conexiones rigidas con placa extrema

73
1 I N D I C E PAG 1. Introducción 2 2. Evolución de los métodos de diseño 7 3. Conexiones en zonas sísmicas 7 Diseño de la placa extrema 8 Columna 9 Patines 9 3.2.2 Fuerzas en los tornillos 4. Diseño 10 4.1 Diseño de la placa extrema y de los tornillos 11 4.2 Secuela de diseño 13 4.2.1 Diseño de la placa extrema y de los tornillos 14 4.2.2 Diseño de la columna en la zona de la conexión 21 4a. Zonas no sísmicas 26 5. Referencias 26 6. Empleo de las hojas de cálculo “PL. EXTREMAS ATORNILLADAS – AISC 2005 4E” y “PL. EXTREMAS ATORNILLADAS – AISC 2005 4ES y 8ES”, para conexiones en zonas de alta sismicidad. 28 Conexiones 4E 28 Conexiones 4ES 31 Conexiones 8ES 34 7. Diseño de uniones en zonas de alta sismicidad 37 Ejemplo 1 37 Ejemplo 2 55 Ejemplo 3 61

Upload: venezuelan

Post on 05-Dec-2014

107 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: Conexiones Rigidas Con Placa Extrema

1

I N D I C E

PAG 1. Introducción 2 2. Evolución de los métodos de diseño 7 3. Conexiones en zonas sísmicas 7

Diseño de la placa extrema 8 Columna 9

Patines 9 3.2.2 Fuerzas en los tornillos

4. Diseño 10

4.1 Diseño de la placa extrema y de los tornillos 11 4.2 Secuela de diseño 13

4.2.1 Diseño de la placa extrema y de los tornillos 14 4.2.2 Diseño de la columna en la zona de la conexión 21

4a. Zonas no sísmicas 26 5. Referencias 26 6. Empleo de las hojas de cálculo “PL. EXTREMAS ATORNILLADAS – AISC 2005 4E” y “PL. EXTREMAS ATORNILLADAS – AISC 2005 4ES y 8ES”, para conexiones en zonas de alta sismicidad. 28 Conexiones 4E 28 Conexiones 4ES 31 Conexiones 8ES 34 7. Diseño de uniones en zonas de alta sismicidad 37 Ejemplo 1 37 Ejemplo 2 55 Ejemplo 3 61

Page 2: Conexiones Rigidas Con Placa Extrema

2

CONEXIONES RIGIDAS VIGA-COLUMNA CON PLACA EXTREMA ATORNILLADA

OSCAR DE BUEN LÓPEZ DE HEREDIA

1. INTRODUCCION

En estructuras remachadas, una de las conexiones rígidas más comunes entre vigas y columnas es la formada

por dos tes, que se obtienen cortando a la mitad un perfil H laminado, unidas a los patines de viga y columna, y

un par de ángulos, entre el alma de la primera y el patín de la segunda (Fig. 1, ref. 1). El alma de cada te se

remacha a uno de los patines de la viga, y sus patines, al de la columna; por ellas se transmite el momento

flexionante de la vigas, descompuesto en dos fuerzas, de tensión y compresión. La fuerza cortante pasa por los

ángulos colocados en el alma.

Fig. 1. Conexión rigida viga-columna remachada

En diseño por carga vertical, la te superior transmite la tensión, y la inferior, la compresión; cuando predomina el

efecto de viento o sismo, y cambia el sentido del momento, una u otra puede trabajar en tensión o compresión.

Los remaches del alma de las tes están en cortante, simple o doble.

La fuerza de compresión pasa del patín de la te al de la columna por contacto directo; los remaches entre

ellos no desempeñan, prácticamente, ninguna función (a menos que se invierta el sentido del momento); los

patines de la otra te se flexionan al transmitir la tensión, que pasa a la columna por los remaches, también en

tensión.

Page 3: Conexiones Rigidas Con Placa Extrema

3

El problema mas difícil es el diseño de la te en tensión; se complica, entre otros factores, por la deformación

de sus patines, la presión entre placas que originan los remaches al enfriarse, su alargamiento bajo carga, y

las posibles deformaciones plásticas en zonas localizadas.

Por el gran desarrollo de la soldadura estructural, y la introducción de los tornillos de alta resistencia, desde

principios de la segunda mitad del siglo pasado estos dos medios de unión fueron sustituyendo gradualmente

a los remaches, en taller y en obra; en la actualidad, (y desde hace varias décadas), los remaches han

desaparecido de las estructuras de acero.

Puede hacerse una junta semejante a la de la Fig. 1 sin tes, soldando una placa directamente a cada patín,

normal a el, a tope, con soldadura de penetración o doble filete. En el paso siguiente, que se dio muy pronto,

se sustituyeron las dos tes y los ángulos del alma por una sola placa, perpendicular a la viga, que transmite el

momento flexionante y la fuerza cortante vertical (Fig.2). Se obtienen así varias ventajas sobre la conexión de

la Fig. 1; la mas importante es la reducción del numero de piezas necesarias para transmitir las cargas, de

tres o cuatro (las dos tes, y dos ángulos o una placa, en el alma de la viga) a una, lo que simplifica, acelera y

abarata, de manera importante, la fabricación de la estructura (ref. 9).

Fig. 2. Conexión con placa extrema;

configuración típica

La placa extrema se emplea como conexión de cortante o como conexión rígida, que transmite a la columna el

momento de la viga, con rigidez adecuada para mantener sin cambio significativo el ángulo entre los ejes de los

dos miembros. La capacidad para transmitir flexión depende, principalmente, de la dimensión vertical de la

Page 4: Conexiones Rigidas Con Placa Extrema

4

placa, que puede ser menor o igual que el peralte de la viga, o extenderse arriba y abajo de sus patines,

proporcionando espacio para colocar tornillos adicionales, muy eficientes, por estar lejos del eje de flexión,

(Figs. 3 y 4)

Fig. 3. Conexión de cortante con placa extrema

Fig. 4. Conexión rigida con placa extrema

Este tipo de conexión se utiliza también para unir dos tramos de una viga.(Fig, 5)

Page 5: Conexiones Rigidas Con Placa Extrema

5

Fig. 5. Unión rígida, con placas extremas, de dos tramos

de una viga.

En los primeros métodos de diseño se consideraba que el patín de la viga en tensión, y una parte de la placa,

centrada en él, formaban una te, y se diseñaban como tal (simplificación lógica, si se tiene en cuenta el origen

de la junta).

Una de las conexiones mas sencillas con un grupo de tornillos en tensión es una te, de la que cuelga una carga,

unida al patín de una viga de soporte con dos líneas de tornillos pretensionados, paralelas al alma, una a cada

lado (Fig.6); por la simetría de la junta, se supone que todos los tornillos reciben cargas iguales. La tensión

externa reduce la presión de contacto entre la te y el soporte y, dependiendo de la rigidez de la te, pueden

aparecer fuerzas adicionales, cerca de los extremos de sus patines, por un fenómeno denominado acción de

apriete (“prying action”); se ilustra en la Fig. 7 (ref. 3). Las fuerzas de apriete incrementan la tensión en los

tornillos, lo que debe tenerse en cuenta, en general, en el análisis y diseño de la conexión.

Fig. 6. Grupo de tornillos en tensión (entre los patines de la viga y de la T)

Page 6: Conexiones Rigidas Con Placa Extrema

6

Fig. 7. Representación esquemática de la deformación de una T en tensión y de las fuerzas de apriete

Las idealizaciones que se hacen para evaluar el efecto de las fuerzas de apriete consideran sólo el incremento

de la tensión en los tornillos, aunque la distorsión de las partes conectadas hace también que se flexionen el

vástago, la cabeza y la tuerca.

Si el patín de la te es muy rígido, su deformación por flexión es pequeña comparada con el alargamiento de los

tornillos; las fuerza de apriete son muy reducidas. En cambio, si se emplean tes con patines flexibles, cuando se

deforman ocasionan fuerzas de apriete, que producen tensiones adicionales en los tornillos (Fig. 8).

Fig. 8. Fuerzas de apriete en placas de diferentes gruesos

Al empezar a aplicar la fuerza exterior, se reduce la presión de contacto entre los patines y el apoyo, hasta que

comienzan a separarse, en la línea de los tornillos. La flexión en los extremos de los patines origina fuerzas de

apriete, que actúan entre ellos y los tornillos (Fig. 8a y b). Cuando unos y otros fluyen plásticamente, las fuerzas

se reducen, pero pueden persistir hasta la falla, lo que depende de la rigidez en flexión de los patines de la te y

las características de los tornillos.

Page 7: Conexiones Rigidas Con Placa Extrema

7

2. EVOLUCION DE LOS METODOS DE DISEÑO

Los estudios, teóricos y experimentales, sobre este tipo de conexiones, iniciados a principios de la década de

los 50 del siglo pasado, y que continúan todavía, han producido una sucesión de métodos de diseño, cada vez

más refinados. Los primeros, basados en la estática y en suposiciones simplificadas sobre las fuerzas de

apriete, llevaban a placas extremas muy gruesas, y tornillos de gran diámetro. En estudios posteriores se ha

utilizado la teoría de las líneas de flujo, el método del elemento finito, y combinaciones de ese método con un

análisis de regresión, para desarrollar ecuaciones adecuadas para diseño. Con esta técnica pueden obtenerse

soluciones precisas (ref. 2), pero las ecuaciones resultantes contienen términos elevados a potencias raras, por

lo que resultan incomodas y se pierde, casi por completo, la idea de cómo trabajan las conexiones.

Los métodos anteriores a 1975, aproximadamente, basados en la analogía de la te, predecían fuerzas de

apriete elevadas; como se menciona arriba, se obtenían placas extremas muy gruesas y tornillos de diámetro

excesivo. Uno de esos métodos se recomienda en la 7ª edición del Manual de construcción en acero del AISC

(ref. 10), para la placa extendida con cuatro agujeros, no atiesada.

El AISC nunca ha tratado en sus normas el diseño de juntas específicas, pero si lo incluye en los manuales que

las acompañan. Las conexiones rígidas viga con placa extrema-columna se mencionan por primera vez en la 6ª

edición del manual, en 1963 (ref.11); se habla de las fuerzas de apriete, pero no se recomienda ningún método

de diseño. Este aparece, para un caso particular, en la 7ª edición, en 1970.

En la ref. 2, publicada en 1978, se proponen formulas empíricas, basadas en un análisis estadístico de los

resultados de estudios parametricos realizados con computadora, utilizando el método del elemento finito,

refinados con información obtenida en estudios de laboratorio. Este método, recomendado por el AISC desde

1980 hasta 2001, se utiliza en la ref. 4, en la que también se propone un método simplificado, aceptado por el

AISC en 2001.

Los métodos anteriores son aplicables a estructuras bajo carga estática o de viento; ninguno es valido para

zonas sísmicas.

3. CONEXIONES EN ZONAS SÍSMICAS Los tornillos deben ser siempre pretensionados.

Las tres configuraciones que se han estudiado experimentalmente para zonas sísmicas se muestran en la Fig.

4. Las placas extremas se prolongan encima y debajo de los patines de la viga (como el momento que aplica

ésta a la columna cambia de sentido durante un temblor, los dos patines han de poder transmitir su resistencia

en tensión, para lo que son muy eficientes los tornillos colocados fuera de ellos; bajo carga estática, puede

evitarse la extensión en el patín comprimido).

Las configuraciones más utilizadas son, probablemente, las de cuatro tornillos en cada patín, atiesadas o no

(Fig. 4, a y b); con el atiesador se reduce el grueso de la placa, y aumenta la resistencia de la conexión. Si se

quiere transmitir la resistencia máxima, en flexión, de la viga, con tornillos de diámetro no mayor de 38 mm (1

Page 8: Conexiones Rigidas Con Placa Extrema

8

½”), las conexiones de cuatro tornillos son suficientes para menos de la mitad de los perfiles laminados que se

emplean en vigas, por falta de resistencia de los tornillos en tensión; en cambio, la de la Fig. 4c, con ocho

tornillos, atiesada, es adecuada para casi todas las secciones, con el mismo diámetro máximo de tornillos.

La ref. 7 contiene procedimientos de diseño completos, y ejemplos, para las tres conexiones de la figura, que

son las que recomienda el AISC para estructuras construidas en zonas sísmicas (ref. 8).

Cuando el sismo no interviene en el diseño, pueden utilizarse los mismos métodos, ajustando adecuadamente

el momento.

3.1 Diseño de la placa extrema Las resistencias en flexión de la placa extrema y del patín de la columna se determinan con un análisis de líneas

de flujo, que puede hacerse con el método del equilibrio o el de los mecanismos. Éste es el recomendado para

placas de acero; se utiliza el principio del trabajo virtual, y se iguala el trabajo producido por la fuerza exterior,

durante un pequeño desplazamiento del mecanismo de colapso, con el trabajo interno, que se desarrolla a lo

largo de las líneas de flujo. Para cada conjunto supuesto de líneas de flujo se obtiene un límite superior del valor

de la resistencia de la placa, mayor o igual que el real, por lo que se estudian varias distribuciones; la correcta

es la que corresponde a la resistencia de falla más pequeña.

La aplicación de este método requiere tres pasos: suponer una distribución posible de líneas de flujo, generar

las expresiones que proporcionan los trabajos externo e interno, y obtener la resistencia con la ecuación que se

obtiene al igualarlos.

En la Fig, 9 se muestra el conjunto de líneas de flujo que gobierna el diseño de una placa extendida sin atiesar,

con cuatro tornillos, y los desplazamientos virtuales supuestos.

Fig. 9. Conjunto de líneas de flujo y desplazamientos virtuales de una

conexión con placa extendida, no atiesada, y cuatro tornillos.

Page 9: Conexiones Rigidas Con Placa Extrema

9

3.2 Columna

Son pocos los estudios que se han hecho para determinar la resistencia de la columna en estas conexiones;

aunque en algunos se hacen observaciones sobre su comportamiento durante pruebas de laboratorio, no se

discuten criterios específicos de diseño. En los pocos trabajos existentes sólo se consideran los estados límite

de flujo plástico del alma de la columna y de flexión de sus patines.

