11mnpl_cap2_48

Upload: marco-antonio-lozada-choque

Post on 07-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 11MNPL_Cap2_48

    1/27

    1

    Marketdrivenmineplanning:Optimisingproductsportfolio,MuzoEmeraldminecasestudy

    EnriqueRubio

    MiningEngineeringDepartment,UniversidaddeChile

    ABSTRACT

    Mine planning is themining engineering that transforms a geological orebody into abusiness

    promise that shall optimise shareholders value. Traditionally this process commenceswith the

    geologicalmodellingstatingtheestimationoforeresources,thentheseresourcesaresubjecttoan

    economic envelopewhich is after sequenceddefiningminingmethods and finally a production

    schedule is computed inorder toprovide the financial team thebest offer togenerate the sales

    contracts.Ingeneral,thismethodologyworksforcommoditiesandrawmaterialsinwhichformalcontracts are set among the producers and thebuyers. In the precious stonebusiness and in

    particularintheemeraldbusinessthemarketismuchmoresegregatedanddifferentbuyersattend

    emerald auctions to acquired package of emeralds thatwillbe later transform in any form of

    jewellery.Thus,thebusinesschangesdependingonhowthedifferentemeraldpackagesareoffered

    toasetofbuyers.Thischallengehasmotivatedtheauthortodeviceamineplanningmethodology

    tointegratedifferentlevelsofoperationalhedgingtorespondtoamarketsegmentationthatcould

    changeovertime.Inparticular,flexibilityhasbeendesignedandaddedto:thenumberofoperating

    minesunderproduction, therateofdevelopment,preparationandproductionatanygiven time,

    the adoption of an inclined draw point cavingmethod, and finally the automated production

    controlsystem tocapture inreal time theemeraldproduction.Thedevicemethodology isunder

    applicationby

    Muzo

    International

    at

    the

    Muzo

    underground

    mine,

    located

    in

    the

    province

    of

    Boyac,Colombia.Thispaperdescribes the theoretical framework, theactual toolsdeveloped to

    apply themethodology and full details regarding themine and plant design to transform an

    artisanaloperationintothefirstworldemeraldfabric.

  • 8/3/2019 11MNPL_Cap2_48

    2/27

    2

    INTRODUCTION

    Themineplanningtraditionalprocessflowisasfollows:

    Figure1Mineplanningtraditionalflowsheet

    Inthepreciousstonebusinessatremendousfactorisplayedbytheintrinsicuncertaintycontained

    in theunderlyingassetconcentrationasgradesand themarket inwhich thosegemstoneswillbe

    finally commercialised. The following figure shows the market composition of the emerald

    productionworldwide.

    Figure2Worldwideemeraldproduction

    Alsothepriceofemeraldsplayatremendousroleinvaluingdifferentmineplanningalternatives.

    Thefollowingfigureshowsapricetrendovera35yearsperiod.

    Figure3 35yearsemeraldprices,nationalgemstonecompany

  • 8/3/2019 11MNPL_Cap2_48

    3/27

    Atypi

    Itissh

    extrem

    depen

    Thefo

    import

    From

    above,

    qualit

    20%ar

    50%is

    thefin

    alcommerci

    ownthatthe

    ely volatile.

    ingongem

    lowingfigur

    anttonotet

    he totalmat

    50%was cl

    emeraldsa

    eemeraldst

    waste.The

    lprice(see

    alisationsche

    Fi

    rearesevera

    Typically in

    quality(size

    eshowsthe

    atcuttingan

    Figur

    erial recover

    assified as

    dgemsnam

    atcanbetr

    roductsoft

    igure1).Crit

    metomarke

    ure4 Commestepsfrom

    the emerald

    ,cut,clarity,

    ercentageo

    dpolishing

    e5 Valuechai

    d from the

    aste. From

    dChispero,

    atedtobeco

    ischainare

    icalpointsar

    3

    temeraldsis

    rcialisationsc

    inetomark

    business th

    greenningle

    eachpotent

    as,inaverag

    nMuzoemer

    ineemeral

    he remainin

    thesecond2

    meartificial

    emeraldsgr

    etherobberi

    theonesho

    eme,agents

    etthatmake

    rewillbe a

    s,shape),C

    ialproductf

    e,a50%reco

    ldmineproje

    productof

    g 50%, 10%

    %arequalit

    emeralds`,n

    upedin lots

    esatthemin

    nbelow.

    thewholee

    t least three

    ispero,Morr

    omthemine

    veryasapro

    t

    themethod

    corresponds

    yemeraldsn

    amedPerma

    forauction,

    ,theclassifi

    eraldbusin

    main produ

    allaandPer

    tomarket.I

    cess.

    logydescrib

    to the high

    amedMorra

    andthelow

    whichthen

    ationstagea

    ss

    cts

    a.

    is

    ed

    est

    la,

    est

    et

    nd

  • 8/3/2019 11MNPL_Cap2_48

    4/27

    4

    finally the auction.The engineering,development andmanagement should aim to control these

    itemstoensurethesuccessandsustainabilityofthisbusiness.

    In terms ofpricing,GemFieldsthe largestpublic emeraldproducing company reportshigh

    variabilityasafunctionoftimeandunderlyingcontractsexistingbetweenthe intermediateagent

    andthefinaljewellery.

    Table1 SalesperAuction,Gemfieldreport2010

    AUCTIONRESULTS

    SUMMARY

    JULY09

    AUCTION

    NOVEMBER09

    AUCTION

    MARCH10

    AUCTION

    JULY10

    AUCTION

    DECEMBER10

    AUCTION

    Dates 2024July2009 2327November2009 1115March2010 1923July2010 610December2010

    Location London,England Johannesburg,S.A. Jaipur,India London,England Johannesburg,S.A.

