componentes de aceleradores de partículas

72
Componentes de aceleradores de partículas Fernando Toral [email protected] CIEMAT- Madrid, Marzo 2017 Muchas gracias a: Grupo de Aceleradores – CIEMAT Francis Pérez (ALBA) Ángeles Faus (IFIC) José Luis Martínez (ESS/Bilbao) Joaquín Gómez Camacho (CNA)

Upload: others

Post on 16-Oct-2021

19 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Componentes de aceleradores de partículas

Componentes de aceleradores

de partículas

Fernando Toral

[email protected]

CIEMAT- Madrid, Marzo 2017

Muchas gracias a:

Grupo de Aceleradores – CIEMAT

Francis Pérez (ALBA) Ángeles Faus (IFIC)

José Luis Martínez (ESS/Bilbao) Joaquín Gómez Camacho (CNA)

Page 2: Componentes de aceleradores de partículas

Esquema

• Principales componentes de un acelerador de partículas

• Aceleradores de partículas en España

• Contribuciones del CIEMAT a grandes instalaciones de aceleradores de partículas

• Resumen

Page 3: Componentes de aceleradores de partículas

Componentes de un acelerador

- Fuente de partículas

- Tubo del haz

- Imanes

- Cavidades de aceleración

- Instrumentación

- Detectores

- Dispositivos de inserción

- Inyección y extracción

Esquema de un sincrotrón

Page 4: Componentes de aceleradores de partículas

Fuente de partículas

- Electrones

- Efecto termoiónico

- Foto-cátodos

- Iones

- Penning

- Electron Cyclotron Resonance (ECR)

- Iones negativos

Vd

B

e-

e-

e-

e-

+

Cathode

Secondary

electrons

+

e-

e-

0

Ionization

Plasma

Esquema de una fuente Penning

Page 5: Componentes de aceleradores de partículas

Tubo del haz: vacío

- Tipos de bombas de vacío:

- Rotativas: hasta 10-3 mbar

- Turbomoleculares: hasta 10-6 mbar

- Iónicas: hasta 10-10 mbar

- Otros: diafragma, difusión, getters, criogénicas…

Tubo del haz del LHC (foto CERN)

Page 6: Componentes de aceleradores de partículas

Imanes: tipos

- Dipolos: curvado de la trayectoria

- Cuadrupolos: focalización del haz

- Sextupolos: corrección de la cromaticidad

Cortesía de D. Einfeld

Page 7: Componentes de aceleradores de partículas

Imanes: fabricación

Cortesía de D. Einfeld

Page 8: Componentes de aceleradores de partículas

Cavidades de aceleración

Campo E en

Pillbox Pillbox optimizada

(Campo E en

cavidad real)

La cavidad real

concentra el

campo E en el

eje, aunque para

ello tenga que

tener máximos de

campo en los

“nose cones”

Campo H

en Pillbox

Rojo = campo Alto

Azul = mínimo campo

Cortesía de David Carrillo

Page 9: Componentes de aceleradores de partículas

Instrumentación

Cortesía de U. Raich, CERN

Page 10: Componentes de aceleradores de partículas

Instrumentación

BPM para el linac superconductor de IFMIF BPM para una plataforma de diagnósticos de IFMIF

Cortesía de Iván Podadera, CIEMAT

Page 11: Componentes de aceleradores de partículas

Detectores

Detector ATLAS (foto CERN)

Page 12: Componentes de aceleradores de partículas

Dispositivos de inserción

Desplazador de fase

para el XFEL Europeo

(CIEMAT, DMP)

Page 13: Componentes de aceleradores de partículas

Inyección y extracción

Modelo simplificado de inyección: el imán septum desplaza en primer lugar el haz, y

finalmente, el imán kicker lo coloca en la órbita del acelerador circular

Page 14: Componentes de aceleradores de partículas

Inyección y extracción

A una carga

A una carga

Haz

Entrada positiva

Entrada negativa

A una carga

A una carga

Haz

Entrada positiva

Entrada negativa

Kicker de tipo línea de transmisión (stripline)

Septum de tipo magnético

Simulación del desplazamiento del haz en un kicker Kicker instalado en el experimento CTF3 (foto CERN)

Page 15: Componentes de aceleradores de partículas

Esquema

• Principales componentes de un acelerador de partículas

• Aceleradores de partículas en España

• Contribuciones del CIEMAT a grandes instalaciones de aceleradores de partículas

• Resumen

Page 16: Componentes de aceleradores de partículas

Accelerator Infrastructures in Spain

ALBA Barcelona

CNA Sevilla

IFIC Valencia

ESS Bilbao

CMAM Madrid

CIEMAT Madrid

R&D Groups running Operating Facilities

R&D Groups with on-going or planned

infrastructure initiatives

Page 17: Componentes de aceleradores de partículas

The ALBA Synchrotron Light Source Facility

• ALBA is a Synchrotron Light Source located in Cerdanyola del Vallés (Barcelona), 50% funded by the Central Spanish Government and 50% funded by the Catalan Government.