3.2.1 Patines

Los tornillos transmiten directamente las fuerzas de tensión del patín de la viga al de la columna. Para evaluar la

resistencia de éste, que debe ser suficiente para resistir las tensiones mencionadas, se emplean también las

líneas de flujo; si no es adecuada, los patines pueden reforzarse con atiesadores (placas de continuidad),

perpendiculares al alma de la columna y alineados con los patines e la viga.

En la Fig. 10 se indican las líneas de flujo del patín de la columna, sin atiesadores (Fig. 10 a) y con ellos (Fig. 10

b), para una conexión con placa extendida y ocho tornillos.

Fig. 10. Conjunto de líneas de flujo en el patín de la columna Conexión rígida con placa extrema atiesada, y ocho tornillos

Page 10: Conexiones Rigidas Con Placa Extrema

10

3.2.2 Fuerzas en los tornillos

Se han realizado numerosos estudios para investigar el comportamiento de los tornillos, encaminados,

principalmente, a medir y predecir las fuerzas de apriete. En la mayoría se emplea la analogía de la te en

tensión.

El modelo más popular es el de la ref 12. En él se identifican tres etapas de comportamiento de la te. La primera

se presenta cuando la tensión es pequeña, y la respuesta elástica; se dice que el patín de la te es “grueso”, y se

supone que no hay fuerzas de apriete. Cuando la carga crece, y se forman articulaciones plásticas en los

patines de la te, junto al alma, se inicia la segunda etapa; la placa es de “grueso intermedio”, y aparecen fuerzas

de apriete. En la tercera etapa se crean nuevas articulaciones plásticas en las líneas de los tornillos; la placa se

clasifica como “delgada”; las fuerzas de apriete alcanzan los valores máximos. La Fig 8 ilustra las tres etapas.

Una versión posterior, simplificada, considera solo dos etapas: placa gruesa, sin fuerzas de apriete, y placa

delgada, en la que esas fuerzas tienen su valor máximo. Se ignora la etapa intermedia.

La frontera entre los dos comportamientos corresponde al instante en que las fuerzas de apriete dejan de ser

significativas, lo que sucede cuando se alcanza el noventa por ciento de la resistencia de la placa. Si la fuerza

exterior es menor, la placa extrema es “gruesa”, con fuerzas de apriete nulas; si se excede el noventa por ciento

de la resistencia, se considera “delgada”; las fuerzas de apriete son máximas.

Los métodos anteriores se desarrollaron inicialmente para conexiones con carga monotónica. Si se utilizan en

estructuras que estarán sujetas a acciones sísmicas, la placa extrema y el patín de la columna se diseñan como

placas gruesas, para que la acción inelástica se concentre en el extremo de la viga y, tal vez, en el alma de la

columna, mientras que conexión y columna se conservan, básicamente, en el intervalo elástico; las fuerzas de

apriete no son significativas, y se utiliza la resistencia completa en tensión de todos los tornillos de la conexión.

El objetivo del procedimiento de diseño de la sec. 4 es obtener conexiones con placa extrema cuyas

características permiten que se desarrolle la resistencia máxima de la viga, y que no contribuye a las

deformaciones inelásticas. Éstas se presentan por flujo plástico en la viga y/o deformación del alma de la

columna (ref. 8).

4. DISEÑO

El método que sigue se basa en los procedimientos que se han discutido arriba (ref. 8). Se aplica a las

conexiones precalificadas para zonas sísmicas de la Fig, 4, denominadas 4E, 4ES y 8ES (el 4, u 8, indica el

número de tornillos en cada patín, y la S es la inicial, en inglés, de “extendida”).

Page 11: Conexiones Rigidas Con Placa Extrema

11

Puede utilizarse también para zonas no sísmicas, tomando para Mf el valor del momento de diseño obtenido en

el análisis por cargas gravitacionales y, en su caso, viento.

4.1 Diseño de la placa extrema y de los tornillos

Los tornillos deben ser de alta resistencia, ASTM A325 o A490, o equivalentes, pretensionados.

Cuando las resistencias de diseño se calculan como se indica en la ref.13, se utilizan los factores de resistencia

indicados en ella. Si se determinan de acuerdo con la ref.8, sus valores son:

a. Para estados limite dúctiles, Φd = 1.00

b. Para estados limite no dúctiles, Φn= 0.90

TABLA 1

Limitaciones paramétricas de las conexiones precalificadas.

Parámetro

Cuatro tornillos, no atiesada (4E)

Cuatro tornillos, atiesada (4ES)

Ocho tornillos, atiesada (8ES)

Máximo (in) mm

Mínimo (in) mm

Máximo (in) mm

Mínimo (in) mm

Máximo (in) mm

Mínimo (in) mm

tp

2 ¼ (57)

½ (13)

1 ½ (38)

½ (13)

2 ½ (64)

¾ (19)

bp

10 ¾ (273)

7 (178)

10 ¾ (273)

10 ¾ (273)

15 (381)

9 (229)

g

6 (152)

4 (102)

6 (152)

3 ¼ (83)

6 (152)

5 (127)

pfi, pfo

4 ½ (114)

1 ½ (38)

5 ½ (140)

1 ¾ (44)

2 (51)

1 ¾ (44)

pb

---

---

---

---

3 ¾ (95)

3 ½ (89)

d

55 (1400)

25 (635)

24 (610)

13 ¾ (349)

36 (914)

18 ½ (470)

tbf

¾ (19)

83 (10)

¾ (19)

83 (10)

1 (25)

3219 (16)

bbf

9 ¼ (235)

6 (152)

9 (229)

6 (152)

12 ¼ (311)

7 ¾ (197)

Para que la conexión pueda considerarse precalificada para uso en zonas de alta sismicidad, sus componentes

deben cumplir las condiciones de la Tabla 1; los limites que aparecen en ella son los de las uniones que se han

ensayado satisfactoriamente en el laboratorio. En las Figs. 11 a 13 se ilustran los parámetros de la tabla.

Page 12: Conexiones Rigidas Con Placa Extrema

12

Fig. 11. Geometría de una placa extrema extendida no atiesada, con cuatro tornillos (4E)

Fig. 12. Geometría de una placa extrema extendida atiesada, con cuatro tornillos (4ES)

Page 13: Conexiones Rigidas Con Placa Extrema

13

Fig. 13. Geometría de una placa extrema extendida atiesada, con ocho tornillos (8ES)

4.2 Secuela de diseño Los números de las ecuaciones encerrados entre paréntesis rectangulares son los de la ref. 8.

Se conocen las características de los miembros que se van a unir entre sí, viga y columna.

Se escogen las dimensiones de la placa extrema (Fig. 14):

Fig. 14. Geometría de las placas extremas

Page 14: Conexiones Rigidas Con Placa Extrema

14

g - Separación entre líneas verticales de tornillos. Su valor mínimo (“workable gage”) para una conexión entre la

viga y el patín de la columna, está incluido en las tablas de propiedades geométricas de las secciones

laminadas de la ref. 15.

pfi, pfo - Distancias de los bordes del patín de la viga, interior y exterior, al eje de las hileras de tornillos más cercanas.

Si los agujeros son estandar, no deben ser menores que el diámetro del tornillo más 13 mm (½”) para

tornillos no mayores de 25 mm (1”), ni que el diámetro más 19 mm (¾”) para tornillos de mayor diámetro.

po - Distancia entre ejes de hileras horizontales de tornillos adyacentes. Debe ser, cuando menos, igual a 2 2/3

veces el diámetro de los tornillos, aunque es preferible que sea tres veces el diámetro. Esta distancia no

aparece en las conexiones 4ES.

bp - Ancho de la placa, mayor o igual que el ancho del patín de la viga, bpv. Suele escogerse 25 mm (1”) mayor

que el ancho del patín, redondeado a la dimensión estándar más cercana.

En el diseño se toma bp no mayor que bpv + 25 mm, aunque el ancho real sea más grande, para evitar incluir

en el cálculo de la resistencia de la conexión el exceso de material exterior, que puede ser poco efectivo.

de = distancia mínima del eje de un agujero estandar al borde horizontal de la placa (Tabla J3.4, ref. 13).

Todas las dimensiones anteriores deben estar dentro de los límites que se indican en la Tabla 1.

4.2.1 Diseño de la placa extrema y de los tornillos (1) Se determinan las dimensiones del atiesador (Fig. 15).

Fig. 15. Geometría y dimensiones de los atiesadores de la placa extrema en una conexión 8ES. (En conexiones 4ES son similares)

Page 15: Conexiones Rigidas Con Placa Extrema

15

hat = altura del atiesador = distancia del borde exterior del patín de la viga al de la placa extrema.

En conexiones 4ES, hat = pfo + de

En conexiones 8ES, hat = pfo + pb + de

Lat = longitud del atiesador = hat/tan 30°

(2) Se calcula el momento en la cara de la columna, Mf (Fig. 16)

Fig. 16. Momento en la cara de la columna

fM = hupe SVM + (1) [6.9-2]

En la ecuación anterior,

xvyvyvprpe ZFRCM = (2) [6.9-3]

Cpr es un factor con el que se tiene en cuenta la resistencia máxima de la conexión; incluye, entre otras cosas,

endurecimiento por deformación, restricciones locales, y refuerzo adicional. Si no se indica otro valor,

2.1F2

FFC

y

uypr ≤

+= (3) [2.4.3-2]

Fy y Fu son los esfuerzos mínimos especificados, de fluencia y de ruptura, del acero del elemento que fluye

plásticamente; en este caso es la viga, puesto que el diseño se hace para que se forme una articulación

plástica en ella.

gravpeu V'LM2V +=

Page 16: Conexiones Rigidas Con Placa Extrema

16

Sh = distancia de la articulación plástica en la viga a la cara de la columna

= la menor de dv/2 o 3bpv, en conexiones no atiesadas (4E) (4) [6.9-4]

= Lat + tp en conexiones atiesadas (4ES y 8ES), (5) [6.9-5]

Lat = longitud del atiesador de la placa extrema

Ry = cociente del esfuerzo de fluencia esperado y el mínimo especificado. Se toma de la Tabla 7.

dv, bpv = peralte y ancho del patín de la viga

tp = grueso de la placa extrema. Se escoge un valor preliminar que, en general, se modifica más adelante

=peM momento máximo probable en la articulación plástica

L’ = distancia entre las articulaciones plásticas de los extremos de la viga (Fig. 17)

Vgrav = fuerza cortante en la viga producida por las cargas gravitacionales

Vu = fuerza cortante en el extremo de la viga

Fig. 17. Distancia entre articulaciones plásticas

(3) Se escoge el tipo de tornillos y se determina el diámetro mínimo requerido, (dt)req, con alguna de las

expresiones 6 o 7

Para conexiones con cuatro tornillos (4E, 4ES) ( ) ( )1outn

freqt hhF

M2d

+=

Φπ (6) [6.9.6]

Para conexiones con ocho tornillos (8ES) ( ) ( )hhhhFM2

d321utn

freqt +++

=Φπ

(7) [6.9.7]

Fut es el esfuerzo nominal de ruptura en tensión del tornillo, 6328 kg/cm2 para A325, y 7945 kg/cm2 para A490, y

hi la distancia entre los ejes del patín comprimido de la viga y de la línea i de tornillos

Page 17: Conexiones Rigidas Con Placa Extrema

17

(4) Se escoge un diámetro de los tornillos, dt, igual o mayor que el obtenido en el paso 3

(5) Se obtiene el grueso mínimo requerido de la placa extrema, (tp)req

( )pypd

freqp YF

M11.1tΦ

= (8) [6.9-8]

Fyp y Yp son el esfuerzo de fluencia mínimo especificado del material de la placa, y el parámetro del mecanismo

de líneas de flujo de la misma; Yp se toma de la Tabla 2, 3, o 4.

Page 18: Conexiones Rigidas Con Placa Extrema

18

Page 19: Conexiones Rigidas Con Placa Extrema

19

(6) Se elige el grueso de la placa extrema, tp, no menor que el mínimo requerido

(7) Se calcula la fuerza de diseño en el patín de la viga pvv

fpvu td

MF

−= (9) [6.9-9]

dv y tpv son el peralte y el grueso del patín de la viga. (8) En la conexión no atiesada, 4E, se revisa la resistencia al flujo plástico por cortante de la parte extendida de

la placa extrema:

ppypdndupv tbF6.0R2

FΦΦ =< (10) [6.9-10]

bp es el ancho de la placa extrema.

Page 20: Conexiones Rigidas Con Placa Extrema

20

Si no se satisface la condición dada por la ec. 10, se aumenta el grueso de la placa. (9) En las conexiones 4E, que carecen de atiesador, se revisa la resistencia a la ruptura por cortante de la

porción extendida de la placa:

nupnnnupv AF6.0R2

FΦΦ =< (11) [6.9-11]

En la expresión anterior,

Fup = resistencia mínima especificada de ruptura en tensión del acero de la placa

An = área neta de la placa extrema = ( )[ ] ptp t 81d2b +− (ec.12 [6.9.12]), cuando los agujeros son estándar

dt = diámetro de los tornillos

Si no se satisface la condición, ec. 11, se aumenta el grueso de la placa.

(10) Cuando la placa extrema está atiesada (conexiones 4ES y 8ES), se determina el grueso del atiesador, y se

diseñan las soldaduras entre él, el patín de la viga, y la placa.

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛=

yat

yvavmínat F

Ftt (13) [6.9.13]

tav es el grueso del alma de la viga, y Fyv, Fyat son los esfuerzos de fluencia mínimos especificados de los

materiales de viga y atiesador.

Se escoge un grueso estandar, igual o un poco mayor que el calculado.

Para evitar el pandeo local, el atiesador debe satisfacer la relación ancho/grueso siguiente:

yatat

at

FE56.0

th

≤ (14) [6.9-14]

hat es la altura del atiesador.

Las soldaduras entre el atiesador, el patín de la viga y la placa extrema, deben desarrollar, respectivamente, la

resistencia en cortante y en tensión del primero. Pueden ser de filete o de penetración completa, pero si el

grueso del atiesador es mayor que 10 mm (3/8’), debe unirse a la placa extrema con soldadura de penetración

completa.

