se denomina energía mecánica:

TEOREMA DEL TRABAJO Y LA ENERGÍA.- El trabajo es el que se realiza sobre los objetos, mientras que la energía es algo que los objetos tienen.

x

m F m

v0v

x

m F m

v0v

x

m F m

v0v

Movimiento sin fricción m

m

wF h

pE

0pEm

m

wF h

pE

0pE

0k k kW E E E 0P P PW E E E

“La suma de los trabajos de las fuerzas externas sobre un objeto, es igual a la variación de las energías cinética y potencial”

F fr k PG PEW W E E E

2 2 2 21 1 1 10 0 02 2 2 2F frW W mv mv m g h m g h k x k x

SISTEMA CONSERVATIVO DE FUERZAS.- Para un sistema conservativo (sin rozamiento) y donde no existe fuerza externa, la energía mecánica inicial es igual a la energía mecánica final.

Page 35: FORMULARIO FISICA (2013)

Edwin H. Gutiérrez E. - 35 -

0v

v

h

0h

F0v

v

h

0h

F

0 0k P k PE E E E

Energía inicial = Energía final

PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA.- Cualquier forma de energía se transforma en otra porque:

“La energía no se crea ni se destruye, solo se transforma de una clase a otra”

UNIDADES DE ENERGÍA.- Son las mismas que las del trabajo: J, erg, kpm, etc.

Cap. 8 MOVIMIENTO CIRCULAR

INTRODUCCIÓN.- Movimiento circular como cuya trayectoria es una circunferencia.

Rotación: Un objeto rota cuando gira alrededor de un eje que forma parte del objeto.

Revolución: Un objeto efectúa revoluciones cuando gira alrededor de un eje que no forma parte del objeto.

DISTANCIA LINEAL (s).- Magnitud escalar. Es la longitud recorrida por una partícula a lo largo del arco de circunferencia en un movimiento circular.

r

r

sr

r

sarco = ángulo * radio

s = Longitud del arco, medido en m, cm, ft, etc.r = longitud del radio, medido en m, cm, ft. etc.θ = Angulo subtendido medido en radianes.

DESPLAZAMIENTO ANGULAR (

).- Es una magnitud vectorial.

- El módulo es el ángulo formado por un cuerpo rígido o una partícula respecto de un centro y el radio, mientras va girando.

s = r θ

Page 36: FORMULARIO FISICA (2013)

- 36 - Edwin H. Gutiérrez E.

- La dirección es perpendicular al plano de rotación, y se encuentra en el centro de la circunferencia.

- El sentido se obtiene con la regla de la mano derecha.

REGLA DE LA MANO DERECHA.- Determina el sentido de vectores rotacionales.

El vector

en un movimiento de rotación

El vector

en un movimiento circunferencial

“si suponemos que tomamos el eje de rotación del cuerpo con la mano derecha de modo que los dedos apunten en el sentido de la rotación, el pulgar colocado paralelo al eje indicará el sentido del vector desplazamiento angular”. UNIDADES DEL DESPLAZAMIENTO ANGULAR.- Es el radián (rad). Existen otras unidades como ser ( º ) grados sexagesimales, revoluciones.

Un radián, es la medida del ángulo central de una circunferencia subtendida por un arco de longitud igual al radio de dicha curva.

s = r θ θ = s/r = r/r = 1 rad = 360º /2π = 57.3 º π = 180º ; 2π = 360º ; 1 revolución = 1 Vuelta = 2π rad.

Note que s

r , significa que una medición en radianes es sólo una cifra adimensional.

VELOCIDAD LINEAL O TANGENCIAL ( v

).- Es una magnitud vectorial, señala la dirección en que gira un cuerpo o partícula:

- El módulo es la rapidez lineal (o tangencial) - La dirección es siempre tangente a la trayectoria circular y por ende perpendicular al

radio. - El sentido es según el movimiento.

RAPIDEZ LINEAL O TANGENCIAL ( v ).- Es el escalar de la velocidad tangencial, se define como la razón de cambio del arco recorrido en una unidad de tiempo.

Page 37: FORMULARIO FISICA (2013)

Edwin H. Gutiérrez E. - 37 -

v v

v

s

R

R

v v

v

s

R

R

tiempo

arcolinealRapidez

s

vt

Unidades: mv

s

VELOCIDAD ANGULAR ( ).- Es una magnitud vectorial que señala la dirección en que gira un cuerpo o partícula:

- El módulo es la rapidez angular.- La dirección es perpendicular al plano de rotación, y se encuentra en el centro de la

circunferencia.- El sentido se obtiene con la regla de la mano derecha.

RAPIDEZ ANGULAR ( ).- Es el escalar de la velocidad angular, se define como la razón de cambio del ángulo girado en una unidad de tiempo.

r

11 , t

22 , t

r

11 , t

22 , t ánguloRapidez angular

tiempo

t

Unidades: rad

s

Si 01 , 01 t entonces: 2 1

2 1t t t

t

La rapidez angular es la misma para todos los puntos de un cuerpo rígido que gira.

OTRAS UNIDADES DE LA VELOCIDAD ANGULAR:

Otras unidades son: rpm (revoluciones por minuto = revol/min)rps (revoluciones por segundo = revol/seg)

Page 38: FORMULARIO FISICA (2013)

- 38 - Edwin H. Gutiérrez E.

VECTOR VELOCIDAD ANGULAR

El vector en un movimiento de rotación

El vector en un movimiento circunferencial

ACELERACIÓN TANGENCIAL ( a

).- Es una magnitud vectorial, que se presenta en una partícula con movimiento circular:

- El módulo nos indica el aumento o disminución de la rapidez tangencial en cada unidad de tiempo.

- La dirección es siempre tangente a la trayectoria circular y por ende perpendicular al radio.

- El sentido es según el movimiento si la rapidez aumenta; contrario al movimiento si la rapidez se reduce.

El módulo de la aceleración media tangencial es:

empleadotiempo

linealvelocidaddeVariacióngencialnAceleració tan

v

at

0

0

v vva

t t t

00 t , se tiene:

0v va

t

2

ma

s

Movimiento acelerado Movimiento retardadoa

v

a

v

Page 39: FORMULARIO FISICA (2013)

Edwin H. Gutiérrez E. - 39 -

a

v

a

v

Si v > v0 ; a

y v

son del mismo sentido Si v < v0 ; a

y v

son de sentido contrarios

ACELERACIÓN ANGULAR ( ).- Es una magnitud vectorial, cuyo vector nos señala la dirección en que se produce el cambio de velocidad angular.

MOVIMIENTO ACELERADO

0

0

MOVIMIENTO RETARDADO

0

0

Si ω > ω0 (acelerando) y

son del mismo sentido

La velocidad y la aceleración angular tienen el mismo sentido.

