act complementarias u1

7
ACTIVIDADES COMPLEMENTARIAS Unidad 1. Electromagnetismo y corriente eléctrica Una vez finalizadas las cuatro actividades complementarias de esta unidad, comprima el archivo en formato zip o rar, dando clic derecho al archivo, Enviar a, Carpeta comprimida. Luego envíelas a su facilitador a través del medio utilizado para tal fin en el curso. Actividad complementaria 1 Calcule la fuerza electromagnética inducida, teniendo en cuenta los temas estudiados en la unidad 1 (documento 1.2), el ejemplo a continuación y los datos proporcionados para este ejercicio. Cálculo de la f.e.m. inducida Fórmula e = f.e.m. inducida en voltios. B = inducción magnética en teslas. L = Longitud del conductor en metros. = velocidad perpendicular en m/s. Ejemplos 7 Un conductor se desplaza a una velocidad lineal de 5 m/s en el seno de un campo magnético fijo de 1,2 teslas de inducción. Determinar el valor de la f.e.m. inducida en el mismo si posee una longitud de 0,5 m. Solución: 1

Upload: daniel-mosquera

Post on 25-Dec-2015

10 views

Category:

Documents


0 download

DESCRIPTION

virtual sena

TRANSCRIPT

ACTIVIDADES COMPLEMENTARIASUnidad 1. Electromagnetismo y corriente eléctrica

Una vez finalizadas las cuatro actividades complementarias de esta unidad, comprima el archivo en formato zip o rar, dando clic derecho al archivo, Enviar a, Carpeta comprimida. Luego envíelas a su facilitador a través del medio utilizado para tal fin en el curso.

Actividad complementaria 1Calcule la fuerza electromagnética inducida, teniendo en cuenta los temas estudiados en la unidad 1 (documento 1.2), el ejemplo a continuación y los datos proporcionados para este ejercicio.

Cálculo de la f.e.m. inducida

Fórmula

e = f.e.m. inducida en voltios.B = inducción magnética en teslas.L = Longitud del conductor en metros.

= velocidad perpendicular en m/s.

Ejemplos 7

Un conductor se desplaza a una velocidad lineal de 5 m/s en el seno de un campo magnético fijo de 1,2 teslas de inducción. Determinar el valor de la f.e.m. inducida en el mismo si posee una longitud de 0,5 m.

Solución:

En un sistema un conductor de longitud de 1 m que se desplaza perpendicularmente a las líneas de un campo magnético de inducción 2,5 teslas a una velocidad de 10 m/s. ¿Cuál es la f.e.m.?

Solucióne= B*L*v = 2.5 * 1 * 10 = 25 V

1

Actividad complementaria 2Calcule el coeficiente de autoinducción, teniendo en cuenta los contenidos estudiados en la unidad 1 (Documentos 1.2), el ejemplo que se plantea a continuación y los datos proporcionados para este ejercicio.

Cálculo del coeficiente de autoinducción

Fórmula

L = coeficiente de autoinducción en henrios (H)

Ejemplos 8

Calcular el valor de la f.e.m. de autoinducción que desarrollará una bobina con un coeficiente de autoinducción de 50 mili henrios si se le aplica una corriente que crece regularmente desde cero hasta 10 A en un tiempo de 0,01 segundos.

Solución:

Una bobina que posee 500 espiras produce un flujo magnético de 10 mWb cuando es atravesada por una corriente de 10 amperios. Determinar el coeficiente de autoinducción de la misma. ¿Cuál es el valor de la f.e.m. de auto inducción?

Solución:L = N * (Ø/I) = 500 * (0,01/10)= 0,5H

2

Actividad complementaria 3Calcule el valor eficaz de una tensión alterna, teniendo en cuenta los temas estudiados en la unidad 1 (documento 1.3), el ejemplo a continuación y los datos proporcionados para este ejercicio.

Cálculo de valor eficaz

Ejemplos

1. ¿Cuál es el valor eficaz de una tensión alterna si su valor máximo es 325 V?