    Type HigherQuality HigherQuality LowerQuality HigherQuality HigherQuality

    Caratsoffered 1.36million 1.12million 28.90million 0.85million 0.87million

    CaratsSold 1.36million 1.09million 22.80million 0.80million 0.75million

    No.ofcompaniesplacingbids 23 19 25 37 32

    Averageno.ofbidsperlot 10 13 8 18 16

    No.oflotsoffered 27 19 56 27 19

    No.oflotssold 26 14 49 24 18

    Percentageoflotssold 96% 74% 88% 89% 95%

    Percentageoflotssoldbyweight 99.8% 97.2% 78.9% 94.2% 86%

    Percentageoflotssoldbyvalue 82% 76% 89% 87% 99%

    Totalsalesrealisedatauction USD5.9million USD5.6million USD7.2million USD7.5million USD19.6million

    Averagepercaratsalesvalue USD4.40percarat USD5.10percarat USD0.31percarat USD9.35percarat USD26.20percarat

    These twosourcesofuncertaintycreateagreatdealofvolatilitywhenvaluatinganyof themain

    componentsofthetraditionalmineplanningprocess.Therefore,tosetupamineplanningmodel

    uponexpectedvaluesofpricesofmainoutcomeproductionand theproduction itselfwouldbe

    extremelydangerous,

    and

    there

    is

    certainly

    atremendous

    gain

    potential

    as

    well

    as

    aloss.

    Thus,

    a

    differentmethodologyhasbeendevicedinordertoderivethemainmineplanningdecisionssuch

    as economic envelop, mining sequence and production scheduling as a result of a portfolio

    optimisation exercise inwhich the expected return over the investment aswell as its volatility

    aretakenintoaccount.

    PROPOSEDMETHODOLOGY

    Efficient portfolio hasbeen discussed extensivelyby Samis et al (2006), andDavis andNewman

    (2008),usingrealoptionsandquantifyingtheriskofdifferentminingstrategiesandalsoreviewing

    value at riskmethod. In thispaper, the authorwanted togive a fresh review at theMarkowitz

    method(1959)

    and

    complemented

    by

    Haugen

    (1990)

    and

    Merton

    (1990)

    in

    which

    he

    defines

    a

    frontierefficientoptimisationmethod toallocate resources to aportfolioofassetswithdifferent

    returnover investmentandrisk.Themethodologyconsistsofcomputingthecrosscovarianceof

    all thepossiblecombinationofassets inaportfolio tocompute themediumvariancespaceupon

    whichagivenportfolio isefficient tobe invested in.So, for instance, in the following figure the

    highlighteddotsrepresentaportfoliothat is inefficientsincetherearecombinationsofassetsthat

    couldprovideahigherreturnforthesamecomputedaveragerisk.

  • 8/3/2019 11MNPL_Cap2_48

    5/27

    5

    Notethattheriskinthiscontextisseenastheaveragevolatilityoftheunderlyingassetportfolio.

    Then theminingapplicationwillbe tomimic severalminingdecisions suchasminingmethods,

    productionrate,miningsequenceandproductionscheduleasifthesedecisionswherecomponents

    of a portfolio. Then the covariances of different decisionswill define the variance of a given

    decisionsubjecttotheotherstatussuchasmine,productionrate,sequenceandothers.

    Figure6 Frontierefficientforportfoliooptimisation

    Thefirststeptousethismethodologyistomodeltheprobabilitydistributionofthemainproducts

    of interests, in the case of emeralds these productswouldbe heads orChisperos,Morralla and

    Perma.Thefollowingfigureshowsprobabilitydensityfunctionsforthosethreepricestakenfora

    givenhistoricaltimeinterval.

    Figure7 Priceprobabilitydensityfunctionsfordifferentproducts

    Thefollowingstepconsistsofmodellingthegradeconcentrationofthemainproducts(Chispero,

    MorrallaandPerma)asaprobabilitydensityfunctionforeverydifferentminingmethodtouseas

    anextraction

    system.

    The

    following

    figure

    depictures

    these

    functions

    for

    agiven

    mining

    method.

    Returnover

    Investment

    Risk

    IneficientProjects

  • 8/3/2019 11MNPL_Cap2_48

    6/27

    6

    Figure8 Gradesprobabilitydensityfunctionfordifferentproductsforagivenmineandminingmethod

    Afterdefining the probabilitydistribution of themain sources of return volatility of interest to

    integrateinthedecisionmodel,theassetportfolioshouldbedefined.Inthiscaseitcorrespondsto

    define for every one of themines or sectors under study the possibleminingmethod. In other

    words,beingamine 1 . .andalternativeminingmethods 1 . . ,anassetcanbedefinedasthecombinationofamineandamethodas .Thenthegradeofproductforthemineandthemethodcanbedefinedas , ,theexpectedpriceforproduct isdefinedas ,theminingrecoverycanbedefinedas , , theprocessingrecoverycanbedefinedas .For thedifferentproductsapricethatisdistributedfollowingaknowndensityfunctioncanbemodelled.Thenavaluefunctionisproposedasfollows.

    , ,

    , , ,(1)

    Where:isthesellingcostofcuttingandpolishingofproductk,istheminingcostofminemusingextractionmethodu,istheproductivityofminemusingextractionmethoduNotethatgrades,pricesandmethodproductivityareallrandomvariableswithknownprobability

    densityfunction.Thusthereturnovertheinvestmentiscomputedas:

    , , , , , ,(2)

    Where:isthefixedcostofmovingonetonoforefromminem.

  • 8/3/2019 11MNPL_Cap2_48

    7/27

    7

    Then several simulations are performed over the defined random variables sampling the

    probabilitydistributionthatdefinestheuncertaintyofgrades,pricesandmethodforagiventime

    periodatthemine.Thentheexpectedrateofreturncanbedefinedas,foraportfolioofn assets , would be the covariance of asset i respect to j. Thus the average standarddeviationofagivenportfolioofcomponents

    isdefinedas:

    , .