• It started operation in May 2012 and presently it has 7 running beam lines + 1 beam line under commissioning.

• Additionally 2 beam lines are under construction.

• ALBA team is around 200 people

Page 18: Componentes de aceleradores de partículas

Francis Perez CAS Granada, 2012

Workshop

Electricity

Cooling - HVAC

Offices

Parking

Warehouse

Main Building

Page 19: Componentes de aceleradores de partículas

Francis Perez CAS Granada, 2012

3 GeV electron Storage Ring

31 beamlines (7 on day one)

Funding is 50% Spanish – 50% Catalan Governments

Designed for sub-micron stability and top-up operation

ALBA Synchrotron Light Source

Page 20: Componentes de aceleradores de partículas

LINAC: Accelerates electrons from rest to 100 MeV. Accelerating cavities at 3 GHz. Repetition rate of 3Hz.

BOOSTER: Accelerates electrons from 100 MeV to 3 GeV. 1 RF cavity at 500 MHz. Repetition rate of 3Hz.

STORAGE RING: Keep electrons at 3 GeV. 6 RF cavities at 500 MHz. Circulating current up to 250 mA.

The ALBA Accelerators

Page 21: Componentes de aceleradores de partículas

Francis Perez CAS Granada, 2012

SR and BOOSTER sharing the tunnel

Booster Storage Ring

In vacuum undulator RF cavities Bending

Page 22: Componentes de aceleradores de partículas

CMAM: Centre for Micro-Analysis of Materials

• Analysis of materials using ion beam analysis (IBA) technics.

• Applications based on the modifications of the properties of materials by ion irradiation and implantation.

• Basic studies on ion matter interaction. • Service to external users managed by the

Parque Científico de Madrid.

The Centre for Micro Analysis of Materials (CMAM) is a research centre belonging to the Universidad Autónoma de Madrid (UAM) and located in Cantoblanco (Madrid) devoted to the analysis and modification of materials using an electrostatic accelerator. The activities of CMAM are:

Page 23: Componentes de aceleradores de partículas

THE ACCELERATOR • 5MV Tandem Accelerator

using a Cockroft-Walton Power Supply system.

• Two ion sources: Duoplasmatron and Sputtering

CMAM: Accelerator & Beamlines

BEAMLINES 1.- The standard multipurpose line 2.- The external microbeam line 3.- The ERDA-TOF line 4.- The nuclear physics line 5.- The implantation line 6.- The internal microbeam line

Page 24: Componentes de aceleradores de partículas

CNA: Centro Nacional de Aceleradores

The CNA is a Joint Centre owned by the Sevilla University, the Andalusian Government and CSIC. With 4 accelerators, it is a facility open to external users with activities in material science, nuclear and particle physics, nuclear instrumentation and medical physics. It started in 1997 and it is located in the Parque Tecnológico Cartuja in Sevilla.

Page 25: Componentes de aceleradores de partículas

The CNA Accelerators

The Tamden accelerator: It is a 3 MV machine accelerating ions from three different ion sources including a Duoplasmatron. The accelerator feed 6 beam lines for applications in Biomedicine, Environment, Material Science and Art and Archaeology. It uses techniques like PIXI, ERD or RBS.

Users/Collaborators: NUCLEAR PHYSICS • IEM-CSIC, IFCA-CSIC, IFIC-CSIC, I3M-

CSIC, U-Huelva, U-Granada • CERN, GANIL, GSI, LNL (Legnaro)

IBA TECHNIQUES • IO-CSIC, ICMSE-CSIC, ICMM-CSIC,

ICMB-CSIC,TRINOS, AVS, CRIOLAB,

ATI-Sistemas, INDO, ACERINOX,IAEA

Page 26: Componentes de aceleradores de partículas

The CNA Accelerators

The Cyclotron: It is a commercial IBA machine 18 MeV (protons) 9 MeV (deuterons). It is basically used for radioisotope production (11C, 13N,15O & 18F).

The Cyclotron is mainly used for radiopharmaceutical production but also for Irradiation Tests and Radiation Hardness. Users/Collaborators: • IBA Molecular (Radiopharmacy) • ALTER, TRAD, INTA (Radiation Tests)

Page 27: Componentes de aceleradores de partículas

The CNA Accelerators

MICADAS: a compact facility based on Accelerator Mass Spectroscopy System for 14C dating. Users/Collaborators: • IPC-CSIC, IMF-CSI, UAB, UEX,U-Lund,

CEPSA, U-Aahrus, U-Viena, ETH Zurich.