Solución:

1. ¿Cuál es el valor máximo de una tensión alterna de 125 V?

Solución:

V max = Vef * √2 = 125V * √2 = 176 V

3

Actividad complementaria 4Consulte y realice un cuadro comparativo entre la potencia activa, potencia reactiva y potencia aparente.

Cuadro comparativo

Potencia Activa

La denominada “potencia activa” representa en realidad la “potencia útil”, o sea, la energía que realmente se aprovecha cuando ponemos a funcionar un equipo eléctrico y realiza un trabajo. Por ejemplo, la energía que entrega el eje de un motor cuando pone en movimiento un mecanismo o maquinaria, la del calor que proporciona la resistencia de un calentador eléctrico, la luz que proporciona una lámpara, etc.Por otra parte, la “potencia activa” es realmente la “potencia contratada” en la empresa eléctrica y que nos llega a la casa, la fábrica, la oficina o cualquier otro lugar donde se necesite a través de la red de distribución de corriente alterna. La potencia consumida por todos los aparatos eléctricos que utilizamos normalmente, la registran los contadores o medidores de electricidad que instala dicha empresa para cobrar el total de la energía eléctrica consumida cada mes. La fórmula matemática para hallar la potencia activa que consume un equipo eléctrico cualquiera cuando se encuentra conectado a un circuito monofásico de corriente alterna es la siguiente:

De donde:• P = Potencia de consumo eléctrico, expresada en watt (W)• I = Intensidad de la corriente que fluye por el circuito, en ampere (A)• Cos = Valor del factor de potencia o coseno de “fi”EJEMPLO: Si queremos conocer la potencia que desarrolla un motor eléctrico monofásico, cuyo consumo de corriente es de 10,4 ampere (A), posee un factor de potencia o Cos = 0,96 y está conectado a una red eléctrica de corriente alterna también monofásica, de 220 volt (V), sustituyendo estos valores en la fórmula anterior tendremos:P = 220 • 10,4 • 0,96 = 2196,48 watt

Potencia Reactiva

La potencia reactiva es la consumen los motores, transformadores y todos los dispositivos o aparatos eléctricos que poseen algún tipo de bobina o enrollado para crear un

4

campo electromagnético. Esas bobinas o enrollados que forman parte del circuito eléctrico de esos aparatos o equipos constituyen cargas para el sistema eléctrico que consumen tanto potencia activa como potencia reactiva y de su eficiencia de trabajo depende el factor de potencia. Mientras más bajo sea el factor de potencia, mayor será la potencia reactiva consumida. Además, esta potencia reactiva no produce ningún trabajo útil y perjudica la transmisión de la energía a través de las líneas de distribución eléctrica. La unidad de medida de la potencia reactiva es el VAR y su múltiplo es el kVAR (kilovolt-amper-reactivo).La fórmula matemática para hallar la potencia reactiva de un circuito eléctrico es la siguiente:

De donde:• Q = Valor de la carga reactiva o inductiva, en volt-ampere reactivo (VAR)• S = Valor de la potencia aparente o total, expresada en volt-ampere (VA)• P = Valor de la potencia activa o resistiva, expresada en watt (W)

Potencia Aparente

La potencia aparente o potencia total es la suma de la potencia activa y la aparente. Estas dos potencias representan la potencia que se toma de la red de distribución eléctrica, que es igual a toda la potencia que entregan los generadores en las plantas eléctricas. Estas potencias se transmiten a través de las líneas o cables de distribución para hacerla llegar hasta los consumidores, es decir, hasta los hogares, fábricas, industrias, etc.

La fórmula matemática para hallar el valor de este tipo de potencia es la siguiente:

De donde:• S = Potencia aparente o total, expresada en volt-ampere (VA)• V = Voltaje de la corriente, expresado en volt• I = Intensidad de la corriente eléctrica, expresada en ampere (A)

5

6