capacidad de carga.xlsx

15
TEORIA DE TERZAGHI Cohesion Angulo de friccion Peso Especifico Prof. de Desplante Ancho de zapata Sc FS Nq= 36.50 Nc= 52.64 72.48 35.23 qult= 227.06 TN/m2 qadm. = 75.69 TN/m2 189.22 TN/m K= Nγ= QNETO = _ = _ _ + _ +0.5 _ _ _ = ^2(3 /4− / 2) /(2 ^2 (45+ /2) ) _ =( _ −1) ( ) _ = /2 ( _ /( ^2 ) −1) _ =3 ^2 [45+ (( +33)/2)]

Upload: anon446672359

Post on 20-Feb-2016

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CAPACIDAD DE CARGA.xlsx

TEORIA DE TERZAGHI

Cohesion 0.00Angulo de friccion 34.00 gradosPeso Especifico 1.94Prof. de Desplante 2.00 mAncho de zapata 2.50 mSc 1

1FS 3

Nq= 36.50Nc= 52.64

72.4835.23

qult= 227.06 TN/m2qadm. = 75.69 TN/m2

189.22 TN/m

TN/m²

TN/m³

KPγ=Nγ=

QNETO =

𝑞_𝑢𝑙𝑡=𝑐𝑁_𝐶 𝑆_𝐶+𝑞𝑁_𝑞+0.5𝛾𝐵𝑁_𝛾 𝑆_𝛾𝑁_𝑞=𝑒^2(3𝜋/4−𝜑/2)𝑡𝑎𝑛𝜑/(2〖 〗𝑐𝑜𝑠 ^2 (45+𝜑/2) )

𝑁_𝑐=(𝑁_𝑞−1)𝑐𝑜𝑡(𝜑)𝑁_𝛾=𝑡𝑎𝑛𝜑/2 (𝐾_𝑃𝛾/(〖 〗𝑐𝑜𝑠 ^2 𝜑)−1)𝐾_𝑃𝛾=3〖 〗𝑡𝑎𝑛 ^2 [45+((𝜑+33)/2)]

Page 2: CAPACIDAD DE CARGA.xlsx

TEORIA DE TERZAGHI

Cohesion 0.00Angulo de friccion 34.00 gradosPeso Especifico 1.94Prof. de Desplante 2.00 mAncho de zapata 2.50 mSc 1.3

0.6FS 3

Nq= 36.50Nc= 52.64

72.4835.23

qult= 192.89qadm. = 64.30

TN/m²

TN/m³

KPγ=Nγ=

𝑞_𝑢𝑙𝑡=𝑐𝑁_𝐶 𝑆_𝐶+𝑞𝑁_𝑞+0.5𝛾𝐵𝑁_𝛾 𝑆_𝛾𝑁_𝑞=𝑒^2(3𝜋/4−𝜑/2)𝑡𝑎𝑛𝜑/(2〖 〗𝑐𝑜𝑠 ^2 (45+𝜑/2) )

𝑁_𝑐=(𝑁_𝑞−1)𝑐𝑜𝑡(𝜑)𝑁_𝛾=𝑡𝑎𝑛𝜑/2 (𝐾_𝑃𝛾/(〖 〗𝑐𝑜𝑠 ^2 𝜑)−1)𝐾_𝑃𝛾=3〖 〗𝑡𝑎𝑛 ^2 [45+((𝜑+33)/2)]

Page 3: CAPACIDAD DE CARGA.xlsx

TEORIA DE TERZAGHI

Cohesion 0.00Angulo de friccion 34.00 gradosPeso Especifico 1.94Prof. de Desplante 2.00 mAncho de zapata 2.50 mSc 1.3

0.8FS 3

Nq= 36.50Nc= 52.64

72.4835.23

qult= ###qadm. = 69.99

TN/m²

TN/m³

KPγ=Nγ=

𝑞_𝑢𝑙𝑡=𝑐𝑁_𝐶 𝑆_𝐶+𝑞𝑁_𝑞+0.5𝛾𝐵𝑁_𝛾 𝑆_𝛾𝑁_𝑞=𝑒^2(3𝜋/4−𝜑/2)𝑡𝑎𝑛𝜑/(2〖 〗𝑐𝑜𝑠 ^2 (45+𝜑/2) )

𝑁_𝑐=(𝑁_𝑞−1)𝑐𝑜𝑡(𝜑)𝑁_𝛾=𝑡𝑎𝑛𝜑/2 (𝐾_𝑃𝛾/(〖 〗𝑐𝑜𝑠 ^2 𝜑)−1)𝐾_𝑃𝛾=3〖 〗𝑡𝑎𝑛 ^2 [45+((𝜑+33)/2)]

