cl i l t lclassical control - upc universitat politècnica...

120
Control & Guidance 2011 Enginyeria Tècnica d'Aeronàutica A esp. en AeronavegacEscola d'Enginyeria de Telecomunicació i Aeroespacial de Castelldefels Adeline de Villardi de Montlaur Cl i l t l Cl i l t l Classical control Classical control Control and guidance Slide 1

Upload: others

Post on 26-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Control & Guidance 2011

Enginyeria Tècnica d'AeronàuticaA ióesp. en Aeronavegació

Escola d'Enginyeria de Telecomunicació i Aeroespacial de Castelldefels

Adeline de Villardi de Montlaur

Cl i l t lCl i l t lClassical controlClassical control

Control and guidance

Slide 1

Page 2: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Cl i l t lCl i l t lClassical control1 P t i ti ti

Classical control1 P t i ti ti1. Parametric estimation

2 Steady state error

1. Parametric estimation

2 Steady state error2. Steady state error

3. Root locus

2. Steady state error

3. Root locus

4. Controllers4. Controllers

5. Frequency response5. Frequency response

6. Bode diagrams6. Bode diagrams

Control and guidance

Slide 2

Page 3: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Study properties of the response of the system:

desired angle of attack αrefd

actual angle of attack αdisplacement

Study properties of the response of the system:

LONGITUDINAL CONTROL LONGITUDINAL

DYNAMICS

speed urefg

speed udisplacement of elevator δe

CONTROL SYSTEM DYNAMICS

t l l f tt k

SENSORS:

actual angle of attack αspeed u

SENSORS: INS,

Anemometer

1- Parametric estimation1- Parametric estimationControl and guidance

Slide 3

Page 4: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

1- Parametric estimation1- Parametric estimation

Temporal methods:Temporal methods:

a. Firsta. First--order systemsorder systems

b. Secondb. Second--order systemsorder systems

c. Higherc. Higher--order systemsorder systems

Control and guidance

Slide 4

Page 5: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Fi tFi t d td t

1- Parametric estimation1- Parametric estimation

A first-order system is defined by a first-order

a. Firsta. First--order systemsorder systems

A first order system is defined by a first order

differential equation:

s1K

)s(R)s(Y)s(G)t(Kr)t(y)t(y L

s1)s(R

τ: system time constantτ: system time constant

K: gain

Electrical/mechanical examples

Control and guidance

Slide 5

examples

Page 6: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Fi tFi t d td t

1- Parametric estimation1- Parametric estimation

Impulse response

a. Firsta. First--order systemsorder systems

Impulse response

1)s(R)]t([L 1K)s(Y )()]([ s1

using the inverse Laplace transform, the impulse

response is:

0teK)t(yt

0te)t(y

Control and guidance

Slide 6

Page 7: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

a Firsta First order systemsorder systems

1- Parametric estimation1- Parametric estimation

Impulse response 1

a. Firsta. First--order systemsorder systems

0teK)t(yt

0.8

0.9

y(t))(y

0.6

0.7

)Tangent slope in 0:

y( )

0 3

0.4

0.5y(t)K)t(dy

g p

0.1

0.2

0.320tdt

r(t)

0 1 2 3 4 5 6 70

t

Control and guidance

Slide 7

Page 8: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Fi tFi t d td t

1- Parametric estimation1- Parametric estimation

Step response: response to a unit step function

a. Firsta. First--order systemsorder systems

p p p p

1KK

)1(K)s(Y

1)s(R)]t(u[L s1ss)s1(

)(s

)()]([

i th i L l t f th tusing the inverse Laplace transform, the step response

or indicial response is:

0te1K)t(yt

0te1K)t(y

Control and guidance

Slide 8

Page 9: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Fi tFi t d td t

1- Parametric estimation1- Parametric estimation

St 9

10

a. Firsta. First--order systemsorder systems

y(t)Step response:

t

8

9y( )

te1K)t(y

6

7

)Tangent slope in 0: 4

5y(t)

2

3

K

dt)t(dy r(t)

0 1 2 3 4 5 6 70

1

t

dt 0t

Example

Control and guidance

Slide 9

t

Page 10: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

b S db S d d td t

1- Parametric estimation1- Parametric estimation

A second-order system is defined by a second-order

b. Secondb. Second--order systemsorder systems

A second order system is defined by a second order

differential equation:

)t(ra)t(yb)t(yb)t(yb 0012

0a)s(Y)(G01

22

0

bsbsb)s(R)()s(G

012)(

Electrical/Mechanical examples

Control and guidance

Slide 10

ect ca / ec a ca e a p es

Page 11: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

b Secondb Second order systemsorder systems

1- Parametric estimation1- Parametric estimation

It can be factorized to emphasize particular

b. Secondb. Second--order systemsorder systems

parameters:2KK)s(Y

2nn

2n

2 s2sK

1s2s

K)s(R)s(Y)s(G

nn

12

with K: system gain (corresponds to final value for a unit step function)

ωn: undamped natural frequency

ζ: damping factor (ζ>0)Control and guidance

Slide 11

ζ: damping factor (ζ 0)

Page 12: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

b Secondb Second order systemsorder systems

1- Parametric estimation1- Parametric estimation

Step response:2nK)s(Y

b. Secondb. Second--order systemsorder systems

p p

Response depends on the poles of the transfer function

2nn

2 s2s)s(R Response depends on the poles of the transfer function

0s2s 2nn

2

2442

s2n

2n

2n

1444let2

22n

2n

2n

2 di i i t’ i d d ζ l→ discriminant’s sign depends on ζ value

→ poles and response's properties depend on ζ valueControl and guidance

Slide 12

poles and response s properties depend on ζ value

Page 13: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

b Secondb Second order systemsorder systems

1- Parametric estimation1- Parametric estimation

ζ>1 Over-damped movement (non-oscillatory modes)

b. Secondb. Second--order systemsorder systems

Real and negative poles: 1s 2n21

2n

2n K1K1)s(Y

n2,1

212nn

2 ssssss2ss)s(Y

111

Development in simple fractions:

22112n

sss1

sss1

12s1K)s(Y

Control and guidance

Slide 13

Page 14: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

b Secondb Second order systemsorder systems

1- Parametric estimation1- Parametric estimation

ζ>1 Over-damped movement (non-oscillatory modes)1

Step Response

b. Secondb. Second--order systemsorder systems

tsts

Inverse Laplace transform:0.8

1

y(t)y(t)

2

ts

1

ts

2n

se

se

121K)t(y

21

0.6

e

y(t)

0.4

Am

plit

ude

Tangent slope in 0:

)t(dy0.2 =4

=1.5

0dt)t(dy

0t

0 5 10 15 20 25 300

Time (sec )

