verificacion capacidad portante miaria

56
1 Contenido 1.0 GENERALIDADES. ....................................................................................................................................2 1.1 OBJETIVO......................................................................................................................................................2 1.2 UBICACIÓN, DESCRIPCIÓN Y ACCESO DEL ÁREA EN ESTUDIO..........................................................2 1.2.1 TOPOGRAFÍA DEL TERRENO...................................................................................................................4 1.3 CONDICIONES CLIMÁTICAS DE LA ZONA ...............................................................................................5 1.4. ALTITUD DE LA ZONA ...............................................................................................................................8 2.0 GEOLOGIA Y SISMICIDAD .......................................................................................................................8 2.1 GEOLOGIA DE LA ZONA. ............................................................................................................................8 2.2 GEOLOGIA LOCAL. ......................................................................................................................................8 2.2.1 MAPA DE UBICACIÓN ..............................................................................................................................9 2.3 SISMICIDAD DE LA ZONA. ....................................................................................................................... 10 3.0 INVESTIGACIÓN EXPLORATORIA Y MUESTREO. .............................................................................. 16 3.1 ENSAYOS DE LABORATORIO. .................................................................................................................. 19 4.0 CARACTERÍSTICAS DEL PROYECTO ................................................................................................... 20 4.01 OBRA DE CONSTRUCCIÓN Y EDIFICACIÓN ..................................................................................... 20 4.02 OBRAS DE PREVENCIÓN .................................................................................................................... 20 5.0 DESCRIPCIÓN ESTRATIGRÁFICA. ....................................................................................................... 21 6.0 CAPACIDAD DE ADMISIBLE......................................................................................................................... 22 6.1 CALCULO DE LA CAPACIDAD ADMISIBLE ............................................................................................ 28 7.0 ASENTAMIENTOS.......................................................................................................................................... 40 7.1 CALCULO DE ASENTAMIENTO................................................................................................................ 43 8.0 PROBLEMAS ESPECIALES DE LA CIMENTACIÓN .............................................................................. 43 8.10 ATAQUE QUÍMICO POR SUELOS Y AGUAS SUBTERRÁNEAS AL CONCRETO DE CIMENTACIÓN. ........ 43 8.20 LICUEFACCIÓN DE SUELOS ................................................................................................................ 43 8.30 SUELOS COLAPSABLES ....................................................................................................................... 44 8.40 POTENCIAL DE EXPANSIÓN ................................................................................................................... 44 9.0 RESUMEN DE RESULTADOS .................................................................................................................. 45 10.0 CONCLUSIONES Y RECOMENDACIONES. ................................................................................................ 46 11.00 RESUMEN DE LAS CONDICIONES DE CIMENTACIÓN Y PARÁMETROS DE DISEÑO.................... 47 12.0 BIBLIOGRAFIA. ............................................................................................................................................. 48 13.00 ENSAYOS DE LABORATORIO ................................................................................................................... 49

Upload: renatto-motta-zevallos

Post on 13-Aug-2015

133 views

Category:

Engineering


6 download

TRANSCRIPT

Page 1: Verificacion capacidad portante miaria

1

Contenido 1.0 GENERALIDADES. ....................................................................................................................................2

1.1 OBJETIVO......................................................................................................................................................2

1.2 UBICACIÓN, DESCRIPCIÓN Y ACCESO DEL ÁREA EN ESTUDIO ..........................................................2

1.2.1 TOPOGRAFÍA DEL TERRENO ...................................................................................................................4

1.3 CONDICIONES CLIMÁTICAS DE LA ZONA ...............................................................................................5

1.4. ALTITUD DE LA ZONA ...............................................................................................................................8

2.0 GEOLOGIA Y SISMICIDAD .......................................................................................................................8

2.1 GEOLOGIA DE LA ZONA. ............................................................................................................................8

2.2 GEOLOGIA LOCAL. ......................................................................................................................................8

2.2.1 MAPA DE UBICACIÓN ..............................................................................................................................9

2.3 SISMICIDAD DE LA ZONA. ....................................................................................................................... 10

3.0 INVESTIGACIÓN EXPLORATORIA Y MUESTREO. .............................................................................. 16

3.1 ENSAYOS DE LABORATORIO. .................................................................................................................. 19

4.0 CARACTERÍSTICAS DEL PROYECTO ................................................................................................... 20

4.01 OBRA DE CONSTRUCCIÓN Y EDIFICACIÓN ..................................................................................... 20