(11) Se revisa la resistencia de los tornillos a la ruptura por cortante. Sólo los tornillos del patín comprimido de

la viga contribuyen a la resistencia a la ruptura en cortante de la conexión, por lo que

( ) tvtnnnu AFnRV ΦΦ =< (15) [6.9-15]

Page 21: Conexiones Rigidas Con Placa Extrema

21

nt es el número de tornillos en el patín comprimido (4 u 8), Fv su resistencia nominal en cortante, y At el área

nominal total de la sección transversal de cada uno.

gravpc

u VLM2

V += (16) [6.9-16]

(12) Se revisa la falla por aplastamiento/desgarramiento (“tear-out failure”) de los tornillos, en la placa extrema

y en el patín de la columna

( ) ( ) noonniinnnu rnrnRV ΦΦΦ +=< (17) [6.9-17]

En esta expresión,

ni = numero de tornillos interiores (dos para las conexiones 4E y 4ES, cuatro para las 8ES)

no = numero de tornillos exteriores (dos para las conexiones 4E y 4ES, cuatro para las 8ES)

utucni tFd4.2tFL2.1r <= para cada tornillo interior (18) [6.9-18]

utucno tFd4.2tFL2.1r <= para cada tornillo exterior (19) [6.9-19]

Lc = distancia libre, en la dirección de la fuerza, entre el borde de un agujero y el del agujero adyacente, o el

borde del material

t = grueso de la placa extrema o del patín de la columna

Fu = resistencia mínima en tensión especificada del material de la placa extrema o del patín de la columna

dt = diámetro del tornillo

(13) Se diseñan las soldaduras entre los patines, el alma de la viga y la placa extrema, sin agujeros de acceso. 4.2.2 Diseño de la columna en la zona de la conexión

(14) Se revisa la resistencia del patín de la columna al flujo plástico en flexión

( ) pccycd

freqpc t

YFM11.1

t ≤=Φ

(20) [6.9-20]

Fyc = esfuerzo de fluencia mínimo especificado del material del patín de la columna

Yc = parámetro del mecanismo con líneas de flujo del patín no atiesado de la columna.

tpc = grueso del patín de la columna

Yc se obtiene con la expresión adecuada de la Tabla 5 o 6.

Page 22: Conexiones Rigidas Con Placa Extrema

22

Page 23: Conexiones Rigidas Con Placa Extrema

23

Cuando (tpc)req > tpc, se aumenta el tamaño de la columna, o se refuerza con atiesadores (placas de

continuidad).

Si se añaden atiesadores, se vuelve a aplicar la ec. 20, con el valor de Yc que corresponde a columnas

atiesadas (Tabla 5 o 6), para obtener el grueso requerido del patín de la columna, reducido por el uso de los

atiesadores. Estos se consideran de un grueso estandar, semejante al de los patines de la viga.

Si (tpc)req resulta ahora menor o igual que tpc, los atiesadores son adecuados.

Si el grueso requerido en la columna atiesada sigue siendo mayor que el de sus patines, se cambia el perfil

utilizado en la columna, por otro que tenga patines de grueso adecuado.

Page 24: Conexiones Rigidas Con Placa Extrema

24

(15 ) Cuando se emplean atiesadores, se calcula la fuerza para la que han de diseñarse. Esta fuerza se

determina en el paso 19, después de evaluar la resistencia de la columna para los varios estados límite

de interés.

La resistencia de diseño en flexión del patín de la columna es

2pccycdpcd tYFM ΦΦ = (21) [6.9-21]

Yc = parámetro del mecanismo con líneas de flujo del patín no atiesado de la columna (Tabla 5 o 6)

La fuerza de diseño que resiste el patín de la columna es:

( )pvv

pcdnd td

MR

−=

ΦΦ (22) [6.9-22]

(16) Se determina la resistencia al flujo plástico local del alma de la columna no atiesada frente a los patines de

la viga.

Requisito de resistencia: upvnd FR ≥Φ (23) [6.9-23]

Fupv se obtuvo en el paso 7.

( ) acycppvctn tFt2tk6CR ++= (24) [6.9-24] Ct = 0.5 si la distancia entre los bordes superiores de la viga y la columna es menor que el peralte de la viga, e

igual a 1.0 cuando es mayor

kc = valor de diseño de la distancia de la cara exterior de la columna al inicio de la curva que une el patín con el

alma, o al extremo de la soldadura de filete entre ambos, si la columna esta hecha con tres placas soldadas

tp = grueso de la placa extrema

Fyc = esfuerzo de fluencia especificado del acero del alma de la columna

tac = grueso del alma de la columna

tpv = grueso del patín de la viga

Cuando no se satisface el requisito de resistencia ( upvnd FR ≥Φ ), se colocan placas de continuidad. (17) Se determina la resistencia al pandeo del alma de la columna no atiesada frente al patín comprimido de la

viga.

Requisito de resistencia: upvn FR ≥Φ (25) [6.9-25]

Page 25: Conexiones Rigidas Con Placa Extrema

25

Φ = 0.75

(a) Cuando Fupv esta aplicada a una distancia del borde superior de la columna igual o mayor que dv/2,

c

yc3ac

n h

EFt24R = (26) [6.9-26]

(b) Cuando Fupv esta aplicada a una distancia del borde superior de la columna menor que dv/2,

c

yc3ac

n h

EFt12R = (27) [6.9-27]

En perfiles laminados hc es la distancia libre entre patines menos los radios de las esquinas, y en perfiles

soldados, la distancia libre entre patines.

Si no se satisface el requisito de resistencia ( upvnd FR ≥Φ ), se colocan placas de continuidad.

(18) Se revisa el aplastamiento del alma no atiesada de la columna frente al patín comprimido de la viga.

Requisito de resistencia: upvn FR ≥Φ (28) [6.9-28]

Φ = 0.75

(a) Cuando Fupv esta aplicada a una distancia del borde superior de la columna igual o mayor que dv/2,

ac

pcyc5.1

pc

ac

c

2acn t

tEFtt

dN31t80.0R

⎥⎥

⎢⎢

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛+= (29) [6.9-29]

(b) Cuando Fupv esta aplicada a una distancia del borde superior de la columna menor que dv/2,

(i) Para N/dc < 0.2,

ac

pcyc5.1

pc

ac

c

2acn t

tEFtt

dN31t40.0R

⎥⎥

⎢⎢

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛+= (30) [6.9-30]

Page 26: Conexiones Rigidas Con Placa Extrema

26

(ii) Para N/dc > 0.2,

ac

pcyc5.1

pc

ac

c

2acn t

tEFtt

2.0dN41t40.0R

⎥⎥

⎢⎢

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛−+= (31) [6.9-31]

N es el grueso del patín de la viga más dos veces la pierna del filete de refuerzo de la soldadura de penetración,

y dc el peralte total de la columna

Si no se satisface el requisito de resistencia ( upvnd FR ≥Φ ), se colocan placas de continuidad.

(19) Si para cumplir los requisitos de cualquiera de los estados límite de la columna se requieren placas

atiesadoras, su resistencia no debe ser menor que

( ) ( )mínnupvatu RFF Φ−= (32) [6.9.32]

( )mínnRΦ es el valor mínimo de las resistencias calculadas en los pasos 15 (flexión del patín de la columna), 16

(flujo plástico del alma de la columna), 17 (pandeo del alma de la columna9 y 18 (aplastamiento del alma de la

columna).

(20) Se revisa el alma de la columna comprendida entre los patines de la viga (o vigas) y el diseño de los

atiesadores.

4a. Zonas no sísmicas

El procedimiento que se acaba de describir para diseñar conexiones en zonas sísmicas es válido también para

diseño por carga vertical, o por carga vertical y viento, pero en este caso Vu y Mf no son la fuerza cortante y el

momento correspondientes a la formación de una articulación plástica en la viga, sino las acciones de diseño

obtenidas en el análisis.

Aunque es preferible modificar las hojas de cálculo, pueden utilizarse las que aparecen aquí, cambiando

arbitrariamente Z, L y Vgrav, hasta lograr que Vu y Mf tengan los valores del análisis.

5. REFERENCIAS 1. McGuire, W., “Steel Structures”, Prentice Hall Inc., New Jersey, U,S.A., 1968

2. Krishnamurthy, N., “A Fresh Look at Bolted End-Plate Behavior and Design”, AISC Eng. Journal, 2o Cuarto,

American Institute of Steel Construction, Chicago, IL, E.E.U.U., 1978

3. Kulak, G.L., J.W. Fisher, y J.H.A. Struik, “Guide to Design Criteria for Bolted and Riveted Joints, 2a. Ed., J.

Wiley & Sons, Nueva York, E,E.U.U., 1987

Page 27: Conexiones Rigidas Con Placa Extrema

27

4. Murray, T.M., “Extended End-Plate Moment Connections”, Steel Design Guide Series No 4, AISC, Chicago,

IL, E.E.U.U., 1990

5. Carter, C.J., “Stiffening of Wide-Flange Columns at Moment Connections: Wind and Seismic Applications”,

Steel Design Guide Series No 13, AISC, Chicago, IL, E.E.U.U., 1999

6. Murray, T.M., y W.L. Shoemaker, “Flush end Extended Multiple-Row Moment End-Plate Connections”, Steel

Design Guide Series No 16, AISC, Chicago, IL, E.E.U.U., 2002.

7. Murray, T.M., y E.A. Sumner, “Extended End-Plate Moment Connections. Seismic and Wind Applications”,

Steel Design Guide Series No 4, 2a. Ed., AISC, Chicago, IL, E.E.U.U., 2003

8. “Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications”,

AISC, Chicago, IL, E.E.U.U., diciembre de 2005

9. Onderdonk, A.B., D.P. Lathrop, y J. Coel, “End Plate Connections in Plastically Designed Structures”, AISC

Eng. Journal, Vol. 1, No.1, American Institute of Steel Construction, Chicago, IL, E.E.U.U., 1964

10. “Manual of Steel Construction”, 7a ed., American Institute of Steel Construction, Chicago, IL, EEUU, 1970

11. “Manual of Steel Construction”, 6a ed., American Institute of Steel Construction, Chicago, IL, EEUU, 1963

12. Kennedy, N.A., S. Vinnakota y A.N. Sherbourne, “The Split-Tee Analogy in Bolted Splices and Beam –

Column Connections”, Proceedings of the International Conference: Joints in Structural Steelwork: The

Design and Performance of Semi-Rigid and Rigid Joints in Steel and Composite Structures and Their

Influence on Structural Behaviour, Cleveland, Inglaterra, abril 1981.

13. “Specification for Structural Steel Buildings”, American Institute of Seel Construction, Chicago, IL, EEUU,

marzo de 2005

14. “Seismic Provisious for Structural Steel Buildings” (incluyen el suplemento No 1), American Institute of Steel

Construction, Chicago, IL, EEUU, 2005

15. “Steel Construction Manual”, American Institute of Steel Construction, 13a ed., Chicago, IL. EEUU, diciembre

de 2005

Page 28: Conexiones Rigidas Con Placa Extrema

28

6. EMPLEO DE LAS HOJAS DE CALCULO “PL EXTREMAS ATORNILLADAS-AISC 2005 4E”, “PLACAS EXTREMAS ATORNILLADAS-AISC 2005 4ES Y 8ES”, PARA CONEXIONES EN ZONAS DE ALTA SISMICIDAD

6.1 CONEXIONES 4E

Se anota el tipo de acero (A36 o Gr. 50) que se va a emplear en placa (celda D13), viga (G13) y columna (J13).

Se escoge el tipo de tornillos, A325 a A490 (celda A13).

Se anotan las dimensiones de la viga (celdas A20 a D20) y de la columna (celdas E20 a H20); se anotan,

también, el módulo Zx de la viga (celda A23) y el valor de k de la columna (H23); es el valor Kdes de la Tabla 1.1

de la ref. 15.

Se escogen valores preliminares del diámetro de los tornillos, dt (celda G9) y del grueso de la placa extrema, tp

(H9).

La hoja de cálculo proporciona cuatro de las dimensiones de la placa, pfi, pfo, de y bp (celdas J20, K20, L20 y

M20). La dimensión restante, g, se introduce en la celda I20. g se toma de la Tabla 1-1, ref. 15 (es el “workable

gage” de la columna). Los valores calculados de pfo, pfi, de y bp pueden ajustarse, incrementándolos ligeramente

(aunque no se modifiquen, deben anotarse en las celdas J21 a M21). Todas las dimensiones de la placa deben

estar comprendidas entre los límites señalados en la Tabla 1.

Debe proporcionarse, además, la información siguiente:

Celda B8.- Valor de Ry; se obtiene de la Tabla I-6-1 de la ref. 14, reproducida aquí como Tabla 7.

Page 29: Conexiones Rigidas Con Placa Extrema

29

TABLA 7

Valores de Ry para miembros y aceros de diferentes tipos

Aplicación Ry Perfiles estructurales y barras laminadas en caliente:

• ASTM A36/A36M

• ASTM A572/572M Grado 42

• ASTM A572/572M Grado 50 o 55 ASTM A913/A913M Grado 50, 60, o 65 ASTM A588/A588M, ASTM A992/A992M, A1011 HSLAS Grado 55

• ASTM A529 Grado 50

• ASTM A529 Grado 55

1.5

1.3

1.1

1.2

11.1 Secciones estructurales huecas:

• ASTM A500 (Grado B o C), ASTM A501

1.4 Tubos:

• ASTM A53/A53M

1.6 Placas:

• ASTM A36/A36M

• ASTM A572/A572M Grado 50 ASTM A588/A588M

1.3

1.1

Celda M5.- Claro de la viga, medido entre ejes de columnas.

Celda 05.- Fuerza cortante de diseño (FC = 1.1) por cargas gravitacionales que aplica la viga a la columna; se

determina fuera de la hoja de cálculo.

Celda L41.- Valor del coeficiente Ct (ver el comentario que hay en la celda L40).

Resultados

Tornillos

Diámetro

En la celda A29 aparece el diámetro mínimo requerido por su trabajo en tensión; si es diferente del propuesto;

se modifica éste (celda G9).

Page 30: Conexiones Rigidas Con Placa Extrema

30

Placa Grueso

El mínimo requerido se muestra en la celda G29; si es diferente del propuesto, se modifica éste (celda H9); en

todo caso, debe utilizarse un grueso de placa estandar.

