cap 2

Upload: kevin-zurita-yugs

Post on 06-Mar-2016

217 views

Category:

Documents


0 download

DESCRIPTION

termo compresor

TRANSCRIPT

  • Escuela Politcnica Nacional 12/11/2015

    1

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Compresin de Gas

    Jos Luis Palacios EncaladaQuito, 05 de Noviembre 2015

    1

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Contenido

    1. Compresin de gas

    2. Compresin con interenfriamiento

    3. Tipos de compresores

    4. Criterios de seleccin

    2

  • Escuela Politcnica Nacional 12/11/2015

    2

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Contenido

    1. Compresin de gas

    2. Compresin con interenfriamiento

    3. Tipos de compresores

    4. Criterios de seleccin

    3

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Compresin de gas Los compresores son mquinas que reciben energa mecnica de un

    motor impulsor. Transfieren parte de esa energa a un gas aumentando su presin. Otra parte de la energa se disipa por prdidas trmicas. El gas comprimido es almacenado en un recipiente de presin donde

    posteriormente es conducido para su uso.

    4

  • Escuela Politcnica Nacional 12/11/2015

    3

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Compresor reciprocante The reciprocating compressor consists of one or more cylinders each

    with a piston or plunger that moves back and forth, displacing a positive volume with each stroke.

    5

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Compresor reciprocante - Ciclo Termodinmico

    6

    6

    induced volume

    swept volume

  • Escuela Politcnica Nacional 12/11/2015

    4

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Compresor reciprocante - Ciclo Termodinmico

    7

    Existen tres formas de clculos termodinmicos por compresin:1. Proceso Isentrpico (s=cte) , PV k = constant, k = isentropic factor

    2. Proceso politrpico, PV n = constant, n = polytropic factor

    3. Proceso Isotrmico, PV = constant

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Compresor reciprocante - Ciclo Termodinmico

    8

    =2

    1d

    P

    PPVW

    T W

  • Escuela Politcnica Nacional 12/11/2015

    5

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Contenido

    1. Compresin de gas

    2. Compresin con interenfriamiento

    3. Tipos de compresores

    4. Criterios de seleccin

    9

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Compresin con interenfriamiento

    10

    En el interenfriador el gas es enfriado en cada una de las etapas de compresin.

  • Escuela Politcnica Nacional 12/11/2015

    6

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Compresin con interenfriamiento

    11

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Compresin con interenfriamiento - ventajas

    12

    Se requiere menos trabajo para la misma cantidad de aire a la misma presin de suministro.

    Se reducen los costos de compresin.

    Mayor vol

    El tamao de los cilindros puede ajustarse a la presin y volumen requeridos.

    El balance mecnico del compresor es mejor.

    Se logra una mejor lubricacin debido a una baja temperatura.

  • Escuela Politcnica Nacional 12/11/2015

    7

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Eficiencia Isentrpicas

    13

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Contenido

    1. Compresin de gas

    2. Compresin con interenfriamiento

    3. Tipos de compresores

    4. Criterios de seleccin

    14

  • Escuela Politcnica Nacional 12/11/2015

    8

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Tipos de compresores

    15

    Dependiendo del aumento en la presin del gas, a las mquinas que comprimen aire se las divide en:

    *P aumento de la presin (g) del gasBombas de vaco

    P [atm]

    0.15

    2.00

    0.00

    Ventialdores

    Sopladores

    Compresores

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Tipos de compresores

    16

    Segn la forma en que se produce la transformacin de energamecnica en energa de presin en el gas, los compresores seclasifican:

    C. desplazamiento positivo (volumtricos)- un elemento del compresor se desplaza conjuntamente con el gas- porciones de gas son comprimidos y su vol. - proceso de compresin discontinua y pulsante

    C. dinmicos (desplazamiento negativo)- un elemento giratorio con aletas o labes induce fuerza centrfuga algas aumentado su energa y cantidad de mov.

    - proceso de continuo de compresin

  • Escuela Politcnica Nacional 12/11/2015

    9

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Tipos de compresores

    17

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Contenido

    1. Compresin de gas

    2. Compresin con interenfriamiento

    3. Tipos de compresores

    4. Criterios de seleccin

    18

  • Escuela Politcnica Nacional 12/11/2015

    10

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Seleccin de compresores

    19

    Centrifugal compressors

    Advantages

    High approaching 2 stagesreciprocating compressor

    Can reach pressure up to 1200 psi Completely package for plant or

    instrument air up 500 hp Relatives first cost improves as

    size increase Designed to give lubricant free air Does not require special

    foundations

    Disadvantages

    High initial cost Complicated monitoring and control

    systems Limited capacity control

    modulation, requiring unloading for reduced capacities

    High rotational speed require special bearings and sophisticates vibration and clearance monitoring

    Specialized maintenance considerations

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Seleccin de compresores

    20

    Reciprocating compressors

    Advantages

    Simple design, easy to install Lower initial cost Large range of horsepower Special machines can reach

    extremely high pressure Two stages models offer the

    highest efficiency

    Disadvantages

    Higher maintenance cost Many moving parts Potential for vibration problems Foundation may be required

    depending on size Many are not designed to run at full

    capacity

  • Escuela Politcnica Nacional 12/11/2015

    11

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Seleccin de compresores

    21

    Understand the applicationWhat is the compressor supposed to do?