SARA: Based on an Accelerator Mass Spectroscopy System for different ion detection with applications in Geology, Astrophysics, Archaeology and Environment. Users/Collaborators: • ENRESA, DUCARES, CIEMAT, UAB,

UEX,U-Lund, ETH Zurich, IAEA.

Page 28: Componentes de aceleradores de partículas

• ESS-Bilbao represents the Spanish in-kind contribution to the European Spallation Source, located at Lund, Sweden (around 70 M€: 50% accelerator/target systems, 50% neutron instruments). Headquarters are located in Zamudio, close to Bilbao

• Funded by the Spanish and Basque Country Governments (93 M€)

• Working in close collaboration with University & Industry • ESS team is around 65 people

ESS-BILBAO

Page 29: Componentes de aceleradores de partículas

Participation in ESS-Lund

3

2

4

Collaborations: DMSC, Neutron Detectors, Motor Control,…

Page 30: Componentes de aceleradores de partículas

ESS-BILBAO Facilities & Developments

DEVICE DESCRIPTION/TECHNOLOGY

ION SOURCE

In the ESS is intended to use an Electron Cyclotron Resonance H+ source. An optimal electron shaping is fundamental to extract a well focussed beam with high current and low remittance.

LEBT

The role of the LEBT, placed between the ECR and the RFQ is to match the beam characteristics to the input RFQ input specifications. It consists of two solenoids producing tuneable magnetic fields to match the RFQ needs.

RFQ (Present Contribution

to Lund)

It is the first accelerating stage. It accelerates the particle from the range of tens of keV to several MeV. It also focuses the particles into bunches . ESS Bilbao plans to built a RFQ which has been designed and evaluated by an International Panel.

MEBT (Present

Contribution to Lund)

It is designed to achieve four main goals: To contain a fast chopper, to serve as a halo scraping section, to measure the beam phase and profile and finally to match the RFQ output beam characteristics to the DTL input.

Page 31: Componentes de aceleradores de partículas

DEVICE DESCRIPTION/TECHNOLOGY

RF

SYSTEM (Present

Contibution to Lund)

A RF high power test stand at 352.2 MHz (3MW) for characterization and power conditioning of RF components and cavities, including the production and distribution elements and the Low-Level and signal conditioning.

a

Control

Control network systems integrates all subsytems and

signals involved in the accelerator for monitoring, data

acquisition and operational requirements. The

integration is based on an EPICS control system.

Beam Diagnostics

Different Diagnostics systems are being designed and

built to characterize the beam. Among others Beam

position monitors (BPMs), SEM Grid, Wien Filter,

Faraday Cup, Retarding Potential Analyzer and Non-

interceptive devices.

ESS-BILBAO Facilities & Developments

Page 32: Componentes de aceleradores de partículas

• The Grupo de Aceleradores de Partículas (GAP) at the Instituto de FIsica Corpuscular (IFIC) in Valencia, develops activities in Particle Accelerator Technology.

• The main lines are:

o Beam Instrumentation o Collimators o Kicker Magnets o High Gradient RF Systems

IFIC/GAP

Page 33: Componentes de aceleradores de partículas

On-Going facility: IFIMED RF Test Infrastructure

• IFIC is developing a facility for testing High Gradient RF structures, under the Infrastructure Program of the EU.

• It is foreseen to use this laboratory for testing the CLIC accelerating structures.

• In the frame of the OMA project these structures will also be analyzed to become part of the future Proton Linacs for Hadrontherapy.

Page 34: Componentes de aceleradores de partículas

The CIEMAT Accelerator Groups

Within the Electrical Engineering Division (ascribed to the Technology Department), the Accelerator Technology Unit develops different activities related to accelerator components (basically superconducting, conventional and special magnets and RF components) as well as complete small accelerators.

Also in the National Fusion

Laboratory there is a group devoted

to the development of accelerator

RF, Systems, Beam Dumps, Beam

Diagnostics, Ancillary Systems and

Safety Issues.

Page 35: Componentes de aceleradores de partículas

On-Going facility at CIEMAT: the AMIT Cyclotron

MAGNET

RF RESONATOR

He RECONDENSER

CIEMAT is involved in the development of a facility for producing radioisotopes and radiotracers which is based on the use of a compact 8.5 MeV Superconducting Cyclotron (The AMIT Project). All the main components of the facility have being designed and manufactured by CIEMAT.

Page 36: Componentes de aceleradores de partículas

Technologies&Capabilities developed in the AMIT Project

DEVICE DESCRIPTION/TECHNOLOGY

SC MAGNET

NbTi Magnet. It is a 4T central field magnet refrigerated with two-phase helium. It is a warm iron, self supported magnet & cryostat with external positioning system.

RF RESONATOR It is a ¼ wave coaxial resonator @ 60 MHz, with a 180º D, aimed at achieving 70 kV, accelerating voltage per gap.