Si ω < ω0 (frenando) y

son de sentidos contrarios

La velocidad y la aceleración angular tienen sentidos opuestos.

- El módulo nos indica el incremento o disminución de la velocidad angular en cada unidad de tiempo.

- La dirección es perpendicular al plano de rotación, y se encuentra en el centro de la circunferencia.

- El sentido se obtiene con la regla de la mano derecha si la rapidez angular aumenta; es de sentido contrario si la rapidez angular disminuye.

El módulo de la aceleración angular es:

empleadotiempo

angularvelocidaddeVariaciónangularnAceleració

Page 40: FORMULARIO FISICA (2013)

- 40 - Edwin H. Gutiérrez E.

t

0

t

2

rad

s

MAGNITUDES LINEALES Y MAGNITUDES ANGULARES:

s R v R a R

CLASIFICACIÓN DEL MOVIMIENTO CIRCULAR SEGÚN LA RAPIDEZ:

a) MOVIMIENTO CIRCULAR UNIFORME (M. C. U.).- Se caracteriza por tener rapidez lineal constante, pero no velocidad lineal constante

PERÍODO ( T ) .- Tiempo que demora una partícula con movimiento circular uniforme en completar una vuelta.

vueltasdeNro

totalTiempoT

.

FRECUENCIA ( f ).- Número de vueltas dado por una partícula con movimiento circular uniforme en cada unidad de tiempo, también se le puede definir como la inversa del período.

totalTiempo

vueltasdeNrof

.

1f

T

sHzHertz

1

Otras unidades: mprrevolución

min

Relación con el periodo y la frecuencia:

2 Rv

T

2v R f

2

T

2 f

ACELERACIÓN CENTRÍPETA ( ca

).- En el M. C. U., existe siempre una aceleración

dirigida hacia el centro, llamada aceleración centrípeta, radial o normal.

Page 41: FORMULARIO FISICA (2013)

Edwin H. Gutiérrez E. - 41 -

v

v

v

v

ca ca

ca

ca

v

v

v

v

ca ca

ca

ca

El módulo de de la aceleración centrípeta se determina con la siguiente ecuación:

2

c

va

R

2ca R

b) MOVIMIENTO CIRCULAR UNIFORMEMENTE VARIADO (M. C. U. V.).- La velocidad angular varía siendo constante la aceleración angular.

ECUACIONES DEL M. C. U. V.- Son análogas a las del movimiento rectilíneo uniformemente variado:

MOVIMIENTO LINEAL MOVIMIENTO ANGULAR

v

0v

s

v

0v

s

0

0

t

vv

t

va 0

tt

0

tavv 0 t 0

savv 220

2 220

2

221

0 tatvs 221

0 tt

tvv

s

20 t

20

t

sv

t

20 vv

v

2

0

FUERZA CENTRÍPETA.- Llamada también fuerza normal ( Fn ) o fuerza radial.

Page 42: FORMULARIO FISICA (2013)

- 42 - Edwin H. Gutiérrez E.

v

cFR

m v

cFR

m2

c

vF m a m

R

m = Masa del cuerpo que girav = Velocidad linealR = Radio de la circunferencia

cF Fuerzas hacia el centro Fuerzas hacia afuera

Ejemplo D. C. L. Ecuación

Satélite en rotación alrededor de un planeta. R

tv

R

tv tv

.atracFca

tv

.atracFca catracción amF

Balde de agua que gira en un plano vertical. (en la parte superior)

tv

R

tv

R

ca

tv

wT

ca

tv

wT c

cc

amTw

amF

Piedra atada a una cuerda que gira en un plano horizontal.

R

tv

R

tv

tv

ca T

tv

ca T

c

cc

amT

amF

¿FUERZA CENTRÍFUGA?- La fuerza centrífuga como resultante no existe en un movimiento circular uniforme.

FUERZA GRAVITACIONAL.- Dos cuerpos cualesquiera se atraen con una fuerza:

Cap. 9 HIDROSTÁTICA

FLUIDO.- Sustancia capaz de fluir y presentar baja resistencia al cambio de forma cuando este se encuentra bajo una presión. Se encuentra en estado líquido o gaseoso.

r

F FM m

r

F FM m

2

M mF G

r

2

2111067.6

kg

mNG

Page 43: FORMULARIO FISICA (2013)

Edwin H. Gutiérrez E. - 43 -

Los gases tienden a ocupar todo el volumen del recipiente que los contiene, mientras que los líquidos adoptan la forma de éste pero no ocupan la totalidad del volumen.

Los gases son compresibles, por lo que su volumen y densidad varían según la presión; los líquidos tienen volumen y densidad constantes para una cierta temperatura (son incompresibles). Los líquidos son prácticamente incompresibles, los gases son muy fáciles de comprimir.

DENSIDAD ().- Se designa con la letra griega Rho. (ρ).

volumen

masadensidad

m

V

Cuerpo

Volumen: VMasa: mPeso: w

UNIDADES DE DENSIDAD: Se designa con la letra griega Rho:

Magnitud c. g. s. S. I. S. Técnico S. Inglés técnico S. Inglés absoluto

Densidad 3cm

g3m

kg3

...

m

mtu3ft

slug3ft

lbm

PESO ESPECÍFICO ( γ ).- Se designa con la letra griega gamma:

volumen

pesoespecíficopeso

w

V

Cuerpo

Volumen: VMasa: mPeso: w

UNIDADES DEL PESO ESPECÍFICO:

Magnitud c. g. s. S. I. S. Técnico S. Inglés técnico S. Inglés absoluto

Peso específico3cm

g f3m

N3

kp

m 3ft

lb f3ft

pdl

DENSIDAD RELATIVA (r).- La densidad relativa de una sustancia es la razón de su densidad a la densidad del agua:

ragua

Page 44: FORMULARIO FISICA (2013)

- 44 - Edwin H. Gutiérrez E.

RELACIÓN ENTRE DENSIDAD Y PESO ESPECÍFICO:

gV

gm

V

w g = 9.8 m/s2 = 980 cm/s2

PRESIÓN (P).- El cociente entre la intensidad F de la fuerza aplicada perpendicularmente sobre una superficie dada y el área A de dicha superficie se denomina presión que es una magnitud del tipo escalar y se mide en N/m2.