    Then theabove formulation canbeoptimisedbyminimising the standarddeviation subject toa

    givenminimumexpectedrateofreturnandassuming thattheportionsof theportfolioshouldaddatthemost1,beingthepercentageofcapitaltodevelopasseti.CASE

    STUDY:

    THE

    MUZO

    STRATEGIC

    PLANNING

    EmeraldMuzominesarelocated815moverseaintheWestDepartmentofBoyac,Colombia.The

    population of this zone is about approximately 15,000 people. The zone has special

    geological/metamorphicfeatures thatfacilitated theemeraldgenesis.Inspiteof therewasmining

    from1540bySpaniardsconquers,itwasonlyinthe60sthatbiggeremeraldvolumesstartedtobe

    produced.Thehistoryofminingmethodsatthiszoneisasfollows:

    19601970:surfacemining.19701985:surfaceminingwithminingloaders.1985current:undergroundmining(tunnels,shaftsandchimneys).

    Figure9 BoyacDepartmentinColombia

    Themine operationuntil 2009wasdivided into a series of shafts:PuertoArturo,Tequendama,

    Catedral,Retorno1andVolver,where therewere severalartisanalminingcontractorswhodid

    notregisterneitherproductioninformationnorplansortopographicfeatures.Thefigureshowsa

    3Dmapoftheminingatthemomentoffinding.

  • 8/3/2019 11MNPL_Cap2_48

    8/27

    8

    Figure10 3Dlayoutoftheminebackin2009

    TheownersofthemineCoexminasS.A.madethedecisionbackin2009toassociatewithaNorth

    American investment consortiumCrestInvestment to take over the operation through an option

    contracttochangethewaythemineoperatedandpursuedamassiveemeraldproductionreducing

    therobberiesfrom50%oftheactualproductiondownto10%.Inordertoimplementthisobjective

    CrestInvestment contracted the Chilean engineering company REDCO Mining Consultants to

    conceptuallydesign, implementandoperatea solution thatcouldmatch thebudgetingand time

    constraintsoftheowners.

    Thechallengewasdividedintofourmainareasofdevelopment:

    1.Modifythecurrentdriftingminingmethodintoamoremassiveandcontrolledminingsystem

    2.Implementawirelesstrackingundergroundsystem

    3.Implement

    an

    optical

    sorting

    plant

    to

    automate

    the

    emerald

    classification

    and

    cleaning

    process

    4.Modifythemineplanningprocessandproductioncontrolsystems

    Alternativeminingmethods

    Driftting

    ThemethodthatwasusedinthepastatMuzoconsistedoffollowingtheinstinctofdifferentmine

    contractors without taking samples or any geological observations that could facilitate any

    engineeringprocedureatthefield.

    Driftandfill

    BecauseoftheoccurrenceofsuccessfulproductioninTequendamamineduetotheidentificationof

    a geological emeraldbelt, itwasnecessary to incur in subsequentdeepeningproduction levels,

    whichconstantlyweakenedtheinfrastructureofthemineinlevelsR1Inf.,S1R1Inf.,S2R1Inf.Due

    to this, was proceeded to design and build a concrete slab that could support the vertical

    andhorizontal forcespresent in the sector, the locationof itand its schematicdesignare shown

    inthefollowingfigure.

    Tqdama

    R2 R1

    Volver

    Catedral

    Puerto Arturo

    3D Model

    Mine Shafts [m] Drifts [m]

    Tequendama246 2487

    Parturo 154 718

    Retorno1 83 1176

    Volvere 239 1744

    Retorno2 215 476

    Catedral 139 1145

  • 8/3/2019 11MNPL_Cap2_48

    9/27

    9

    Figure11 Constructionscheme:constructionsite(left),design(right)

    Besides the two activitiesdescribed above, a rehabilitationprogrammewas implemented all over

    haulage tunnels,replacing timberpoolssupport inpoorconditionaccording toacostmanagement

    and a priorities strategy that would not interrupt the production of emeralds and kept their

    stabilityoutofrisk.

    Inclineddraw

    point

    caving

    The design of the exploitation method involves the construction of loading stabs, facing

    perpendicularlythegeologicalproductivezone,andconnectedthroughamainhaulagelevel.This

    patternisrepeatedverticallyifageologicalandstructuralproductivecontinuityzoneisverified.

    Figure12Mineralisedzoneprofile

    Theplanviewoftheproposedminedesignforthisexploitationmethodisshowninthefollowing

    figure.ForTequendama,theaccessshafttotheproductivelevelsindepthwillbemadethroughthe

    CL04shaft,becauseofitsconvenientlocationinhardrock,whichgivesanappropriatesupportfor

    undergroundminingandgoodworkperformance.

  • 8/3/2019 11MNPL_Cap2_48

    10/27

    10

    Figure13 Productionlevelplanview

    ForCatedralandPuertoArturomines,implementingthesamesystemofexploitationaccordingto

    theshownandmodelledgeologicalbehaviourisplanned.

    Aproductionsummary2010,withtheinformationaccumulateduntil7January,2011,thelastday

    of the REDCO teamwork in the operation of theMuzo emeraldmine.During thementioned

    period,about280,000caratsofemeraldmaterialwereproduced,corresponding toapproximately

    350 tulasandapproximately52,800carrs,withanaverageofabout32carrspermetreofmining

    advance. The main productive activities were carried out at Level Tequendama R1Inf. and

    SubR1Inf,level11S1CatedralandLevel12PuertoArturo.

    Table2Operationperformanceindicators,2010

    Units Q12010 Q2.2010 Q3.2010 Q4.2010

    ROM*Operation (Tonnes) 3,820 4,663 6,382 3,286

    ROM*MxZone (Tonnes) 2,674 2,798 4,468 3,244

    Drifting (m) 222 223 390 264

    ROM*Production (carats) 121,244 60,637 16,850 80,760

    Grade (c/t) 45,3 21,7 3,8 18,3

    *ROM:runofminematerial

    The following figureshows theoperationalperformancemeasured in termsofdrifting,carrsand

    tulas,itisnotedthat50%oftheactivityisconcentratedinTequendama,35%inPuertoArturoand

    15%inCatedralandVolver.