Page 4: CAPACIDAD DE CARGA.xlsx

TEORIA DE MEYERHOF

Carga vertical

Carga Inclinada

c = 0.0 Kpa35.0 ° c = 20.0 Kpa

17.30 KN/m3 16.00 KN/m3Df = 1.20 m F.S = 2.5β = 5.0 °B = 2.00 mL = 1.80 m

Nq = 33.30 Nc = 46.12 48.03Factor de forma

Fsc = 1.802Fqs = 2.587Fγs = 0.556

ProfundidadDf/B ≤ 1 Df/B > 1

Fcd = 1.240 Fcd = 1.585Fqd = 1.153 Fqd = 1.153Fγd = 1.00 Fγd = 1.000

InclinacionFci = 0.892Fqi = 0.892Fγi = 0.735

qult. = 2039.5963Qad. = 815.83852

Ф =γ est. Inf.= γ est. Sup. =

Nγ =

𝑞_𝑢𝑙𝑡=𝑐𝑁_𝐶 𝑆_𝐶 𝑑_𝐶+𝑞𝑁_𝑞 𝑆_𝑞 𝑑_𝑞+0.5𝛾𝐵𝑁_𝛾 𝑆_𝛾 𝑑_γ𝑞_𝑢𝑙𝑡=𝑐𝑁_𝐶 𝑆_𝐶 𝑖_𝐶+𝑞𝑁_𝑞 𝑑_𝑞 𝑖_𝑞+0.5𝛾𝐵𝑁_𝛾 𝑑_𝛾 𝑖_γ

𝑁_𝑞=𝑒^(πtan (Ф)) tang (45+² Ф/2) 𝑁_𝐶=(𝑁_𝑞−1)cot(Ф)𝑁_γ=2(𝑁_𝑞+1)tang(Ф

)𝐾_𝑝=𝑡𝑎𝑛 (45+² Ф/2)

𝑞_𝑢𝑙𝑡=𝑐𝑁_𝑐 𝐹_𝑐𝑠 𝐹_𝑐𝑑 _𝐹 𝑐𝑖+𝑞𝑁_𝑞 𝐹_𝑞𝑠 𝐹_𝑞𝑑 _𝐹 𝑞𝑖+0.5𝛾𝐵𝑁_𝛾 𝐹_𝛾𝑠 𝐹_γ𝑑 _𝐹 𝛾𝑖

Page 5: CAPACIDAD DE CARGA.xlsx
Page 6: CAPACIDAD DE CARGA.xlsx

TEORIA DE MEYERHOF

Carga vertical

Carga Inclinada

c = 30.0 Kpa33.0 ° c = 20.0 Kpa

γ = 18.50 KN/m3 γ = 16.00 KN/m3Df = 1.50 m F.S = 2.5

5.0 °D = 3.00 mB = 2.00 m

Kp = 3.3921

Nq = 26.0920 Nc = 38.6383 26.1657dq = 1.1381 dc = 1.2763 1.1381iq = 0.8920 ic = 0.8920 0.7199q = 24 c = 30.0 Kpa B= 2.00 m

qult = 2351.92 KN/m2

Ф =

=

Nγ =dγ =iγ =

𝑞_𝑢𝑙𝑡=𝑐𝑁_𝐶 𝑆_𝐶 𝑑_𝐶+𝑞𝑁_𝑞 𝑆_𝑞 𝑑_𝑞+0.5𝛾𝐵𝑁_𝛾 𝑆_𝛾 𝑑_γ𝑞_𝑢𝑙𝑡=𝑐𝑁_𝐶 𝑆_𝐶 𝑖_𝐶+𝑞𝑁_𝑞 𝑑_𝑞 𝑖_𝑞+0.5𝛾𝐵𝑁_𝛾 𝑑_𝛾 𝑖_γ𝑁_𝑞=𝑒^(πtan (Ф)) tang (45+² Ф/2)

𝑁_𝐶=(𝑁_𝑞−1)cot(Ф)𝑁_γ=(𝑁_𝑞−1)tang(1.4Ф)𝐾_𝑝=𝑡𝑎𝑛 (45+² Ф/2)

Page 7: CAPACIDAD DE CARGA.xlsx

Q = 5644.609 KN

Page 8: CAPACIDAD DE CARGA.xlsx
Page 9: CAPACIDAD DE CARGA.xlsx

TEORIA DE MEYERHOF

Formula general

c = 30.0 Kpa c = 20.0 Kpa33.0 ° γ = 16.00 KN/m3

γ = 18.50 KN/m3 F.S = 2.5Df = 1.50 m H = 491.9601

5.0 ° V = 5623.1298L = 2.00 m Ca = 0.8B = 3.00 m 3

K = 0.5000 Q = 5644.609 KN qult = ###

Nq = 26.0920 Nc = 38.6383 24.4424dq = 1.1347 dc = 1.2000 1.0000iq = 0.8746 ic = 0.8696 0.8273q = 24 c = 30.0 Kpa B= 3.00 mSq = 1.8170 Sc = 2.01 0.40

qult = 3788.332 KNQ = ###

Ф =

=

α2 =

Nγ =dγ =iγ =

Sγ =

𝑁_𝑞=𝑒^(πtan (Ф)) tang (45+² Ф/2)𝑁_𝐶=(𝑁_𝑞−1)cot(Ф)𝑁_γ=1.5(𝑁_𝑞−1)tang(Ф)

k=D/B

𝑞_𝑢𝑙𝑡=𝑐𝑁_𝐶 𝑆_𝐶 𝑑_𝐶 𝑖_𝑐 𝑔_𝑐 𝑏_𝑐+𝑞𝑁_𝑞 𝑆_𝑞 𝑑_𝑞 _𝑖 𝑞 _𝑔 𝑞 _𝑏 𝑞+0.5𝛾𝐵𝑁_𝛾 𝑆_𝛾 𝑑_γ _𝑖 γ _𝑔 γ _𝑏 γ