A

F

Área

Fuerzaesión Pr

FP

A

“A mayor área, corresponde menor presión, a menor área le corresponde mayor presión”

UNIDADES DE PRESIÓN.- En el S.I. la unidad de presión es el Pascal:

1 Pa = 1 N/m2

1 atmósfera (atm) = 1.033 2cm

kgf = 760 mm de Hg (Torr)

1 atmósfera (atm) = 1.7 2in

lbf(psi) = 101300 2m

N(Pascal)

1 Pascal (Pa) = 1.45x10-4 2in

lbf(psi) = 7.5x10-3 torr (mm de Hg) = 10 2cm

dyn

1 bar = 1000 mbar = 106 2cm

dyn = 100 Pa

PRESIÓN HIDROSTÁTICA.- La presión aumenta con la profundidad en el interior de un líquido.

Page 45: FORMULARIO FISICA (2013)

Edwin H. Gutiérrez E. - 45 -

peso del líquidoP

Área de la base

P g h P h

h

AP

La presión hidrostática que ejerce un líquido en reposo depende del peso específico (γ) del líquido y de la profundidad (h).

TEOREMA FUNDAMENTAL DE LA HIDROSTÁTICA.- Considerando dos puntos A y B a diferentes profundidades de una columna de líquido en equilibrio:

"La diferencia de presión entre dos puntos de una masa líquida en equilibrio, es igual al producto del peso específico del líquido por la diferencia de nivel entre ambos puntos"

Dos puntos situados a una misma profundidad en el interior de un líquido soportan la misma presión hidrostática.

A BP P h

hBhA

A

B hh

PARADOJA HIDROSTÁTICA.- La presión ejercida en el fondo de un recipiente que contiene un líquido depende del peso específico y de la altura siendo independiente de la forma del recipiente y de la cantidad de líquido contenido en él.

FUERZA Y PRESIÓN.- La fuerza ejercida por un líquido en equilibrio sobre una superficie cualquiera es perpendicular a la superficie:

F P A h A

La presión es una magnitud que se transmite a través de los líquidos, en cambio la fuerza se transmite a través de los sólidos.

PRINCIPIO DE PASCAL.- La presión aplicada a un fluido encerrado es transmitida con la misma intensidad a todos los puntos del fluido y a las paredes del recipiente.

PRENSA HIDRÁULICA.- Es una aplicación del Principio de Pascal, se utiliza para obtener grandes fuerzas en el émbolo mayor aplicando fuerzas pequeñas en el menor. Es una máquina multiplicadora de fuerzas constituida por dos cilindros de diferentes diámetros conectados entre sí:

Page 46: FORMULARIO FISICA (2013)

- 46 - Edwin H. Gutiérrez E.

1 2

1 2

F F

A A

PRINCIPIO DE ARQUÍMEDES.- Cuando un cuerpo se sumerge en un líquido, desaloja una cierta cantidad de líquido. La fuerza de empuje es el peso de ese volumen de líquido desalojado.

“Todo cuerpo sumergido en un líquido recibe un empuje de abajo hacia arriba igual al peso del volumen de líquido desalojado”

Empuje = Peso del líquido desalojado Fuerzas que actúanE

w

E = Empuje w = Peso

PRESIÓN ATMOSFÉRICA.- La atmósfera es un fluido de varios kilómetros de altura, que producto de su peso, ejerce presión sobre todos los objetos sumergidos en ella. Esta presión se denomina presión atmosférica.

BARÓMETRO DE TORRICELLI.- Instrumento para medir la presión atmosférica.

1 atm = 76 cm de Hg = 760 mm de Hg

La presión a nivel del mar es conocida como 1 atm.

atp g h

3 2

62 2

13.6 980 76

1 012 928 1.013 10

at

at

g cmp cm

cm s

dyn dynP

cm cm

La presión atmosférica disminuye con el aumento de la altura y aumenta con la presencia de vapor de agua (humedad)

Empuje = Peso real – Peso aparente

Page 47: FORMULARIO FISICA (2013)

Edwin H. Gutiérrez E. - 47 -

MANÓMETRO.- Instrumento que sirve para medir la presión de un gas que esta encerrado en un recipiente.

P = Pat + ρ g h

PRESIÓN ABSOLUTA.- Suma de la presión atmosférica y la presión manométrica (presión medida de un gas o un líquido)

DENSIDADES DE SÓLIDOS

Sustancia Densidad (g/cm3) Sustancia Densidad (g/cm3)Acero 7.7 - 7.9 Oro 19.31Aluminio 2.7 Plata 10.5Cinc 7.15 Platino 21.46Cobre 8.93 Plomo 11.35Cromo 7.15 Silicio 2.3Estaño 7.29 Titanio 4.5Hierro 7.88 Vanadio 6.02Magnesio 1,76 Arena 2.32Níquel 8.9 Hielo 0.92

DENSIDADES DE LÍQUIDOS 20 ºC

Sustancia Densidad (g/cm3) Sustancia Densidad (g/cm3)Aceite 0.8-0.9 Sangre 1.06H2SO4 1.83 Gasolina 0.68-0.72Agua pura (a 4 ºC) 1.00 Glicerina 1.26Agua de mar 1.01-1.03 Mercurio 13.60Alcohol etílico 0.79 Tolueno 0.866

Cap. 10 TEMPERATURA Y DILATACIÓN

CALOR.- El calor es una forma de energía que hace aumentar la temperatura.

Page 48: FORMULARIO FISICA (2013)

- 48 - Edwin H. Gutiérrez E.

- Con el calor los cuerpos se dilatan o cambian su estado físico. - El calor provoca que los sólidos pasen a líquidos y de líquidos a gases. - El calor hace variar la temperatura.

TEMPERATURA.- Desde el punto de vista de la física, calentar una cosa significa hacer que sus moléculas se muevan (vibren) más rápido. Esa medida de la agitación de las moléculas se llama temperatura.

La temperatura es el grado de calor en los cuerpos.

TERMÓMETRO.- Instrumento empleado para medir la temperatura. El termómetro más utilizado es el de mercurio, formado por un capilar de vidrio de diámetro uniforme comunicado por un extremo con una ampolla llena de mercurio.

ESCALAS TERMOMÉTRICAS.- La escala oficial de temperatura para el S. I. es el grado Kelvin, Llamada también escala absoluta:

CELSIUS FAHRENHEIT KELVIN RANKINE

Punto de ebullición del agua.

Punto de fusión del hielo

CUADRO COMPARATIVO ENTRE LAS DIFERENTES ESCALAS

Escala Cero Absoluto Fusión del Hielo Ebullición del Agua

KelvinRankineCentígradaFahrenheit

0 K0 R-273 °C-460 °F

273 K492 R0 °C32 °F

373 K672 R100 °C212 °F

Se conoce como el cero absoluto al 0 K que equivale aproximadamente a -273 ºC, temperatura a la cual la materia no posee movimiento vibratorio.