  • 8/3/2019 11MNPL_Cap2_48

    11/27

    11

    Figure14 Productionanddrifting

    Figure15Miningoperationandproductivity

    Figure16 Operationalperformance

    10.000

    20.000

    30.000

    40.000

    50.000

    60.000

    70.000

    0

    20

    40

    6080

    100

    120

    140

    160

    180

    Dec,

    09

    Jan,

    10

    Feb,

    10

    Mar,

    10

    Apr,

    10

    May,

    10

    Jun,

    10

    Jul,

    10

    Aug,

    10

    Sep,

    10

    Oct,

    10

    Nov,

    10

    Dec,

    10

    Jan,

    11

    Pro

    duc

    tion

    (carats

    )

    Dri

    ftin

    gDev

    elopmentan

    dPreparation

    (m)

    CA(m) VO(m) PA(m) TQ (m) Production(Carats)

    0

    1.000

    2.000

    3.000

    4.000

    5.000

    6.000

    7.000

    Dec,

    09

    Jan,

    10

    Feb,

    10

    Mar,

    10

    Apr,

    10

    May,

    10

    Jun,

    10

    Jul,

    10

    Aug,

    10

    Sep,

    10

    Oct,

    10

    Nov,

    10

    Dec,

    10

    Jan,

    11

    OperationAct

    ivit

    y(carrs)

    TQ(carrs) PA(carrs) VO(carrs) CAT(carrs)

  • 8/3/2019 11MNPL_Cap2_48

    12/27

    12

    Notethattowardstheendoftheyearthemineproductionwasmoreconcentratedintothemineralised

    zone,which isnotwider than2.5m.Thus inNovemberandDecemberof2010, therewasahigher

    emeraldproductionandlesscarrsmoved.Thisindicatesthatthetraceoflithologiesandmetasomatic

    evidencefoundonthehangingwallaretremendouslyrelevantfortheemeraldproduction.

    Undergroundproductionmanagementsystem

    This project involves the installation of an underground network based on fibre cables and

    extremelyresistantwiresforelectricity,opticalsealedswitchesandwirelessaccesspoints,inPuerto

    ArturoandTequendamamines,inordertoprovidevideomonitoringservice,trackingpeopleand

    carrs,IPtelephonyandsensornetworksystemsinsidethemine.

    Thesystemconsistsofasetofnetworkingequipment,cameras,specialcables,tagsandelectronic

    tags,sensorsandotherdevices,allwithmaximumprotectionstandards forundergroundmining

    conditions and high quality and continuity of service. Approximately one hundredmetres of

    compoundcable,and500metresofredcablewithspecialcoverage,asetofapproximately30high

    resolutionvideocameras,200tagsfortracking,20wirelessaccesspointsandantennashighfingertips

    willbe implemented.Fixedcameraswillbe installedat intersectionsofmovementcorridors, fixedcameraswithvariablefocusinarrivalplaces,shaftsandextractionpointsandeasymountingcameras

    forextractionpointsandadvancementtunnels,whichwillbeilluminatedbyinfrared,forlowlight

    conditions. The samewireless network infrastructure allows having sevenmobile phones, three

    insideofeachmineandoneinthesurfacetomaintaincommunicationswiththeengineersincharge

    of theoperationatall times.Particularly inFigure17 it ispossible toappreciate the locationof the

    networkcomponentscontrolinTequendamaandPuertoArturomines.

    Figure17 ProductioncontrolsystematTequendamaandPuertoArturomines

  • 8/3/2019 11MNPL_Cap2_48

    13/27

    13

    AcontrolroomisplannedtobeimplementedonthesecondfloorofthePuertoArturooffices,with

    avideosurveillanceserver,whichwillmonitorandrecord the informationof thecameras.There

    willbe a computer displaying the position of carrs and people in real time (online), through a

    trackingapplicationthatwillusethesignalemittedbythetagsinsidethemine.

    Theproject

    also

    includes

    the

    future

    addition

    of

    sensors

    to

    expand

    the

    network

    infrastructure

    coverage.

    The information that they will deliver will be processed through an application, optimising the

    operationalactivities.Thesystemhasbeendesignedinamodularfashion,aimingtomeettheneedsof

    coverageasthemineexpands,anditisthereforeconsideredtohavepartsforimmediateextensions.

    ProcessingplantfortheMUZOoperation

    InordertofacilitatetheclassificationandcleaningprocessofemeraldsfromthePuertoArturoand

    Tequendamamines,itwillbenecessarytoestablishamanagementsystemtostockmobilemineral

    containers, a storage silo, discharge grills and pick hammers for the oversize and a feedbelt

    totheprocessingplant.

    10tonnes

    containers

    Near theentranceaccessesofTequendamaandPuertoArturomines10 tonnescontainerswillbe

    located, tobecarriedby trucksequipped for thatpurposeand taken to the feedsilo.Afterbeing

    unloaded,thecontainerswillgobacktobefilledattheoutputofbothmines.

    Roadconnectionwithsilofeeder

    Tocarrythecontainersfromthetwomentionedmines,theroadsconnectingtheminesandthesilo

    mustbeenabledandrepaired.

    PuertoArturo:Theroadbehindtheminefacilitiesmustbeconstructedtoconnecttothefeedsilo.Tequendama:Itisnecessarytorepairtheroadtothefeedsilo,becauseoftheimportantslope.

    Surfacesilo

    The construction of a silo to store the ore extracted from Tequendama and Puerto Arturo is

    planned.Thesilomustbecapableofgivingautonomytotheprocessofopticalsortingforatleast

    threehours,anditwillalsoensureanadequateconstantsupplyforthenextprocess.TheSiloisalso

    usedtostorethematerialincasedamagemightoccurintheprocessingplant.

    Gridsizeselection

    Thesortingplantwillprocessmaterialoflessthanfourinchesinsize,soitisnecessarythatthegrid

    has that aperture setting.Thiswill ensure themineralmoves the following process having the

    appropriateparticlesize.