CRYOGENIC SUPPLY SYSTEM

Recirculates and condense He gas to liquid using a cryocooler. Able to provide a cooling power of 1.0W @ 4.2K. It also supplies He gas @ 50K. It has been developed under a collaboration agreement with CERN.

ION SOURCE TEST STATION

Facility for testing the cyclotron internal ion source under a 1T magnetic field and also to check beam dynamics calculations. It also allows testing different diagnostics for the accelerator.

Page 37: Componentes de aceleradores de partículas

Esquema

• Principales componentes de un acelerador de partículas

• Aceleradores de partículas en España

• Contribuciones del CIEMAT a grandes instalaciones de aceleradores de partículas

• Resumen

Page 38: Componentes de aceleradores de partículas

CIEMAT External Collaborations

CIEMAT Collaborations in Particle Accelerators

PROJECT INSTITUTE ACTIVITY

LHC-Hi Lumi CERN Prototype design and fabrication

CLIC/CTF3 CERN Prototype design and fabrication

FCC/EuroCirCol CERN Cryogenic Beam Vacuum System Analysis

High Field Magnet Design

E-XFEL DESY Prototype design and fabrication

Series production

IFMIF Prototype design and fabrication

Series production

Page 39: Componentes de aceleradores de partículas

The E-XFEL Contribution

Page 40: Componentes de aceleradores de partículas

The E-XFEL Facility

E-XFEL (European X-Ray Free Electron

Laser) is a 100 ns pulse laser source

working in the band from 0.085 to 6 nm.

It will be located inside DESY facilities in

Hamburg.

It consists of a Superconducting LINAC

up to 17GeV and an array of undulators

based on permanent magnets.

Spanish Contributions to E-XFEL

COMPONENT TYPE QUANTITY CONTRIBUTOR

Superconducting Combined Magnets SC Magnet 103 CIEMAT

Moving Tables (Movers) Mechanics 101 CIEMAT

Electronic Control Racks Electronics & Instrum. 101 CIEMAT

Phase Shifter Magnets Special Magnet Contrib. Failed CIEMAT

Superconducting Magnets Power Supplies Electronics & Instrum 240 CEI/UPM

Page 41: Componentes de aceleradores de partículas

CIEMAT Contribution to E-XFEL

Iron

yoke

Connection plate

Quadrupole coil

Outer dipole coil

Connection ring

Inner dipole coil

Beam tube

Iron

yoke

Connection plate

Quadrupole coil

Outer dipole coil

Connection ring

Inner dipole coil

Beam tube

Superconducting Magnet for E-XFEL for the Main LINAC

Type: Combined Quadrupole Dipole (2)

Integrated Field 5.97 T 0.75E-3 Tm

Inner Diameter 94.4 mm 83.6 mm

Op. Current 50 A

Technology NbTi Superferric

Industrialization YES: Different prototypes at CIEMAT & Industry

Series manufactured at Industry

Quadrupole

Dipole

Page 42: Componentes de aceleradores de partículas

Superconducting Magnets for E-XFEL for the Main LINAC

CIEMAT Contribution 103 Combined Superconducting Magnets (CSM) for the Main LINAC

E-XFEL Contribution Warm & cold magnetic measurements. Quench tests

Recognized Contribution Value 2.129.100 € (Prices corresponding to 2005)

Present Status Contribution finished

Prototyping Phase CIEMAT 5 CSM (2004-2010) // CIEMAT-Industry 3 CSM

Tendering Process After Technical Specs. & Documents were issued by CIEMAT and approved by DESY, a tendering process was launched, 3 companies competed, being Trinos Vacuum Projects (subcontracting ANTEC) selected.

Fabrication at Industry Fabrication started 2011/08 for a period of 26 months

Delivery Schedule 2012 15 CSM //2013 55 CSM //2014 32 CSM (5 CSM per month) //2015 1CSM

Quality Assessment Plan Done by TUEV-Nord (Cryostats) . Rest at the companies, revised by CIEMAT

Testing Partial testing & dimensional control at the company. Magnetic testing at DESY

Installation & Commissioning Fully done by DESY

CIEMAT Contribution to E-XFEL

Page 43: Componentes de aceleradores de partículas

Moving Tables for E-XFEL

Type 2-axes Quadrupole Positioning Table

Range ±1.5mm

Repetitivity ≤1μm

Max Load to move 70 kg

Technology St.Steel & Aluminium. Closed Loop

Industrialization YES: Different prototypes at CIEMAT & Industry

Series manufactured at Industry in two different batches.