Page 49: FORMULARIO FISICA (2013)

Edwin H. Gutiérrez E. - 49 -

CONVERSIONES.- Para la conversión de temperaturas en las diferentes escalas:

32 273 492

5 9 5 9

C F K R

DILATACIÓN DE LOS CUERPOS.- Cambio de dimensiones que experimentan los sólidos, líquidos y gases cuando se varía la temperatura. Los cuerpos aumentan sus dimensiones cuando se aumenta la temperatura.

a) DILATACIÓN LINEAL.- Aumento en la longitud debido al incremento de su temperatura (una sola dimensión).

L0 = Longitud inicialLf = Longitud final T0 = Temperatura inicial Tf = Temperatura finalα = Coeficiente de dilatación lineal del

material [1/ ºC]

ΔL = Variación de longitud: ΔL = Lf – L0

ΔT = Variación de temperatura: ΔT = Tf – T0

b) DILATACIÓN SUPERFICIAL.- Aumento en el área debido al incremento de su temperatura (dos dimensiones).

T0

Tf

A0

AF

A0 = Área inicial Af = Área finalT0 = Temperatura inicial Tf = Temperatura finalβ = Coeficiente de dilatación superficial [1/ ºC]

Donde: 2

ΔA = Variación de área: ΔA = Af – A0

ΔT = Variación de temperatura: ΔT = Tf – T0

c) DILATACIÓN CÚBICA.- Aumento del volumen de un cuerpo cuando éste se calienta.

Page 50: FORMULARIO FISICA (2013)

- 50 - Edwin H. Gutiérrez E.

T0

Tf

V0

VF

V0 = Volumen inicial Vf = Volumen finalT0 = Temperatura inicial Tf = Temperatura finalγ = Coeficiente de dilatación volumétrica [1/ ºC]

Donde: 3

ΔV = Variación de volumen: ΔV = Vf – V0

ΔT = Variación de temperatura: ΔT = Tf – T0

DILATACIÓN DE LÍQUIDOS.- Los líquidos se dilatan obedeciendo las mismas leyes que los sólidos. Como los líquidos no tienen forma propia, sólo presentan dilatación cúbica.

COEFICIENTES DE DILATACIÓN LINEAL (α)

Material Coeficiente (1/°C)   Material Coeficiente (1/°C)

Acero DulceAcero NíquelAlpacaAluminioBismutoBronceCadmioCincCobreCuarzoEstañoEsteatita

0.0000120.00000150.0000180.00002380.00001350.00001750.000030.000030.00001650.00000050.0000230.0000085

Hierro FundidoLatónMolibdenoNíquelOroPlataPlatinoPlomoPorcelanaTungstenoVidrio ComúnVidrio Pirex

0.00001050.00001850.00000520.0000130.00001420.00001970.0000090.0000290.0000040.00000450.0000090.0000003

COEFICIENTES DE DILATACIÓN DE LÍQUIDOS ( γ )Material Coeficiente (1/°C)   Material Coeficiente (1/°C)

AguaAguarrásAlcohol EtílicoBencinaÉter

0.000180.0010.00110.0010.0016

GlicerinaMercurioPetróleoTolueno

0.00050.0001820.0010.00108

Cap. 11 ELECTROSTÁTICA

Page 51: FORMULARIO FISICA (2013)

Edwin H. Gutiérrez E. - 51 -

CARGAS ELÉCTRICAS:

Existen dos tipos de carga y que cargas similares se repelen y cargas diferentes se atraen.

Los protones, tienen carga positiva (el tipo de carga con que se electrifica el vidrio), Los electrones, tienen carga negativa (el tipo de carga con que se electrifica la ebonita) Los neutrones, carecen de carga eléctrica. La carga eléctrica siempre se conserva, cuando un cuerpo es frotado contra otro, no se

crea carga en el proceso, sino que existe una transferencia de cargas entre un cuerpo y el otro.

Aislante; existen materiales en los cuales los electrones están firmemente unidos a sus respectivos átomos, estas sustancias no poseen electrones libres y no será posible el desplazamiento de carga a través de ellos. El vidrio, la ebonita o el plástico son ejemplos

Conductores; los electrones se pueden mover libremente en su masa. Ejemplos los metales y el cuerpo humano.

FORMAS PARA ELECTRIZAR UN CUERPO.- Manualmente existen tres maneras de producir cargas eléctricas en los cuerpos:

a) ELECTRIZACIÓN POR FROTAMIENTO.- Una varilla de vidrio frotada con tela de seda o una varilla de plástico frotada con una piel fina se cargan eléctricamente.

La frotación es un método en el cual unos materiales pierden electrones y otros los ganan. El número de cargas antes y después es constante. El vidrio frotado con tela de seda, se carga positivamente. El plástico (o la ebonita) frotado con paño de lana, se carga negativamente. Algunos automóviles transportan combustibles tienen una cadena colgando hasta el piso,

cuya función es “descargar” eléctricamente y evitar incendios.

b) ELECTRIZACIÓN POR CONTACTO.- Consiste en cargar un cuerpo neutro poniéndolo en contacto con otro previamente cargado. Ambos quedarán cargados con el mismo signo.

c) ELECTRIZACIÓN POR INDUCCIÓN.- La inducción es un proceso de carga de un objeto sin contacto directo. Aparece carga de signo contrario al inductor.

Page 52: FORMULARIO FISICA (2013)

- 52 - Edwin H. Gutiérrez E.

Si se acerca un inductor I, con carga positiva,

a un conductor C en estado neutro, aparecen

las cargas inducidas A y B.

I

Si se acerca un inductor I, con carga positiva,

a un conductor C en estado neutro, aparecen

las cargas inducidas A y B.

I

Manteniendo el inductor I fijo, se efectúa una conexión T a tierra. (Esto se puede hacer tocando c). Manteniendo el inductor I fijo, se efectúa una conexión T a tierra. (Esto se puede hacer tocando c).

Hay, así, un flujo de electrones libres hacia C que anula la carga positiva inducida y produce un exceso de carga negativa.

Hay, así, un flujo de electrones libres hacia C que anula la carga positiva inducida y produce un exceso de carga negativa.

Al terminar la conexión a tierra y retirar el inductor, el exceso de electrones se distribuye por el cuerpo.

Al terminar la conexión a tierra y retirar el inductor, el exceso de electrones se distribuye por el cuerpo.

LEYES DE COULOMB:

1ra. ley: Cargas del mismo signo se repelen, y cargas de signos contrarios se atraen.

+ +

REPULSIÓN

+ - ATRACCIÓN

2da. ley: La fuerza de atracción o de repulsión entre dos cargas eléctricas es, directamente proporcional al producto de los valores absolutos de las cargas e inversamente proporcional al cuadrado de la distancia que las separa.

