30.5 circuitos integrados con pfc. cuestión 4 · pdf fileconsiderar que la inductancia...

34
Electrónica Industrial - Prácticas, 05/06 169 de 202 30.5 Circuitos integrados con PFC. Cuestión 4: (En el informe) Elegir uno de los circuitos integrados PFC y explicar su funcionamiento. Texas Instruments: www.ti.com Fairchild: www.fairchildsemi.com On semiconductor (Motorola): www.onsemi.com Linear Technology: www.linear-tech.com Power Integrations: www.powerint.com

Upload: hoangdiep

Post on 31-Jan-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 30.5 Circuitos integrados con PFC. Cuestión 4 · PDF fileConsiderar que la inductancia L es ... Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores

Electrónica Industrial - Prácticas, 05/06 169 de

202

30.5 Circuitos integrados con PFC.

Cuestión 4: (En el informe) Elegir uno de los circuitos integrados PFC y

explicar su funcionamiento.

Texas Instruments: www.ti.com

Fairchild: www.fairchildsemi.com

On semiconductor (Motorola): www.onsemi.com

Linear Technology: www.linear-tech.com

Power Integrations: www.powerint.com

Page 2: 30.5 Circuitos integrados con PFC. Cuestión 4 · PDF fileConsiderar que la inductancia L es ... Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores

Electrónica Industrial - Prácticas, 05/06 170 de

202

31 PROBLEMAS DE ELECTRÓNICA

INDUSTRIAL

31.1 SEMICONDUCTORES DE POTENCIA

31.1.1 Cuando se polariza un diodo en inversa por una fuente de continua de 500V, la

corriente es de 1mA. La carga es resistiva de valor RL 10Ω.

Calcular

a) La resistencia interna que presenta el diodo.

b) Pérdidas de potencia cuando el diodo está en corte.

c) Pérdidas de potencia cuando está en conducción si se invierte la fuente

(VTO=0.84V, Req=0.6mΩ)

Solución: a) req=500kΩ b) 0.5W c) 43,5W

2-Dadas las características del diodo MUR1620CT de International Rectifier utilizado

en el siguiente circuito, estimar la carga de recuperación inversa y el pico de

corriente inversa cuando se cierra el interruptor. Considerar que la inductancia L es

lo suficientemente alta para que la corriente por ella sea constante en el intervalo

de conmutación. (R = 10Ω V2 = 150V L3 = 0.5µH Tj=125ºC)

Solución: trr ≈ 34ns Qrr ≈ 105 nC Irm ≈ 6,2A

Page 3: 30.5 Circuitos integrados con PFC. Cuestión 4 · PDF fileConsiderar que la inductancia L es ... Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores

Electrónica Industrial - Prácticas, 05/06 171 de

202

Page 4: 30.5 Circuitos integrados con PFC. Cuestión 4 · PDF fileConsiderar que la inductancia L es ... Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores

Electrónica Industrial - Prácticas, 05/06 172 de

202

3-Para la realización física del siguiente circuito se dispone de tres diodos, cuyas

características idealizadas se muestran a continuación:

diodo 1:

VTO = 0.84V,Req = 0.6mΩ

diodo 2:

VTO = 0.84V, Req = 1Ω

diodo 3:

VTO = 0V, Req = 1 mΩ

diodo 4:

VTO = 1V, Req = 0.4mΩ

Calcular las pérdidas en conducción de cada diodo si la corriente es de la forma de

las figuras A1.1 a A1.6

Page 5: 30.5 Circuitos integrados con PFC. Cuestión 4 · PDF fileConsiderar que la inductancia L es ... Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores

Electrónica Industrial - Prácticas, 05/06 173 de

202

4-El tiristor de la figura tiene una corriente de mantenimiento de 50mA y se dispara

con un impulso de 50 µs de duración. Demostrar que sin la resistencia R el tiristor

no permanecerá encendido cuando termine el pulso, y hallar el valor máximo de R

para asegurar el encendido. Despreciar la caída de voltaje en el tiristor.

Solución: a) sin R i(50 µs)=10mA b) R = 2.5kΩ

5-Un tiristor tiene una característica en conducción que puede ser aproximada por

una línea recta definida por los siguientes parámetros: VTO=1V, Req=18mΩ. Estimar

las pérdidas medias de potencia para

Una corriente continua de 23A

Una media onda sinusoidal de valor medio 18A

Una corriente de 39.6A durante medio ciclo

Una corriente de 48.5A durante un tercio de ciclo

Solución: i) 32.7W ii) 32.6W iii) 34.2W iv) 30.5W

6-Las pérdidas de un determinado tiristor son de 400W para una forma de onda de

corriente rectangular de longitud variable según la tabla siguiente:

Corriente media A 138 170 196 218 250 305

Longitud de la corriente en

grados

30º 60º 90º 120º 180º 360º

Calcular el valor eficaz de la corriente para cada caso

.

Page 6: 30.5 Circuitos integrados con PFC. Cuestión 4 · PDF fileConsiderar que la inductancia L es ... Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores

Electrónica Industrial - Prácticas, 05/06 174 de

202

FIG. con la forma de onda (T = 360º)

Solución:

Longitud de la corriente en

grados

30º 60º 90º 120

º

180º 360º

Idc 138 170 196 218 250 305

Imax 1656 1020 784 654 500 305

IR.M.S. 478 416 392 377 354 305

6-En el circuito de la figura el tiristor principal, Tp, tiene un tiempo máximo de

apagado de toff=10µs. Se pide:

a) obtener el mínimo valor de C b) El valor de R si el tiristor se dispara cada 5ms. c)

7-En el circuito de la figura ¿Cuanto deben valer L y C para conseguir cortar el

SCR?

8-Calcular el tiempo que tarda en comenzar a conducir un MOSFET de potencia,

Si los parámetros de entrada son Cgs = 1600 pF y R = 50 ohmios y se le

aplica un escalón de tensión de 10 V entre la puerta y la fuente.

El voltaje de puerta umbral del MOSFET es de 1.5 V.

9-Suponiendo que las formas de onda idealizadas de un semiconductor cuando

opera como interruptor a una frecuencia fs son las dadas en la siguiente figura,

calcular la potencia media de las pérdidas debidas a la conmutación.