CIEMAT Contribution to E-XFEL

Page 44: Componentes de aceleradores de partículas

Moving Tables for E-XFEL

CIEMAT Contribution 97 Quadrupole Moving Tables (QMT) for Intersections

E-XFEL Contribution 4 QMT directly bought to the selected Spanish companies

Recognized Contribution Value 2.433.300 € including QMTs & ICRs (Prices corresponding to 2005)

Present Status Contribution finished

Prototyping Phase 2 Prototypes built at CIEMAT with industrial collaboration. 5 Prototypes built at industry for pre-qualification > Improvements in the design & control system

Tendering Process

After Technical Specs. & Documents were issued by CIEMAT and approved by DESY , two tendering processes were launched. Production was split in two equal batches to reduce delivery time. One was awarded to RAMEN and the other to HTS.

Fabrication at Industry Fabrication started May 2013 for a period of 24 months

Delivery Schedule 2013 10 QMT //2014 30 QMT //2015 9 QMT (up to 4 QMT per month)

Quality Assessment Plan Done at the company and supervised by CIEMAT.

Testing At the company using Tests Benches built by CIEMAT

Installation & Commissioning Commissioned by CIEMAT @ Hamburg and installed by DESY

CIEMAT Contribution to E-XFEL

Page 45: Componentes de aceleradores de partículas

ICR for E-XFEL

Type Intersection Control Rack

Description Control electronics for the Quadrupole Moving Tables and the Phase Shifter.

Dimensions 1000 x 500 x 500 mm

Technology Forced air cooling and high security cabling. Based on Beckhoff Modules.

Industrialization YES Different prototypes at CIEMAT & Industry

Series manufactured at Industry.

CIEMAT Contribution to E-XFEL

Page 46: Componentes de aceleradores de partículas

ICR for E-XFEL

CIEMAT Contribution 97 Intersection Control Racks (ICR) for Intersections

E-XFEL Contribution 4 ICRs directly purchased to the selected Spanish companies

Recognized Contribution Value 2.433.300 € including QMTs & ICRs (Prices corresponding to 2005)

Present Status Contribution finished

Prototyping Phase During 2012, 4 Prototypes were built at industry to qualify companies > Improvements in the design & control system

Tendering Process After Technical Specs. & Documents were issued by CIEMAT and approved by DESY , a tendering processes was launched. Contract was awarded to PINE.

Fabrication at Industry Fabrication started January 2014 for a period of 13 months

Delivery Schedule 2013 2 ICR //2014 92 ICR //2015 4 QMT (up to 8 ICR per month)

Quality Assessment Plan Done at the company and supervised by CIEMAT.

Testing At the company using a Test Bench built by CIEMAT

Installation & Commissioning Commissioned by CIEMAT @ Hamburg and installed by DESY

CIEMAT Contribution to E-XFEL

Page 47: Componentes de aceleradores de partículas

Phase Shifters for E-XFEL

Type Rare Earth Permanent Magnet

First Field Integral ≤0.004 Tmm

Second Field Integral ≤0.67 Tmm2

Gap 10.5 ÷ 100 mm

Technology NbFeB Magnets + Pure Iron Yoke. Controlled air gap with stepping motors

Industrialization YES: Different prototypes at CIEMAT & Industry

CIEMAT Contribution to E-XFEL

Page 48: Componentes de aceleradores de partículas

Phase-Sifters for E-XFEL

CIEMAT Contribution Initially 91 Phase Sifter Magnets (PSM). Finally 3 Protptypes done & intense R&D Activities

E-XFEL Contribution None

Recognized Contribution Value 510.000 € (for the partial contribution)

Present Status Contribution failed

Prototyping Phase

3 PSM Prototypes were made before 2010 at CIEMAT & Industry > Best results for the 1st Integral were above 6 mTmm. In 2011 XFEL imposed a Panel review to analyse the situation since there was a significant delay in the initial schedule, and specifications could not be achieved. Panel suggested XFEL to relax specifications since they seemed to be clearly beyond a reasonable state of the art. The recommendation was only partially admitted by them. Finally CIEMAT committed to supply PSMs with a 1st Field Integral above 10 mTmm for a series production and this was rejected by XFEL, being the end of the contribution.

CIEMAT Contribution to E-XFEL

Page 49: Componentes de aceleradores de partículas

Power Supplies for the Superconducting Combined Magnets

Type Bipolar Power Supply

Output voltage ± 10 V

Output Current ± 50 A

Technology Switch-Mode MOSFET-based Converters @ variable commutation frequency & PBC transformer

Industrialization YES Different prototypes at UPM (CEI) & Industry

Series manufactured at Industry

Universidad Politécnica de Madrid Contribution to E-XFEL

The Centro de Electronica Industrial (CEI) from the UPM is also contributing to E-XFEL with the following delivery

Page 50: Componentes de aceleradores de partículas

Power Supplies for the Superconducting Combined Magnets

UPM Contribution 240 Power Supplies (PS) for the SC Combined Magnets

E-XFEL/DESY Contribution 240 Control Boards to be integrated in the Power Supplies

Recognized Contribution 1.448.000 € (Prices corresponding to 2005)

Present Status 20 Prototypes PS for evaluation to be done at CEI

Prototyping Phase 5 Prototypes already built at the CEI

Tendering Process After Technical Specs. & Documents were isssued by CEI, a tendering process was launched, 4 companies competed, being BTESA selected.