1q 2q

F Fr

1q 2q

F Fr

El módulo de la fuerza es: 1 22

q qF K

r

F = Es la fuerza con que se accionan las cargas, expresada en N o dynK = Es la constante de proporcionalidad o de Coulomb q1 = La cantidad de la carga 1 expresadas en C o stC

Page 53: FORMULARIO FISICA (2013)

Edwin H. Gutiérrez E. - 53 -

q2 = La cantidad de carga 2 expresadas en C o stCr = Distancia de separación desde el centro de una carga al centro de la otra en m o cm

S.I. c.g.s.

2

29109

C

mNK

2

2

1stC

cmdynK

La constante K se escribe también como: 04

1

K

Donde la constante 0 se conoce como permitividad del vacío, tiene el valor:

S.I. c.g.s.

2

212

0 1085.8mN

C 2

22

0 10965.7cmdyn

stC

La ley de Coulomb queda: 1 22

0

1

4

q qF

r

'F

FKd

F = Fuerza entre dos cargas colocadas en el vacío.F’ = Fuerza entre dos cargas colocadas en un medio

diferente al vacío

CONSTANTE DIELÉCTRICA DE ALGUNOS MATERIALES

1 22

'd

q qKF

K r

Material Kd Material Kd

Aceite 2.24 Papel 3.7Agua a 20 ºC 80 Parafina 2.3Aire 1.0006 Plexiglás 3.4Baquelita 4.9 Porcelana 7Mica 5.4 Vidrio pyrex 5.6Neopreno 6.9

UNIDADES DE CARGA ELÉCTRICA:

stCC 91031 Ce 1910602.11

electronesC 181061 stCe 1010803.41

Submúltiplos:milicoulomb: 1 mC = 10-3 C microcoulomb: 1 μC = 10-6 C

nanocoulomb: 1 nC = 10-9 C picocoulomb: 1 pC = 10-12 C

Page 54: FORMULARIO FISICA (2013)

- 54 - Edwin H. Gutiérrez E.

PARTÍCULAS Y CARGA ELÉCTRICA

PARTÍCULA CARGA ELÉCTRICA MASA

Electrón: e C1910602.1 kg311011.9

Protón: p C1910602.1 kg2710672.1

Neutrón: 0n 0 kg2710674.1

CAMPO ELÉCTRICO.- Es todo el espacio que rodea a una carga eléctrica, en donde se observa la acción de una fuerza sobre cualquier carga eléctrica que se encuentre dentro de él.

INTENSIDAD DEL CAMPO ELÉCTRICO.- La intensidad del campo en un punto, es una magnitud vectorial, que nos indica la fuerza que recibiría la unidad de carga positiva colocada en dicho punto.

qQ

E

F

qQ

E

F

QE

F q

Q

E

F q

El módulo de la intensidad: F

Eq

NE

C ;

V

m ;

dyn

stC

INTENSIDAD DEL CAMPO ELÉCTRICO CREADO POR UNA CARGA PUNTUAL.- El campo que crea una carga puntual Q a una distancia r es:

qQ

E

F

qQ

E

Fr

qQ

E

F

qQ

E

Fr

2

QE K

r

El módulo se determina con las ecuaciones anteriormente deducidas. La dirección es una línea radial a la carga que genera el campo. El sentido es saliente para una carga positiva, y entrante para una carga

negativa.

Campo creado por una carga positiva Campo creado por una carga negativa

ENERGÍA POTENCIAL ELÉCTRICA.- La energía potencial eléctrica W de un sistema formado por una carga fuente puntual q1 y una carga de prueba positiva q2 situada a la

Page 55: FORMULARIO FISICA (2013)

Edwin H. Gutiérrez E. - 55 -

distancia r de q es una magnitud escalar que se mide por el trabajo que debe realizar un agente externo para desplazar la carga de prueba q2 con rapidez constante desde una distancia infinita hasta la distancia r de q1: Una carga tiene energía potencial eléctrica cuando se encuentra dentro de un campo eléctrico.

1 2q qW K

r

W = Energía potencial eléctrica ( J ) K = Constante de Coulomb q1 = Carga eléctrica ( C ) q2 = Carga eléctrica ( C )r = Distancia entre cargas ( m )

La energía potencial eléctrica puede ser positiva o negativa, dado que la fuerza entre dos cargas puede ser atractiva o repulsiva, dependiendo de los signos de las cargas.

POTENCIAL ELÉCTRICO.- Al igual que el campo eléctrico, sólo es una propiedad de la carga, o cargas que lo produce, y no de la carga de prueba “q”.

El potencial eléctrico en un punto de un campo eléctrico es una magnitud escalar que se mide por el trabajo que debe realizar un agente externo para desplazar la unidad de carga positiva desde el infinito hasta ese punto.

WV

q

La unidad en el S. I: culombio

JulioVoltio

C

JV

El voltio es el potencial existente en un punto tal que para transportar una carga de un Coulomb desde el infinito hasta ese punto se requiere un trabajo de un joule.

La unidad en el c. g. s:iostatculomb

ergiostatvoltio

stC

ergstV

La equivalencia es: stVVstVstC

erg

C

JV 1300

300

1

103

10

1

11

9

7

POTENCIAL ELÉCTRICO DEBIDO A UNA CARGA PUNTUAL.- El potencial eléctrico en un punto de un campo eléctrico creado por una carga puntual Q a una distancia “r”, es:

QV K

r

Page 56: FORMULARIO FISICA (2013)

- 56 - Edwin H. Gutiérrez E.

DIFERENCIA DE POTENCIAL (d.d.p.).- La diferencia de potencial entre dos puntos de un campo eléctrico es una magnitud escalar que se mide por el trabajo que debe realizar para desplazar la unidad de carga positiva desde un punto a otro.

VA

VB

Q

Ar

Br

VA

VB

Q

Ar

Br

ABB A

WV V

q

q = Carga en movimientoABW = Trabajo realizado

VVV AB = Diferencia de potencial

TRABAJO ELÉCTRICO.- Despejando de la expresión de diferencia de potencial:

( )AB B AW q V V también: W qV

ELECTRÓN–VOLTIO.- Un electrón-voltio es la energía transportada por un electrón que se desplaza dentro de un campo eléctrico.

191 1.6 10eV J

POTENCIAL E INTENSIDAD ELÉCTRICA DE UNA ESFERA CONDUCTORA. La carga en una esfera conductora se distribuye uniformemente en la superficie.

En el interior de la esfera:R

QKVE 0

En el exterior de la esfera:r

QKV

r

QKE

2

Considerando “r” la distancia medida desde el centro de la esfera hasta el punto.