Control and guidance

Slide 14

Page 15: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

b Secondb Second order systemsorder systems

1- Parametric estimation1- Parametric estimation

ζ=1 Critically damped movement (non-oscillatory modes)

b. Secondb. Second--order systemsorder systems

Double real negative poles: n2,1s

22n

sK

s1)s(Y

nss

Development in simple fractions:

n 11K)(Y

Development in simple fractions:

n

2n

n

sssK)s(Y

Control and guidance

Slide 15

Page 16: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

b Secondb Second order systemsorder systems

1- Parametric estimation1- Parametric estimation

ζ=1 Critically damped movement (non-oscillatory modes)

b. Secondb. Second--order systemsorder systems

1Step Response

Inverse Laplace transform:y(t)

tnnet11K)t(y

0 6

0.8y( )

Tangent slope in 0:

)t(dy 0.4

0.6

Am

plit

ude

0dt)t(dy

0t

0.2

0 2 4 6 80

Time (sec )

Control and guidance

Slide 16

Time (sec )

Page 17: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

b Secondb Second order systemsorder systems

1- Parametric estimation1- Parametric estimation

ζ<1 Under-damped movement (oscillatory modes)

b. Secondb. Second--order systemsorder systems

Conjugated complex poles: 21js Conjugated complex poles:

2K1

n2,1 1js

22n

2n

n

1ssK

s1)s(Y

Development in simple fractions…p p

Control and guidance

Slide 17

Page 18: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

b Secondb Second order systemsorder systems

1- Parametric estimation1- Parametric estimation

ξ<1 Under-damped movement: Inverse Laplace transform:

b. Secondb. Second--order systemsorder systems

t1sin1

t1cose1K)t(y 2n2

2n

tn

S R 1

1 4

1.6

1.8Step Response

=0.7=0.1

Tangent slope in 0:1

1.2

1.4

litud

e

Tangent slope in 0:

0)t(dy 0 4

0.6

0.8Am

p

0dt)(y

0t

0 10 20 30 400

0.2

0.4

Control and guidance

Slide 18

Time (sec )

Page 19: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

b Secondb Second order systemsorder systems

1- Parametric estimation1- Parametric estimation

Characteristic parametersvaluefinaloutput

b. Secondb. Second--order systemsorder systems

K: gain

M: maximum overshoot : represents the value of thevaluefinalinputvaluefinaloutput

M: maximum overshoot : represents the value of the highest peak of the system response measured with

t t th f l (fi l l )respect to the reference value (final value)

tp: peak time: time needed for the response to arrive at its p p pfirst peak

T: period

t : settling timeControl and guidance

Slide 19

ts: settling time

Page 20: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

b Secondb Second order systemsorder systems

1- Parametric estimation1- Parametric estimation

Characteristic parameters: for second-order systems

b. Secondb. Second--order systemsorder systems

K 2

21tan eeM

natural(dampedζ1ωω 2

nd

2p1

t

frequency)

( p

2n

p1

22 2

nd 122T

Control and guidance

Slide 20

n

Page 21: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

b Secondb Second--order systemsorder systems1- Parametric estimation1- Parametric estimation

Obtain:b. Secondb. Second order systemsorder systems3,5

Step ResponseObtain:KM

2,5

3 r(t)Mtpt 5%

2

itude

ts5%

T

1

1,5Am

pl

Deduce:ζ

0,5

1

y(t)

ζωn

0 1 2 3 4 5 6 7 8 9 10 11 120

Time (sec)

y( )Calculate: G(s)=Y(s)/R(s)

Control and guidance

Slide 21

Time (sec)( ) ( ) ( )

Page 22: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Hi hHi h d td t

1- Parametric estimation1- Parametric estimation

c. Higherc. Higher--order systemsorder systems→ characterize the transitory state of any-order systems

generally y(t)= linear combination of elementary time

functions defined by the nature (real or complex) of the

characteristic equation roots: system modes:characteristic equation roots: system modes:

• real poles: non- oscillatory modes, exponential term in

the response

• complex poles: oscillatory modes, exponential term

multiplied by sine or cosineControl and guidance

Slide 22

p y

Page 23: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Hi hHi h d td t

1- Parametric estimation1- Parametric estimation

High order systems can be simplified using:

c. Higherc. Higher--order systemsorder systems

High order systems can be simplified using:

dominant poles

poles further from the imaginary axis have a

weaker contribution

1 pole near 1 zero

if there is a zero near a pole this pole contributionif there is a zero near a pole, this pole contribution

will be weak

Control and guidance

Slide 23

Page 24: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Study error of the response of the system:

desired angle of attack αrefspeed u actual angle of attack αdisplacement

Study error of the response of the system:

LONGITUDINAL CONTROL LONGITUDINAL

DYNAMICS

speed urefg

speed udisplacement of elevator δe

CONTROL SYSTEM DYNAMICS

t l l f tt k

SENSORS:

actual angle of attack αspeed u

SENSORS: INS,

Anemometer

2- Steady state error2- Steady state errorControl and guidance

Slide 24

Page 25: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

2- Steady state error2- Steady state error

G(s)Y(s)+

-R(s) Ess

Steady State error:

ess= difference between the entry signal and the exit signal

e = “what we want minus what we get”ess = what we want minus what we get

Control and guidance

Slide 25

Page 26: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

2- Steady state error2- Steady state error

System’s type:y yp

Given the transfer function:2

)ss1) (s1)(s1(s)...dscs1)...(bs1)(as1(K)s(G 2N

2

)...ss1)...(s1)(s1(s

with K: system gain,

and N: number of poles in the origin

→ N = system’s typeControl and guidance

Slide 26

Page 27: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

2- Steady state error2- Steady state error

Definition of Steady State error:

)t(y)t(rlimetss

t

e > 0 : exit signal has not reached the entry referenceess > 0 : exit signal has not reached the entry reference

ess < 0 : exit signal is higher than the entryss g g y

Control and guidance

Slide 27

Page 28: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

2- Steady state error2- Steady state error

)t(y)t(rlime )t(y)t(rlimetss

Moving to the Laplace space: Final value theorem:

)s(R)s(G1)s(G)s(Rslim)s(Y)s(Rslime

0s0sss )s(G1

)s(R Depends on the entry

)s(G1

)s(Rslime0sss

p y

+ on the system’s type

Control and guidance

Slide 28

Page 29: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

)...dscs1)...(bs1)(as1(K)(G2

2- Steady state error2- Steady state error

G(s)Y(s)+R(s)