Fabrication at Industry 250 (240 + 10 spares) Units to be built at BETESA under supervision of CEI.

Delivery Schedule 2015/07 Quality Plan // 2015/10 20 PS //2015/12 80 PS //2016/02 150 PS

Quality Assesment Plan Defined by CEI, developed by BTESA, followed-up by CEI

Testing Critical component testing & complete Power Supply testing @ BTESA. Test bench developed by CEI

Installation & Commissioning Commissioning @ XFEL by CEI. Final Installation including magnet connection by DESY

Universidad Politécnica de Madrid Contribution to E-XFEL

Page 51: Componentes de aceleradores de partículas

The CLIC Project

Page 52: Componentes de aceleradores de partículas

The CLIC Project

CLIC is a proposal for an up to 3TeV Linear Collider, which is based on a two beam scheme to achieve the required accelerating gradients. It uses non superconducting radiofrequency components which are called PETS for the drive beam and Accelerating Structures for the main beam. A validating test facility called CTF3 has already been successfully operated for which contribution from CIEMAT and IFIC has been very significant.

Spanish contribution to CLIC

COMPONENT/CONTRIBUTION TYPE QUANTITY CONTRIBUTOR

Power Extraction Transfer Structures (PETS) RF 12 (Partial) CIEMAT

Double Length PETS for CLIC RF 1 CIEMAT

Accelerating Structures RF CIEMAT

Longitudinally Variable Field Dipole PM Magnet TBD CIEMAT

Kicker for CLIC Damping Ring Special Magnet 1 IFIC & CIEMAT

BPM for CLIC Drive Beam RF, Instrumentation 1 IFIC

Accelerating Structure Test Bench RF, Instrumentation 1 IFIC

ALBA Contribution to CLIC Study Several ALBA

Page 53: Componentes de aceleradores de partículas

Power Extraction Transfer Structures (PETS) for CLIC

Type TBL PET Double Length PET

Op. Frequency 12 GHz 12 GHz

Length 4 x CLIC 2 x CLIC

Technology Warm in Octants Warm in Octants: Minitank, Integrated Couplers

Industrialization YES: Partial Supplies by Industry

Double Length PETS

TBL PETS

CIEMAT Contribution to CLIC

Page 54: Componentes de aceleradores de partículas

Accelerating Structure for CLIC

Type TD26R1CC

Op. Frequency 12 GHz

Length CLIC

Technology Warm – Discs

Industrialization YES: Partial Supplies by Industry

CIEMAT Contribution to CLIC

Page 55: Componentes de aceleradores de partículas

CLIC Damping Ring Gradient Dipole

Type Longitudinal & Transverse

Gradient Magnet

Length 0.58 m

Good Field Region 5 mm

ΔB/B 1·10-4

Transverse Gradient

11 T/m

Technology SmCo // NeFeB

Permanenent Magnets

Industrialization NO

CIEMAT Contribution to CLIC

1.01 T SmCo Magnet 1.01 T SmCo Magnet

1.77 T NeFeB Magnet

Page 56: Componentes de aceleradores de partículas

Kickers for CLIC Damping Rings

Type Damping Ring

Nº of Modules 1

Deflection 1.5 mrad

Rise time ≤560 ns

Effective length 1700 mm

Op. Voltage ±12.5 kV

Technology Stripline

Industrialization YES: Prototype made at Industry

IFIC Contribution to CLIC (In collaboration with CIEMAT)

Page 57: Componentes de aceleradores de partículas

The LHC Hi-Lumi

Page 58: Componentes de aceleradores de partículas

The LHC Hi Lumi

In a first phase, LHC has been working at 8 TeV and 75% of its nominal luminosity. After a 2 year shutdown, luminosity will be increased to 100% and energy to 14 Tev. From 2018 to 2021 it is foreseen to increase the luminosity to 200% and after 2023, it should be increased again by a factor of 5 to 10, after significant changes in the machine.