RELACIÓN ENTRE EL VECTOR CAMPO Y LA DIFERENCIA DE POTENCIAL ELÉCTRICA.- Un campo eléctrico uniforme se tiene cuando la intensidad del campo es el mismo en todos los puntos

V E d

La diferencia de potencial entre dos puntos en un campo eléctrico uniforme es igual al producto del

Page 57: FORMULARIO FISICA (2013)

Edwin H. Gutiérrez E. - 57 -

A B

E

q F

d

V V

A B

E

q F

d

V V

E

q F

d

V V

módulo de la intensidad por la distancia entre los puntos.

CAPACIDAD ELÉCTRICA.- La capacidad eléctrica de un conductor cargado y aislado es una magnitud escalar que se mide por el cociente entre su carga y su potencial eléctrico.

QC

V

La unidad en el S. I:voltio

culombioFaradio

V

CF

La unidad en el c.g.s:statvoltio

iostatculombostatfaradi

stV

stCstF

La equivalencia es: stFstV

stC

V

CF 11

9

109300/1

103

1

11

Submúltiplos:milifaradio: 1 mF = 10-3 Fmicrofaradio: 1 µF  = 10-6 Fnanofaradio. 1 nF  = 10-9 F

  picofaradio: 1 pF  = 10-12 F

CAPACIDAD ELÉCTRICA DE UNA ESFERA CONDUCTORA.- La capacidad o capacitancia de una esfera conductora de radio R aislada y carga Q, es:

4 oC R

La capacidad de una esfera cargada es proporcional a su radio e independiente tanto de la carga como de la diferencia de potencial.

CONDENSADOR.- Un condensador es un dispositivo constituido por dos conductores aislados próximos, con cargas iguales y de signo contrario, que permiten almacenar una gran cantidad de energía, y por consiguiente energía con un pequeño potencial.

CONDENSADOR DE PLACAS PARALELAS.- Es un sistema de dos conductores planos que poseen cargas iguales y opuestas. Su capacidad se define como:

Page 58: FORMULARIO FISICA (2013)

- 58 - Edwin H. Gutiérrez E.

o

AC

d

Q = Carga de una de las placasV = Diferencia de potencial entre placasC = Capacidad del condensadord = Distancia entre placas

CONDENSADORES CON DIELÉCTRICO.- La mayor parte de los condensadores tiene entre sus armaduras un dieléctrico.

d o

AC k

d

kd = Constante dieléctrica del material

C > C0 ya que kd > 1 Confirmado.

ENERGÍA ALMACENADA EN UN CONDENSADOR.- Un condensador cargado es capaz de efectuar trabajo porque contiene energía.

221 1 1

2 2 2

qW qV W W CV

C

ASOCIACIÓN DE CONDENSADORES.- La capacidad equivalente de ciertas combinaciones:

a) CONDENSADORES EN PARALELO O DERIVACIÓN.- Es aquella en la cual se unen las placas del mismo signo. Todos ellos se hallan sometidos a una misma diferencia de potencial.

qt = q1 + q2 + q3

Vt = V1 = V2 = V3

La capacidad equivalente de una asociación de condensadores en paralelo es igual a la suma de las capacidades de todos y cada uno ellos.

b) CONDENSADORES EN SERIE.- Es aquella en la cual se unen sucesivamente las placas de distinto signo de los condensadores. Cada armadura de uno de ellos se halla unida con una armadura del siguiente, de modo que la diferencia de potencial del sistema es la suma de las diferencias de potencial de cada condensador.

C = C1 + C2 + C3

Page 59: FORMULARIO FISICA (2013)

Edwin H. Gutiérrez E. - 59 -

qt = q1 = q2 = q3

Vt = V1 + V2 + V3

En una asociación de condensadores en serie, el inverso de la capacidad equivalente es igual a la suma de los inversos de las capacidades de cada uno de ellos. Cap. 12 ELECTRODINÁMICA

CORRIENTE ELÉCTRICA.- Se llama corriente eléctrica al movimiento ordenado y permanente de las partículas cargadas en un conductor bajo la influencia de un campo eléctrico.

Sentido real: Dado que los electrones son los que se mueven en los cables de un circuito, el electrón experimenta una fuerza del polo negativo al polo positivo exteriormente al generador.

Sentido convencional: El sentido convencional de la corriente tiene dirección en la cual las cargas positivas deben fluir, o la dirección opuesta a los electrones.

La dirección de la corriente es la del movimiento de las cargas positivas

Sentido convencional: Sentido real (de electrones):

Del mayor al menor potencial Del menor al mayor potencial

INTENSIDAD DE CORRIENTE.- Si ( q ) es la carga neta que pasa a través de (A) en

un intervalo de tiempo ( t ), la intensidad de la corriente ( I ) se expresa como:

t

qI

o simplemente: q

It

Page 60: FORMULARIO FISICA (2013)

- 60 - Edwin H. Gutiérrez E.

La unidad en el S. I:segundo

culombioAmperio

s

CA

Un submúltiplo es el miliampere: 1 mA = 10-3 A

La intensidad de corriente eléctrica ( I ), es la cantidad de carga ( q ) que atraviesa una sección de un conductor en la unidad de tiempo ( t ).

RESISTENCIA ELÉCTRICA Y LA LEY DE OHM.- Existen sustancias conductoras y materiales aislantes, no todos los materiales conducen con igual facilidad la corriente eléctrica. Es decir, unos ofrecen más resistencia a su paso que otros.

“La razón entre la diferencia de potencial V aplicada a los extremos de un conductor y la intensidad I que, circula por él es una cantidad constante denominada resistencia del conductor”.

La resistencia de un conductor se representa por R: V

RI

La unidad de R en el S. I: A

V

amperio

voltioohmio

1

11

Un ohmio es la resistencia de un conductor que bajo una diferencia de potencial de un voltio permite el paso de un amperio.

Despejando I en la ley de Ohm, se obtiene: V

IR

La intensidad que circula por un conductor es directamente proporcional a la diferencia de potencial existente entre sus extremos, e inversamente proporcional a la resistencia del mismo.

= Resistencia eléctrica

LEY DE POUILLET.- La resistencia de un conductor depende de sus características:

Page 61: FORMULARIO FISICA (2013)

Edwin H. Gutiérrez E. - 61 -

l

RA

l = Longitud del conductor, dada en metros (m)A = Área de su sección transversal, dada en (m2) o (mm2)

ρ = Resistividad del material , dada en (Ωm) o (m

mm2)

La resistencia de un conductor es directamente proporcional a su longitud e inversamente proporcional al área de su sección recta, siendo ρ la constante de proporcionalidad que se llama resistividad del conductor.