4.02 OBRAS DE PREVENCIÓN .................................................................................................................... 20

5.0 DESCRIPCIÓN ESTRATIGRÁFICA. ....................................................................................................... 21

6.0 CAPACIDAD DE ADMISIBLE......................................................................................................................... 22

6.1 CALCULO DE LA CAPACIDAD ADMISIBLE ............................................................................................ 28

7.0 ASENTAMIENTOS. ......................................................................................................................................... 40

7.1 CALCULO DE ASENTAMIENTO ................................................................................................................ 43

8.0 PROBLEMAS ESPECIALES DE LA CIMENTACIÓN .............................................................................. 43

8.10 ATAQUE QUÍMICO POR SUELOS Y AGUAS SUBTERRÁNEAS AL CONCRETO DE CIMENTACIÓN. ........ 43

8.20 LICUEFACCIÓN DE SUELOS ................................................................................................................ 43

8.30 SUELOS COLAPSABLES ....................................................................................................................... 44

8.40 POTENCIAL DE EXPANSIÓN ................................................................................................................... 44

9.0 RESUMEN DE RESULTADOS .................................................................................................................. 45

10.0 CONCLUSIONES Y RECOMENDACIONES. ................................................................................................ 46

11.00 RESUMEN DE LAS CONDICIONES DE CIMENTACIÓN Y PARÁMETROS DE DISEÑO .................... 47

12.0 BIBLIOGRAFIA. ............................................................................................................................................. 48

13.00 ENSAYOS DE LABORATORIO ................................................................................................................... 49

Page 2: Verificacion capacidad portante miaria

2

1.0 GENERALIDADES.

1.1 OBJETIVO

La información que se precisa en el presente documento, corresponde a la verificación de la

capacidad portante del terreno del Proyecto “INSTALACION DEL COMPLEJO DEPORTIVO EN

LA CC. NN. MIARIA, ZONAL BAJO URUBAMBA NORTE”. Constituyendo el objetivo del presente

informe técnico, la toma de muestras ensayos "in situ" y en laboratorio, con la finalidad de obtener

el reconocimiento geotécnico del mismo, con aplicación a la determinación de la capacidad de

carga y asentamientos del suelo para su aplicación en el cálculo de las estructuras de la edificación

proyectada. El que la cimentación se apoye en el nivel de fundación para el que se da las

recomendaciones es capital para la estabilidad de la edificación. Para ello ha de tenerse en cuenta

que la geotecnia no puede llegar a ser nunca una ciencia exacta, ya que el terreno presenta

múltiples heterogeneidades, siendo los contactos entre unos niveles geotécnicos y otros

alabeados, no una línea recta.

El proceso seguido para los fines propuestos, fue el siguiente:

Reconocimiento del terreno

Distribución y ejecución de calicatas

Tomas de muestras inalteradas y disturbadas

Ejecución de ensayos de laboratorio

Evaluación de los trabajos de campo y laboratorio

Perfil estratigráfico

Análisis de la Capacidad Portante Admisible

Calculo admisible permisible

Análisis del potencial Expansión

Conclusiones y recomendaciones

1.2 UBICACIÓN, DESCRIPCIÓN Y ACCESO DEL ÁREA EN ESTUDIO

Para su acceso por carretera con relación a la capital del departamento, este se inicia en la ciudad

del Cusco, por la carretera Cusco – Quillabamba, recorriéndose por vía asfaltada 173 Km hasta

Alfamayo, desde este punto hasta Quillabamba 62 Km por vía afirmada, de Quillabamba se

recorre por carretera Afirmada 40 km hasta llegar a Echarati, de Echarati se recorre por carretera

afirmada 140 km hasta llegar a Kiteni, de Kiteni se recorre por carretera afirmada 43 km hasta

llegar a Ivochote, de ahí se recorre por trocha carrozable hacia Pangoa , una vez ahí se recorre por

vía fluvial hasta llegar a Miaria, que se encuentra en el Bajo Urubamba Norte.

Page 3: Verificacion capacidad portante miaria

3

Page 4: Verificacion capacidad portante miaria

4

1.2.1 TOPOGRAFÍA DEL TERRENO

El área a ubicarse, el proyecto en la CC.NN. de Miaria, presenta una topografía relativamente

plana, así mismo se observa que el terreno no presenta deslizamientos.