En el grupo de celdas entre F30 y G35 se revisa la porción extendida de la placa, por flujo plástco y ruptura,

ambos en cortante. Si en alguna de las celdas F35 y G35, o en ambas, se obtiene “Incorrecto”, se aumenta el

grueso de la placa (celda H9).

Placa y tornillos

Ruptura por cortante de los tornillos

En las celdas HI35 se obtiene “Correcto” o “No pasa”. En el segundo caso, se aumenta el grueso de la placa

extrema (celda H9), el diámetro de los tornillos (celda G9), o ambos.

Resistencia por aplastamiento-desgarramiento Se revisa, por este concepto, la placa y el patín de la columna. Para una y otro se obtiene, en las celdas M34 y

O34, respectivamente, “Correcto” o “No pasa”. En el segundo caso se aumenta el grueso de la placa (celda H9)

y/o el diámetro de los tornillos (celda G9), o se aumentan las distancias pfi (celda J21) y pfo (K21).

Revisión del patín de la columna En la celda D41 se obtiene el grueso mínimo del patín de la columna necesario para que no se requieran

atiesadores (placas de continuidad) entre el alma y los patines de la columna. Si es menor que tpc (celda H20)

se colocan atiesadores, y en G41 se ve el grueso mínimo del patín de la columna atiesada; si sigue siendo

mayor que tpc (H20) debe cambiarse el perfil utilizado en la columna, por otro con patines más gruesos.

El resultado se ve en las celdas HI39, donde se lee “No hacen falta atiesadores”, “Atiesar la columna” o

“Cambiar la columna”.

Hasta aquí se ha revisado si se necesitan atiesadores para evitar el flujo plástico en flexión del patín de la

columna.

Cuando se requieren atiesadores, se calcula la fuerza para la que deben diseñarse.

Page 31: Conexiones Rigidas Con Placa Extrema

31

En la celda J42 se lee la resistencia en flexión de los patines de la columna no atiesada, ante las fuerzas

concentradas que aplican los patines de la viga, y en la K42 la resistencia correspondiente de un patín de la

columna.

En las celdas L38 a M42 se revisa el posible flujo plástico del alma de la columna; si la fuerza de la celda M42

es menor que Fupv (celda E32), se requieren placas de continuidad.

La resistencia al pandeo del alma de la columna se revisa en las celdas J44 a K49. Si la fuerza en K49 es

menor que la de E32, deben colocarse placas de continuidad en la columna.

En las celdas L44 a M49 se revisa el aplastamiento del alma de la columna; si la fuerza en M49 es menor que la

de E32, se colocan placas de continuidad.

En 042 se obtiene la fuerza que debe resistir cada par de tiesadores horizontales; que corresponde al estado

límite más critico (la fuerza resistente menor de las celdas K4, M42, K48, M48).

Por ultimo, siguiendo las recomendaciones de la ref. 14 se revisa la zona del tablero del alma de la columna y la

relación entre las resistencias de las vigas y columnas que concurren en el nudo. Estas revisiones no están

implementadas en la hoja de cálculo.

6.2 CONEXIONES 4ES

Se anota el tipo de acero (A36 o Gr. 50) que se va a emplear en placa (celda D13), viga (G13) y columna (J13).

Se escoge el tipo de tornillos, A325 a A490 (celda A13).

Se anotan las dimensiones de la viga (celdas A20 a D20) y de la columna (celdas E20 a H20); se anotan,

también, el módulo Zx de la viga (celda A23) y el valor de k de la columna (H23); es el valor Kdes de la Tabla 1.1

de la ref. 15.

Se escogen valores preliminares del diámetro de los tornillos, dt (celda G9) y del grueso de la placa extrema, tp

(H9).

La hoja de cálculo proporciona cuatro de las dimensiones de la placa, pfi, pfo, de y bp (celdas J20, K20, L20 y

M20). La dimensión restante, g, se introduce en la celda I20. g se toma de la Tabla 1-1, ref. 15 (es el “workable

gage” de la columna). Los valores calculados de pfo, pfi, de y bp pueden ajustarse, incrementándolos ligeramente

Page 32: Conexiones Rigidas Con Placa Extrema

32

(aunque no se modifiquen, deben anotarse en las celdas J21 a M21). Todas las dimensiones de la placa deben

estar comprendidas entre los límites señalados en la Tabla 1.

La hoja calcula las dimensiones del atiesador en el grupo de celdas situadas entre I22 y M25. La longitud se

ajusta a un valor práctico en la celda K25, que debe llenarse aunque sea igual que la J25, y el grueso mínimo

(celda L25) se ajusta a un valor estándar (celda M25), que no debe ser menor que el grueso del alma de la viga

(C20). En la celda M25 se anota el grueso, aunque sea igual al de L25.

Se proporciona, además, la información siguiente:

Celda B8.- Valor de Ry; se obtiene de la Tabla I-6-1 de la ref. 14 (Tabla 7).

Celda M5.- Claro de la viga, medido entre ejes de columnas.

Celda 05.- Fuerza cortante de diseño (FC = 1.1) por cargas gravitacionales que aplica la viga a la columna; se

determina fuera de la hoja de cálculo.

Celda L41.- Valor del coeficiente Ct (ver el comentario que hay en la celda L40).

Resultados

Tornillos

Diámetro

En la celda A29 aparece el diámetro mínimo requerido por su trabajo en tensión; si es diferente del propuesto;

se modifica éste (celda G9).

Placa Grueso

El mínimo requerido se muestra en la celda G29; si es diferente del propuesto, se modifica éste (celda H9); en

todo caso, debe utilizarse un grueso de placa estandar.

Atiesador

En las celdas F32 a G35 se revisa si es correcto por pandeo local, en ellas se indica si está bien o debe

aumentarse su grueso.

Page 33: Conexiones Rigidas Con Placa Extrema

33

Placa y tornillos

Ruptura por cortante

En las celdas HI35 se obtiene “Correcto” o “No pasa”. En el segundo caso, se aumenta el grueso de la placa

extrema (celda H9), el diámetro de los tornillos (celda G9), o ambos.

Resistencia por aplastamiento-desgarramiento Se revisan, por este concepto, la placa y el patín de la columna. Para una y otro se obtiene, en las celdas M34

y O34, respectivamente, “Correcto” o “No pasa”. En el segundo caso se aumenta el grueso de la placa (celda

H9) y/o el diámetro de los tornillos (celda G9), o se aumentan las distancias pfi (celda J21) y pfo (K21).

Revisión del patín de la columna En la celda D41 se obtiene el grueso mínimo del patín de la columna necesario para que no se requieran

atiesadores (placas de continuidad) entre el alma y los patines de la columna. Si es menor que tpc (celda H20)

se colocan atiesadores, y en G41 se ve el grueso mínimo del patín de la columna atiesada; si sigue siendo

mayor que tpc (H20) debe cambiarse el perfil utilizado en la columna, por otro con patines más gruesos.

El resultado se ve en las celdas HI39, donde se lee “No hacen falta atiesadores”, “Atiesar la columna” o

“Cambiar la columna”.

Hasta aquí se ha revisado si se necesitan atiesadores para evitar el flujo plástico en flexión del patín de la

columna.

Cuando se requieren atiesadores, se calcula la fuerza para la que deben diseñarse.

En la celda J42 se lee la resistencia en flexión de los patines de la columna no atiesada, ante las fuerzas

concentradas que aplican los patines de la viga, y en la K42 la resistencia correspondiente de un patín de la

columna.

En las celdas L38 a M42 se revisa el posible flujo plástico del alma de la columna; si la fuerza de la celda M42

es menor que Fupv (celda E32), se requieren placas de continuidad.

La resistencia al pandeo del alma de la columna se revisa en las celdas J44 a K49. Si la fuerza en K49 es

menor que la de A34, deben colocarse placas de continuidad en la columna.

En las celdas L44 a M49 se revisa el aplastamiento del alma de la columna; si la fuerza en M49 es menor que la

de A37, se colocan placas de continuidad.

Page 34: Conexiones Rigidas Con Placa Extrema

34

En 042 se obtiene la fuerza que debe resistir cada par de tiesadores horizontales; que corresponde al estado

límite más critico (la fuerza resistente menor de las celdas K42, M42, K48, M48).

Por ultimo, siguiendo las recomendaciones de la ref. 14 se revisa la zona del tablero del alma de la columna y la

relación entre las resistencias de las vigas y columnas que concurren en el nudo. Estas revisiones no están

implementadas en la hoja de cálculo.

6.3 CONEXIONES 8ES

Se anota el tipo de acero (A36 o Gr. 50) que se va a emplear en placas (celda D13), viga (G13) y columna (J13).

Se escoge el tipo de tornillos, A350 o A490 (celda A13).

Se anotan las dimensiones de la viga (celdas A20 a D20) y de la columna (E20 a H20); se anotan, también, el

módulo Zx de la viga (celda A23) y el valor de Kder de la columna (celda H23); este valor se toma de la Tabla 1.1

de la ref. 15.

Se escogen valores preliminares del diámetro de los tornillos, dt (celda G9), y del grueso de la placa extrema, tp

(H9).

La hoja de cálculo proporciona cinco de las dimensiones de la placa: pb (celda I20), pfi (K20), pro (L20), de (M20)

y bp (N20). La dimensión restante, g, se introduce en la celda J20. g se toma de la Tabla 1.1, ref. 15 (es el

“workable gage” de la columna). Los valores calculados de pb, pfi, pfo, de y bp pueden ajustarse,

incrementándolos ligeramente (Aunque no se modifiquen, deben anotarse en las celdas I21 y K21 a N21).

Todas las dimensiones de la placa deben estar dentro de los límites señalados en la Tabla 1.

La hoja calcula las dimensiones del atiesador en el grupo de celdas situadas entre I22 y M25. La longitud se

ajusta a un valor práctico en la celda K25, que se llena aunque sea igual que la J25, y el grueso mínimo (celda

L25) se ajusta a un valor estandar (celda M25), que no debe ser menor que el grueso del alma de la viga (C20).

La celda M25 debe llenarse también, aunque se conserve el valor de L25.

Se proporciona, además, la información siguiente:

Celda B8.- Valor de Ry; se obtiene de la Tabla 7.

Page 35: Conexiones Rigidas Con Placa Extrema

35

Celda M5.- Claro de la viga, medido entre ejes de columnas.

Celda 05.- Fuerza cortante de diseño (FC = 1.1) por cargas gravitacionales que aplica la viga a la columna; se

determina fuera de la hoja de cálculo.

Celda L42.- Valor del coeficiente Ct (léase el comentario de la celda L41).

Resultados Tornillos

Diámetro

En la celda A29 aparece el diámetro mínimo, requerido por fuerza axial; si es diferente del propuesto, se

modifica éste (celda G9).

Placa

Grueso

El mínimo requerido se muestra en la celda G29; si es diferente del propuesto, se modifica éste (celda H9); en

todo caso, debe utilizarse un grueso de placa estandar.

Atiesador

En las celdas F32 a G35 se revisa si es correcto por pandeo local; en ellas se indica si está bien o debe

aumentarse su grueso.

Placa y tornillos

Ruptura por cortante

En las celdas HI35 se obtiene “Correcto” o “No pasa”. En el segundo caso, se aumenta el grueso de la placa

extrema (celda H9), el diámetro de los tornillos (celda G9), o ambos.

Resistencia por aplastamiento-desgarramiento

Se revisan, por este concepto, la placa y el patín de la columna. Para una y otro se obtiene, en las celdas K34

y N34, respectivamente, “Correcto” o “No pasa”. En el segundo caso se aumenta el grueso de la placa (celda

H9) y/o el diámetro de los tornillos (celda G9), o se aumentan las distancias pfi (celda K21) y pfo (L21).

Page 36: Conexiones Rigidas Con Placa Extrema

36

Revisión del patín de la columna

En la celda D42 se obtiene el grueso mínimo del patín de la columna necesario para que no se requieran

atiesadores (placas de continuidad) entre el alma y los patines de la columna. Si es mayor que tpc (celda H20)

se colocan atiesadores, y en G42 se ve el grueso mínimo del patín de la columna atiesada; si sigue siendo

mayor que tpc (H20) debe cambiarse el perfil utilizado en la columna, por otro con patines más gruesos.

El resultado se ve en las celdas HI40, donde se lee “No hacen falta atiesadores”, “Atiesar la columna” o

“Cambiar la columna”.

Hasta aquí se ha revisado si se necesitan atiesadores para evitar el flujo plástico en flexión del patín de la

columna.

Cuando se requieren atiesadores, se calcula la fuerza para la que deben diseñarse.

En la celda J43 se lee la resistencia en flexión de los patines de la columna no atiesada, ante las fuerzas

concentradas que aplican los patines de la viga, y en la K43 la resistencia correspondiente de un patín de la

columna.

En las cedas L39 a M43 se revisa el posible flujo plástico del alma de la columna; si la fuerza de la celda M43

es menor que Fpvu (celda A34), se requieren placas de continuidad.

La resistencia al pandeo del alma de la columna se revisa en las celdas J45 a K50. Si la fuerza en K49 es

menor que la de A34, deben colocarse placas de continuidad en la columna.

En las celdas L45 a M50 se revisa el aplastamiento del alma de la columna; si la fuerza en M50 es menor que la

de A34, se colocan placas de continuidad.

En 043 se obtiene la fuerza que debe resistir cada par de tiesadores horizontales; que corresponde al estado

límite más critico (la fuerza resistente menor de las celdas K43, M43, K49, M49).

Por ultimo, siguiendo las recomendaciones de la ref. 14 se revisa la zona del tablero del alma de la columna y la

relación entre las resistencias de las vigas y columnas que concurren en el nudo. Estas revisiones no están

implementadas en la hoja de cálculo.

Page 37: Conexiones Rigidas Con Placa Extrema

37

7, DISEÑO DE UNIONES EN ZONAS DE ALTA SISMICIDAD 7.1 EJEMPLO 1 PLACA EXTENDIDA, ATIESADA, CON 4 TORNILLOS (4ES)

TORNILLOS: A490

dt = 3.49 cm (1 3/8”). Se supone un valor de dt, que no es, en general, adecuado, y se modifica posteriormente.

Aquí se ha tomado el valor final, para que los resultados coincidan con los de la hoja de cálculo.