RESISTIVIDADES A 20 ºC DE ALGUNAS SUSTANCIAS

CONDUCTORESSustancia m

2mm

m

Coefic. de dilatac.ºC-1

Plata 1.59x10-8 0.0159 3.8x10-3

Cobre 1.7x10-8 0.017 3.9x10-3

Oro 2.44x10-8 0.0244 3.4x10-3

Aluminio 2.82x10-8 0.0282 3.9x10-3

Wolframio 5.65x10-8 0.0565 4.5x10-3

Níquel 6.84x10-8 0.0684 6.0x10-3

Hierro 9.71x10-8 0.0971 5x10-3

Platino 10.6x10-8 0.106 3.93x10-3

Plomo 20.65x10-8 0.2065 4.3x10-3

Niquelina 4.4x10-7 0.44 2.3x10-4

Mercurio 9.4x10-7 0.94 9x10-4

Nichrome 1.11x10-6 1.11 4x10-4

Tungsteno 5.6x10-8 0.056 4.5x10-3

AMPERÍMETRO: Se denomina amperímetro a cualquier aparato de medida destinado a medir la intensidad de la corriente eléctrica.

AISLANTES

Sustancia m

2mm

m

Vidrio 1010 - 1014 1016 - 1020

Cuarzo 7.5x1017 7.5x1023

Azufre 1015 1021

Teflón 1013 1019

Caucho 1013 - 1016 1019 - 1022

Madera 108 - 1011 1014 - 1017

SEMICONDUCTORES

Sustancia

m

2mm

m

Silicio 2500 2.5x109

Germanio

0.46 4.6x105

Page 62: FORMULARIO FISICA (2013)

- 62 - Edwin H. Gutiérrez E.

Se conecta en serie con el receptor de corriente, tiene una resistencia interna muy pequeña (cero si fuese ideal).

RA

RA

VOLTÍMETRO: Se denomina voltímetro a cualquier aparato de medida destinado a medir la diferencia de potencial entre dos puntos de un circuito eléctrico.

R

V

R

V

Se conecta en paralelo entre los dos puntos que queremos medir su diferencia de potencial. Tiene una resistencia interna muy grande (infinita si fuese ideal).

GENERADORES DE ELECTRICIDAD.- Todo dispositivo que suministre una diferencia de potencial se llama fuente de voltaje.

ANALOGÍA CORRIENTE DE AGUA – CORRIENTE ELÉCTRICA

Para mantener una corriente eléctrica en el interior de un conductor es preciso que exista una diferencia de potencial constante entre sus extremos.

CORRIENTE CONTINUA: C.C.- Proporcionan las pilas, acumuladores, baterías, dínamos, la corriente que circula es en un solo sentido, manteniéndose constante la polaridad de los bornes o polos del generador.

CORRIENTE ALTERNA: A.C.- Proporcionan los alternadores, la corriente que circula cambia de sentido (unas 50-60 veces por segundo), debido a que la polaridad de los bornes o polos cambia periódicamente.

FUERZA ELECTROMOTRIZ DE UN GENERADOR (f.e.m.) .- No se mide a través de la fuerza eléctrica sino por medio de la energía que estos aparatos utilizan para mover una unidad de carga.

Page 63: FORMULARIO FISICA (2013)

Edwin H. Gutiérrez E. - 63 -

Símbolos

Pila Batería

: Fuerza electromotriz de una pila (fem), generador de corriente continua. eR : Resistencia del circuito externo. La resistencia del conductor o conductores que van

conectados a los polos del generador. r : Resistencia interna del generador (pila, batería, etc.)

La fuerza electromotriz ( ε ) de un generador de corriente continua (pila, batería, acumulador, dinamo, etc) es una magnitud que se mide por el trabajo o energía ( W ) que debe suministrar el generador para transportar una unidad de carga eléctrica ( q ) a través de todo el circuito.

W

q

La fem de una batería o pila es la diferencia máxima de potencial a través de sus terminales, esto ocurre cuando la batería no está conectada a un circuito externo.

La unidad en el S. I: culombio

Juliovoltio

C

JV

1

11

VOLTAJE TERMINAL .- Se denomina así a la diferencia de potencial en los bornes de la pila cuando se encuentra en circuito cerrado. Reemplazando el trabajo y la carga:

V I r

Debido a la resistencia interna (r) el voltaje terminal, cuando la batería está en operación, es menor que la fem.

Si la resistencia interna del generador es despreciable ( r = 0 ), se tiene: V

El voltaje de salida sobre los terminales de la pila ( V ) es igual a su fem ( ε ).

CORRIENTE EN CORTOCIRCUITO.- Se denomina de esta forma a la corriente eléctrica máxima que puede pasar por el generador: ( Re = 0 ):

Page 64: FORMULARIO FISICA (2013)

- 64 - Edwin H. Gutiérrez E.

Ir

a) CONEXIÓN DE PILAS EN SERIE.- El terminal positivo de una pila se conecta con el terminal negativo de la otra. se suman todas las fem individuales, todas las pilas deberán tener la misma corriente.

6.0 V

1.5 V 1.5 V 1.5 V1.5 V t i

t ir r

La fem ( ε ) de una combinación serie es la suma de las fem de las pilas individuales, y la resistencia interna total es la suma de las resistencia ( r ) de cada pila.

b) CONEXIÓN DE PILAS EN PARALELO.- El terminal positivo de una pila se conecta con el terminal positivo de la otra. Se suman todas las corrientes individuales, todas las pilas deberán tener el mismo voltaje.

1.5 V 1.5 V 1.5 V1.5 V 1.5 V de salidat

t

rr

n

La ventaja de la conexión en paralelo es la mayor capacidad de corriente que en una sola pila.

POTENCIA ELÉCTRICA.- La potencia eléctrica de un generador (pila, batería, etc.) es una magnitud que se mide por el trabajo o energía eléctrica que suministra el generador por unidad de tiempo.

P I V 2P I R

2VP

R

La unidad en el S.I de potencia eléctrica se llama Watio (W)

LEY DE JOULE.- Cuando una corriente eléctrica pasa a través de un conductor metálico, éste se calienta y desprende calor:

2Q I Rt 20.24Q I R t cal

Page 65: FORMULARIO FISICA (2013)

Edwin H. Gutiérrez E. - 65 -

ENERGÍA DE LA CORRIENTE ELÉCTRICA.- Para conocer la energía eléctrica consumida en una casa, fábrica, etc, se obtiene de la potencia:

W I V t

Las compañías que suministran electricidad toman como unidad de potencia el kilowatio (kW) y como unidad de tiempo la hora (h). En consecuencia, si se tiene P = 1 kW y t = 1 hora, se obtiene la unidad de energía llamada Kilowatio-hora (kWh)CONEXIÓN DE RESISTENCIAS.- El conjunto se comporta como si fuese una resistencia única, cuyo valor se denomina resistencia equivalente de la asociación.

a) CONEXIÓN EN PARALELO.- Dos o más resistencias están conectadas en paralelo o derivación entre dos puntos de un circuito cuando cada resistencia ofrece un camino diferente al paso de la corriente eléctrica entre dichos puntos.