Page 7: 30.5 Circuitos integrados con PFC. Cuestión 4 · PDF fileConsiderar que la inductancia L es ... Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores

Electrónica Industrial - Prácticas, 05/06 175 de

202

Utilizando las expresiones obtenidas calcular las perdidas de potencia media del BJT

KSH31 de Fairchild semiconductor y del MOSFET IRF1404 de International Rectifier

si la tensión en corte es de V= 20V y la corriente en conducción es de I = 1A.

Características de BJT KSH31

Características de MOSFET IRF1404

Test conditions: ID = 95A; VDD = 20V; RG = 2.5Ω RD = 0.21 Ω

Turn-On Delay Time (tdon ) :17 ns Rise Time (tr ):140 ns

Turn-Off Delay Time (tdoff) : 72 ns Fall Time (tf ):26 ns

4.- Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores. ¿Qué debe ocurrir para que el sistema pase a conducir?

Page 8: 30.5 Circuitos integrados con PFC. Cuestión 4 · PDF fileConsiderar que la inductancia L es ... Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores

Electrónica Industrial - Prácticas, 05/06 176 de

202

10-Para los gráficos de tiempo de la figura 3 determinada el valor de los siguientes

parámetros: Ts, fs, td(on), tr, ton, tn, td(off), tf, toff, to, VDD, VDS(sat), IDSS, ID. Además

determine las potencias promedio para: td(on), tr, tn, td(off), tf, to y la Potencia total

consumida.

Figura 3. Gráfico de conmutación del transistor

11- De los tres transistores mostrados a continuación, escoja uno de ellos para trabajar bajo las condiciones de corriente y tensión del problema anterior, si es necesario diseñe un circuito de protección, ya que el transistor debe trabajar con un factor de protección de 2 para dv/dt y di/dt.

Page 9: 30.5 Circuitos integrados con PFC. Cuestión 4 · PDF fileConsiderar que la inductancia L es ... Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores

Electrónica Industrial - Prácticas, 05/06 177 de

202

Transistor IDMAX VDSMAX

MAX MAX

Q1 40A 200V 50 V/µµµµ s 30 A/µµµµ s

Q2 70A 150V 10 V/µµµµ s 20 A/µµµµ s

Q3 100A 90V 5 V/µµµµ s 40 A/µµµµ s

12-Hallar la frecuencia de los pulsos de disparo (Vb1) del siguiente circuito de

disparo de un SCR mediante UJT. Suponer que la constante de tiempo R1C1 es

mucho mayor que RB1C1. La fuente V1 es una fuente de tensión DC.

(R1=4k7, C1=0.1µF,Rb2=1k)

Solución: f=2.1KHz

13-UJT - Circuito de Relajación. El circuito de relajación normalmente es usado para el disparo de SCR o TRIAC. Para que el UJT funcione de esta forma, el valor de R debe ser ajustado para que la corriente de emisor Ie sea mayor que la Ip pero menor que Iv.

Diseñe un circuito de relajación usando un UJT cuyos parámetros son Vs = 30V, η =

0.6, Ip = 20µ A, Vv = 4V, Iv = 13mA. La frecuencia de oscilación es de 120Hz y el

ancho del pulso de disparo tg = 50µ F y Vd1 = 0.5V.

El circuito de relajación es el que se muestra:

Page 10: 30.5 Circuitos integrados con PFC. Cuestión 4 · PDF fileConsiderar que la inductancia L es ... Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores

Electrónica Industrial - Prácticas, 05/06 178 de

202

Figura N°1 Circuito de Relajación con UJT

31.1.2

Hallar la frecuencia de los pulsos de disparo (Vp) del siguiente circuito de disparo

de un SCR mediante PUT. Suponer que la constante de tiempo RTCT es mucho

mayor que RSCT. La fuente Es es una fuente de tensión DC. ¿Cual es la ventaja

frente al circuito anterior? (RT=4k7, CT=0.1µF,R1=1k,R2=2k)

Solución: f=1.9KHz

2.- Se desea construir un sencillo circuito de alarma de manera que el circuito de control sea un oscilador de relajación construido con un P.U.T. (MPU 132), el sistema deberá de dar pitidos intermitentes cada intervalo de 10 segundos. Diseñar el circuito de control.

Page 11: 30.5 Circuitos integrados con PFC. Cuestión 4 · PDF fileConsiderar que la inductancia L es ... Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores

Electrónica Industrial - Prácticas, 05/06 179 de

202

31.1.3

Sea el circuito de control de potencia de la figura. Dibuja la forma de onda con sus valores correspondientes,

para un valor de R2 de 75 kΩ. Salida del puente. En extremos del condensador. Tensión en extremos de la carga. Angulo de retardo del SCR.

31.1.4

Explicar el funcionamiento del siguiente circuito

Page 12: 30.5 Circuitos integrados con PFC. Cuestión 4 · PDF fileConsiderar que la inductancia L es ... Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores

Electrónica Industrial - Prácticas, 05/06 180 de

202

31.1.5 Un diodo de potencia BYX 71 actúa inicialmente con una corriente de 2A y una

temperatura ideal de la unión de 25ºC. El diodo opera en un circuito en el cual la

derivada de la corriente inversa es de 20 (A/µs). Determinar el tiempo de recuperación

inversa (trr), así como la corriente inversa máxima (IRM):

a) cuando tf =0.

b) cuando ts = tf.

Datos: Qrr = 700 nC.

14-Determinar el valor de la resistencias de equilibrio para los diodos conectados

en serie, sabiendo que la tensión de alimentación es 1000V (VRMS), los diodos

tienen una tensión inversa VRWM de 800V y una corriente de fuga inversa máxima

IR de 4 mA.

31.1.6 Dos diodos conectados en paralelo conducen en total 100A.

a.-) Determinar el valor de las resistencias serie necesarias para que ningún

diodo conduzca más de 55A.

b.-) Calcular la potencia en cada rama.

c.-) La caída de tensión en cada rama.