VIGA: W 16” X 67 lb/pie

dv = 41.5 cm, bpv = 26.0 cm, tav = 1.00 cm, tpv = 1.69 cm, Zx = 2130 cm3

El acero es A992: Fyv = 3515 Kg/cm2, Fuv = 4570 Kg/cm2

Longitud L = 8.37 m

COLUMNA: W14” x 132 lb/pie

dc = 37.2 cm, bpc = 37.4 cm, tac = 1.64 cm, tpc = 2.63 cm, kdes = 4.14 cm

El valor de kdes (k para diseño) se toma de la ref. 15.

Acero A992

PLACA

Acero A572, Gr. 50

bp = bpv + 1” = 26.0 + 2.54 = 28.54 cm. Se redondea a 28 cm. Debe ser igual o mayor que bpv

g = 5.5” = 13.97 cm Es el gramil de trabajo (“workable gage”) de la columna (ref. 15)

Podría convenir redondearlo, por ejemplo, a 15.2 cm (6”).

de = 4.37 cm Es la distancia del eje de un agujero estándar al borde de la placa; se toma de la Tabla J3.4,

p.16.I-107, ref. 13 (para dt = 1 3/8”, demín = 1.25 dt = 1.25 x 3.49 = 4.37 cm)

Page 38: Conexiones Rigidas Con Placa Extrema

38

Todas las dimensiones anteriores están dentro de los límites que se indican en la Tabla 1.

DISEÑO DE LA PLACA EXTREMA Y DE LOS TORNILLOS

Los números de las ecuaciones son los de la ref. 8.

(1) Se determinan las dimensiones del atiesador

pfi = pfo = dt + ¾” = 3.493 + 1.905 = 5.40 cm

El valor mínimo de pf; y pfo cuando los agujeros son estandar es dt + ½” para tornillos hasta 1” de diámetro, y dt

+ ¾” para diámetros mayores.

Valores escogidos: pfi = pfo = 5.71 cm (2 ¼”)

Altura: hat = pfo + de = 5.71 + 4.37 = 10.08 cm

Longitud: (ec. 6.9-1): Lat = hat/tan 30° = 10.08/tan 30° = 17.46 cm

Se escoge Lat = 22.0 cm (Podría ser algo menor; se deja, para que coincida con la hoja de cálculo).

(2) Conocidos los tamaños de los miembros conectados, viga y columna, se calcula el momento en la cara

de la columna

Ec. 8.4.3-2 Cpr = 3515 x 2

4570 3515 F 2

F F

y

uy +=

+ = 1.15 < 1.20 ∴ Cpr = 1.15

Fy y Fu corresponden al elemento que fluye plásticamente: la viga, puesto que el diseño se hace para que se

forme una articulación plástica en ella.

Ec. 6.9.3 Mpe = Cpr Ryv Fyv Zxv = 1.15 x 1.1 x 3515 x 2130 x 10-5 = 94.71 Tm

Ry se lee en la Tabla 7

tp = 3.175 cm (1 ¼”)

En general, se escoge un valor de tp que se modifica después, en la hoja de cálculo, hasta llegar al grueso final.

Aquí se ha tomado, desde un principio, el grueso final de la placa.

Page 39: Conexiones Rigidas Con Placa Extrema

39

Sh = Lat + tp = 22.0 + 3.175 = 25.175 cm

Sh es la distancia de la cara de la columna a la articulación plástica.

L’ = L – (dc + 2Sh) = 837 – (37.2 + 2 x 25.175) = 749.5 cm.

Se ha supuesto que las columnas son iguales en los dos extremos de la viga.

Vgrav = 50 Ton Se determina fuera de la hoja de cálculo.

Vu = 2 Mpe/L’ + Vgrav = 2 x 94.71/7.495 + 50.0 = 75.27 Ton

Ec. 6.9-2 Mf = Mpe + Vy Sh = 94.71 + 75.27 x 25.175/100 = 113.66 Tm

(3) Se determina el diámetro mínimo requerido de los tornillos, (dt)req.

ho = distancia del eje del patín comprimido al de la línea exterior de tornillos en tensión = dv – 0.5 tpv + pfo

= 41.5

–0.5 x 1.69 + 5.71 = 46.37 cm

hi = distancia del eje del patín comprimido al de la línea interior de tornillos en tensión =

= dv - (1.5 tpv + pfi) = 41.5 – (1.5 x 1.69 + 5.71) = 33.26 m

Ec. 6.9-6 (dt)req = )h h(Fπφ

2M

1oucn

f

+ =

33.26) (46.3 7945 x 9.010 x 113.66 x 2 5

+π = 3.57 cm

(4) Se escoge un diámetro de tornillos igual o mayor que el calculado:

dt = 3.493 cm = 1 3/8”

Este diámetro es un poco menor que el que se obtuvo en 3, pero la diferencia es tan pequeña que puede

aceptarse.

(5) Se obtiene el grueso mínimo requerido de la placa extrema, (tp)req.

De la Tabla 3,

s = 0.5 13.97 x 28.0 0.5 gbp = = 9.889 cm > pfi = 5.71 cm ∴ s = 9.889 cm

Page 40: Conexiones Rigidas Con Placa Extrema

40

de = 4.37 cm < s = 9.889 cm

Yp = ( ) ( )[ ]foeofi1fo

ofi

1p p d h s p h

g2

2s1

p1 h

s1

p1 h

2b

++++⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛++⎟⎟

⎞⎜⎜⎝

⎛+ =

= ( ) ( )[ ]5.714.37 46.379.8895.71 33.26 13.97

29.889 x 21

5.711 46.37

9.8891

5.711 33.26

20.28

++++⎥⎦

⎤⎢⎣

⎡⎟⎠

⎞⎜⎝

⎛ ++⎟⎠

⎞⎜⎝

⎛ + =

= 416.34 cm

Ec. 6.9-8 (tp)req = 416.34 x 3515 x 1.0

10 x 113.66 x 1.11 YF

M11.1 5

pypd

f =φ

= 2.936 cm

(6) Se elige el grueso de la placa extrema, tp, no menor que el mínimo requerido.

tp = 3.175 cm (1 ¼”)

(7) Se calcula la fuerza de diseño en el patín de la viga

Ec. 6.9-9 Fupv = 69.150.41

10 x 113.66 t - d

M 2

pvv

f

−= = 285.5 Ton

(8) y (9) No son aplicables a las conexiones atiesadas

(10) Se determina el grueso del atiesador

Ec. 6.9-12 (tat)mín = tav ⎟⎟⎠

⎞⎜⎜⎝

yat

yv

FF

= tav = 1.0 cm, puesto que Fyv = Fyat.

Se elige un grueso estándar, igual o un poco mayor que el calculado.

tat = 0.95 cm (3/8”)

Revisión por pandeo local

Ec. 6.9-14 0.95

10.08 th

at

at = = 10.61 < 0.56 yatFE = 13.49 Correcto

(11) Se revisa la resistencia a la ruptura por cortante de los tornillos.

φn Rn = φn (nt) Fvt At = (0.9 x 4 x 4220 x π x 3.4932/4)10-3 = 145.58 Ton

Page 41: Conexiones Rigidas Con Placa Extrema

41

Ec. 6.9-15 Vu = 75.27 Ton < 145.58 Ton Correcto

En una conexión 4ES, nt = 4.0

(12) Se revisa la falla por aplastamiento-desgarramiento de los tornillos, en la placa extrema y en la columna.

i) Placa extrema

ni = no = 2

Tonillos interiores

Lci = pfi + tpv + pfo - ( )1/8" dt + = 5.71 + 1.69 + 5.71 – (3.49 + 0.32) = 9.30 cm

Ec. 6.9-18 rni = 1.2 Lci tp Fup = 1.2 x 9.30 x 3.18 x 4570 x 10-3 = 162.18 Ton > 2.4 dt tp Fup = 2.4 x 3.49 x 3.18 x

4570 x 10-3 = 121.7 Ton

rni = 121.7 Ton

Tornillos exteriores

Lco = de - 21 (dt + 1/8”) = 4.37 – 0.5 (3.49 + 0.32) = 2.47 cm

Ec. 6.9-19 rno = 1.2 x 2.47 x 3.18 x 4570 x 10-3 = 43.1 Ton < 121.7 Ton ∴ rno = 43.1 Ton

Ec. 6.9-17 φn Rn = φn (ni) rni + φn (no) rno = 0.9 x 2 x 121.7 + 0.9 x 2 x 43.1 = 296.6 Ton > Vu = 75.27 Ton Correcto

ii) Patín de la columna

ni = no = 2

Tornillos interiores

Lci = 9.30 cm Se determinó arriba, para la placa

rni = (rni)p x p

pc

tt

x Fuc/Fup = 121.7 x 18.363.2 = 100.7 Ton < 121.7 Ton ∴ rni = 100.7 To

Page 42: Conexiones Rigidas Con Placa Extrema

42

Tornillos exteriores

Rige la resistencia al aplastamiento, puesto que la distancia al borde es muy grande

rno = 121.7 Ton

Ec. 6.9-17 φn Rn = 2 x 0.9 x 100.7 + 2 x 0.9 x 121.7 = 400.3 > Vu = 75.27 Ton Correcto

(13) Diseño de soldaduras

Se hace al final del ejemplo.

DISEÑO DE LA COLUMNA, EN LA ZONA DE LA CONEXIÓN

(14) Revisión de la resistencia del patín de la columna al flujo plástico en flexión

a) El patín no está atiesado (Tabla 5)

c = pfi + tpv + pfo = 5.71 + 1.69 + 5.71 = 13.11 cm

s = 0.5 gbpc = 0.5 97.13 x 4.37 = 11.43 cm

Yc = 2g

2c

4c s h

43c s h

g2

s1 h

s1 h

2b 2

01o1pc =+

⎥⎥⎦

⎢⎢⎣

⎡+⎟

⎞⎜⎝

⎛ ++⎟⎠

⎞⎜⎝

⎛ ++⎥⎦

⎤⎢⎣

⎡⎟⎠

⎞⎜⎝

⎛+⎟⎠

⎞⎜⎝

⎛ +⎥⎦

⎤⎢⎣

⎡ + 11.4346.37

11.4333.2637.4 x 5.0

[ ]2

13.97 13.11 x 0.5 13.11) x 0.25 346.37(11.4 13.11) x 0.75 (11.43 33.26 13.97

2 2 ++++++ = 348.45 cm

Ec. 6.9-20 (tpc)req = 45.348 x 3515 x 0.1

10 x 113.66 x 1.11 YF

M 11.1 5

cycd

f =φ

= 3.21 cm > tpc = 2.63 cm

Se necesitan atiesadores (placas de continuidad) en la columna.

Se revisa otra vez la ec. 6.9-20 con el valor de Yc para columnas atiesadas, para obtener el grueso requerido

del patín de la columna, reducido por el uso de atiesadores.

Se consideran atiesadores de un grueso estándar, semejante al de los patines de la viga.

tat = 1.588 cm (5/8”) ≅ tpv = 1.69 cm

Page 43: Conexiones Rigidas Con Placa Extrema

43

La diferencia es tan pequeña que puede tomarse psi = pso = pfi = pfo = 5.71 cm

s = 11.43 cm > psi = 5.71 cm ∴ s = 11.43 cm

De la Tabla 5,

Yc = ( )[ ] )p (s h p s h g2

p1

s1 h

p1

s1 h

2b

soosiiso

ois

1pc ++++

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛++⎟

⎟⎠

⎞⎜⎜⎝

⎛+ =

= ( ) ( )[ ]5.71 11.43 46.37 5.71 11.43 33.26 13.97

2 71.51

43.111 37.46

71.51

43.11126.33

240.37

++++⎥⎦

⎤⎢⎣

⎡⎟⎠

⎞⎜⎝

⎛ ++⎟⎠

⎞⎜⎝

⎛ + =

= 586.46 cm

Ec. 6.9-20 (tpc)req = 46.586 x 3515 x 0.1

10 x 113.66 x 11.1 5 = 2.47 cm < tpc = 2.63 cm

Si el grueso requerido en la columna atiesada fuese mayor que el del patín, habría que cambiar la sección de la

columna, por otra con patines más gruesos.

(15) Si se utilizan atiesadores, se determina la fuerza para la que deben diseñarse.

Esta fuerza, que es igual a la que aplica el patín, de la viga, Fupv, menos la que resiste la columna, se evalúa

para los varios estados límite de interés (pasos 15 a 18).

Resistencia de diseño en flexión del patín de la columna

Ec. 6.9-21 φd Mpc = φd Fyc Yc t 2pc = 1.0 x 3515 x 348.45 x 2.632 x 10-5 = 84.72 Tm

Yc es el parámetro determinado para la columna sin atiesadores.

Ec. 6.9-22 φd Rn = 69.150.41

10x72.84

)td(M 2

pcv

pcd

−=

ϕ = 212.8 Ton

Esta es la fuerza de diseño que resiste el patín de la columna, correspondiente a su falla por flujo plástico en

flexión.

Page 44: Conexiones Rigidas Con Placa Extrema

44

(16) Se determina la resistencia al flujo plástico local del alma no atiesada de la columna.

Ec. 6.4-24 φd Rn = φd Ct(6kc + tpv + 2 tp) Fyc tac = 1.0 x 1.0 (6 x 4.14 + 1.69 + 2 x 3.18)3515 x 1.64 x 10-3 = 189.6 Ton

Se ha tomado Ct = 1.0, suponiendo que la distancia entre los bordes superiores de viga y columna es mayor

que el peralte de la viga (lo que sucede casi siempre en estructuras de edificios, excepto en la azotea y, en

algunos casos, en columnas que no llegan hasta ella).

(17) Resistencia al pandeo del alma de la columna no atiesada frente al patín comprimido de la viga

Como la fuerza está aplicada a una distancia del borde superior de la columna mayor que dv/2,

hc = dc – 2kc = 97.20 – 2 x 4.14 = 28.92 cm

Ecs. 6.9-25 y 6.9-26 φRn = φ c

yc3ac

h

EFt24 = 0.75 x

28.92

EF 64.1x24 yc3

x 10-3 = 232.4 Ton

(18) Resistencia al aplastamiento del alma no atiesada de la columna frente al patín comprimido de la viga.