    Find out the detailsGas, pressures, temperatures, ccapacities, etc.

    Scope of supplyWho is to supply the motor, swithgear, piping, etc?

    Size the compressor

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Step I Understand the application

    22

    Become familiar with the big picture before getting into the details.

    Form a clear, concise statement describing the purpose of thecompressor.

    Many compressors operate at more than one condition.

    Determine why and how often the various conditions occur.

  • Escuela Politcnica Nacional 12/11/2015

    12

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Step II Find out the details

    23

    To determine what type of compressor system will be needed. Avariety of detailed date is required:

    Gas being handled

    Suction and discharge pressure

    Site elevation (local barometric pressure)

    Suction temperature

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Step II Gas being handle

    24

    The gas to be compressed must be precisely identified. Gas name may be presented as a chemical formula. Data needed:

    Molecular weight

    n value

    Critical Pressure (Pcr)

    Critical Temperature (Tcr)

  • Escuela Politcnica Nacional 12/11/2015

    13

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Step II Pressure and Temp.

    25

    Everything in absolute terms

    Pressure

    Temperature

    Ps Suction Pressure

    Pd Discharge Pressure

    @ the compressor inlet (psia, kPa)

    @ the compressor discharge (psia, kPa)

    Ts Suction Temperature

    R = F + 460 K = C + 273

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Step II Capacity

    26

    To size the compressor, the capacty must be stated as the colume itwill ocupy @ compressor suction.

    This volume is normally referred as inlet cubic feet per minute (ICFP). The actual cubic feet per minute (ACFM).

  • Escuela Politcnica Nacional 12/11/2015

    14

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Step III Scope of Supply

    27

    The compressor is everything that is needed to take the gas at somepoint in the system and place it at another point @ high pressure.

    Such a compressor is actually a process or system that consists of anumber or common items or systems:

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Step IV Selecting the Proper Compressor

    28

    Knowledge of the gas, required capacity, suction pressure, suctiontemperature, and discharge pressure will enable the compressor to besized.

    The basics steps involved are:1. Calculate the compression ratio2. Choose between a single-stage or two-stage compressor3. Calculate the discharge temperature4. Determine the volumetric efficiency5. Determine the required piston displacement6. Select the compressor model7. Determine the minimum RPM required of the selected compressor8. Select an actual RPM9. Calculate the actual piston displacement10. Calculate the power required11. Select appropiate options

  • Escuela Politcnica Nacional 12/11/2015

    15

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Step IV Selecting the proper compressor

    29

    Part 1 Calculate the compression ratio Compression ratio (R) is the ratio of discharge pressure to suction

    pressure:

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Step IV Selecting the proper compressor

    30

    Part 2 Choosing a one-stage or two-stage compressor This decision is mainly based on the compression ratio (R). Discharge temperatures and the duty cycle could also be considered. Here are some guidelines for choosing the proper number of stages:

  • Escuela Politcnica Nacional 12/11/2015

    16

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Step IV Selecting the proper compressor

    31

    Part 2 Choosing a one-stage or two-stage compressor Comparison of a single-stage and two-stage compressor both

    installed to do the same application (same capacity, gas andpressures):

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Step IV Selecting the proper compressor

    32

    Part 3 Calculate the discharge temperature (Td) It directly affects the life of the piston rings and valves. Equation to calculate the discharge temperature for an air cooled

    single-staged compressor:

    Contininuos duty applications should be limited to about 149C (300F).

  • Escuela Politcnica Nacional 12/11/2015

    17

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Step IV Selecting the proper compressor

    33

    Part 4 Determine the volumetric efficiency Which is the ration of the amount of gas compressed vs. the

    physical size of the compressors cylinder volume. For estimating purposes:

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Step IV Selecting the proper compressor

    34

    Part 5 Determine the required piston displacement (PDR) Piston displacement (PD) is a mesure of the compressors size and

    is dependant on the size, number and type of cylinders andcompressor RPM.

    Required piston displacement (PDR) will determine how large acompressor will be required to hadle the specified capacity.