Datos: Vd1 = 1.5 V; Vd2 = 1.8 V

Example: The following information is available for a UJT: 2VV = V, VI =10 mA,

η=0.6, BBR = 10 kΩ, and PI =1 µA. If the forward voltage drop of the diode is 0.5

V, the applied dc voltage is 20 V, 1R =100 Ω and C = 1µF, determine R so that

the oscillation frequency is about 100 Hz.

Solution: Although 2R is not needed, the “Motorola Engineers Report”

suggests that we should still use it and its value can be approximated as

Ω=×××=η= 180020000,106.0015.0VR015.0R SBB2

As you may have guessed it, it is not really a small resistor.

Let us select a value of 2 kΩ for 2R .

From (2): Ω=×=η= k6.0106.0RR BB1B

We can now determine the peak-point voltage using the exact expression as

D

21BB

11BBBP V

RRR

RRVV +

++

+= = 58.105.0

21.010

1.0620 =+

++

+ V

Page 13: 30.5 Circuitos integrados con PFC. Cuestión 4 · PDF fileConsiderar que la inductancia L es ... Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores

Electrónica Industrial - Prácticas, 05/06 181 de

202

For a frequency of 100 Hz, the time period, is

01.0100

1

f

1T === s.

Neglecting the discharging time, the charging time is

01.0TTCH =≅ s

From (4):

−=

PBB

VBBCH

VV

VVlnRCT

or

−×=

58.1020

220ln)101(R01.0

6

443.15R = kΩ

For sustained oscillations, R must be within its minimum and maximum values

as computed below.

V

VBBMIN

I

VVR

−= = 8.1

1010

2203

−−

P

PBBMAX

I

VVR

−= = 42.9

101

58.10206

−−

The circuit oscillates because R fulfills the requirements.

If we had the freedom to choose both R and C, we could have chosen R as the

geometric mean of the minimum and maximum resistances. That is,

2.13094208.1RRR MINMAX =×== kΩ

Had we selected R = 130 kΩ, then the capacitor would have been

9

3

1079.118

58.1020

220ln10130

01.0C −×=

−×

= F

Hence, we could have used C = 120 nF

With these selected values, the time period is

−=

PBB

VBB

CHVV

VVlnRCT

=

−××

58.1020

220ln)10120)(10130(

93 =0.0101 s

Finally, 99.980101.0

1f == Hz

Page 14: 30.5 Circuitos integrados con PFC. Cuestión 4 · PDF fileConsiderar que la inductancia L es ... Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores

Electrónica Industrial - Prácticas, 05/06 182 de

202

This frequency is about 1% lower than its desired value of 100 Hz. This is well

within the approximations and the tolerances of the components.

Problems: UJT

Parameters for UJT: η=0.66, 5.0VD = V, 4IV = mA, =PI 10 µA, and

=VV 1 V.

1. In the circuit of Figure P1, Ω= k10R , F2C µ= , Ω== 100RR 12 , and

V24VBB = . Will the circuit oscillate? If yes, what is its oscillation

frequency? Neatly sketch and label the voltage drop across the

capacitor. What is the range of frequencies that can be obtained by

varying R?

2. In Figure P1, if R is a 5-kΩ resistor in series with a 100-kΩ

potentiometer, C is 0.068 µF, and V10VBB = , what are the minimum and

maximum oscillation frequencies?

Example: Analyze the operation of a 2N6027 PUT of Figure-3 when

Ω=Ω= k10R,k15R 21 , R = 500 kΩ, C = 0.2 µF, r = 100 Ω, and =SV 10 V.

Solution:

Page 15: 30.5 Circuitos integrados con PFC. Cuestión 4 · PDF fileConsiderar que la inductancia L es ... Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores

Electrónica Industrial - Prácticas, 05/06 183 de

202

61510

1510VG =

+= V

5.65.06VVV DGP =+=+= V

61510

1510R G =

+

×= kΩ

For a 2N6027 PUT, typical value of the peak-point current is 4 µA.

P

PS

MAXI

VVR

−= 875

104

5.6106

−=

− kΩ

Assuming =VV 0.8 V, and 150IV = µA, the minimum resistance is

V

VS

MINI

VVR

−= 3.61

10150

8.0106

−=

− kΩ

Since R is greater than MINR and less than MAXR , the circuit must oscillate.

The time-period is nearly equal to the charging time. That is,

−=

PS

VS

CHVV

VVlnRCT 64.96

5.610

8.010ln)102.0)(10500(

63=

−××=

− ms

Finally, the frequency of oscillations is

35.10T

1

T

1f

CH

=≅= Hz

Page 16: 30.5 Circuitos integrados con PFC. Cuestión 4 · PDF fileConsiderar que la inductancia L es ... Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores

Electrónica Industrial - Prácticas, 05/06 184 de

202

Example: Design a time delay circuit with a delay of 30 seconds.

Solution: Since we have to select all the components, we make the following

selections for the circuit in Figure-3:

10VS = V, 27R 2 = kΩ, 47R1 = kΩ, and r = 47 Ω

35.64727

4710VG =

+= V

85.65.035.6VP =+= V

15.174727

4727R G =

+

×= kΩ

For a 2N6027 PUT, typical valley-point values are

18IV = µA and 8.0VV = V

V

VS

MINI

VVR

−= 511

1018

8.0106

−=

− kΩ

For a time-delay circuit, R must be less than MINR .

So, let us select R = 390 kΩ.

By setting =CHT 30 s in the charging time equation, we get

−×=

85.610

8.010lnC)10390(30

3

or 76.71C = µF

Let us select a standard value for C as 100 µF. We can now recalculate R as

−×=

85.610

8.010ln)10100(R30

6

or 280R = kΩ

We can use 270-kΩ resistor in series with a 10-kΩ potentiometer for R. The

potentiometer will help us adjust the value of R to obtain the desired delay.

Since the capacitor charges to 6.85 V, the peak value of the output pulse will be

nearly equal to 5.85 V allowing for a 1-volt drop across the device. The

resistance r controls the duration of the pulse.