Caso (a)

Suponiendo que los filetes de refuerzo sean de 0.64 cm (1/4”), N = tpv + 2 (1/4”) = 1.69 + 1.27 = 2.96 cm

Ec. 6.9-29 φRn = φ 0.80 tac

pcyc5.1

pc

ac

c

2ac t

tEF

tt

dN 3 1

⎥⎥

⎢⎢

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛+ =

= 0.75 x 0.80 x 1.642 1.64

EF 2.63

2.631.64

37.202.96 x 3 1 yc

5.1

⎥⎥⎦

⎢⎢⎣

⎡⎟⎠

⎞⎜⎝

⎛+ x 10-3 = 193.34 Ton

(19) Resistencia mínima requerida de las placas atiesadoras horizontales (placas de continuidad)

Ec. 6.9-32 (Fu)at = Fupv – (φRn)mín = 285.52 – 189.6 = 95.9 Ton

(φRn)mín es la más pequeña de las resistencias calculadas en los pasos 15 a 18.

Page 45: Conexiones Rigidas Con Placa Extrema

45

Diseño de las placas atiesadoras horizontales

Aat ≥ ( )

3515 x 0.910 x 95.9

φFF 3

aty

ata = = 30.3 cm2

Fyat es el esfuerzo de fluencia del acero de los atiesadores; se ha tomado igual a 3515 Kg/cm2.

Ancho de cada atiesador bat = .cm 15.78 2.0 - 2

1.64 - 37.2 2.0 - 2

tb acpc ==−

Se toma bat = 15.0 cm

Los 2.0 cm que se descuentan al calcular bat corresponden al corte en la esquina del atiesador, para librar la

curva de unión entre alma y patín de la columna. 2.0 cm es adecuado para la mayor parte de las columnas,

pero puede ajustarse hacia arriba o abajo, según el perfil que se utilice.

Aat = 2battat ∴ tat = Aat/2bat = 30.3/(2 x 15.0) = 1.01 cm

El grueso mínimo de las placas de continuidad debe ser igual a (ref. 8)

a) La mitad del grueso del patín de la viga en conexiones en un solo patín de la columna (exteriores).

b) El más grueso de los patines de las dos vigas en conexiones en los dos patines de la columna

(interiores).

En este ejemplo, suponiendo que la columna recibe dos vigas iguales, el grueso mínimo de los atiesadores es

(tat)mín = tpv = 1.69 cm > 1.01 cm

Se toma tat = 1.59 cm (5/8”)

Soldadura entre los atiesadores y los patines de la columna

Las placas de continuidad deben unirse a los patines de la columna con soldaduras de penetración completa

(refs. 8 y 14).

Soldadura entre los atiesadores y el alma de la columna

Page 46: Conexiones Rigidas Con Placa Extrema

46

Se diseñan para que transmitan la fuerza cortante máxima que pueden recibir; está limitada por la fuerza en el

patín de la viga, la resistencia en cortante de las placas en sí, o la soldadura entre ellas y el patín de la columna

(refs. 8 y 14).

La resistencia requerida de las soldaduras será la menor de las siguientes:

a) La suma de las resistencias de diseño en tensión de las áreas de contacto entre las placas de continuidad

y los patines de la columna que reciben vigas.

b) La resistencia de diseño en cortante del área de contacto entre la placa y el alma de la columna.

c) La resistencia de diseño en cortante del tablero de alma de la columna.

d) La suma de las resistencias esperadas al flujo plástico de los patines de las vigas que transmiten fuerzas

a las placas de continuidad.

Longitud de cada atiesador l = dc – 2tpc = 37.20 – 2 x 2.63 ≅ 31.9 cm

La resistencia al cortante de las soldaduras, φRn, es, como mínimo, igual al menor de los valores (las

expresiones que siguen corresponden a un par de atiesadores, en los dos lados del alma de la columna):

a) φRn = 0.9 Fyat (4) bat tat = 0.9 x 3515 x 4 x 15.0 x 1.59 x 10-3 = 301.8 Ton

bat se calculó arriba; ya se ha descontado el corte en la esquina.

b) φRn = 0.9 x 0.6 Fyat (l - 2 x 2.0) 2 tat = 0.9 x 0.6 x 3515 (31.9 – 4.0) 2 x 1.59 x 10-3 = 168.4 Ton

c) No es crítico

d) φRn = 2 Fupv = 571.0 Ton

La soldadura debe resistir 168.4 Ton.

La resistencia de soldaduras de filete con electrodo FEXX, en los dos lados de los atiesadores, es 0.75 X 0.6 FEXX

(l - 4.0) 4 (a cos 45°) = 0.75 x 0.6 x 4920 (31.9 – 4.0) 4 (a cos 45°) 10-3 = 174.7 a Ton (a en cm)

174.7 a = 168.4 ∴ a = 0.96 cm

Se toma a = 0.95 cm (3/8”)

Page 47: Conexiones Rigidas Con Placa Extrema

47

(20) Revisión del tablero de alma de la columna

Si la conexión forma parte de un marco rígido especial, deben satisfacerse los requisitos de la sec. 9.3 de la ref.

14.

Resistencia en cortante

La resistencia en cortante requerida del alma se determina con la suma de los momentos en las caras de la

columna, calculados proyectando en esas caras los momentos esperados en las articulaciones plásticas de las

vigas.

El momento indicado en el párrafo anterior es Mf = 113.66 Tm.

Si la columna es exterior, sólo recibe una viga; la fuerza cortante se calcula con Mf = 113.66 Tm; si es interior,

con vigas iguales en los dos patines, se emplea 2 Mf = 227.32 Tm.

La resistencia nominal en cortante, Rn, correspondiente al estado límite de flujo plástico del alma, se calcula

como se indica en la sec. J10.6 de la ref. 13.

Se supone que no se ha considerado en el análisis el efecto de la deformación del tablero de alma de la

columna en la estabilidad del marco, y que Pu/Pc = 0.45 (en este problema no se conocen ni la fuerza axial en la

columna ní su resistencia).

En esas condiciones,

φRn = φ [0.60 Fyc dc tac (1.4 – Pu/Pc)] = 1.0 x 0.6 x 3515 x 37.20 x 1.64 (1.4 – 0.45) 10-3 = 122.2 Ton

El factor de resistencia φ se toma igual a 1.0.

La fuerza de diseño en cada patín de la viga se obtuvo en el paso 7; es

Fvpv = 285.5 Ton

Cuando llega a la columna una sola viga,

Vu = Fupv = 285.5 Ton > φRn = 122.2 Ton

Si las vigas son dos,

Page 48: Conexiones Rigidas Con Placa Extrema

48

Vu = 2Fupv = 571.0 Ton >> φRn = 122.2 Ton

El alma de la columna es inadecuada, en los dos casos, para resistir la fuerza cortante; se refuerzo con dos

placas adosadas a ella.

Diseño de las placas adosadas al alma (ref. 5)

La columna es exterior, con una viga unida a uno de los patines.

Las dos placas adosadas deben resistir una fuerza cortante

Vpa = Vu – (φRn)alma = 285.5 – 122.2 = 163.3 Ton

El grueso total (suma de los gruesos de las dos placas) requerido por resistencia es:

tpa = 37.20 x 3515 x 0.6 x 0.5

13 x 163.3 dF 0.6 x 0.9

V -3

cyp

pa = = 4.16 cm. Dos placas de 2.22 cm (7/8”) cada una.

Fyp es el esfuerzo de fluencia de las placas adosadas.

Si en un problema real se obtuviesen placas tan gruesas, probablemente convendría cambiar la columna por

otra mayor (en este ejemplo se han inventado los tamaños de vigas y columna). El problema sería más grave

en columnas interiores.

Para evitar el pandeo local del alma de la columna y de las placas adosadas, el grueso individual de cada una

debe cumplir la condición (ref. 14).

t ≥ (dz + wz)/90

t es el grueso del alma de la columna o de una placa adosada, dz el peralte del tablero entre placas de

continuidad, y wz su ancho, entre los patines de la columna.

Las placas y el alma pueden unirse con soldaduras de tapón, para evitar el pandeo individual de cada una; en

ese caso, t es el grueso total del alma reforzada.

Las placas adosadas pueden llegar hasta los atiesadores horizontales de la columna, y soldarse utilizando

alguno de los detalles de la Fig. 18 (ref. 5). Si se emplea una sola placa, a un lado del alma de la columna, la

soldadura es igual a la mostrada para cualquiera de las placas de la figura.

Page 49: Conexiones Rigidas Con Placa Extrema

49

Fig. 18. Detalles comunes de juntas soldadas en los bordes superior e inferior de las placas adosadas al alma y un par de atiesadores transversales.

Otra solución consiste en prolongar las placas arriba y debajo de los atiesadores, en una longitud no menor que

tres veces la distancia k de la columna más el grueso de la placa extrema.

dz ≅ dv – 2tat = 41.50 – 2 x 1.59 = 38.32 cm

wz = dc – 2tpc = 37.20 – 2 x 2.63 = 31.94 cm

tmín = (dz + wz)/90 = (38.32 + 31.94)/90 = 0.79 cm < tac = 1.64 cm o tpa = 2.22 cm

El diseño queda regido por resistencia; no es necesario utilizar soldaduras de tapón entre las placas y el alma.

Soldaduras entre las placas adosadas y la columna

Page 50: Conexiones Rigidas Con Placa Extrema

50

En zonas de alta sismicidad, las soldaduras verticales entre las placas y los patines de la columna tienen que

desarrollar la resistencia de diseño en cortante de las primeras; pueden ser de filete o de penetración completa

(Fig. 19, ref. 5).

Fig. 19. Detalles comunes de juntas soldadas en los bordes verticales de las placas adosadas al alma y el patìn de la columna.

Page 51: Conexiones Rigidas Con Placa Extrema

51

En los bordes horizontales, superior e inferior, se coloca una soldadura de filete del tamaño mínimo

correspondiente al grueso de las placas, pero no mayor que su grueso menos 1.5 m (1/16”).

Soldaduras entre la placa extrema y la viga y entre ellas y el atiesador vertical (refs. 7 y 8 )

Deben satisfacer los siguientes requisitos:

(1) La unión entre el alma de la viga y la placa extrema puede hacerse con soldaduras de filete o de

penetración completa. Si son de filete, deben dimensionarse para que transmitan la resistencia total, en

tensión, del alma de la viga, en el tramo comprendido entre la cara interior del patín y un punto situado

150 mm (6”) más allá de la línea de tornillos más alejada del patín.

(2) La soldadura entre el alma y la placa extrema se deposita antes de soldar los patines. Con esta

secuencia se evitan esfuerzos adicionales que se crearían en las soldaduras entre los patines de la viga y

la placa extrema si el alma se soldase después.

(3) La conexión entre los patines de la viga y la placa extrema se hace con una soldadura de penetración

completa sin placa de respaldo; la raíz de la soldadura, que queda en el borde interior del patín, se

respalda con un filete de 8 mm (5/16”), colocado en ese borde. No se hacen agujeros de acceso.

Después de que se ha depositado el filete de respaldo, se limpia (“backgouge”) la raíz de la preparación

hasta descubrir metal sano, y se coloca la soldadura de penetración. En la zona del patín

inmediatamente arriba del alma (en una longitud igual a 2kv) no se limpia la raíz.

4) Las soldaduras entre el atiesador, el patín de la viga y la placa extrema, se diseñan para desarrollar la

resistencia del atiesador en cortante en su unión con la viga, y en tensión en la placa extrema. Pueden

usarse soldaduras de penetración completa o de filete, en los dos lados del atiesador, en ambos casos,

excepto cuando el grueso del atiesador es mayor de 10 mm (3/8”); cuando es así, la soldadura con la

placa extrema debe ser de penetración completa.

En la Fig. 20 se indica el orden en que deben depositarse las soldaduras.

Page 52: Conexiones Rigidas Con Placa Extrema

52

Fig. 20. Procedimiento recomendado para soldar la placa extrema de la viga.

Las soldaduras finales se muestran en la Fig. E1.1, y los resultados que se obtienen con la hoja de cálculo, en

la pág. 54.

Page 53: Conexiones Rigidas Con Placa Extrema

53

Fig, E1.1 Ejemplo 1

Page 54: Conexiones Rigidas Con Placa Extrema

54

Page 55: Conexiones Rigidas Con Placa Extrema

55

7.2 EJEMPLO 2 PLACA EXTENDIDA, NO ATIESADA, CON CUATRO TORNILLOS (4E)

Es igual que el 1, pero la placa extrema es 4E (no atiesada)

TORNILLOS, VIGA Y COLUMNA Ver pág. 37.

PLACA

Acero A572, Gr. 50

bp = 28.0 cm (Pág. 37)

g = 13.97 cm (Pág. 37)

de (tornillos de 1 3/8”) = 1.25 dt = 1.25 x 3.493 = 4.37 cm

DISEÑO DE LA PLACA EXTREMA Y DE LOS TORNILLOS

(1) No es aplicable en este caso.

pfi = pfo = 5.71 cm (pág. 38)

(2) Momento en la cara de la columna

Cpr = 1.15 (pág. 38)

Mpe = 94.71 Tm (pág. 38)

tp = 3.175 cm (1 ¼”) Este es el grueso preliminar de la placa.