)...ss1)...(s1)(s1(s)) ()((K)s(G 2N

G(s)-

1. Position error: error for a step function entry: r(t)=u(t)

1111

)s(Glim1

1)s(G1

1lims1

)s(G11slime

0s0s0sp

0type10s

Itype0

ypK1

Control and guidance

Slide 29

Page 30: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

1 Position error: error for a step function entry: r(t)=u(t)

2- Steady state error2- Steady state error

1

Step Response

1. Position error: error for a step function entry: r(t)=u(t)

0 8

1

Error

0.6

0.8

ude

0.4

Am

plitu

0.2

0 2 4 6 8 10 120

Ti ( )

Control and guidance

Slide 30

Time (sec )

Page 31: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

2- Steady state error2- Steady state error)...dscs1)...(bs1)(as1(K)(G2

G(s)Y(s)+R(s)

)...ss1)...(s1)(s1(s)) ()((K)s(G 2N

2 Speed error: error for a ramp function entry: r(t)= t

( )-

2. Speed error: error for a ramp function entry: r(t)= t

1lim1lim11slime

0type

)s(sGlim

)s(sGslim

s)s(G1slime

0s0s20sv

Itype10type

IItype0

ItypeK

Control and guidance

Slide 31

IItype0

Page 32: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

2- Steady state error2- Steady state error)...dscs1)...(bs1)(as1(K)(G2

G(s)Y(s)+R(s)

)...ss1)...(s1)(s1(s)) ()((K)s(G 2N

G(s)-

3. Acceleration error: error for a parabolic entry: r(t)= t2

1li1li11li

I0

)s(Gslim

)s(Gsslim

s)s(G1slime 20s220s30sv

IItype1Ior0type

IIItype0

IItypeK

Control and guidance

Slide 32

IIItype0

Page 33: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

2- Steady state error2- Steady state error

Error based on type + entryyp y

Input:Type:

step ramp parabolic

0 constant ∞ ∞

I 0 constant ∞

II 0 0 constant

Control and guidance

Slide 33

Page 34: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

2- Steady state error2- Steady state error

Example: G(s) θ(s)+θref(s) δe(s)K

C t th i t d t t f it t f ti

-

Compute the error in steady state for a unit step function entry and for a system with the following open loop transfer function: 10s2)s( function:

4s1.0s1.0s2

)s()s(

2e

• for K=1, K=10, K=100,

)(e

0 12sθ(s) • for K=1 and

40.1sss0.12s

(s)δθ(s)

2e

Control and guidance

Slide 34

Page 35: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Design a simple proportional controller in order to satisfy some

desired angle of attack αrefd

actual angle of attack αdisplacement

constraints on the response of the system

LONGITUDINAL CONTROL LONGITUDINAL

DYNAMICS

speed urefg

speed udisplacement of elevator δe

CONTROL SYSTEM DYNAMICS

t l l f tt k

SENSORS:

actual angle of attack αspeed u

SENSORS: INS,

Anemometer

3- Root locus3- Root locusControl and guidance

Slide 35

Page 36: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

3- Root locus3- Root locus

• Root locus technique• Root locus technique

• Gain setting• Gain setting

• Effect of zeros and poles• Effect of zeros and poles

Control and guidance

Slide 36

Page 37: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Root locus techniqueRoot locus technique

3- Root locus3- Root locus

Root locus techniqueRoot locus technique

• Introduced by W. R. Evans in 1949: developed a series of rules

that allow the control system engineer to quickly draw the

root locus diagram = locus of all possible roots of the

characteristic equation: 1+K G(s)= 0

= locus of all possible poles in closed loop= locus of all possible poles in closed loop

as K varies from 0 to infinity

• The resulting plot helps us in selecting the best value of K

G f f f• Gives information for the transitory part of the response

(stability, damping factor, natural frequency)

Control and guidance

Slide 37

Page 38: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Root locus techniqueRoot locus technique

3- Root locus3- Root locus

Root locus techniqueRoot locus technique

Let

m21 zszszs)s(G

A d b tit t it i th h t i ti ti

n21 pspsps)(

And substitute it in the characteristic equation

zszszsk

Kkwhere0pspspszszszsk1n21

m21

Control and guidance

Slide 38

Page 39: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Root locus techniqueRoot locus technique

3- Root locus3- Root locus

Root locus techniqueRoot locus technique

The characteristic equation is complex and can be written in terms

of magnitude and angle as follows

zszszsk 21 1

pspspszszszsk

n21

m21

180)1q2(pszsn

1ii

m

1ii

)1mn(...,2,1,0qfor1i1i

Control and guidance

Slide 39

Page 40: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Root locus technique: RulesRoot locus technique: Rules

3- Root locus3- Root locus

Root locus technique: RulesRoot locus technique: Rules

If we rearrange the magnitude criteria as

k1

pspspszszszs m21

Rule 1: The number of separate branches of the root locus plot is

kpspsps n21

equal to the number of poles of the transfer function (n)

Branches of the root locus originate at the poles of G(s) for k=0Branches of the root locus originate at the poles of G(s) for k=0

and terminate at either the open-loop zeroes or at infinity for k=+∞

n separate branches, n-m infinite branches, m finite branches

Control and guidance

Slide 40

Page 41: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Root locus technique: RulesRoot locus technique: Rules

3- Root locus3- Root locus

Root locus technique: RulesRoot locus technique: Rules

Rule 2: Because the complex poles are always “conjugated”Rule 2: Because the complex poles are always conjugated ,

the root locus branches are symmetric with respect to the real axis

Control and guidance

Slide 41

Page 42: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Root locus technique: RulesRoot locus technique: Rules

3- Root locus3- Root locus

Root locus technique: RulesRoot locus technique: Rules

Rule 3:Rule 3:

Segments of the real axis that are part of the root locus:

points on the real axis that have an odd number of poles and

zeroes to their right

Control and guidance

Slide 42

Page 43: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Root locus technique: RulesRoot locus technique: Rules

3- Root locus3- Root locus

Root locus technique: RulesRoot locus technique: RulesRule 4: Asymptotes

The root locus branches that approach the open-loop zeroes atThe root locus branches that approach the open loop zeroes at

infinity do so along straight-line asymptotes that intersect the real

axis at the center of gravity of the finite poles and zeroesaxis at the center of gravity of the finite poles and zeroes

zpm

i

n

i

mn

p1i

i1i

i

The angle that the asymptotes make with the real axis is given by

)1(210f1q2º180

)1mn(...,2,1,0qformnq

a

Control and guidance

Slide 43

Page 44: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Root locus technique: RulesRoot locus technique: Rules

3- Root locus3- Root locus

Root locus technique: RulesRoot locus technique: Rules

Rule 5: breakaway points

If a portion of the real axis is part of the root locus and a branch is

between two poles the branch must break away from the real axis p y

so that the locus ends on a zero as k approaches infinity. The

breakaway points on the real axis are determined by solvingbreakaway points on the real axis are determined by solving

kfor0zszszsk1 m21

and then finding the roots of the equation dk/ds=0

kfor0pspsps

1n21

and then finding the roots of the equation dk/ds=0

Only roots that lie on a branch of the locus are of interest

Control and guidance

Slide 44

Page 45: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Root locus technique: RulesRoot locus technique: Rules