Page 17: 30.5 Circuitos integrados con PFC. Cuestión 4 · PDF fileConsiderar que la inductancia L es ... Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores

Electrónica Industrial - Prácticas, 05/06 185 de

202

Problems: PUT

A student built the circuit of Figure P1 using a programmable unijunction

transistor and found it oscillating. Determine its charging time. If the discharging

time is ignored, what is its frequency of oscillation? Sketch the voltages )t(vC

and )t(vK .

31.1.7 Examen de Electrónica Industrial. 29 de junio de 2005

En el circuito de la figura:

h) Obtener el valor medio de la tensión en la carga (en la fuente de corriente)

i) Determinar la corriente inversa máxima por el diodo.

j) Determinar la tensión máxima en el diodo

Page 18: 30.5 Circuitos integrados con PFC. Cuestión 4 · PDF fileConsiderar que la inductancia L es ... Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores

Electrónica Industrial - Prácticas, 05/06 186 de

202

k) Dibujar las corrientes de IGBT y diodo

l) Dibujar las tensiones de IGBT y diodo

m) Dibujar la tensión en la inductancia

31.1.8 Examen de Electrónica Industrial. 6 de septiembre de 2005

Se conectan dos tiristores de 1200 V en serie para soportar una tensión de 2

kV. La pendiente de la curva característica cuando el diodo está en corte es de

16.7 µA/V y 12.5 µA/V para cada uno de los tiristores respectivamente.

a) Determinar como se reparte la tensión entre los dos tiristores (0.25

puntos).

b) Seleccionar el valor de las resistencias que se deben colocar en paralelo

con los tiristores (idéntico para los dos tiristores), de manera que la tensión

máxima en cualquiera de ellos no supere los 1050 V. (1 punto).

c) Calcular la potencia disipada en las dos resistencias del apartado b)

(0.25 puntos).

31.1.9 Examen de Electrónica Industrial. 9 de junio de 2006

En el circuito de la figura 1

a) Determinar el valor mínimo del condensador del Snubber (Csnubb) de protección en el apagado para que la derivada de tensión en el transistor no supere 50 V/µseg, teniendo en cuenta que la derivada de la corriente en el transistor durante el apagado se ha podido medir y cae de forma lineal con una pendiente di/dt = - 100 A/µs.

b) Determinar el valor de la resistencia del Snubber (Rsnub) para que en el encendido la corriente por el transistor no supere los 125 A, teniendo en cuenta que la derivada de la corriente en el diodo durante el apagado (encendido del transistor) se ha podido medir y cae de forma lineal con una pendiente di/dt = - 100 A/µs, con un tiempo de recuperación inversa de Trr = 500ns y un tiempo de caída Tf = 0.

Page 19: 30.5 Circuitos integrados con PFC. Cuestión 4 · PDF fileConsiderar que la inductancia L es ... Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores

Electrónica Industrial - Prácticas, 05/06 187 de

202

figura 1

12.-UNA BOMBILLA SE UTILIZA CON UNA TENSION DE 220 V. Y TIENE UN CONSUMO DE 40 W. SI LA CONTROLAMOS CON UN SCR. ¿CUAL ES EL VALOR DEL CONSUMO MAXIMO DE LA BOMBILLA? a. 5 W b. 80 W c. 40 W d. 10 W e. 20 W 13.-Y CON UN RETARDO DE 45 GRADOS EN LA CUESTION ANTERIOR a. 40 W b. 20 W c. 10 W d. 80 W e. 5 W 15.-COMO SE DENOMINA EL ESTADO DE TRABAJO QUE DISTINGUE AL DIODO DEL SCR a. ESTADO DE MANTENIMIENTO b. BLOQUEO INVERSO c. --- d. BLOQUEO DIRECTO e. ESTADO DE CONDUCCION 17.-COMO AFECTAN LAS dV/dt EN EL SCR a. NORMALMENTE NO AFECTAN AL DISPOSITIVO b. PUEDEN ROMPER LA UNION DEL SEMICONDUCTOR c. PUEDEN PROVOCAR EL DISPARO INDESEADO d. AFECTAN IGUAL QUE LAS di/dt e. SIEMPRE PROVOCAN EL DISPARO INDESEADO 18.-LA dV/dt MAXIMA QUE PUEDE SOPORTAR UN TIRISTOR a. --- b. --- c. DISMINUYE CON LA CORRIENTE NEGATIVA DE PUERTA d. AUMENTA CON LA CORRIENTE NEGATIVA DE PUERTA e. PERMANECE CONSTANTE CON LA CORRIENTE NEGATIVA DE PUERTA

31.2 Análisis térmico

-Dibuja un diagrama en el que aparezcan los principales parámetros térmicos de un transistor con disipador,y por el principio de analogía, dibuja el diagrama eléctrico equivalente.

- LA RESISTENCIA TERMICA DEL DISIPADOR ELEGIDO DEBE DE SER a. MAYOR QUE LA CALCULADA b. --- c. IGUAL QUE LA CALCULADA d. MENOR QUE LA CALCULADA e. ---

4.- ¿PORQUE, SABEMOS QUE EXISTE LA RESISTENCIA TÉRMICA EN EL DISPOSITIVO SEMICONDUCTOR? a. ---

Page 20: 30.5 Circuitos integrados con PFC. Cuestión 4 · PDF fileConsiderar que la inductancia L es ... Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores

Electrónica Industrial - Prácticas, 05/06 188 de

202

b. PORQUE SE CALIENTA EL DISIPADOR c. PORQUE SE COLOCA UN DISIPADOR d. POR LA DIFERENCIA DE TEMPERATURA A LA QUE SE ENCUENTRAN LA DIFERENTES PARTES e. PORQUE SE UNE EL COLECTOR AL CHASIS

5.- SI EL CHASIS DEL APARATO VA A MASA Y LA ALETA DISIPADORA VA AL CHASIS, QUE METODO UTILIZAREMOS PARA UNIR EL TRANSISTOR A LA ALETA a. DIRECTO b. MICA MAS PASTA DE SILICONA c. MICA d. --- e. PASTA DE SILICONA

1.- El fabricante del transistor 2N3055 suministra los siguientes datos. Potencia máxima 120 w; para una Tc<30 ºC, Tj max = 150 ºC. Si la temperatura de la cápsula se mantiene por debajo de 60 ºC ¿Qué potencia sería capaz de disipar? 2.- Se desea montar el transistor de la cuestión anterior en un circuito en el que debe disipar 50 w, debiendo

funcionar a una temperatura ambiente menor de 60 ºC, tomando

un contacto directo con pasta de silicona, para el cual Rcd (TO3)=012 ºC/W ¿Puede diseñarse un radiador para funcionar normalmente en esas condiciones?