Spanish Contribution to LHC-Hi Lumi

COMPONENT TYPE QUANTITY CONTRIBUTOR

Radiation Resistant SC Sextupole Corrector Magnet SC Magnet 1 CIEMAT

Radiation Resistant SC Octupole Corrector Magnet SC Magnet 1 CIEMAT

Participation in the LHC Long Shutdown Manpower 8 man-year CIEMAT

Development of a Nested Dipole SC Magnet 1 Prototype CIEMAT

Participation in the development of SC Links SC Power Line 2 man-year CIEMAT

Participation in the development of a VAR Compensator Power Converters 2 man-year CIEMAT

Participation in the QUAQO Project SC Magnets 2 Prototypes CIEMAT

Circular Collider Collimation Studies Beam Optics IFMIF

Page 59: Componentes de aceleradores de partículas

Superconducting Magnets for LHC-HL (Superferric Correctors)

Type Sextupole Octupole

Integrated Field 0.055 Tm 0.035 Tm

Physical Length 160 mm 160 mm

Op. Current 100 A 100 A

Technology NbTi Superferric NbTi Superferric Rad. Resistant

Industrialization HI Lumi LHC Magnets will be based on this development

Sextupole Octupole

CIEMAT Contribution to LCH-HL

Page 60: Componentes de aceleradores de partículas

Type Combined Corrector Dipole

Integrated Field 2.5 Tm

Physical Length 1200 mm

Aperture 150 mm

Technology Nested NbTi Coils @ 1.9K

Industrialization Yes (TBD)

Superconducting Magnets for LHC HL (Nested Dipoles)

MCBX H&V Combined Corrector Dipole for the Inner Triplets

UPDATED MILESTONES

May 2016 Design

Sep 2016 Fabrication Drawings

Dec 2017 1st Prototype Finished

Feb 2017 Tests @ CERN

CERN: 50% Personnel & 100% Materials

CIEMAT: 50% Personnel & 100% Tooling

CIEMAT Contribution to LCH-HL

Page 61: Componentes de aceleradores de partículas

Electrical design of SVCs for the 18 kV power network at CERN

CIEMAT contributes with manpower at CERN to the electrical design of Static VAR compensators for the CERN network and also in the specification and purchasing process of two units.

SVC BEQ1 SVC MEQ59

Voltage 18 kV 18 kV

TCR power rating 150 Mvar 50 Mvar

HF power rating 130 Mvar 35 Mvar

Harmonics F2,F3,F5,F7,F11,F13,HF1,HF2

F3, F5, F7, F11, F13, HF1

T-

T+LTCR LTCR

S

TR

CR CS

LR LS

TCR: Thyristor-Controlled Reactor

CT

LT

Harmonic Filters

CIEMAT Contribution to LCH-HL

Page 62: Componentes de aceleradores de partículas

Superconducting links for powering the SC Magnets

CIEMAT participates with manpower at CERN in the electromechanical characterization of the MgB2 wire as well as in the preparation of specifications of the SC links.

Cu

MgB2

Cable (Cu core and 18 MgB2 strands)

MgB2 superconducting wire

Type SC Link Cable Assembly

Overall Length ~ 100 m

Diameter ~ 65 mm

Overall current 165 kA

Working Temperature 4.2 – 20 K

SC wire MgB2 of 1 mm diameter

Technology 18 MgB2 wires around a

copper core. He gas cooled

Cable assembly of 165 kA

3 kA

6 kA

0.4 kA

0.12 kA

20 kA

CIEMAT Contribution to LCH-HL

Page 63: Componentes de aceleradores de partículas

The QUACO Project

The QUACO project draws together several research infrastructures with similar technical requirements in magnet development, which will allow the avoidance of unnecessary duplication of design effort and reduce overall cost through economies of scale using a joint procurement process. By pooling efforts, the partners in QUACO will act as a single buyer group with sufficient momentum for potential suppliers to consider the phased development of the requested magnets. QUACO’s goal is to create a paradigm shift in the industrialization of the new generation of superconducting magnets.

QUACO Project is a self-contained and consistent part of the High Luminosity LHC Project, focusing on the design, development and procurement of superconducting magnets. The final result of the project will be 2 pilot magnets necessary for HI-LUMI LHC.

Participants: 1) The European Organization for Nuclear Research (CERN), 2) Commissariat A L’Energie Atomique Et Aux Energies Alternatives (CEA), 3) Centro de Investigaciones Energéticas, Medioambientales Y Tecnológicas (CIEMAT), 4) Narodowe Centrum Badan Jadrowych (NCBJ).

Funding: Total cost in the proposal 6,647,895.00 € Maximum grant amount 4,653,523.88 €

CIEMAT Contribution to LCH-HL

Page 64: Componentes de aceleradores de partículas

The FCC Project

Page 65: Componentes de aceleradores de partículas

The FCC Project

CERN has recently launched a feasibility conceptual study for post-LHC particle accelerator options, considering the technology research and development programs that would be required to build a future circular collider in the range of 100 TeV. Among other initiatives, an international collaboration called EuroCirCol has been awarded with a H2020 grant to address the main issues of the future machine.