    Secondaryreductionhammer

    Asthegridwillhavefourinchesaperture,aflexiblesecondaryreductionsystemwithahydraulic

    hammer isnecessary.Thehammershallreduce thesizeofallparticlesexceeding four inches. Its

    actionisdirectlyonthegrill.Itisimportanttomentionthatitisexpectedthatonly5%oftheoreis

    greaterthanfourinches.Thefollowingfigureshowsthehammer:

  • 8/3/2019 11MNPL_Cap2_48

    14/27

    14

    Figure18Hydraulichammer

    Silowall

    The storage silowas located immediatelybelow thewallwhere the trucksunload theore from

    minesTequendamaandPuertoArturoand thewallhasbeenbuilt toprovidemaximumsecurity

    forthetruckstodownloadandtobepartofthesilodescribedabove.

    Extractionbelt

    Tocarrytheorefromthesilofeedertotheopticalsortingplant,itisnecessarytoinstallabeltformineral

    movement,asshowninthefigurebelow.Thismainbeltshouldhavetwostraps,onethatcarrytheore

    tothenewprocessingplantandanothertosendtheoretotheexistingprocessingplant.

    Opticalsortingplant

    TheMuzoprocessingplantwasdesignedforatreatmentcapacityof250[tpd]consideringthatthe

    plantoperatestenhoursperday,beingoperatedandmonitoredfromacontrolroomlocated ina

    differentplantequipmentsector.Itmainlyconsistsoftwoopticalsortingequipment,twoscreeners

    forselectionofsize,twowashinganddryingtrays,andtransferbelts.Somesmallequipmentwhich

    purchaseispending,are:belts,transferchutes,generators,compressors,blowers,amongothers.

    Figure19 Longitudinalviewofthesortingplant

  • 8/3/2019 11MNPL_Cap2_48

    15/27

    Thepl

    beobs

    sortin

    Sorter

    The o

    materi

    10 37 19 9.

    GEMThisso

    and

    its

    GEMlThisso

    andits

    ntwillbelo

    ervedfrom t

    plant.

    e granulom

    lintofourfr

    1[mm] +37

    [mm] +19

    .1[mm] +9,

    [mm] +4,

    ineCOLORrterclassified

    weight

    is

    8,00

    argeCOLORrterclassified

    weightis8,0

    catedinside

    hecontrolro

    try of the

    actionstoco

    [mm]

    1[mm]

    [mm]

    [mm]

    thetwosmall

    0

    kg.

    Machine

    thetwobigg

    0kg.Machin

    completely

    om.The foll

    ine is quite

    sider:

    rfractionsan

    of

    5

    KVA.

    Figure20

    rfractionsa

    of5KVA.

    Figure21 15

    lockedshed

    wing isab

    variable; th

    dtheircapaci

    GEMfineC

    ditscapacit

    GEMlargeC

    ndcontrolle

    iefdescripti

    refore itwa

    yis8[TPH].I

    LOR

    is8[TPH].I

    LOR

    dbyvideoc

    nofequipm

    s determine

    tsdimensions

    sdimensions

    merasthat

    entused in

    to divide

    are4.6x2.3[

    are4.6x2.3[

    ill

    he

    he

    ],

    ],

  • 8/3/2019 11MNPL_Cap2_48

    16/27

    16

    Screeners

    Thesemachines split themineral in four fractions, the fourmachines correspond to theSandvik

    LF1030screener,1.0x3.0[m],andtotalweightof3,000kg.Eachonehastwoenginesof6.6[kW].

    Figure22 Screenerslocation(screener1=H1)

    Airblower

    It isnecessary towash themineral toremovedirtanddust,and thenproceed toblow the same

    product toremovewater from thewashingprocess.Soneed twomachinesareneeded todeliver

    500[cfm],withapressureof100[mbar].Eachofthesemachineshasacapacityof7.5[HP].

    Figure23 Lowcapacityblower

  • 8/3/2019 11MNPL_Cap2_48

    17/27

    AirexComm

    moistu

    connec

    Gener

    Below

    ractorodas also p

    reproductt

    tedtothetw

    linfrastructisamapoft

    oposed the

    eparticlesej

    oopticalsort

    ureelocationof

    installation

    ect,thismac

    ingequipme

    Figure

    theelements

    Figure25 17

    f an exhau

    hinemustbe

    ts.

    24 Airextract

    describeda

    eneralinfrast

    t fan to co

    locatedont

    or

    ove:

    ucture

    trol airborn

    eroofofthe

    dust and

    hangarand

    he

    be

  • 8/3/2019 11MNPL_Cap2_48

    18/27

    18

    Productionsecurityarea

    The production security area is a highly secure area within the mining complex in which

    productiontakesplace.Thisareawasconceivedtobecontrolledbycamerasatalltimesandgated

    lockingtheaccessforpeoplenotrelatedtotheoperation.Themainareasare:

    MainaccessgateandpersonnelscreeningControlaccesstoTequendamaandPuertoArturoPlantwarehouseEngineeringandproductioncontrolroom

    THEMINEPLANNINGPROCESS

    Ascanbeseen,thebusinessvaluechaincanbesetinacircleconnectingthestagesofexploration,

    design,productionplanning,miningoperations,productioncontrol,sorting,polishing,andfinally

    themarketsale.Becauseofthestrategicobjectivesofthecompanythatownsthemine,theguiding

    operation shouldbebased on the strategy ofmarket positioning, conditioning the exploration,

    operationandtherestofthechain.

    Figure26 Strategicmethodology

    OneimportantaspectofplanningMuzowastofindthegradedistributionofemeraldssurrounding

    ageologicalcontactformedinahydrothermalandpostmetasomaticmetamorphicprocess.Below

    isthe

    genetic

    model

    in

    the

    Muzo

    emerald

    mine

    and

    the

    conceptual

    summary

    of

    the

    mines

    geologicalmapping.