Justifícalo. -El circuito de la figura corresponde a un convertidor elevador empleado para pasar de

una tensión de 24 a 48V. Tanto el diodo como el MOSFET presentan un encapsulado

tipo TO-220 y disponen de un radiador individual de RTHsa = 15ºC/W. Para una

temperatura ambiente de 40ºC determinar de forma razonada el valor máximo de la

potencia de salida del convertidor.

¿Cuánto se reduciría ésta potencia máxima si se emplease un único radiador para ambos

dispositivos con la misma resistencia térmica RTHsa = 15ºC/W?.

Sugerencias: despreciar el rizado de la corriente por la bobina y de la tensión en el

condensador.

Datos:

• Frecuencia de conmutación: f = 50kHz IRF540 15TQ060 (Schottky) Corriente media máxima ID=23A Tensión inversa pico repetitivo VRRM=60V

Page 21: 30.5 Circuitos integrados con PFC. Cuestión 4 · PDF fileConsiderar que la inductancia L es ... Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores

Electrónica Industrial - Prácticas, 05/06 189 de

202

Corriente instantánea máxima IDM= 110A Corriente directa máxima IF(AV)=15A Tensión máxima UDS =100V Corriente de pico único IFSM=1000A Resistencia directa en conducción RDSON=44mΩ Caída directa en conducción VF=0,62V Temperatura máxima en la unión Tj=150ºC Corriente de fugas @125ºC IRM=42mA Resistencia térmica unión-cápsula RTHjc= 1,15ºC/W Temperatura máxima en la unión Tj=150ºC Resist. térmica contacto caps.-rad. RTHCS=0,5ºC/W Resisten. térmica unión-cápsula Tiempo de encendido tON=11ns RTHjc=3,25ºC/W Tiempo de apagado tOFF=35ns Resist. térmica caps.-radiador. RTHCS=0,5ºC/W

31.3 RECTIFICADORES

31.3.1 Examen de Electrónica Industrial. 29 de junio de

2005

En el circuito de la figura, teniendo en cuenta el efecto de la inductancia serie de la

fuente de alterna:

a) Dibujar la forma de onda de la tensión en la carga de corriente constante.

b) Dibujar la forma de onda de la corriente por uno de los diodos (especificar cual).

c) Dibujar la forma de onda de la tensión en la inductancia.

d) hallar el valor medio de la tensión en la carga de corriente constante. (Vs es el valor máximo de la tensión de la fuente y f su frecuencia)

31.3.2 Examen de Electrónica Industrial. 6 de septiembre de 2005

El circuito de la figura es un cargador de baterías. Suponiendo que se encuentra funcionando en régimen

estacionario (se ha superado el transitorio de arranque), y que los semiconductores son ideales:

R

1 ohm

E

24 Vdc

FREQ = 50 Hz

220 Vrms

D2

D1 L

100 mH

1 2

Page 22: 30.5 Circuitos integrados con PFC. Cuestión 4 · PDF fileConsiderar que la inductancia L es ... Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores

Electrónica Industrial - Prácticas, 05/06 190 de

202

a) obtener analíticamente la función matemática que representa, en función del tiempo, la corriente que atraviesa la batería. Representar dicha función y determinar los intervalos de conducción de cada uno de los diodos. (0.75 puntos).

b) Obtener la potencia media entregada a la batería. (0.5 puntos).

Con objeto de seleccionar adecuadamente el diodo D2, se pide:

c) Obtener la corriente eficaz que lo atraviesa, así como la máxima tensión inversa a la que se encuentra sometido (0.5 puntos).

Suponiendo que R representa la resistencia interna de la batería, y no se puede evitar, y que los diodos

son ideales:

d) Obtener el rendimiento energético del cargador (0.5 puntos).

31.3.3 Examen de Electrónica Industrial. 9 de junio de 2006

En el rectificador controlado de media onda de la figura 2:

figura 2

a) Dibujar la tensión en la carga en función del ángulo de disparo del tiristor.

b) Obtener el valor medio de la tensión para un ángulo de disparo α = π/3.

c) Cual es la tensión de salida si el ángulo de disparo es α = π/24 y el impulso de disparo dura 100µs?

Si se cambia la carga por una carga altamente inductiva, de manera que la corriente de carga es

constante y de 10ª, y se tiene en cuenta la inductancia de la fuente de tensión alterna, ( L = 1mH), como

en la figura 3

d) Dibujar la forma de onda de corriente en el diodo y en el tiristor y hallar el angulo de solapamiento durante el cual conducen diodo y tiristor.

e) Dibujar la tensión en la carga para un ángulo de disparo del tiristor α = π/2 y obtener su valor medio.

Page 23: 30.5 Circuitos integrados con PFC. Cuestión 4 · PDF fileConsiderar que la inductancia L es ... Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores

Electrónica Industrial - Prácticas, 05/06 191 de

202

figura 3

21.-EN QUE CUADRANTES DEL PLANO V-I PUEDE FUNCIONAR UN PUENTE RECTIFICADOR MONOFASICO CON DIODOS a. SOLO CUARTO b. I, II c. I, IV d. SOLO I e. TODOS LOS CUADRANTES 22.-EN QUE CUADRANTES DEL PLANO V-I PUEDE FUNCIONAR UN RECTIFICADOR TOTALMENTE CONTROLADO a. SOLO I b. I, IV c. I, II d. SOLO IV e. TODOS LOS CUADRANTES 23.-EN UN CIRCUITO RECTIFICADOR CON TIRISTORES LA CORRIENTE ES: a. --- b. --- c. SIEMPRE NEGATIVA d. POSITIVA O NEGATIVA e. SIEMPRE POSITIVA 24.-EN UN CIRCUITO RECTIFICADOR TRIFASICO MEDIA ONDA CONTROLADO PARA UN ANGULO DE RETARDO DE 90 GRADOS. LA TENSION ES a. --- b. NEGATIVA c. POSITIVA d. --- e. CERO