  • Escuela Politcnica Nacional 12/11/2015

    18

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Step IV Selecting the proper compressor

    35

    Part 6 Select the compressor size Once the choice of single-stage or two-stage and the calculation of

    required piston displacement have been made, the compressor canbe sized:

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Step IV Selecting the proper compressor

    36

    Part 7 Select the compressor size

  • Escuela Politcnica Nacional 12/11/2015

    19

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Step IV Selecting the proper compressor

    37

    Part 8 Select an actual RPM Using catalogs of manufactures pick an RPM slightly above the

    minimum RPM required.

    Part 9 Calculate the compressors actual piston displacement (PD) The actual piston displacement can be calculated

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Step IV Selecting the proper compressor

    38

    Part 10 Calculate the power required BHP (kW) For estimating purposes, the following formulas may be used:

  • Escuela Politcnica Nacional 12/11/2015

    20

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Step IV Selecting the proper compressor

    39

    Part 11 Options Once the compressor model, RPM and required power have been

    determined, various compressor options and accesories will need tobe considered:

    Material compatibility : O-rings and piston ring materials need to bereviewed to ensure compatibility with the gas strea, being handled.

    Suction valve unloaders: many compressors will need some type ofcapacity control system.

    Seal (Piston Rod Packing) Configuration: this will depend on degreeof leakage control desired and the pressures invlolved.

    External Oil Filter: for dirty or dusty locations. Extended crankshaft: if a direct drive is to be used.

    BLACKMER, Steps to compressor selection and sizing, http://trukare.com/document_library/Blackmer/Compressors/CompSelectionandSizing.pdf, ltimo acceso

    Diciembre 2014

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Ejercicio

    40

    A compressor to be used to draw N2 off of a cryogenic storage tankand boost the pressure a number of plant processes. The flowrequirement will vary throughout the 8 hour production day, but willaverage about 15 CFM.

    Suction: N2 @ 5 psi Discharge: 65 psi Site: 1000 ft elevation, outdoors, Ambient of 0 to 100F Utilities: 460 V/3hp/60hz, 80F fresh water

  • Escuela Politcnica Nacional 12/11/2015

    21

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Step II Gas being handled

    41

    N2 MW = 28.1 n = 1.40 Critical Pressure = 493 psia Critical Temperature = 228 R

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Step II Site elevation

    42

  • Escuela Politcnica Nacional 12/11/2015

    22

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Step II Suction temperature

    43

    Step II Capacity

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    44

    Part 1 Calculate the compression ratio

    Part 2 Choosing a one-stage or two-stage compressor

  • Escuela Politcnica Nacional 12/11/2015

    23

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    45

    Part 3 Calculate the discharge temperature (Td)

    Part 4 Determine the volumetric efficiency

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    46

    Part 5 Determine the required piston displacement (PDR)

    Part 6 Select the compressor size

    Part 7 Select the compressor size

  • Escuela Politcnica Nacional 12/11/2015

    24

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    47

    Part 7 Select the compressor size

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    48

    Part 7 Select the compressor size

    Part 8 Select an actual RPMNext higher 470 RPM

    Part 9 Calculate the compressors actual piston displacement (PD)

    Part 10 Calculate the power required BHP (kW)

  • Escuela Politcnica Nacional 12/11/2015

    25

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Referencias

    49

    1. Cengel and Boles, Thermodynamics and engineering approach, Fifth Ed.

    2. Agilent Technologies, Practical Temperature Measurements, Application Note 290, http://cp.literature.agilent.com/litweb/pdf/5965-

    7822E.pdf, ltimo acceso Octubre 2014

    3. Peak Sensors, Thermistor Information, http://www.peaksensors.co.uk/technical-information/thermistor-information/ , ltimo acceso

    Octubre 2014

    4. AVX, NTC/PTC Thermistors, http://www.avx.com/docs/masterpubs/ntc_ptc.pdf, ltimo acceso Octubre 2014

    5. OMEGA, Introduction to Thermistors, http://www.omega.com/prodinfo/thermistor.html, ltimo acceso Octubre 2014

    6. http://www.facstaff.bucknell.edu/mastascu/elessonshtml/sensors/tempr.html, ltimo acceso Octubre 2014

    7. Micro-Chip Technologies, NTC Thermistors, http://www.microchiptechno.com/ntc_thermistors.php, ltimo acceso Octubre 2014

    8. http://www.explainthatstuff.com/how-pyranometers-work.html, ltimo acceso Octubre 2014

    9. Hukseflux, Thermal Sensors, SR12 Pyranometer, http://www.pyranometer.net/DE/sr12_pyranometer_de.html , ltimo acceso Octubre

    2014

    10. The Fundamentals of Thermoelectrics, http://www.nano.physik.uni-muenchen.de/education/praktika/f1_thermoelectrics.pdf, , ltimo

    acceso Octubre 2014

    ESCUELA POLITCNICA NACIONALFACULTAD DE INGENIERA MECNICA

    Termodinmica III

    Gracias

    50