Ec. 6.9-4 Sh es la menor de las longitudes dv/2 = 41.5/2 = 20.75 cm y 3bpv = 3 x 26.0 = 78 cm

Sh = 20.75 cm

L’ = 837 – (37.2 + 2 x 20.75) = 758.3 cm = 7.583 m

Vgrav = 50.0 Ton

Page 56: Conexiones Rigidas Con Placa Extrema

56

Vu = 2 x 94.71/7.525 + 50.0 = 74.97 Ton

Mf = 94.71 + 74.97 x 0.2075 = 110.27 Ton

(3) Diámetro mínimo requerido de los tornillos

ho = dv – 0.5 tpv – pfo = 41.5 – 0.5 x 1.69 + 5.71 = 46.37 cm

hi = dv – 1.5 tpv – pfi = 41.5 – (1.5 x 1.69 + 5.71) = 33.26 cm

(dt)req = 33.26) (46.37 7945 x 9.0

10 x 110.27 x 2 5

+π = 3.51 cm

(4) Como el diámetro calculado es casi igual que el supuesto, se conserva éste.

dt = 3.493 cm = 1 3/8”

(5) Grueso mínimo requerido de la placa

De la Tabla 2,

s = 0.5 gbp = 0.5 13.97 x 28 = 9.89 cm > pfi = 5.71 cm

S = 9.89 cm

Yp = ( ) ⎥⎦

⎤⎢⎣

⎡++

⎥⎥⎦

⎢⎢⎣

⎡−⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+ S p h

g2

21

p1 h

S1

p1 h

2b

fi1fo

ofi

1p =

= ( )⎥⎦

⎤⎢⎣

⎡++⎥

⎤⎢⎣

⎡+⎟

⎠⎞

⎜⎝⎛ + 9.895.71 33.26

13.9720.5 -

5.7146.37

9.891

5.711 33.26

20.28 = 309.60 cm

(tp)req = 309.6 x 3515 x 1.0

10 x 110.27 x 1.11 5

= 3.35 cm

(6) Se escoge una placa de grueso no menor que (tp)req

tp = 3.493 cm (1 3/8”)

Page 57: Conexiones Rigidas Con Placa Extrema

57

Es el grueso que se supuso al principio.

(7) Fuerza de diseño en el patín

Fupv = 69.150.41

10 x 110.27 2

− = 276.99 Ton ≅ 277.0 Ton

(8) Resistencia al flujo plástico por cortante de la zona extendida de la placa

φd Rn = φd 0.6 Fyp bp tp = 1.0 x 0.6 x 3515 x 28.0 x 3.493 x 10-3 = 206.27 Ton > Fupv/2 = 277.0/2 Correcto

(9) Resistencia a la ruptura en cortante de la zona extendida de la placa

φn Rn = φn 0.6 Fup An = 0.9 x 0.6 x 4570 [28.0 – 2 (3.493 + 0.318)] 3.493 x 10-3 = 175.66 Ton > Fupv/2 Correcto

An = [bp – 2 (dt + 1/8”)] tp es el área neta de la placa, en una sección con dos agujeros

(10) No es aplicable

(11) Resistencia a la ruptura en cortante de los tornillos

φn Rn = φn (nt) Fvt At = 0.9 x 4 x 4220 (π x 3.4932/4) 10-3 = 145.58 Ton > Vu = 74.98 Ton Correcto

(12) Revisión de la falla por aplastamiento-desgarramiento de los tornillos, en la placa extrema y en la columna

i) Placa extrema

ni = no = 2

Tornillos interiores

Lci = 9.30 cm (p. 41)

rni = 1.2 x 9.30 x 3.493 x 4570 x 10-3 = 178.15 Ton > 2.4 x 3.493 x 3.493 x 4570 x 10-3 = 133.82 Ton

rni = 133.82 Ton

Page 58: Conexiones Rigidas Con Placa Extrema

58

Tornillos exteriores

Lco = 2.47 cm (p. 41)

rno = 1.2 x 2.47 x 3.493 x 4570 x 10-3 = 47.31 Ton < 133.82 Ton

rno = 47.31 Ton

φRn = 0.9 x 2 (133.82 + 47.31) = 326.03 Ton > Vu = 74.98 Ton Correcto

ii) Patin de la columna

ni = no = 2

Tornillos interiores

Lci = 9.30 cm Se determinó arriba, para la placa

rni = 133.22 x 493.363.2 = 100.76 Ton

Tornillos exteriores rno = 133.82 Ton

φn Rn = 0.9 x 2 (100.76 + 133.82) = 422.24 Ton > Vu = 74.98 Ton. Correcto

(13) Diseño de soldaduras

No se hace aquí

DISEÑO DE LA COLUMNA, EN LA ZONA DE LA CONEXION (14) Resistencia del patín de la columna al flujo plástico en flexión

a) El patín no está atiesado (Tabla 5) c = 13.11 cm (p. 42)

S = 11.43 cm (p. 42)

Yc = 348.45 cm (p. 42)

Ec. 6.9.20 (tpc)req = 45.348x3515x0.1

10x27.110x11.1 2 = 3.16 cm > tpc = 2.63 cm

Page 59: Conexiones Rigidas Con Placa Extrema

59

Se requieren atiesadores (placas de continuidad) en la columna

Se consideran atiesadores de un grueso estándar, semejante al de los patines de las vigas, y se vuelve a

revisar la ec. 6.9.20, con el valor de Yc para columnas atiesadas.

taf = 1.588 cm (5/8”) ≅ tpv = 1.69 cm

El resto de este punto es igual que para conexiones 4ES, excepto el valor de (tpc)req, que cambia un poco

porque el momento Mf es ligeramente diferente.

(tpc)req = 586.46 x 3515 x 0.1

10 x 110.27 x 11.1 5 = 2.44 cm < tpc= 2.63 cm

(15) Fuerza de diseño de los atiesadores

Resistencia de diseño en flexión del patín de la columna

φd Mpc = 84.72 Ton (p. 43)

φd Rn = 212.8 Ton (p. 43)

(16) Resistencia al flujo plástico local del alma de la columna no atiesada

φd Rn = 1.0 x 1.0 ((6 x 4.14 + 1.69 + 2 x 3.493) 3515 x 1.64 x 10-3 = 193.21 Ton < Fupv = 277.0 Ton Incorrecto

(17) Resistencia al pandeo del alma de la columna no atiesada frente al patín comprimido de la viga

hc = 28.92 cm (p. 44)

φRn = 232.4 Ton (p. 44) < 277.0 Ton Incorrecto

(18) Resistencia al aplastamiento del alma de la columna no atiesada frente al patín comprimido de la viga.

φRn = 193.34 Ton (p. 44) < Ton Incorrecto

(19) Resistencia mínima requerida de las placas atiesadoras horizontales

(Fu)at = 277.0 – 193.21 = 83.79 Ton

Page 60: Conexiones Rigidas Con Placa Extrema

60

Page 61: Conexiones Rigidas Con Placa Extrema

61

7.3 EJEMPLO 3

PLACA EXTENDIDA ATIESADA, CON 8 TORNILLOS (8ES)

TORNILLOS.- A490

dt = 2.54 cm (1”) Se supone un valor que, seguramente, habrá que modificar más adelante.

VIGA.- W30” x 99 lb/ft, acero A992

dv = 75.3 cm, bpv = 26.5 cm, tav = 1.32 cm, tpv = 1.70 cm, Zxv = 5100 cm3

Longitud L = 10 m

COLUMNA.- W14” X 311 lb/ft, acero A992

dC = 43.5 cm, bpc = 41.2 cm, tac = 3.58 cm, tpc = 5.74 cm, kdes = 7.5 cm

PLACA Acero A572, Gr. 50

bp = bpv + 1” = 26.5 + 2.54 = 29.04 cm. Se toma bp = 30.0 cm

de = 3.20 cm Distancia del eje de un agujero estándar al borde de la placa (Tabla J3..4, ref. 2, de = 1.25 dt =

1.25 x 2.54 = 3.18 cm)

pb = (2 2/3) dt = 6.77 cm. Se toma pb = 9.0 cm para satisfacer los requisitos de la Tabla 1.

g = 19.05 cm (“workable gage”). Se toma g = 15.2 cm para estar dentro de los límites de la Tabla 1.

DISEÑO DE LA PLACA EXTREMA Y DE LOS TORNILLOS

(1) Se determinan las dimensiones del atiesador

pfi = pfo = dt + ½ “ = 3.81 cm (1 ½”)

Valores escogidos: pfi = pfo = 3.81 cm

Altura. hat = pfo + pb + de = 3.81 + 9.0 + 3.20 = 16.01 cm

Page 62: Conexiones Rigidas Con Placa Extrema

62

Longitud. Lat = 16.01/tan 30° = 27.73 cm. Se escoge Lat = 28.0 cm

(2) Conocidos los tamaños de los miembros conectados, viga y columna, se calcula el momento en la cara

de la columna

Cpr = (Fu + Fy)/2 Fy = 1.15 < 1.20 ∴ Cpr = 1.15

Mpe = 1.15 x 1.1 x 3515 x 5100 x 10-5 = 226.77 Tm

tp = 2.54 cm (1a) Se supone un valor de tp que deberá, seguramente, modificarse más adelante.

Sh = 28.0 + 2.54 = 30.54 cm

L’ = L – (dc + 2 Sh) = 1000 – (43.5 + 2 x 30.54) = 895.42 cm Se ha supuesto que las columnas son iguales en

los dos extremos de la viga.

Vgrav = 80.0 Ton Se determina fuera de la hoja de cálculo.

Vu = 2 Mpe/L’ + Vgrav = (2 x 226.77/8.954) + 80.0 = 130.65 Ton

Mf = Mpe + Vy Sh = 226.77 + 130.65 x 30.54/100 = 266.67 Tm

(3) Diámetro mínimo de los tornillos

h1 = dv - 21.70 - 75.3 p p

2t

bfopv =++ + 3.81 + 9.0 = 87.26 cm

h2 = h1 – pb = 87.26 – 9.0 = 78.26 cm

h3 = h2 – pfo – tpv – pf1 = 78.26 – 3.81 – 1.70 – 3.81 = 68.94 cm

h4 = h3 – pb = 68.94 – 9.0 = 59.94 cm

(dt)req = 59.94) 68.94 78.26 (87.26 7945 x 0.9

10 x 266.67 x 2 )h h h h(F

M2 5

4321utn

f

+++π=

+++πφ = 2.84 cm

(4) Se escoge un diámetro igual o mayor que el calculado

dt = 2.86 cm (1 1/8”)

Page 63: Conexiones Rigidas Con Placa Extrema

63

Como aumenta el diámetro del tornillo, de crece también:

de ≥ 1.5” = 3.81 cm

Se toma de = 3.81 cm (1 1/2”)

También aumentan pfi y pfo, a 4.76 cm; se toma pfi = pfo = 5.0 cm

(5) Grueso de la placa extrema

(bp)dis = bpv + 1” = 29.04 cm; bp = 30.0 cm

De la Tabla 4,

s = 0.5 15.2 x 30.0 0.5 gbp = = 10.68 cm > pfi = 5.00 cm ∴ s = 10.68 cm

de = 3.81 cm < s = 10.68 cm

Cambian las dimensiones del atiesador: hat = 5.0 + 9.0 + 3.81 = 17.81 cm, Lat = 30.85 cm; se toma igual a 30 cm.

También se modifican las distancias h1 a h4, que no se calculan aquí (ver la hoja de cálculo de la pag. 72).

Yp = =+⎥⎦

⎤⎢⎣

⎡+⎟⎟

⎞⎜⎜⎝

⎛++⎟⎟

⎞⎜⎜⎝

⎛++⎟⎟

⎞⎜⎜⎝

⎛++⎟⎟

⎞⎜⎜⎝

⎛++⎥

⎤⎢⎣

⎡+++ g p

43p

s h 4

p p h

43p

ph 4

p d h

g2

sh

ph

ph

2dh

2

b 2b

b4

bfi3

bfo 2

be1

4

fi

3

fo

2

e

1p

⎢⎣

⎡⎟⎠

⎞⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛⎥⎦

⎤⎢⎣

⎡+++++++++

49.05.0067.75

40.935.0

49.088.45

15.22

10.6858.75

5.0067.75

5.0079.45

2x3.8188.45

20.30

x

45.9781.3 +

+ 58.75 ⎥⎥⎦

⎤+⎟

⎠⎞

⎜⎝⎛ + 20.9

40.9x368.10 + 15.2 = 698.23 + 403.34 + 15.2 = 1116.8 cm

Vu = 130.88 Ton

Mf = 226.78 + 130.88 x 32.54/100 = 269.37 Ton

(tp)req = 8.1116x3515x0.1

10x37.269x11.1 5 = 2.76 cm

Page 64: Conexiones Rigidas Con Placa Extrema

64

(6) Grueso escogido: tp = 2.86 cm (1 1/8”)

El pequeño aumento en el grueso de la placa no produce ningún cambio adicional.

(7) Fuerza de diseño en el patín de la viga

Fpvu = Ton 366.58 7.13.75

10 x 269.80 t - d

M 2

pvv

f =−

=

(8) y (9) No se revisan en conexiones con placa extrema rigidizada

(10) Grueso del atiesador

(tat)mín = tav yvavyt

yv F que puesto cm, 1.32 t FF

==⎟⎟⎠

⎞⎜⎜⎝

⎛ = Fyat

Se escoge un grueso estándar, igual o un poco mayor que el calculado.

tat = 1.27 cm (1/2”) ≅ 1.32 cm

Revisión por pandeo local

hat/tat = 17.81/1.27 = 14.02 > 0.56 yatF/E = 13.49

Se aumenta el grueso a 1.59 cm (5/8”)

(11) Resistencia de los tornillos a la ruptura por cortante

At = πd 2t /4 = 2.862 π/4 = 6.42 cm2

Ton 195.07 10).426 x 4220 x 8 x (0.9 AF )(n R 3tvttnnn ==φ=ϕ − > Vu = 130.92 Ton Correcto.