3- Root locus3- Root locus

Root locus technique: RulesRoot locus technique: Rules

Rule 6: Intersection with the imaginary axisRule 6: Intersection with the imaginary axis

Solve the characteristic equation for s=jω (equation of the

imaginary axis)

zjzjzjk 0

pjpjpjzjzjzjk1n21

m21

Control and guidance

Slide 45

Page 46: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Root locus technique: RulesRoot locus technique: Rules

3- Root locus3- Root locus

Root locus technique: RulesRoot locus technique: Rules

Rule 7: for complex poles and zeroes only:Rule 7: for complex poles and zeroes only:

The angle of departure of the root locus from a pole of G(s) or

arrival angle at a zero of G(s) can be found by the following

expression

If you consider a test point t:nm

180ptztn

1ii

m

1ii

Control and guidance

Slide 46

Page 47: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Root locus technique: examplesRoot locus technique: examples

3- Root locus3- Root locus

Root locus technique: examplesRoot locus technique: examples

Example 1:

Root Locus2

Example 1:

1

1.5

ary

Axi

s0

0.5

3s2s2s)s(G 2

Imag

in

1

-0.5

03s2s

-1.5

-1

Real Axis-4 -3 -2 -1 0

-2

Control and guidance

Slide 47

Page 48: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Root locus technique: examplesRoot locus technique: examples

3- Root locus3- Root locus

Root locus technique: examplesRoot locus technique: examples

Example 2: 4Root Locus

Example 2:

2

3

2s1ss1)s(G

0

1

ary

Axi

s

2s1ss

2

-1

0Im

agin

a

-3

-2

-6 -4 -2 0 2-4

Real Axis

Control and guidance

Slide 48

Page 49: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Setting of the gain and natural frequencySetting of the gain and natural frequency

3- Root locus3- Root locus

Setting of the gain and natural frequencySetting of the gain and natural frequencyBasic operation: to adjust the gain K to obtain a damping factor

given by the poles in closed loop and fixed by the damping factor ζgiven by the poles in closed-loop and fixed by the damping factor ζ

)R (Cf second-order systems: i

s)sRe(

straight line doing an angle φ with the real axis (cos φ= ζ) sets an

isg g g φ ( φ ζ)

intersection point with the poles position, and k (and then K) is

obtained solving the characteristic equationobtained solving the characteristic equation

Natural frequency for a second-order system: ωn=|si|

Control and guidance

Slide 49

Page 50: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Gain settingGain setting

3- Root locus3- Root locus

Gain settingGain setting

0)s(KG1 0

pspspszszszsK1 m21

The system total gain is computed thanks to the module condition

pspsps n21

szszszspspspKk m21

szszsz n21

“total gain” = product of the distances from the poles of G(s) to the

intersection point (= target pole) divided by the product of the

distances from zeros of G(s)

Control and guidance

Slide 50

Page 51: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Gain settingGain setting

3- Root locus3- Root locus

Gain settingGain setting

0)s(KG1

0pspsps

K1

If there are no zeros:

pspsps n21

spspspK m21 “total gain” =product of the distances between the poles of G(s)

( )and the intersection point (= target pole)

Examples

Control and guidance

Slide 51

p

Page 52: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Gain settingGain setting

3- Root locus3- Root locus

Gain settingGain setting

40.5

Root Locus

1

2

3

0.5

2s1ss1)s(G

0

1

ary

Axi

sDesigner requirement:we want ζ=0.5

2

-1

0

Imag

ina

ζ=0.5=cos φ → φ=60º

-3

-2

0.5

ζ φ φ

Examples

-6 -5 -4 -3 -2 -1 0 1 2-4

Real Axis

Control and guidance

Slide 52

p

Page 53: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Gain settingGain setting

3- Root locus3- Root locus

Gain settingGain setting

1

Root Locus3 0.5

S t

2s1ss1)s(G

1

2System: sys

Gain: 1.04Pole: -0.332 + 0.577i

Damping: 0.499Overshoot (%): 16.4

Designer requirement:we want ζ=0.5

gin

ary

Axi

s

0

1 Frequency (rad/sec): 0.666

ζ=0.5=cos φ → φ=60º

Imag

2

-1

ζ φ φ

3 5 3 2 5 2 1 5 1 0 5 0 0 5 1 1 5 2

-3

-2

0.5

Examples

Real Axis-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Control and guidance

Slide 53

p

Page 54: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Gain settingGain setting

3- Root locus3- Root locus

Gain settingGain setting

1

Root Locus3 0.5

2s1ss1)s(G

1

2System: sysGain: 1.04Pole: -0.332 + 0.577iDamping: 0.499Overshoot (%): 16.4

Sys tem: sysGain: 1.04Pole: -2.33

Designer requirement:we want ζ=0.5 in

ary

Axi

s

0

1( )

Frequency (rad/sec): 0.666Damping: 1Overshoot (%): 0

Frequency (rad/sec): 2.33

This corresponds to Im

ag-1 System: sys

Gain: 1.04Pole: -0.332 - 0.578iDamping: 0.498p

k=1.04

-3

-2

0.5

Damping: 0.498Overshoot (%): 16.5Frequency (rad/sec): 0.667

Examples

Real Axis-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Control and guidance

Slide 54

p

Page 55: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Gain settingGain setting

3- Root locus3- Root locus

Gain settingGain setting

2

Root Locus

1 5

20.7

3s2s2s)s(G 2

0 5

1

1.5

Designer requirement:we want ζ=0.7

agin

ary

Axi

s

0

0.5

Ima

-1

-0.5

-4 -3 -2 -1 0-2

-1.50.7

Examples

Real Axis-4 -3 -2 -1 0

Control and guidance

Slide 55

p

Page 56: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Gain settingGain setting

3- Root locus3- Root locus

Gain settingGain settingRoot Locus

20.7

2

1

1.5 System: sysGain: 1.32Pole: -1.66 + 1.69iDamping: 0.7O h t (%) 4 6

3s2s2s)s(G 2

Designer requirement:we want ζ=0.7

nary

Axi

s

0

0.5Overshoot (%): 4.6Frequency (rad/sec): 2.37

This corresponds to

Imag

in

-1

-0.5 System: sysGain: 1.32Pole: -1.66 - 1.69ip

k=1.32

2

-1.5

1

0.7

Damping: 0.7Overshoot (%): 4.6Frequency (rad/sec): 2.37

ExamplesReal Axis

-4 -3 -2 -1 0-2

Control and guidance

Slide 56

p

Page 57: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

R l ti t bilit i iR l ti t bilit i i

3- Root locus3- Root locus

Relative stability: gain marginRelative stability: gain margin

“Re(s)<0” criterion informs about the absolute stability of a system ( ) y y

but it says nothing about its relative stability

h f i i f h i bili h= how far it is from the instability → system strength

Gain margin: maximum proportional factor that can be introduced

into the control loop until the system becomes critically stable.