  • 8/3/2019 11MNPL_Cap2_48

    19/27

    19

    Figure27 Geneticmodel

    AstudyoffieldgeologyhasbeenperformedforeachmineoftheMuzoComplextoidentifytheareas

    wheretheemeraldsarelocated.Basedonthisdata,thefollowingprovisionoflithologieswasidentified:

    Figure28 GeologicalprofileMuzoemeraldmine

    CarbonateBlackShale(BS):

    Carbonatedshalewithaveragehardness. Itshowsnosignsofposthumoustectonicsandmineralisation.Typicallyknownas liso

  • 8/3/2019 11MNPL_Cap2_48

    20/27

    20

    FragmentedBlackShale(FS)

    ShalewithfoldingVeinswithcalciteandpyriteThepyritezonescanbeseenindisseminatedform.

    Stockwork(SK)

    BlackshalecarbonateVeinletsofalbite,calciteDisseminatedpyriteVeinsupto20[cm]thickwithalbite/calcite(averagethickness10[cm])Maycontainemeralds

    ClayZone(CZ)

    GrayrockwithhighlyalteredrocktexturedofbrecciaAreseenhealthyandalteredcrystalsofalbiteanddolomiteCrumblesinyourhandDisseminatedpyriteSomelaminarorbandedareasavailableYoucansubmitmmangularclastsofblackshaleSomecarbonatedareas

    Carbonatedbreccia(CB)

    VerysoftblackshalethatcrumblesinyourhandAlbite

    veins

    (altered

    to

    clay)

    and

    disseminated

    pyrite

    ClaymatrixOverayearofmineproductiongeologicalmapsweresetupinordertofindthemainconcentration

    ofemeraldproductionatdifferent levelsofeachmine:PuertoArturo,CatedralandTequendama.

    ThefollowingfigureillustratesthefindingsatTequendamamine.

  • 8/3/2019 11MNPL_Cap2_48

    21/27

    21

    Figure29 EmeraldfindingsandgeologyatTequendama

    Thetypicalgeologicalcrosssectionsoftheminesarepresentedasfollows:

    Figure30 Geologicalmapping

    Geophysics

    The aim of this study was to test the resistivity geophysical techniques, IP and resistivity

    tomography, todetermine itsapplicability in theexplorationofemeraldmines,and therebyhelp

    reducetheuncertaintyofoccurrenceofemeralds.

    WithresistivityandIP,twostudieswereconducted,500[m]longeach.Datawasrecordedinthetime

    domain, dipoledipole configuration, the distancebetween the electrodeswas 50metres (a = 50),

    progresswasmadeatevery25metres,therewere6levelsdeep(n=6)(110mdepthofinvestigation)

    andanintegrationtimeof2secondswasused.Intotaltherewere950metreslinearsurfacecovered.

    Inresistivitytomography10 linesof45to90metreswerestudied.Datawasrecordedinthetime

    domain,dipoledipoleconfiguration,thedistancebetweenthestakeswas5metres(a=5),upto13

    levelsdeepwererecorded(n=13)equivalentto15to20metresdepthofinvestigationandusean

    integrationtimeof0.5seconds.Intotaltherewere630metreslinear,ofwhich505metresoccurred

  • 8/3/2019 11MNPL_Cap2_48

    22/27

    22

    in the interiorof tunnelsand125metresat the surface, these last90,plus35 testandcalibration

    samples.We used a team scores IRIS SYSCALPro model. Below there is one of the specific

    outcomefiguresforTequendamamine,themostproductiveminein2010.Itispossibletoidentify

    the lithological contact between structures of different hardness, allowing to identify sectors

    concentratingthehighprobabilityofoccurrenceofemeralds.

    Figure

    312D

    resistivity

    model

    TQ

    R1Inf

    sector.

    Carbonaceous

    shale

    and

    wet

    (pink),

    shale,

    drierandmoreestablished(blue,yellowandorange)

    Geochemistry

    Takingthemainobjectiveofdefiningasystemofeffectiveprospectingandexplorationthatallows

    increasedemeraldrecoverywithrespecttothenumberofblocks inproduction, it isof interestto

    findarelationshipbetweenthegeophysicalresults,mineralogy,chemicalelementsandoccurrence

    of emeralds. Based on this idea, a complete search for equipment that can help obtaining the

    spectrum ofmineralogical and chemical elements in rock samples, to create a complete system

    characterisationandidentificationofareasofhighemeraldprobabilitymustbeconducted.Theuse

    of technologies such as fluorescence andXraydiffraction (XRF andXRD)hasbeen considered.

    Someoftheresultsfor12samplesanalysedinthelaboratory,arepresentedinthefollowingtable.

    Table3 Samplesdetailandcriticalelementscontent

    N Sample Si

    (%)

    Al

    (%)

    Fe

    (%)

    Ca

    (%)

    Mg

    (%)

    S

    (%)

    Na

    (%)

    K

    (%)

    Ti

    (%)

    P

    (%)

    Mn

    (%)

    Sr

    (%)

    Zn

    (%)

    Cu

    (%)

    Cr

    (PPM)

    Ba

    (%)

    1 TQDR1i_SASN 36,4 10,3 4,6 2,6 6,3 5,7 0,3 0,4 0,3 0,1 0,0 0,2 0,0 937,0 0,1

    2 TQDR1iB03 20,3 7,2 4,8 26,4 5,5 7,3 1,7 1,1 0,3 0,1 0,1 0,0 0,1 0,0 786,0 0,0

    3 TQDR1iB01 40,0 11,0 3,2 12,9 4,5 3,0 6,3 0,1 0,5 0,4 0,1 0,0 0,0 0,0 458,0 0,1

    4 TQDR1iSAS 39,2 10,5 2,2 14,6 4,1 1,6 6,3 0,2 0,4 0,6 0,1 0,0 0,0 0,0 511,0 0,0

    5 CATN11Cx01

    (ClayZone)

    0,0 0,2 3,3 29,9 19,4 0,6 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 162,0 0,0

    6 CATN11Cx01

    (ClayZone)

    0,0 0,3 6,5 28,1 18,6 6,5 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 481,0 0,0