1 2 3

1 1 1 1

R R R R

321 IIII

1 2 3V V V V

En una asociación de resistencias conectadas en paralelo, el inverso de la resistencia equivalente del sistema es igual a la suma de los inversos de cada una de ellas.

Para “n” resistencias iguales conectadas en paralelo, se demuestra que: t

RR

n

Para el caso particular de dos resistencias en paralelo: 1 2

1 2

R RR

R R

b) CONEXIÓN EN SERIE.- Dos o más resistencias están conectadas en serie entre dos puntos de un circuito cuando las resistencias ofrecen un camino único al paso de la corriente eléctrica entre dichos puntos.

1 2 3R R R R

1 2 3I I I I 1 2 3V V V V

Page 66: FORMULARIO FISICA (2013)

- 66 - Edwin H. Gutiérrez E.

La resistencia equivalente de una asociación de resistencias en serie es igual a la suma de los valores de todas ellas.

LEYES DE KIRCHHOFF.- Sirven para calcular el valor de la intensidad de corriente que circula por cada resistencia en circuitos complejos.

Rama: Es la parte de la red donde circula una corriente de la misma intensidad.

Nudo: Es un punto de la red donde concurren tres o más conductores o ramas.

Malla: Es cualquier trayectoria cerrada.

1ra. LEY: DE NUDOS.- Llamada también ley de corrientes

La suma algebraica de las intensidades que concurren a un nudo es igual a cero.

)()( salenIlleganI

0I 4321 IIII

Nudo

1I

2I

3I

4INudo

1I

2I

3I

4I

2da. LEY: DE TENSIONES.- Llamada también ley de mallas.

La suma algebraica de las f.e.m. en una malla, es igual a la suma algebraica de las caídas de tensión en las resistencia de la misma malla

0V en cualquier malla de la red.

Si se recorre una resistencia en la dirección de la corriente, el cambio de potencial a través de la resistencia es – IR

Si una resistencia se recorre en la dirección opuesta a la corriente, el cambio de potencial a través de la resistencia es + IR

Page 67: FORMULARIO FISICA (2013)

Edwin H. Gutiérrez E. - 67 -

Si una fem se atraviesa en la dirección de la fem (de – a + en las terminales), el cambio de potencial es + ε

Si una fem se atraviesa en la dirección opuesta de la fem (de + a – en las terminales), el cambio de potencial es – ε

APÉNDICE SOBRE TRIGONOMETRÍA

CLASIFICACIÓN DE TRIÁNGULOS.-

a) Según sus lados:a) Equiláteros.-Sus tres lados iguales

EquiláteroEquilátero

b) Isósceles.- Dos lados iguales y uno desigual

IsóscelesIsósceles

c) Escaleno.- Tres lados desiguales

EscalenoEscaleno

b) Según sus ángulos:a) Rectángulos.- Un ángulo recto

RectánguloRectánguloRectángulo

b) Acutángulos.- Tres ángulos agudos

AcutánguloAcutángulo

c) Obtusángulos.- Un ángulo obtuso

ObtusánguloObtusángulo

SISTEMA DE MEDIDA DE ÁNGULOS.

Sistema sexagesimal.- Divididos en grados, minutos y segundos.

360º = Un giro completo alrededor de una circunferencia 1º = 60’ 1’ = 60”

Sistema circular.- La magnitud de un ángulo medido en radianes está dada por la longitud del arco de circunferencia que subtiende, dividido por el valor del radio.

Longitud del arco de circunferencia = [Ángulo en radianes] x [Radio de la circunferencia] RS

Page 68: FORMULARIO FISICA (2013)

- 68 - Edwin H. Gutiérrez E.

 1 radian = 57.29º 360º = 2 radianes 180º = radianes

Sistema centesimal.- Poco utilizado, un giro completo posee 400g centesimales.

360º = 400g 400g = 2 radianes

FUNCIONES TRIGONOMÉTRICAS.- Se definen utilizando un triángulo rectángulo. De las seis funciones establecidas definiremos tres que son las más utilizadas:

TRIÁNGULOS RECTÁNGULOS

cateto opuesto = a

cateto adyacente = b

hipotenusa = c

cateto opuesto = a

cateto adyacente = b

hipotenusa = c

c

a

hipotenusa

opuestocatsen

.

c

b

hipotenusa

adyacentecat

.cos

b

a

adyacentecat

opuestocattag

.

.

TEOREMA DE PITÁGORAS: (Hipotenusa)2 = (Cateto)2 + (Cateto)2

c2 = a2 + b2

FUNCIONES TRIGONOMÉTRICAS DE ÁNGULOS NOTABLES

0º 30º 45º 60º 90º 37º 53º

sen θ 02

12

2

2

3 15

3

5

4

cos θ 12

32

2

2

1 05

4

5

3

tag θ 03

3 1 3 infinito4

3

3

4

TRIÁNGULOS NOTABLES

Page 69: FORMULARIO FISICA (2013)

Edwin H. Gutiérrez E. - 69 -

º30

º60 º60

11

21

21

º30º30

º60 º60

11

21

21

º30

º45

1

1

º452

º45

1

1

º452

º53

4

º37

5

3º53

4

º37

5

3

Triángulo equilátero, para definir funciones de 30º y 60º

Triángulo rectángulo isósceles, para definir funciones de 45º

Triángulo rectángulo 3, 4 y 5, para definir funciones de 37º y 53º

RELACIONES FUNDAMENTALES

-Identidades trigonométricas usuales:

1cos22 sen 22 sectan1 22 csccot1

csc

1sen

sec

1cos

costan

sen

-Funciones trigonométricas de la suma y diferencia de dos ángulos, ángulo doble:

coscos)( sensensen cos22 sensen

sensencoscos)(cos 22cos2cos sen

tantan1

tantan)(tan

2tan1

tan22tan

Page 70: FORMULARIO FISICA (2013)

- 70 - Edwin H. Gutiérrez E.

TRIÁNGULOS OBLICUÁNGULOS

Todo triángulo que no posee ángulo recto. Se resuelven utilizando los teoremas de los senos y cosenos.

ab

c

a

b

c

-Teorema de los cosenos: -Teorema de los senos:

cos2222 cbcba sen

c

sen

b

sen

a

cos2222 cacab

- Ángulos interiores: cos2222 babac + + θ = 180º