(12) Revisión de los tornillos por aplastamiento - desgarramiento

i) En la placa extrema

Lc1 = de – (dt + 1/8”) 0.5 = 3.81 – 0.5 (2.86 + 0.32) = 2.22 cm

Page 65: Conexiones Rigidas Con Placa Extrema

65

Lc2 = pb – (dt + 1/8”) = 9.0 – (2.86 + 0.32) = 5.82 cm

Lc3 = pfi + tpv + pfo - (dt + 1/8”) = 5.00 + 1.70 + 5.00 – (2.86 + 0.32) = 8.52 cm

Lc1 y Lc3 corresponden a 2 tornillos cada una, y Lc2 a 4.

rn1 = 1.2 Lc1 tp Fup = 1.2x2.22x2.86x4570x10-3 = 34.82 Ton < 2.4 dt tp Fup = 2.4x2.86x2.86x4570x10-3 = 89.71 T

∴ rn1 = 34.82 Ton

rn2 = 1.2 x 5.82 x 2.86 x 4570 x 10-3 = 91.28 Ton > 89.71 Ton ∴ rn2 = 89.71 Ton

rn3 = 1.2 x 8.52 x 2.86 x 4570 x 10-3 = 118.68 Ton > 89.71 Ton ∴ rn3 = 89.71 Ton

φn Rn = φn (2) rn1 + φn (4) rn2 + φn (2) rn3 = 0.9 x 2 x 34.82 + 0.9 x 4 x 89.71 + 0.9 x 2 x 89.71 = 547.11 Ton

φn Rn = 547.11 Ton > Vu = 130.92 Ton Correcto

ii) En el patín de la columna. tpc = 5.74 cm

Lc2 = 5.82 cm (4 tornillos) ; rn2 = 1.2 Lc2 tpc Fuc = 1.2 x 5.82 x 5.74 x 4570 x 10-3 = 183.2 Ton > 2.4 dt tpc Fup =

180.06 Ton

∴ rn2 = 180.06 Ton

Lc3 = 8.52 cm (2 tornillos) ; rn3 = 180.06 Ton (Puesto que Lc3 > Lc2)

Para los otros dos tornillos Lc es muy grande; rige el aplastamiento

rn1 = 2.4 dt tpc Fup = 180.06 Ton

φn Rn = φn (2) rn1 + φn (4) rn2 + φn (2) rn3 = 0.9 x 2 x 180.06 + 0.9 x 4 x 180.06 + 0.9 x 2 x 180.06 = 1296.4 Ton >

Vu = 130.94 Ton Correcto

(13) Diseño de soldaduras

Se hace al final del ejemplo,

Page 66: Conexiones Rigidas Con Placa Extrema

66

DISEÑO DE LA COLUMNA, EN LA ZONA DE LA CONEXIÓN

(14) Resistencia del patín de la columna al flujo plástico en flexión

a) El patín no está atiesado (Tabla 6.6)

c = pfi + tpv + pfo = 5.00 + 1.70 + 5.00 = 11.70 cm

s = 0.5 15.2 x 41.2 0.5 g bpc = = 12.51 cm

Yc = 2g sh

2c

2p

h 4c

2p

h s 2c p h

g2

sh h

2

b4

b3

b2b1

41pc +⎥⎦

⎤⎢⎣

⎡+⎟⎟

⎞⎜⎜⎝

⎛++⎟⎟

⎞⎜⎜⎝

⎛++⎟

⎞⎜⎝

⎛ +++⎟⎟⎠

⎞⎜⎜⎝

⎛ + =

= 0.5x41.2 ⎟⎠

⎞⎜⎝

⎛ ++⎢⎣

⎡⎟⎠

⎞⎜⎝

⎛ +++⎟⎠

⎞⎜⎝

⎛ +4

11.702

9.0 45.7912.512

11.709.00 88.45 15.2

251.12

75.5845.88

⎥⎦

⎤+⎟

⎞⎜⎝

⎛ ++ 158.25x12.5 2

11.702

9.0 67.75 + 2

2.15 = 242.39 + 585.01 + 7.60 = 835.00 cm

(tpc)req = 00.835 x 3515 x 0.1

10 x 269.80 x 11.1 YF

M 1.11 5

cycd

f =φ

= 3.19 cm < tpc = 5.74 cm

No se necesitan atiesadores (placas de continuidad) en la columna.

Se revisa otra vez el patín de la columna atiesada (esta revisión no es necesaria en este caso, pero puede serlo

en otras conexiones 8ES).

Se consideran atiesadores de un grueso estándar, semejante al de los patines de la viga.

tat = 1.588 cm (5/8”) ≅ tpv = 1.70 cm

Se conserva pf1 = pfo = 5.00 cm

Tabla 6.6

s = 12.51 cm > psi = 5.00 cm ∴ s = 12.51 cm

Page 67: Conexiones Rigidas Con Placa Extrema

67

Yc = g p 4

3p s h 4p p h

43p p h

4p s h

g2

sh

ph

ph

sh

2b 2

bb

4b

si3b

2b

14

si

3

so

21pcSO

+⎥⎦

⎤⎢⎣

⎡+⎟

⎞⎜⎝

⎛ ++⎟⎠

⎞⎜⎝

⎛ ++⎟⎠

⎞⎜⎝

⎛ ++⎟⎠

⎞⎜⎝

⎛ ++⎟⎟⎠

⎞⎜⎜⎝

⎛+++ =

= 15.2

212.5158.75

5.0067.75

5.0079.45

51.1245.88

22.41

+⎟⎠

⎞⎜⎝

⎛ +++ +⎟⎠

⎞⎜⎝

⎛ ++⎟⎠

⎞⎜⎝

⎛ +⎢⎣

⎡49.0 x 300.5 45.97

49.012.51 88.45

+ +⎟⎠

⎞⎜⎝

⎛ + 4

9.000.567.75 ⎥⎦

⎤+⎟

⎞⎜⎝

⎛ + 29.0 49.0 x 3 12.51 58.75 + 15.2 = 848.86 + 518.79 + 15.2 = 1382.85 cm

(tpc)req = cm 2.48 85.1382 x 3515 x 0.1

10 x 269.37 x 1.11 5= < tpc = 5.74 cm

Si el grueso requerido en la columna atiesada fuese mayor que el del patín, habría que cambiar la sección de la

columna por otra con patines más gruesos.

(15) Si se utilizan atiesadores, se determina la fuerza para la que han de diseñarse

Momento resistente de diseño del patín de la columna

φd Mpc = φd Fyc Yc t 2pc = 1.0 x 3515 x 835.00 x 5.742 x 10-5 = 967.02 Ton

Yc es el parámetro obtenido para la columna sin atiesadores (Yc1 en la hoja de cálculo)

Resistencia de diseño del patín de la columna.

70.13.7510 x 967.02

)t d(M

R2

pvv

pcdnd −

=−

φ=φ = 1313.89 Ton

(16) Resistencia al flujo plástico local del alma no atiesada de la columna

φd Rn = φd Ct (6 kc + tpv + 2 tp) Fyc tac = 1.0 x 1.0 (6 x 7.5 + 1.70 + 2 x 2.86) 3515 x 3.58 x 10-3 = 659.64 Ton

(17) Resistencia al pandeo del alma de la columna no atiesada frente al patín comprimido de la viga

hc = dc – 2 kc = 43.5 – 2 x 7.5 = 28.5 cm

Page 68: Conexiones Rigidas Con Placa Extrema

68

φ Rn = φ 28.5

FE 3.58 x 24 x 0.75

h

F E t24 yc3

c

yc3ac

== = 2453.28 Ton

(18) Resistencia al aplastamiento del alma no atiesada de la columna frente al patín comprimido de la viga

Si los filetes de refuerzo son de 0.64 cm (1/4”), N = tpv + 2 (1/4”) = 1.70 + 1.27 = 2.97 cm

ac

pcyc5.1

pc

ac

c

2acn t

tEFtt

dN 3 1 t 0.80 R

⎥⎥

⎢⎢

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛+φ=φ = 0.75 x 0.80 x 3.582

58.3EF 74.5

74.558.3

5.4397.2 x 3 1 yc

5.1

⎥⎥⎦

⎢⎢⎣

⎡⎟⎠

⎞⎜⎝

⎛+ x 10-3

= 907.50 Ton

(19) Resistencia mínima de las placas atiesadoras

(Fu)at = Fupv – (φRn)mín = 366.58 – 659.64 = -293.06 Ton

(φRn)mín es la menor de las resistencias calculadas en los pasos 15 a 18.

El signo negativo de (Fu)at indica que no hacen falta atiesadores horizontales, lo que ya se sabía.

(20) Revisión del tablero del alma de la columna

Si la conexión forma parte de un marco rígido especial, deben satisfacerse los requisitos de la sección 9.3 de la

ref. 14.

Resistencia en cortante

La resistencia en cortante requerida del alma se determina con la suma de los momentos en las caras de la

columna, calculados proyectando en esas caras los momentos esperados en las articulaciones plásticas de las

vigas.

El momento indicado en el párrafo anterior es Mf = 266.69 Tm.

Si la columna es exterior, sólo recibe una viga; la fuerza cortante se determina con Mf =266.69 Tm; si es

interior y recibe dos vigas iguales, una en cada patín, esa fuerza se calcula con 2Mf = 533.38 Tm.

Page 69: Conexiones Rigidas Con Placa Extrema

69

La resistencia nominal en cortante, Rn, correspondiente al estado límite de flujo plástico del alma, se calcula

como se indica en la sec. J10.6 de la ref. 13.

El factor de resistencia φ se toma igual a 1.0.

Se supone que no se ha considerado en el análisis el efecto de la deformación del tablero de alma de la

columna en la estabilidad del marco, y que Pu/Pc = 0.45 (en este problema no se conocen ni la fuerza axial en

la columna, ni su resistencia). En esas condiciones,

φ Rn = φ PP

- 1.4 t d F 0.60C

uaccyc

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛= 1.0 x 0.6 x 3515 x 43.50 x 3.58(1.4 - 0.45)10-3 = 312.0 Ton

La fuerza de diseño en cada patín de la viga se obtuvo en el paso 7:

Fupv =373.93 Ton

Cuando llega a la columna una sola viga,

Vu = Fupv = 373.93 Ton > φ Rn = 312.0 Ton

Cuando las vigas son dos,

Vu = 2Fupv = 747.9 Ton >> φ Rn = 312.0 Ton

El alma de la columna es inadecuada, en los dos casos, para resistir la fuerza cortante, por lo que debe

reforzarse; se utilizarán dos placas adosadas a ella.

Diseño de las placas adosadas al alma (ref.5)

La columna es interior, con vigas unidas a los dos patines.

La fuerza cortante que deben resistir las dos placas adosadas es

Vpa = Vu – (φRn)alma = 747.9 – 312.0 = 435.9 Ton

El grueso total (suma de los gruesos de las dos placas) requerido por resistencia es

cm 5.28 43.5 x 3515 x 6.0 x 9.0

10 x 435.9 d 0.6F x 0.9

V t

3

cyp

papa ===

Page 70: Conexiones Rigidas Con Placa Extrema

70

Aunque quedan ligeramente escasas, se escogen dos placas de 2.54 cm (1”) cada una.

Fyp es el esfuerzo de fluencia del material de las placas adosadas.

Para evitar el pandeo local del alma de la columna y de las placas adosadas, el grueso individual de cada una

debe cumplir la condición (ref. 14)

( ) 90/wdt zz +≥

t es el grueso del alma de la columna o de una placa adosada, dz el peralte del tablero entre placas de

continuidad, y wz su ancho, entre patines de la columna.

Como una alternativa, las placas pueden unirse con el alma por medio de soldaduras de tapón, para evitar el

pandeo individual de cada una; en ese caso, t es el grueso total del alma reforzada.

Cuando no se colocan atiesadores transversales en la columna, las placas adosadas se extienden más allá de

los bordes superior e inferior de la placa extrema, para librar la zona del alma de la columna sujeta a

arrugamiento y pandeo. Como mínimo, la extensión debe ser igual a tres veces la distancia k de la columna

más el grueso de la placa extrema, en cada uno de sus bordes (ref. 5).

Conservadoramente, puede tomarse dz igual a la longitud de la placa o placas adosadas.

dz = dv + 2 (3kc + tp) = 75.30 + 2 (3 x 7.50 + 2.85) ≅ 126 cm

wz = dc – 2tpc = 43.50 – 2 x 5.74 ≅ 32 cm

tmín = 90

32 126 90

w d zz +=

+ = 1.76 cm <(tpa = 2.54 cm) o (tac = 3.58 cm).

El diseño de las placas adosadas queda regido por resistencia; no es necesario unirlas al alma con soldaduras

de tapón.

Soldaduras entre las placas adosadas y la columna, entre la placa extrema y la viga, y entre ellas y el atiesador

vertical.

Los requisitos que deben satisfacer se indican en el Ejemplo 1. Las soldaduras se muestran en la Fig. E3.1.

Page 71: Conexiones Rigidas Con Placa Extrema

71

Fig. E3.1 Ejemplo 3

En la pág. 72 están los resultados que se obtienen al aplicar la hoja de cálculo a este ejemplo.

Page 72: Conexiones Rigidas Con Placa Extrema

72

Page 73: Conexiones Rigidas Con Placa Extrema

73

TABLA 1

Limitaciones paramétricas de las conexiones precalificadas.

Parámetro

Cuatro tornillos, no atiesada (4E)

Cuatro tornillos, atiesada (4ES)

Ocho tornillos, atiesada (8ES)

Máximo (in) mm

Mínimo (in) mm

Máximo (in) mm

Mínimo (in) mm

Máximo (in) mm

Mínimo (in) mm

tp

2 ¼ (57)

½ (13)

1 ½ (38)

½ (13)

2 ½ (64)

¾ (19)

bp

10 ¾ (273)

7 (178)

10 ¾ (273)

10 ¾ (273)

15 (381)

9 (229)

g

6 (152)

4 (102)

6 (152)

3 ¼ (83)

6 (152)

5 (127)

pfi, pfo

4 ½ (114)

1 ½ (38)

5 ½ (140)

1 ¾ (44)

2 (51)

1 ¾ (44)

pb

---

---

---

---

3 ¾ (95)

3 ½ (89)

d

55 (1400)

25 (635)

24 (610)

13 ¾ (349)

36 (914)

18 ½ (470)

tbf

¾ (19)

83 (10)

¾ (19)

83 (10)

1 (25)

3219 (16)

bbf

9 ¼ (235)

6 (152)

9 (229)

6 (152)

12 ¼ (311)

7 ¾ (197)

TABLA 7

Valores de Ry para miembros y aceros de diferentes tipos

Aplicación Ry Perfiles estructurales y barras laminadas en caliente:

• ASTM A36/A36M

• ASTM A572/572M Grado 42

• ASTM A572/572M Grado 50 o 55 ASTM A913/A913M Grado 50, 60, o 65 ASTM A588/A588M, ASTM A992/A992M, A1011 HSLAS Grado 55

• ASTM A529 Grado 50

• ASTM A529 Grado 55

1.5

1.3

1.1

1.2

11.1 Secciones estructurales huecas:

• ASTM A500 (Grado B o C), ASTM A501

1.4 Tubos:

• ASTM A53/A53M

1.6 Placas:

• ASTM A36/A36M

• ASTM A572/A572M Grado 50 ASTM A588/A588M

1.3

1.1