    7 TWDR1iSAS

    NCx01

    25,1 7,2 6,5 24,4 1,5 8,6 4,1 0,1 0,3 0,2 0,1 0,0 0,0 0,1 519,0 0,0

    8 B03(LeftWall) 33,0 8,2 4,5 14,3 8,0 5,0 4,1 0,2 0,3 0,4 0,1 0,0 0,1 0,0 739,0 0,1

    9 B03(RightWall) 22,2 6,3 6,2 26,9 3,3 7,9 3,5 0,1 0,2 0,1 0,1 0,0 0,1 0,0 459,0 0,0

    10 R1iB03(1) 40,8 10,1 4,6 14,9 3,6 5,7 6,1 0,1 0,5 0,3 0,1 0,0 0,0 0,1 815,0 0,1

    11 R1iB01 29,1 9,6 7,0 16,3 6,4 11,2 3,0 1,4 0,4 0,1 0,1 0,0 0,7 0,0 939,0 0,2

  • 8/3/2019 11MNPL_Cap2_48

    23/27

    12 M

    Q Q Q

    ORALLA

    uadrant1:M

    uadrant2:R

    uadrant3:M

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    80%

    90%

    100%

    1

    DolomiteCaMg(CO3

    CalciteCaCO3

    BerylBe3Al2(SiO3)6

    5,4 1,7 2,8

    F

    EmeraldIdodelandreal

    alitywithe

    odelandreal

    2 3

    )2

    44,5 1,6

    igure32 Grap

    Figure3

    (1.957*10^3

    ityagreewit

    eraldoccurr

    ityagreeon

    4 5

    AlbiteNaAlSi3

    UraloliteCa2B

    Pyrite FeS2

    23

    ,7 0,5 0,0

    hXraydiffrac

    Predicted

    m

    xNa/K)+(3

    hemeraldso

    enceofMorr

    henonoccu

    6 7

    O8

    e4(PO4)3(OH)35(H2O)

    0,0 0,0 0,

    tionresults

    odel

    .01*10^2xA

    ccurrence.

    alla,butthe

    renceofem

    8 9

    Illite(K,

    Bavenit

    Quartz

    1 0,0 0,0

    lbite[%])

    odeldoesn

    ralds.

    10 11

    H3O)(Al,Mg,Fe)2(Si,Al)4O

    eCa4Be2Al2Si9O26(OH)2

    SiO2

    0,0 477,0

    otmatch.

    12

    10[(OH)2,(H2O)]

    ,0

  • 8/3/2019 11MNPL_Cap2_48

    24/27

    24

    After the research process,we recommend testing equipment SAX (Bruker distributor), IGMO

    (distributorofFEICompany)andSpectralInternationalInc,performingtestsonsamplessentfrom

    themine,thendotheanalysisofwhattechnologyisbestbasedonthequalityandquantityofthe

    results,andfinallydefinewhatisthemostappropriateequipmentfortheconditionsofuse.

    MINEDESIGNANDPRODUCTIONPLANNINGBASEDIN

    PORTFOLIOOPTIMISATION

    Basedonthegeologicalgeneticmodelspresentedbeforeaprobabilitydistributionofgradesforthe

    differentproductswereconstructedforthedifferentminesatdifferentwidths,withthemainaxis

    being themetasomatic contact of hard and soft rock. Every singleminingwidth represents a

    differentminingmethod.Sofortheartisanalmethodthewidthhappens tobe1.5m,forthedrift

    andfill2.5mandforInclinedDrawPointCaving4.0m.Thefollowingtableshowsthelognormal

    gradedistributionofChispero,MorrallaandPermaforallthreeminesfordifferentminingwidths.

    Table4 Lognormaldistributionofgradesforthedifferentminesanddifferentminingmethods

    GradesM1 GradesM2 GradesM3

    Chispero A1 A2 A3 A1 A2 A3 A1 A2 A3

    Media 1.10 0.41 0.36 1.44 0.92. 0.22 1.79 1.39 0.41

    StandardDeviation 0.11 0.04 0.04 0.29 0.18 0.04 0.26 0.20 0.06

    Moralla A1 A2 A3 A1 A2 A3 A1 A2 A3

    Media 1.79 0.69 0.69 2.13 1.03 0.36 2.48 1.39

    StandardDeviation 0.36 0.14 0.14 0.43 0.21 0.07 0.50 0.28 0.20

    Perma

    A1

    A2

    A3 A1 A2 A3 A1

    A2

    A3

    Media 1.57 0.47 0.92 1.91 0.81 0.58 2.26 1.16 0.22

    StandardDeviation 0.31 0.09 0.18 0.38 0.16 0.12 0.45 0.23 0.04

    Thepricedistributionoveraoneyearperiodwastakenfrompublicreportsaswellasthe2010sales

    performedbyCoexminas.Thepricedistributionperproductsisshowninthetablebelow:

    Table5 Lognormaldistributionofpricestakenfromayearofmineproduction

    Prices/products Chispero Morralla Perma

    Media 6.68 5.01 3.91

    StandardDeviation 0.07 0.10 0.06

    Based on the above, several simulationswere performed to analyse at least 50 combinations of

    miningmethods (drifting,driftand filland inclineddrawpointcaving) for thedifferentmining

    areas.Thefollowingparametersofcostsandproductivitybymethodbymineareusedtocompute

    therateofreturnofeverycombination.

  • 8/3/2019 11MNPL_Cap2_48

    25/27

    25

    Table6 Parametersfortheportfoliooptimisation

    M1 M2 M3

    ProductivityMethod1(t/year) 18,000 12,000 12,000

    ProductivityMethod

    2(t/year) 60,000 42,000 32,400

    ProductivityMethod3(t/year) 72,000 60,000 72,000

    CostMethod1($/t) 600 400 500

    CostMethod2($/t) 200 300 350

    CostMethod3($/t) 100 140 180

    MiningRecoveryofMethod1 0.3 0.3 0.3

    MiningRecoveryofMethod2 0.4 0.4 0.4

    MiningRecoveryofMethod3 0.5 0.5 0.5

    ProcessRecovery 0.35 0.35 0.35

    Mining

    fixed

    cost

    ($)

    3,000,000

    1,500,000

    500,000

    Sellingcost($/c) 20

    Finally, the efficient frontier is computed for theMuzo Emeraldmines for the three different

    operatingminesandforthreealternativeminingmethods.Therewasanintegerconstraintadded

    tothemodeltoavoidsolutionssuchthatinaminetherecouldbetwocoexistentminingmethodsat

    thesametime(Norstand,1999).Thefollowingchartshowstheresult.