25.-PARA UN RECTIFICADOR MONOFASICO SEMICONTROLADO PARA UN ANGULO DE RETARDO DE 90 GRADOS. LA TENSION ES a. --- b. POSITIVA c. NEGATIVA d. --- e. CERO

Page 24: 30.5 Circuitos integrados con PFC. Cuestión 4 · PDF fileConsiderar que la inductancia L es ... Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores

Electrónica Industrial - Prácticas, 05/06 192 de

202

26.-EN UN RECTIFICADOR MONOFASICO SEMICONTROLADO PARA UN ANGULO DE RETARDO DE 180 GRADOS. LA TENSION ES a. POSITIVA b. --- c. --- d. CERO e. NEGATIVA 27.-EN UN CIRCUITO RECTIFICADOR CONTROLADO TRIFASICO DE MEDIA ONDA PUEDE HABER DOS TIRISTORES CONDUCIENDO AL MISMO TIEMPO a. NUNCA b. DEPENDE DE LA CONFIGURACION DEL CIRCUITO c. EN LOS PERIODOS DE CONMUTACION DE UNA FASE A OTRA d. SIEMPRE HAY DOS SCR CONDUCIENDO e. --- 28.-EN UN CIRCUITO RECTIFICADOR TRIFASICO DE ONDA COMPLETA LA TENSION DE SALIDA TIENE UN FUNDAMENTAL DE a. 50 Hz b. --- c. 100 Hz d. 300 Hz e. 150 Hz 29.-EN CUALQUIER MONTAJE PUENTE RECTIFICADOR A TIRISTORES SE LOGRA UNA TENSION DE SALIDA MAXIMA PARA a. ANGULO DE ENCENDIDO 180 b. DEPENDE DEL TIPO DE MONTAJE c. --- d. ANGULO DE ENCENDIDO CERO e. ANGULO DE ENCENDIDO 90 30.-A MEDIDA QUE AUMENTA EL ANGULO DE RETARDO LA TENSION DE SALIDA EN UN CIRCUITO RECTIFICADOR CON SCR VA DECRECIENDO HASTA LLEGAS A CERO VOLTIOS a. DEPENDE DEL TIPO DE MONTAJE b. --- c. --- d. FALSO e. VERDADERO 31.-QUE ES EL FACTOR DE FORMA a. TENSION EFICAZ TOTAL/TENSION MEDIA b. TENSION DE RIZADO/TENSION MEDIA c. POTENCIA EFICAZ TOTAL/POTENCIA ALTERNA d. TENSION EFICAZ/TENSION CONTINUA e. POTENCIA DE SALIDA/POTENCIA DE ENTRADA 32.-QUE ES UN TROCEADOR a. CONVERTIDOR DC-DC b. CONVERTIDOR AC-DC c. --- d. CONVERTIDOS AC-AC e. CONVERTIDOR DC-AC 33.-QUE ES UN CICLOCONVERTIDOR a. CONVERTIDOR AC-AC

Page 25: 30.5 Circuitos integrados con PFC. Cuestión 4 · PDF fileConsiderar que la inductancia L es ... Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores

Electrónica Industrial - Prácticas, 05/06 193 de

202

b. CONVERTIDOR AC-DC c. CONVERTIDOR DC-AC d. CONVERTIDOR DC-DC 34.- EN UN CIRCUITO RECTIFICADOR MONOFASICO DE ONDA COMPLETA LA TENSION MEDIAEN LA CARGA VALE a. Vm/2PI b. Vm/PI c. Vm d. 2Vm/PI e. 2Vm 35.-EN UN CIRCUITO RECTIFICADOR TRIFASICO ONDA COMPLETA LOS DIODOS CONDUCEN a. 240 GRADOS b. 180 GRADOS c. 30 GRADOS d. 60 GRADOS e. 120 GRADOS 36.-EN UN CIRCUITO RECTIFICADOR MFASICO DE MEDIA ONDA, LA TENSION MEDIA VALE a. 0.954 Vm b. 2 Vm c. Vm SEN PI/m d. m Vm e. m Vm/PI SEN PI/m 37.-CUANDO TENEMOS VARIOS DIODOS EN SERIE, CUAL DE ELLOS BLOQUEARA ANTES LA TENSION INVERSA a. EL BLOQUEO NO DEPENDE DE LA CARGA ALMACENADA b. EL QUE TENGA LA MAXIMA CARGA ALMACENADA c. --- d. --- e. EL QUE TENGA LA MINIMA CARGA ALMACENADA 39.-EN UN CIRCUITO RECTIFICADOR MONOFASICO DE ONDA COMPLETA, LA VRRM VALE a. 2Vm b. Vm/2 c. Vm d. RAIZ DE DOS POR Vm e. Vm/PI

31.4 CONVERSIÓN DC-DC

31.4.1 Examen de Electrónica Industrial. 29 de junio de

2005

En el convertidor DC-DC de la figura

Page 26: 30.5 Circuitos integrados con PFC. Cuestión 4 · PDF fileConsiderar que la inductancia L es ... Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores

Electrónica Industrial - Prácticas, 05/06 194 de

202

a) Calcular el valor medio de la tensión en C1

b) Suponiendo que la tensión en los condensadores y la corriente en las bobinas es

prácticamente constante hallar la tensión de salida en función de la tensión de entrada

y el ciclo de trabajo D.

c) Si la tensión de entrada es Vdc =35V, la tensión de salida es Vo = 90V, la potencia

de salida es 100 W, la frecuencia de conmutación es f = 100 kHz, obtener el rizado de

la corriente en la bobina L1. (Suponer la tensión en los condensadores constante)

d) Con los valores del apartado c, al disminuir la frecuencia de conmutación, para que

frecuencia se hará la corriente por L1 discontinua? (Suponer que la corriente por L2 es

siempre continua)

31.4.2 Examen de Electrónica Industrial. 6 de septiembre de 2005

En un convertidor reductor o buck la tensión de salida es constante y de 10 Vdc.