CrG

kM actual

G kM

Examples

Control and guidance

Slide 57

p

Page 58: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Gain settingGain setting

3- Root locus3- Root locus

Gain settingGain setting

1

Root Locus3 0.5

2s1ss1)s(G

1

2

System: sys

Designer requirement:we want ζ=0.5 in

ary

Axi

s

0

1 System: sysGain: 5.97Pole: 0.000761 + 1.41iDamping: -0.00054Overshoot (%): 100Frequency (rad/sec): 1 41

This corresponds to k=1

Imag

-1

Frequency (rad/sec): 1.41

kcr=6

MG=6 -3

-2

0.5

Examples

Real Axis-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Control and guidance

Slide 58

p

Page 59: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Roots locus exerciseRoots locus exercise

3- Root locus3- Root locus

Roots locus exerciseRoots locus exercise

2

1

1

1.5

2s2s2ss1)s(G 2

0.5

-0.5

0

1 5

-1

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1-2

-1.5

Real Axis

Control and guidance

Slide 59

Real Axis

Page 60: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Roots locus exerciseRoots locus exercise

3- Root locus3- Root locus

Roots locus exerciseRoots locus exercise

1 5

2

0.5

1

1.5

0

0.5

2ary

Axi

s

-0 .5

0

Imag

in

-1 5

-1

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1-2

1.5

0.5

Real Axis

Control and guidance

Slide 60

ea s

Page 61: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Roots locus exerciseRoots locus exercise

3- Root locus3- Root locus

Roots locus exerciseRoots locus exercise

1 5

2

0.5

1

1.5

ary

Axi

s

0

0 .5

2

Imag

in

-0 .5

0

S

-1 5

-1

System: sysGain: 1.62Pole: -0.373 - 0.627iDamping: 0.511Overshoot (%): 15.4

Real Axis

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1-2

1.5

0.5

( )Frequency (rad/sec): 0.73

Control and guidance

Slide 61

ea s

Page 62: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Roots locus exerciseRoots locus exercise

3- Root locus3- Root locus

Roots locus exerciseRoots locus exercise

1 5

2

0.5

Root Locus

1

1.5

0

0.5

2ry A

xis

-0.5

0

Imag

inar

-1

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1-2

-1.5

0.5

Control and guidance

Slide 62

Real Axis

Page 63: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Gain settingGain setting

3- Root locus3- Root locus

Gain settingGain setting

Note that even though the closed-loop poles have this value of

damping factor, the transitory response is not exactly sub-damped

with that characteristic, because the ζ formula has been used as if

it was a 2nd order system.

However the approximation is valid to obtain a good ζ magnitudeHowever, the approximation is valid to obtain a good ζ magnitude

order, the influence of poles and zeros on the response is seen in

the following studythe following study

Control and guidance

Slide 63

Page 64: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Additional poleAdditional pole

3- Root locus3- Root locus

Additional poleAdditional pole

1. A second-order system is consideredy

2. A pole is added in s=-p

• system reference signal first affected by a first-order system and then by a 2nd order one

• for a step function, signal attenuated by an exponential, which isfor a step function, signal attenuated by an exponential, which is the 2nd order system entry

→ exit has less overshoot and it takes more time to reach its→ exit has less overshoot and it takes more time to reach its final value

Control and guidance

Slide 64

Page 65: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Additional poleAdditional pole

3- Root locus3- Root locus

Additional poleAdditional pole

)4.52.3)(15.0(4.2

21

sssf

45234.2

22

ssf

4.52.3 ss

Control and guidance

Slide 65

Page 66: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Additional zeroAdditional zero

3- Root locus3- Root locus

Additional zeroAdditional zero

4523)2(2.1

21

ss

sf4.52.3 ss

4.2f

Zeros (negative)

4.52.322

ssf

( g )

• increase the initial slope,

• make the system faster so it reaches its final value earlier,

• can produce overshoot

Control and guidance

Slide 66

Page 67: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Effect of an additional pole in the roots locusEffect of an additional pole in the roots locus

3- Root locus3- Root locuspp

Transfer function of a 8Root Locus

vehicle cruise-control system: 4

6

4820

2

)33.3s)(1s)(06.0s(48.2)s(G

-4

-2

8

-6

4

-10 -8 -6 -4 -2 0 2 4-8

Real Axis

Control and guidance

Slide 67

Page 68: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Effect of an additional pole in the roots locusEffect of an additional pole in the roots locus3- Root locus3- Root locus

A pole is added on 0 (i t t )

Root Locus

4

6

(integrator)

48.2)s(G is

2

4

)33.3s)(1s)(06.0s(s)(

Roots locus moved Imag

inar

y A

x

0

0 15Root Locus

to the right

+ unstableI

-4

-2

0 05

0.1

0.15

+ unstable

R l A i-8 -6 -4 -2 0 2 4 6

-6-0.05

0

0.05

Real Axis

0 2 0 15 0 1 0 05 0 0 05 0 1 0 15-0.15

-0.1

Control and guidance

Slide 68

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15

Page 69: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Effect of an additional zero in the roots locusEffect of an additional zero in the roots locus

3- Root locus3- Root locus

A zero is added i 0 12

Root Locus3

)333)(1)(060()12.0s(48.2)s(G

in -0.12

1

2

)33.3s)(1s)(06.0s(s

gina

ry A

xis

0

1

Imag

-1

5 4 3 2 1 0 1-3

-2

Root locus moved to the left + stable, and fasterReal Axis

-5 -4 -3 -2 -1 0 1

Control and guidance

Slide 69

Page 70: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Design a controller/compensator in order to satisfy some

desired angle of attack αrefd

actual angle of attack αdisplacement

constraints on the response of the system

LONGITUDINAL CONTROL LONGITUDINAL

DYNAMICS

speed urefg

speed udisplacement of elevator δe

CONTROL SYSTEM DYNAMICS

t l l f tt k

SENSORS:

actual angle of attack αspeed u

SENSORS: INS,

Anemometer

4- Controllers4- ControllersControl and guidance

Slide 70

Page 71: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

4- Controllers4- Controllers

• Proportional controller: P: KP

I t l t ll I K• Integral controller : I:

• Derivative controller: D: sKI

sKD

tp M ts steady-state error

P decreases increases small changes decreases

I decreases increases increases eliminates (=0)