    Figure34 EfficientfrontierfortheMuzoEmeraldmine

    Itwas very interesting to see that for every combination of return and volatility the production

    scheduleandminingmethodsperminechangeaccordingly.Thefollowingchartshowsthestrategy

    ofminingmethodandproportionofproductioncontributingtothescheduleperminefordifferent

    rateofreturnandvolatility.

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    0% 5% 10% 15% 20% 25%

    Ex

    pecte

    dRateo

    fRetu

    rn

    ReturnStandardDeviation

  • 8/3/2019 11MNPL_Cap2_48

    26/27

    26

    Forinstancethefollowingconclusionscanbederivedfromtheanalysis:

    1. Forahighreturnandhighvolatilityapproach,theproductionscheduleshouldconcentrateatTequendamamineusingdriftandfillmethodconcentratingover80%ofproduction.

    2. For an intermediate return and medium volatility, the production schedule shouldconcentrate

    at

    Puerto

    Arturo

    with

    Drift

    and

    Fill,

    Catedral

    with

    Drift

    and

    Fill

    and

    TequendamawithInclinedDrawPointCaving.

    3. For low returnbut also low risk approach the schedule should concentrate at PuertoArturowithDriftandFillmethod.

    The following figure showsdifferentmining combinations,methodsand schedule that couldbe

    usedatMuzofordifferentreturn/riskapproaches.

    Figure35 Differentstrategiesandproductionschedulesdependingonthereturn/volatility decision

    Basedotheaboveguidelinetheschedulefor2011ispresentedasfollows:

    Figure36 Finalproposedproductionschedule

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    A1_M1 A2_M1 A3_M1 A1_M2 A2_M2 A3_M2 A1_M3 A2_M3 A3_M3

    %ofp

    roductionunder

    theoption

    3% 12% 20% 25% 30% 50% 60% 61%

    0

    20

    40

    60

    80

    100

    120

    140

    160

    0

    10,000

    20,000

    30,000

    40,000

    50,000

    60,000

    jan,

    11

    feb,

    11

    mar,

    11

    apr,

    11

    may,

    11

    jun,

    11

    jul,11

    aug,

    11

    sep,

    11

    oct,11

    nov,

    11

    dec,

    11

    RO

    M(tp

    d)/Headgrade(c/t)

    Prod

    uction(carats/month)

    Carats ROM (tpd) Grade(c/t)

  • 8/3/2019 11MNPL_Cap2_48

    27/27

    CONCLUSIONSANDRECOMMENDATIONS

    Themain conclusion that canbe obtained from the approach presented in this paper is that

    uncertaintymodellingopensanewwayofperformingstrategicmineplanning.Itisnotpossibleto

    integrate uncertainty into our production planning discipline if there are not clear and

    understandablefinancialtoolsthatcanfacilitatethedecisionsmakerstoseethevalueofvariability.

    Currently,thereisplentyofuncertaintymodellingmethodsavailablethatendupbeingusedasa

    sensitivity analysisof a fixedproduction schedule.This ongoing researchhas shown thatwhen

    adding uncertainty to themodelling of grades and prices the structuralmining decisionsmay

    changeaccordinglybasedontheacceptanceofriskandreturn.

    In terms of the specific results for theMuzomine it is interesting to outline that a couple of

    modelling techniques together with a financial well known approach could contribute to the

    delineationof theorebody, sequence,minedesignandproductionschedule from thevaluingof

    optionsdowntogeology.

    It isexpected that themining industryunderstands that thenewparadigmof strategicplanning

    would

    be

    to

    concentrate

    much

    on

    the

    market

    and

    how

    the

    financial

    position

    of

    shareholders

    could

    facilitatethedelineationofourmineplanningdecisionsandnottheotherwayaround.

    ACKNOWLEDGEMENTS

    Theauthorwouldliketothankfirstofalltheorganisationsthatsupportedtheventuresummarised

    inthispaperstartingwiththeUniversidaddeChileMiningDepartmentandtheAdvancedMining

    TechnologyCentreforsupportingthetechnologyappliedinthisproject.Theauthorwouldalsolike

    to thank the engineers of REDCOMining Consultants that took over the project in particular

    GabrielPais,PamelaCastillo,DanielaSiuela,JorgeAros,ClaudioGuzmnand IgnacioMuoz.

    Also,many thanks to the authors graduate students at the timeMarceloVargas and Fernando

    Peirano

    for

    their

    help

    in

    many

    aspects

    of

    the

    work

    presented

    in

    this

    paper.

    Finally,

    the

    author

    wouldliketothankallhisundergradstudentsthathelpedoutwithmanyshiftsattheMuzomine

    andcontributedinagreatdealtothesuccessofthisproject.

    REFERENCES

    Haugen,RobertandNardinBaker,DedicatedStockPortfolios,JournalofPortfolioManagement,Summer1990,

    pp.1722.[1]

    Markowitz,Harry,PortfolioSelection:EfficientDiversificationofInvestments,JohnWiley&Sons,Inc.,1959.[2]

    RobertC.Merton.ContinuousTimeFinance.Blackwell,1990.[3]

    JohnNorstad.Anintroductiontoportfoliotheory.http://homepage.mac.com/j.norstad/finance,Apr1999.[4]

    Samis,M.,Davis,G.A.,Laughton,D.,andPoulin,R.,2006,Valuinguncertainassetcashflowswhenthereareno

    options:arealoptionsapproach,ResourcesPolicy30:285298.[5]

    Davis,G.A.,NewmanA.M.,2008.ModernStrategicMinePlanning.ColoradoSchoolofMines.Workingpaper.[6]