La carga es de tipo resistivo y la potencia consumida puede variar entre 5 y 30 W. La tensión de entrada

puede variar entre 15 y 25 Vdc. La frecuencia de conmutación es de 8 kHz. La inductancia del convertidor

es L = 60 µH. El condensador de salida es lo suficientemente grande para mantener la tensión

prácticamente constante.

Sabiendo que el convertidor opera en régimen de conducción discontinua en todo el rango de variación de

la carga y de la tensión de entrada:

a) Deducir la expresión analítica del ciclo de trabajo en función de la corriente de carga y las tensiones de

entrada y salida. (Nota: Resulta útil visualizar las formas de onda de tensión y de corriente en la

inductancia). (1.75 puntos).

b) Calcular el rango de variación del ciclo de trabajo para que la tensión se mantenga constante.(0.5

puntos)

31.4.3 Examen de Electrónica Industrial. 9 de junio de 2006

El circuito Watkins-Johnson se muestra en la figura 4. Suponiendo que se encuentra funcionando en

régimen estacionario (se ha superado el transitorio de arranque), y que los semiconductores son ideales:

Page 27: 30.5 Circuitos integrados con PFC. Cuestión 4 · PDF fileConsiderar que la inductancia L es ... Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores

Electrónica Industrial - Prácticas, 05/06 195 de

202

e) Obtener la tensión de salida en función de la tensión de entrada en régimen continuo (Suponer constantes la corriente en la bobina y la tensión en el condensador).

f) Determinar la condición bajo la cual el convertidor comienza a funcionar en modo discontinuo en función del ciclo de trabajo D y de la constante K = 2L/RT donde T es el período de conmutación.

Nota 1: Los dos transistores se disparan simultáneamente, y cuando se cortan pasan a conducir

los dos diodos simultáneamente

figura 4

31.4.4

En el convertidor DC-DC de la figura

a) Calcular el valor medio de la tensión en C1

b) Suponiendo que la tensión en los condensadores y la corriente en las bobinas es

prácticamente constante hallar la tensión de salida en función de la tensión de entrada

y el ciclo de trabajo D.

c) Si la tensión de entrada es Vdc =45V, la tensión de salida es Vo = 90V, la potencia

de salida es 180 W, la frecuencia de conmutación es f = 100 kHz, obtener el rizado de

la corriente en la bobina L1. (Suponer la tensión en los condensadores constante)

d) Con los valores del apartado c, al disminuir la frecuencia de conmutación, para que

frecuencia se hará la corriente por L1 discontinua? (Suponer que la corriente por L2 es

siempre continua)

Page 28: 30.5 Circuitos integrados con PFC. Cuestión 4 · PDF fileConsiderar que la inductancia L es ... Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores

Electrónica Industrial - Prácticas, 05/06 196 de

202

31.4.5 La inductancia de un convertidor reductor elevador tiene una

resistencia serie Rdc. El resto de pérdidas es despreciable.

Obtener el factor de conversión Vo/Vg.

Expresar graficamente Vo/Vg en función de 0<D<1 para Rload/Rdc = 0, 0.01 y

0.05 (utilizar EXCEL)

31.5 INVERSORES

31.5.1 Examen de Electrónica Industrial. 29 de junio de

2005

Dado el inversor monofásico de batería de toma media de la figura, donde VS = 600 V,

R = 10 , L = 0.05 H y la frecuencia f = 50 Hz. Calcular:

a) Intensidad máxima Io en la carga.

b) Tiempo de paso por cero de la intensidad en la carga después de un semiciclo.

c) Intensidad media IQ(AV) por los transistores.

d) Intensidad media ID(AV) por los diodos.

Page 29: 30.5 Circuitos integrados con PFC. Cuestión 4 · PDF fileConsiderar que la inductancia L es ... Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores

Electrónica Industrial - Prácticas, 05/06 197 de

202

31.5.2 Examen de Electrónica Industrial. 6 de septiembre de 2005

Dado el inversor monofásico de batería de toma media de la figura, donde VS = 600 V, R es lo

suficientemente pequeña como para poder despreciarla, L = 0.05 H y la frecuencia f = 50 Hz. Calcular:

a) Intensidad máxima Io en la carga. (0.5 puntos).

b) Tiempo de paso por cero de la intensidad en la carga después de un semiciclo. (0.5 puntos).

c) Intensidad media IQ(AV) por los transistores. (0.5 puntos).

d) Intensidad media ID(AV) por los diodos. (0.5 puntos).

31.5.3 Examen de Electrónica Industrial. 9 de junio de 2006

Describir gráficamente como se puede controlar el inversor de la figura 5 para regular el valor eficaz de la

tensión en la carga y obtener dicho valor eficaz en función del control propuesto. Dibujar de forma

aproximada la corriente por cada diodo y por cada transistor.

figura 5

Page 30: 30.5 Circuitos integrados con PFC. Cuestión 4 · PDF fileConsiderar que la inductancia L es ... Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores

Electrónica Industrial - Prácticas, 05/06 198 de

202

Examen de Electrónica Industrial (Asignatura 17210) 15 de junio de 2007

Tiempo: 2 horas.

Problema 1: Semiconductores (2 puntos)

El convertidor de la figura 1 alimenta una carga de corriente constante. El IGBT conmuta a una frecuencia

de 10kHz y un ciclo de trabajo D = 50%. Vdc =100V, Idc = 10A.

La tensión en el IGBT sin snubber de apagado (condensador en paralelo con IGBT) crece de forma lineal

y tarda 1 µs en alcanzar su valor final.

La corriente en el IGBT cae de forma lineal y tarda 1 µs en alcanzar su valor final, tanto con condensador

como sin condensador.

-Calcular las pérdidas de potencia del IGBT en conducción si la tensión Vce(sat) = 1.5V (0.1 puntos).

-Calcular las pérdidas de potencia del IGBT en el apagado sin snubber, es decir, sin condensador (0.2

puntos).

-Calcular el valor del condensador del snubber necesario para que la tensión en el IGBT sea el 20% de su

tensión máxima cuando desaparece la corriente en el IGBT 0.75 puntos).