D small changes decreases decreases small changes

• these correlations may not be exactly accurate because K K and K• these correlations may not be exactly accurate, because KP, KI, and KDare dependent of each other

• changing 1 of these variables can change the effect of the other 2Control and guidance

Slide 71

changing 1 of these variables can change the effect of the other 2

Page 72: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

4- Controllers4- Controllers

• 2 kinds of controllers improve the transitory response:

Lead Compensator:00

0C zpwith

pszs)s(G

adds 1 zero and 1 pole, but zero is more important: it moves the t l t th l ft i t bilit ( t i f t d h

0ps

root locus to the left: improves stability (system is faster and has less overshoot)

Proportional Derivative Compensator:

dd 1 i t bilit

sKK(s)G DPC

adds 1 zero: improves stability

Control and guidance

Slide 72

Page 73: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

4- Controllers4- Controllers

• 2 kinds of controllers improve the steady state response:

Lag Compensator:00

0C pzwith

pszs)s(G

add 1 zero and 1 pole, but pole is more important: it moves the t l t th i ht d t bilit ( t i l d

0ps

root locus to the right: decreases stability (system is slower and has more overshoot), but decreases the steady state error

Proportional Integral Compensator: KK(s)G I

PC gs

( ) PC

Control and guidance

Slide 73

Page 74: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

4- Controllers4- Controllers

• 2 kinds of controllers improve both transitory and steady state response:

Lead - Lag Compensator:

110010

C zpandpzwithzszs)s(G

110010

C pppsps

)(

Proportional Integral Derivative (PID) Compensator:

K sDIPC K

sKK(s)G

Control and guidance

Slide 74

Page 75: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

5- Frequency response5- Frequency response

11 FourierFourier transformstransforms andand propertiesproperties

22 FrequencyFrequency responseresponse

33 ExamplesExamplespp

Control and guidance

Slide 75

Page 76: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

1 Fourier transforms and properties1 Fourier transforms and properties

5- Frequency response5- Frequency response

1 Fourier transforms and properties1 Fourier transforms and properties

The Fourier transform of a function x(t) is a function of theThe Fourier transform of a function x(t) is a function of the pulsation ω:

dt)t(xe)(X)]t(x[F tj

dt)t(e)()]t([

→ It transforms a signal from the time domain to the frequency domain

Control and guidance

Slide 76

Page 77: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

1 Transforms and properties1 Transforms and properties

5- Frequency response5- Frequency response

The inverse Fourier transform recovers the original function

1 Transforms and properties1 Transforms and properties

The inverse Fourier transform recovers the original function x(t):

d)(Xe

21)](X[F)t(x tj1 2

This is true for an absolutely integrable signal:

dt)t(x 2 dt)t(x

Control and guidance

Slide 77

Page 78: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

1 Transforms and properties1 Transforms and properties

5- Frequency response5- Frequency response

Linearity:

1 Transforms and properties1 Transforms and properties

Linearity:

)(Y)(X)]t(y)t(x[F )()()]t(y)t([

)t(dx Derivation:

)(Xjdt)t(dxF

)(Xj)t(xdF nn

)(Xjdt)(F n

Control and guidance

Slide 78

Page 79: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

1 Transforms and properties1 Transforms and properties

5- Frequency response5- Frequency response

Additional properties

1 Transforms and properties1 Transforms and properties

Additional properties

X1)at(xF

a

Xa

)at(xF

Duality Xtx F

x2tXXtx

F x2tX

Control and guidance

Slide 79

Page 80: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

1 Transforms and properties1 Transforms and properties

5- Frequency response5- Frequency response

C l i h

1 Transforms and properties1 Transforms and properties

Convolution theorems

FFtff F

FFtff

FFtffF

21F

21

FFtff 2121

dsstfsftffwhere 2121

Control and guidance

Slide 80

Page 81: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

1 Transforms and properties1 Transforms and properties

5- Frequency response5- Frequency response

1 Transforms and properties1 Transforms and properties

Time delay

XeTtxF Tj

Control and guidance

Slide 81

Page 82: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

1 Transforms and properties1 Transforms and properties

5- Frequency response5- Frequency response

Important pairs of transforms

1 Transforms and properties1 Transforms and properties

δ(t-t0), unit impulse )t(f )(F

0tje

2π δ(ω-ω0)tj 0e e

u(t), unit step1

δ(ω)

)t(ue at

a)t(ue t2cos 0 002

1 0

t2sin 02

00j21

Control and guidance

Slide 82

j2

Page 83: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

2 Frequency response2 Frequency response

5- Frequency response5- Frequency response

In previous examples we examined the free response of an airplane with step changes in control input

2 Frequency response2 Frequency response

step changes in control input

Other useful input function is the sinusoidal signal. Why?

1. Input to many physical systems takes the form or either a step change or sinusoidal signal

2. An arbitrary function can be represented by a series of step changes or a periodic function can be decomposed by means of Fourier analysis into a series of sinusoidal waves

→ if we know the response of a linear system to either a step or sinusoidal input then we can construct the system's response to an arbitrary input by the principle of superposition

Control and guidance

Slide 83

Page 84: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

2 Frequency response2 Frequency response

5- Frequency response5- Frequency response

2 Frequency response2 Frequency response

Example:

Examine the response of an airplane subjected to an external disturbance such as a wind gust

Wind gust can be a sharp edged profile or a sinusoidal profile (these 2 types of gust inputs occur quite often in nature) + arbitrary gust profile can be constructed by step and sinusoidal functions

Control and guidance

Slide 84

Page 85: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

1.5

2 Frequency response2 Frequency response

5- Frequency response5- Frequency response

0.5

1

2 Frequency response2 Frequency response

Arbitrary wind gust profiles:0

0.9

1

-1

-0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8 9 10-1.5

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

Control and guidance

Slide 85

Page 86: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

2 Frequency response2 Frequency response

5- Frequency response5- Frequency response

2 Frequency response2 Frequency response

Definition of “ frequency response”:

Response in steady state to a sinusoidal input

We will demonstrate that the steady state response is another

sinusoidal with the same frequency

Control and guidance

Slide 86

Page 87: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

2 Frequency response2 Frequency response

5- Frequency response5- Frequency response

2 Frequency response2 Frequency response

Similarity with Laplace functions with regard to the

operational properties (ex: differentiation)

→ the transfer function models can be transformed from one

method to the other replacing jω with s (or s with jω). (for

causal signals: signals defined for positive time)

Control and guidance

Slide 87

Page 88: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

2 Frequency response2 Frequency response

5- Frequency response5- Frequency response

2 Frequency response2 Frequency response

Given any system:

R(s) G(s) C(s)