Spanish Contribution to the EuroCirCol Project (FCC)

WorK

Package WP Description CONTRIBUTORS

WP1 Management, Coordination and Implementation --

WP2 Arc Design: Conceptual design of the largest fraction of the collider ring --

WP3 Design of the experimental insertion regions --

WP4 Design of the cryogenic beam vacuum system considering the enormous

synchrotron radiation level

ALBA

CIEMAT

WP5 High-Field superconducting magnet design for fields up to 16T CIEMAT

Page 66: Componentes de aceleradores de partículas

Design, Prototyping & Test of the FCC Vacuum Beam Screen

ALBA & CIEMAT Contribution to EuroCircol WP4 (FCC)

Beam Screen design, fabrication and tests under the effect of synchronous radiation.

Mechanical behaviour of the Beam Screen under the event of a magnet quench.

Secondary Electron Yield (SEY) for different Beam Screen surfaces.

Page 67: Componentes de aceleradores de partículas

Type Common Coil Main Dipole

Field in the aperture 16 T

Aperture diameter 50 mm

Outer diameter 800 mm

Technology Nb3Sn Coils @ 4.2K

Industrialization Yes (TBD)

Main Dipoles Conceptual Design

Analysis of the Common Coil Option

CIEMAT Contribution to EuroCircol WP5 (FCC)

Page 68: Componentes de aceleradores de partículas

The IFMIF Contribution

Page 69: Componentes de aceleradores de partículas

The IFMIF & DONES Projects The IFMIF project: a 40 MeV, 125 mA deuteron accelerator acting on a lithium target to generate neutrons to test materials for the first commercial fusion reactor : the DEMO. To validate the IFMIF concept, the so called EVEDA phase has been launched, including a Linear Accelerator (LIPAc) with a current of 125 mA and an energy of 9 MeV.

26-8-2008 I. Podadera- IFMIF-EVEDA HEBT diagnostics- HB2008 7

IFMIF-EVEDA AcceleratorIon source LEBT RFQ MS HWR DP+HEBT BD

•5 MeV for RFQ comissioning:

•From 0.5 mA to 125 mA.

•Pulsed and CW operation.

•9 MeV for HWR commissioning and

beam characterization :

•From 0.5 to 125 mA.

•Pulsed and CW operation.

ECRIS Pulse

characteristics

Tb~1000·tp

tr

tp

tf

tr >10-20 us

tf >45 s

tp >100 s

(200 us for stabilization)

DC=0.1%

Tb > 0.1 s

Commissioning

The early construction of an 'Early DEMO' requires a neutron irradiation plant with reduced specifications in terms of accumulated damage of the irradiated materials, thus it was decided to design and build a facility capable of producing the specified amount of damage as soon as possible: The ENS. The design adopted is DONES (DEMO-Oriented Neutron Source), which basically consists of a simplification of IFMIF, with only one accelerator for which CIEMAT is also collaborating.

Page 70: Componentes de aceleradores de partículas

DEVICE DESCRIPTION/TECHNOLOGY

RESISTIVE MAGNET 13 Combined Magnets (1 Quadrupole + 1 Dipole) to be made at industry (ANTEC). Water cooled magnet, radiation resistant.

SUPERCONDUCTING MAGNET

8 Combined superconducting magnets (2 Solenoids + 2 Dipoles). NbTi wet impregnated magnets to be manufactured at industry.

SCRAPER 2 Collimation Scrapers fabricated at industry (AVS). Water cooled. Driven by step motors in close loop.

BUNCHER CAVITY

2 RF Buncher cavities @175 MHz made at industry (DPM). IH resonator with 4 acceleration gaps. Resistive Type. Water cooled.

CIEMAT Contribution to IFMIF

Page 71: Componentes de aceleradores de partículas

Medium Energy Beam Transport Line (MEBT):

• Compact transport line between RFQ and cryomodules

• Main components: Five combined magnets, two buncher, beam scrapers and beam diagnostics.

• Fully designed by CIEMAT; manufactured by Spanish industry

• MEBT sent to Rokkasho Buncher cavity ZScrapers

Combined magnets Beam position

monitors

MEBT

Integration Activities

CIEMAT Contribution to IFMIF

Page 72: Componentes de aceleradores de partículas

Resumen

• Hemos visto ejemplos de los principales componentes de un acelerador

de partículas.

• Actualmente, hay tres instalaciones con aceleradores de partículas

operativas en España: el sincrotrón ALBA en Barcelona, el Centro

Nacional de Aceleradores en Sevilla y el CMAM en Madrid.

• Existe una instalación en construcción en Bilbao, pensada como apoyo

a la fuente de espalación europea.

• Hay dos instalaciones más en proyecto, en Ciemat y en Valencia.

• Hemos repasado las principales contribuciones de Ciemat a las grandes

instalaciones con aceleradores de partículas: E-XFEL, CERN, IFMIF.