-Con el condensador del apartado anterior, estimar las pérdidas de potencia del IGBT en el apagado (0.75

puntos).

-Teniendo en cuenta las pérdidas de conducción y de apagado sin snubber, obtener la resistencia térmica

del disipador necesario si la temperatura máxima de la unión es Tjmax=150ºC, la resistencia térmica unión

cápsula es Rthjc=2ºC/W y la temperatura ambiente máxima es de 50ºC. Despreciar la resistencia térmica

entre la cápsula y el disipador. (0.2 puntos).

Problema 2: DC-DC (2 puntos)

El circuito de la figura 2 conmuta a 100kHz. Responder a las siguientes cuestiones cuando el circuito

funciona en régimen permanente.

-Obtener la tensión en la carga (en la resistencia) del convertidor de la figura en función del ciclo de

trabajo. Para ello suponer que el condensador es suficientemente grande para mantener su tensión

constante, y que la corriente por la bobina no se anula nunca (0.5 puntos).

-Calcular el rizado en el condensador si C = 100µH y el ciclo de trabajo D = 50% (0.5 puntos).

- Obtener la resistencia de carga para la cual el circuito pasa de modo de conducción continuo (C.C.M.) a

discontinuo (D.C.M.) si D= 50% (1 punto).

Page 31: 30.5 Circuitos integrados con PFC. Cuestión 4 · PDF fileConsiderar que la inductancia L es ... Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores

Electrónica Industrial - Prácticas, 05/06 199 de

202

figura 1: Semiconductores

figura 2: DC-DC

Problema 3: Inversores (2 puntos)

El inversor monofásico de puente completo de la figura 3 aplica una tensión de onda cuadrada al una

carga de 10 Ω en serie con una inductancia de 50 mH desde una fuente de tensión de 340 Vdc. Si el

inversor opera a 50 Hz:

-Obtener la expresión de la corriente en el régimen permanente.

-Obtener la potencia media aplicada a la carga (0.25 puntos).

-Obtener el valor eficaz de la corriente en la carga (0.25 puntos).

-Obtener el valor de pico y medio en cada semiconductor (Transistores y diodos) (0.25 puntos).

-Obtener la distorsión armónica total de la tensión en la carga, teniendo en cuenta hasta el noveno

armónico, si la tensión de salida es ∑∞

=

=imparn

DC

n

VV

π

4(0.25 puntos)

Problema 4: Rectificadores (2 puntos)

En el rectificador de media onda controlado de la figura 4 el tiristor se dispara con un ángulo de disparo de

90º. La carga es altamente inductiva, de manera que la corriente por la misma se puede considerar

constante y de 10A.

-Obtener el valor medio de la tensión en la carga y el valor eficaz de la corriente por el tiristor y por el

diodo (0.25 puntos).

- Si en serie con la fuente de alterna se introduce una inductancia de 1mH:

-Dibujar la corriente por el tiristor y por el diodo (0.25 puntos).

-Dibujar la tensión en la carga (0.25 puntos)

-Calcular cuanto se reduce el valor medio de la tensión en la carga (1.25 puntos).

Page 32: 30.5 Circuitos integrados con PFC. Cuestión 4 · PDF fileConsiderar que la inductancia L es ... Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores

Electrónica Industrial - Prácticas, 05/06 200 de

202

figura 3: inversores

figura 4: Rectificadores

Examen de Electrónica Industrial. 8 de febrero de 2006

Tiempo: 2 horas.

Problema 1 (2 puntos)

En el circuito de la figura:

n) Obtener el valor medio de la tensión en la carga (en la fuente de corriente)

o) Determinar la corriente inversa máxima por el diodo.

p) Determinar la tensión máxima en el diodo

q) Dibujar las corrientes de IGBT y diodo

r) Dibujar las tensiones de IGBT y diodo

s) Dibujar la tensión en la inductancia

Problema 2 (2 puntos)

En el convertidor DC-DC de la figura

Page 33: 30.5 Circuitos integrados con PFC. Cuestión 4 · PDF fileConsiderar que la inductancia L es ... Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores

Electrónica Industrial - Prácticas, 05/06 201 de

202

a) Calcular el valor medio de la tensión en C1

b) Suponiendo que la tensión en los condensadores y la corriente en las bobinas es

prácticamente constante hallar la tensión de salida en función de la tensión de entrada

y el ciclo de trabajo D.

c) Si la tensión de entrada es Vdc =45V, la tensión de salida es Vo = 90V, la potencia

de salida es 180 W, la frecuencia de conmutación es f = 100 kHz, obtener el rizado de

la corriente en la bobina L1. (Suponer la tensión en los condensadores constante)

d) Con los valores del apartado c, al disminuir la frecuencia de conmutación, para que

frecuencia se hará la corriente por L1 discontinua? (Suponer que la corriente por L2 es

siempre continua)

Problema 3 (2 puntos)

En el circuito de la figura, teniendo en cuenta el efecto de la inductancia serie de la

fuente de alterna:

e) Dibujar la forma de onda de la tensión en la carga de corriente constante.

f) Dibujar la forma de onda de la corriente por uno de los diodos (especificar cual).

g) Dibujar la forma de onda de la tensión en la inductancia.

Page 34: 30.5 Circuitos integrados con PFC. Cuestión 4 · PDF fileConsiderar que la inductancia L es ... Trata de explicar el funcionamiento de SCR mediante el modelo de los dos transistores

Electrónica Industrial - Prácticas, 05/06 202 de

202

h) hallar el valor medio de la tensión en la carga de corriente constante. (Vs es el valor máximo de la tensión de la fuente y f su frecuencia)

Problema 4 (2 puntos)

Dado el inversor monofásico de batería de toma media de la figura, donde VS = 500 V,

R = 10 Ω , L = 0.01 H y la frecuencia f = 50 Hz. Una vez alcanzado el régimen

permanente, calcular:

a) Intensidad máxima Io en la carga.

b) Tiempo de paso por cero de la intensidad en la carga después de un semiciclo.

c) Intensidad media IQ(AV) por los transistores.

d) Intensidad media ID(AV) por los diodos.