Hypothesis: stable system

Sinusoidal input

22stsinLsRtsintr

Control and guidance

Slide 88

Page 89: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

2 Frequency response2 Frequency response

5- Frequency response5- Frequency response

2 Frequency response2 Frequency response

It can be demonstrated that the steady state response is:

tsinjG)t(c

jGImjGRejGwith 22

jGRejGImarctanjGargand jGRe

Control and guidance

Slide 89

Page 90: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Parametric estimationParametric estimation

5- Frequency response5- Frequency response

Parametric estimationParametric estimation

a. Firsta. First--orderorder

a. Firsta. First orderorder

Frequency response: 21j1K

j1KjG

1j1

Gain: KjGGain: 21

jG

Delay: arctany arctan

Control and guidance

Slide 90

Page 91: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

5- Frequency response5- Frequency response

b. Secondb. Second--orderorder

KjG

2n j2

jGn

22n

Gain:

222

21

KjG

nn

21

D l

nωω2ξ

arctanDelay:

2

nωω1

arctan

Control and guidance

Slide 91

n

Page 92: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

5- Frequency response5- Frequency response

For a system composed by series of blocks:c. c. HigherHigher--orderorder

=

C(s)G1(s)

R(s)G2(s) G3(s)

=

G(s)C(s)R(s)

GGGGi h

jGjGjGjG

sGsGsGsGwith 321

jGjGjGjG 321

321 jGjGjGjG 321

321 jGjGjGjG

Control and guidance

Slide 92

Page 93: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

6- Bode diagram6- Bode diagram

1 Introduction1 Introduction1. Introduction1. Introduction

2. Construction rules2. Construction rules

3. Stability3. Stability

Control and guidance

Slide 93

Page 94: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

G l f th B d di

6- Bode diagrams6- Bode diagrams

Goals of the Bode diagrams:

To show the frequency response characteristics in a graphical form

2 graphics for the frequency using a logarithmic scale:

• one for the logarithm of a function magnitude (in decibels):

• one for the phase angle (in degrees):

dB)j(G

)j(Garg one for the phase angle (in degrees):

The decibel is a unit measure used to compare a certain value with a

)j(Garg

reference one. It is basically used to measure a signal power, and it is

defined as:

)j(GP2 )j(Glog20

1)j(G

log10PPlog10)j(G

ref

medidadB

Control and guidance

Slide 94

Page 95: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

6- Bode diagrams6- Bode diagrams

Semi-logarithmic axes: with lineal scale for the magnitude or the phase, and logarithmic for the frequencyp , g q y

Represents the complex transfer function adding each pole or zero effect, which compose this function (adding property of the log)

Control and guidance

Slide 95

effect, which compose this function (adding property of the log)

Page 96: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

GainGain

6- Bode diagrams6- Bode diagramsGainGain

The gain is a factor that only modifies the magnitude and its angular value is 0º; that is the gain value remains constant for any frequencyvalue is 0 ; that is, the gain value remains constant for any frequency value, because it does not depend on it.35

33 5

34

34.5

agn

itud

e (d

B)

Bode diagram for a K 50 i

32.5

33

33.5

Ma

1 K=50 gain

0

0.5

1

e (d

eg)

-1

-0.5

0

Pha

se

Control and guidance

Slide 96

100 10 11

Page 97: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Integral and derivative factorsIntegral and derivative factors6- Bode diagrams6- Bode diagrams

gg

An integral factor or a pole centered in zero, has a transfer function of:

j11

Its magnitude is therefore:

j

j1)j(G

s1)s(G

Its magnitude is, therefore:

)log(201log20)j(GdB

For a logarithmic frequency axis: it corresponds to a straight negative

line of -20 dB per decade

line of -20 dB per decade

The phase is:1j1

900

1arctanjarg

j1arg)j(Garg

Control and guidance

Slide 97

Page 98: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

I t l d d i ti f tI t l d d i ti f t

6- Bode diagrams6- Bode diagrams

Integral and derivative factorsIntegral and derivative factors

For a derivative factor or a zero centered in zero, the results are

deduced using a similar development:

)log(20)j(GdB

90)j(Garg

Control and guidance

Slide 98

Page 99: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Integral and derivative factorsIntegral and derivative factors

6- Bode diagrams6- Bode diagrams

Integral and derivative factors Integral and derivative factors 20

B ode Diagram

Bode diagrams of the0

10

tude

(dB

)

Bode diagrams of the derivative and the

integrator-10

Mag

ni

g-20

90

0

Pha

se (

deg)

100 101

-90

Control and guidance

Slide 99

Frequency (rad/sec)

Page 100: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

FirstFirst--order factors: firstorder factors: first--order poleorder pole

6- Bode diagrams6- Bode diagrams

FirstFirst order factors: firstorder factors: first order poleorder pole

j11)j(G

2211log20Its magnitude is:

j1 1

01log201log20)j(G11for 22 It seems more complicated, but approximations are made:

01log201log20)j(G,1fordB

log201log20)j(G,11for 22dB

gg)j(,dB

• substitute the curve by its two asymptotes

• magnitude is 0 dB until it reaches the point where both asymptotesg p y pmeet: ωτ=1, this point is called cut frequency

• from there: other asymptote with a 20 dB per decade slope• from there: other asymptote, with a -20 dB per decade slope.

• point where approximation error is maximum corresponds to the cutfrequency and the error is 3 dB

Control and guidance

Slide 100

frequency and the error is 3 dB.

Page 101: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

FirstFirst--order factors: firstorder factors: first--order poleorder pole

6- Bode diagrams6- Bode diagrams

similar for the phase, the phase real value is:

FirstFirst order factors: firstorder factors: first order poleorder pole

1arctan

1j1arg

j11arg)j(Garg 22

However the approximation in this case is:

0)j(Garg11for

90)j(Garg11for

)j(g

90)j(Garg1for

Control and guidance

Slide 101

Page 102: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

FirstFirst--order factors: firstorder factors: first--order poleorder pole

6- Bode diagrams6- Bode diagrams

1

FirstFirst order factors: firstorder factors: first order poleorder pole0

Bode Diagram

s11)s(G

-20

-10

nitu

de (

dB)

Bode diagram of a -40

-30Mag

n

gfirst-order system

-400

deg)

-45

Pha

se (

d

10-2

10-1

100

101

102

-90

Frequency (rad/sec)

Control and guidance

Slide 102

Frequency (rad/sec)

Page 103: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

FirstFirst--order factors: firstorder factors: first--order poleorder pole

6- Bode diagrams6- Bode diagrams

For the study of the first-order zeros, similar development, there is only a sign change: j1)j(G

FirstFirst order factors: firstorder factors: first order poleorder pole

a sign change: j1)j(G

2222 1l101l20M it d 2222 1log101log20 Magnitude:

Angular contribution:

1

arctanj1arg)j(Garg

Control and guidance

Slide 103

Page 104: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

FirstFirst--order factors: firstorder factors: first--order poleorder pole

6- Bode diagrams6- Bode diagrams

Example:

FirstFirst order factors: firstorder factors: first order poleorder pole

20Bode Diagram

Example:

10)s(G 10

nitu

de (

dB)

1s2)s(G

-10

0

Mag

n010

45

0(d

eg)

90

-45

Pha

se

10-2

10-1

100

101

-90

Frequency (rad/sec)

Control and guidance

Slide 104

Page 105: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

SecondSecond order factorsorder factors

6- Bode diagrams6- Bode diagrams

SecondSecond--order factors order factors

22 1

22nn

2

2n

2nn

2

2n

2j1

12j

)j(Gs2s

)s(G

nn

The magnitude is:

222

21log201log20)j(G

nn

2

n

22

n

21log20

21

log20)j(G

nn

Control and guidance

Slide 105

Page 106: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

SecondSecond--order factorsorder factors 222

6- Bode diagrams6- Bode diagrams

SecondSecond order factors order factors

it can be approximated this way:

nn

21log20)j(G

2n

dB0)1log(20)j(G,1for

2

nn

log20)j(G,1for

F l f i t i ht li t 0dBFor low frequencies: straight line at 0dB

For high frequencies: straight line with a –40 dB per decade slope.

Both asymptotes cross on ω=ωn.

However, in the second-order poles a resonance effect can appear.However, in the second order poles a resonance effect can appear.

In the frequency domain the resonance is shown as a peak close to the cut frequency; the resonance peak value is conditioned to the ζ valueControl and guidance

Slide 106

cut frequency; the resonance peak value is conditioned to the ζ value.

Page 107: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

SecondSecond--order factorsorder factors

6- Bode diagrams6- Bode diagrams

SecondSecond order factors order factors

F h h n

2

For the phase: 2n

1

tan

n

0)0tan(Arc,2.0generally,1For

180)0tan(Arc,5generally,1For

nn

90)tan(Arc,1For

nn

n

The phase graphic form depends also on ζ

Control and guidance

Slide 107

Page 108: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

SecondSecond--order factors order factors 6- Bode diagrams6- Bode diagrams

Bode diagram of a second-order pole for different ζ values

Control and guidance

Slide 108

Page 109: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

SecondSecond--order factors order factors 6- Bode diagrams6- Bode diagrams

Example: -20

Bode Diagram

25s3s5.2)s(G 2

-40

gnitu

de (

dB)

25s3s

-80

-60Mag

0

90

-45

0

(deg

)

-135

-90

Pha

se

10-1

100

101

102

-180

Frequency (rad/sec)

Control and guidance

Slide 109

Page 110: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Stability conditionStability condition

6- Bode diagrams6- Bode diagrams

Stability condition Stability condition

)º180G()0G( forº180andfor0G Notation: )180G()0G(

The Bode diagram in open loop is studied

Stability condition:

0GforAndº180,forIf )0G(

0GforOrº180,forIf )0G(

0G,forAnd )º180( 0G,forOr )º180(

THEN the system is STABLE THEN the system is UNSTABLETHEN the system is STABLE THEN the system is UNSTABLE

in closed loop in closed loop

Control and guidance

Slide 110

Page 111: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Stability conditionStability condition

6- Bode diagrams6- Bode diagrams

Stability condition Stability condition

STABLE

Control and guidance

Slide 111

Page 112: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Stability condition Stability condition 6- Bode diagrams6- Bode diagrams

yy

UNSTABLE

Control and guidance

Slide 112

Page 113: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Stability marginsStability margins

6- Bode diagrams6- Bode diagrams

Stability margins Stability margins

Common values:Common values:

Minimum gain

margin: 10 a 12 dB,

Minimum phaseMinimum phase

margin: 45 a 50º

Control and guidance

Slide 113

Page 114: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Stability marginsStability margins

6- Bode diagrams6- Bode diagrams

Stability margins Stability margins

50Bode Diagram

-50

0

nitu

de

(dB

)

2)1)((1G(s) -150

-100Mag

90 2)1)(ss(s( )

-180

-135

-90

e (d

eg)

-270

-225

180

Pha

se

10-2

10-1

100

101

102

270

Frequency (rad/sec)

Control and guidance

Slide 114

Page 115: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Stability margins Stability margins 6- Bode diagrams6- Bode diagrams

2)1)(ss(s1G(s)

MG=14.5dB

with roots locus:

MG=6, G ,

and note that:

20log(6)=15.5dB

Control and guidance

Slide 115

Page 116: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Stability margins Stability margins 6- Bode diagrams6- Bode diagrams

2)1)(ss(s1G(s)

MΦ=51º

Control and guidance

Slide 116

Page 117: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Stability margins Stability margins 6- Bode diagrams6- Bode diagrams

50Bode Diagram

)33.3s)(1s)(06.0s(48.2)s(G

Transfer function of a vehicle cruise-control system

0

50

e (d

B)

-100

-50

Mag

nitu

de

-150

90-45

0

g)

225-180-135

-90

Pha

se (d

eg

10-2

100

102

-270-225

Frequency (rad/sec)

Control and guidance

Slide 117

Frequency (rad/sec)

Page 118: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Stability margins Stability margins 6- Bode diagrams6- Bode diagrams

A pole is added on 0 (integrator): Bode diagram shifted downward : + unstable

Control and guidance

Slide 118

Page 119: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

Stability margins Stability margins 6- Bode diagrams6- Bode diagrams

A zero is added in -0.12: Bode diagram shifted upward : + stable

Bode Diagram

0

50

100(d

B)

Bode Diagram

-100

-50

0

Mag

nitu

de

-150

100

135

-90

)

-225

-180

-135

Pha

se (d

eg)

10-2

100

102

-270

-225

F ( d/ )

Control and guidance

Slide 119

Frequency (rad/sec)

Page 120: Cl i l t lClassical control - UPC Universitat Politècnica ...ocw.upc.edu/.../2010/1/53444/classicalcontrol-3263.pdf · DYNAMICS spee u ref speed u ... gp 0.1 0.2 2 0.3 ... Slide

REFERENCESREFERENCESREFERENCESREFERENCES

G.F Franklin, J.D. Powell, A. Emani-Naeini, Feedback Control of DynamicSystems, 4a Edición, Prentice-Hall, 2002

P. Lewis, Sistemas de Control en Ingeniería, Prentice Hall, 1999

W B lt C t l E i i 2ª Edi ió L 1998W. Bolton, Control Engineering, 2ª Edición, Longman, 1998

D. Arzelier, D. Peaucelle, Représentation et analyse des systèmes linéaires, Tomes 1 et 2, Version 1, ENSICA, 1999

Control and guidance

Slide 120