Page 5: Verificacion capacidad portante miaria

5

1.3 CONDICIONES CLIMÁTICAS DE LA ZONA

La CC.NN. de Miaria, tiene un clima húmedo, con una temperatura promedio anual de 30°C y de

35°C. Para efectos de diseñar las estructuras con la eficiencia necesaria en términos de

funcionalidad y economía, se requiere contar con información suficiente por dos necesidades

principales: la funcionabilidad de la estructura y la resistencia de la estructura planteada.

MAPA PRECIPITACIÓN TOTAL MULTIANUAL

Page 6: Verificacion capacidad portante miaria

6

MAPA TEMPERATURA MÁXIMA PROMEDIO MULTIANUAL

Page 7: Verificacion capacidad portante miaria

7

MAPA TEMPERATURA MÍNIMA PROMEDIO MULTIANUAL

Page 8: Verificacion capacidad portante miaria

8

1.4. ALTITUD DE LA ZONA

La ubicación del proyecto en la CC.NN. de Miaria se encuentra en una altitud de 294.00

m.s.n.m. Aproximadamente.

MARCO NORMATIVO.

Se ha considerado, lo estipulado en el Reglamento Nacional de Edificaciones en su Norma

E - 050 de Suelos y Cimentaciones, la Norma Básica de Diseño Sismo-Resistente Norma E - 030

y la Norma E-020 de Cargas.

2.0 GEOLOGIA Y SISMICIDAD

2.1 GEOLOGIA DE LA ZONA.

La ubicación del proyecto se encuentra localizada en la Selva Sur Oriental del país y al

norte del departamento de Cusco.

La influencia de la estructura andina se constituye en el eje resultante para la actual

configuración de los sistemas de relieves, desde épocas del terciario inferior hasta el Pleistoceno.

Por La actividad de los eventos tectónicos ha servido como un eje controlador de la dinámica

sedimentaria, pues ello condicionaba la continuidad de las acumulaciones.

A consecuencia del levantamiento andino, a región, se originaba una gran zona

depresionada o llamada también megacuencia de sedimentación. Ésta, era rellenada por la

acumulación de sedimentos provenientes de las zonas cordilleranas producto de las fuerzas

exógenas (erosión y meteorización) que actuaban con gran intensidad. Las formaciones más

antiguas no afloran y se hallan únicamente en profundidad, como lo demuestran los estudios de las

prospecciones petroleras, que confirman que la sedimentación en la depresión amazónica va desde

el Cuaternario reciente en la superficie, hasta el Paleozoico a más de diez Km. de profundidad.

2.2 GEOLOGIA LOCAL.

La conformación geológica, según se observa el plano geológico del cuadrángulo 23-Q,

Miaria, corresponde a la Formación depósitos fluviales (Qh-f), depósitos aluvio fluviales (Qh-al-

f), depósitos aluviales (Qh-al), formadas en el período cuaternario holocenas, estos suelos se

forman a partir de los procesos de erosión y transporte que abarcan la zona de influencia de los

ríos Bajo Urubamba y Camisea. Adicionalmente, lejos de la influencia de los ríos encontramos

Page 9: Verificacion capacidad portante miaria

9

2.2.1 MAPA DE UBICACIÓN

Cuaternario

Esta formación aflora en gran parte del área de estudio cubriendo en discordancia erosional

a la formación Ipururo. Al igual que la unidad anterior, consta de secuencias diversas de arcillitas,

limolitas, arenas y gravas inconsolidadas a semiconsolidadas, hasta localmente endurecidas por la

presencia de sustancias cementantes, como óxidos de hierro.

En detalle esta formación presenta tres miembros. El miembro A es la unidad basal y

consiste de depósitos con clastos de arcillas y líticos; estos materiales están endurecidos por los

óxidos de hierro producidos por la lixiviación de sedimentos superiores. Este miembro presenta

también secuencias de arenas de paleocanales fluviales, igualmente endurecidos por los óxidos.

Esta unidad basal pasa gradualmente hacia el tope, a limos y arcillas menos endurecidas. El

miembro A consta principalmente de arenas medias de color pardo amarillento, con interclastos de

arcilla sub redondeada. Los afloramientos del miembro A presentan abundantes óxidos de hierro y

estratificación cruzada, también endurecidas por estos óxidos. La unidad intermedia o miembro B

presenta en la base una delgada capa de hematita, y está compuesta por arenas, limolitas y arcillas.

En general la complejidad de estos miembros es muy acentuada y la variabilidad se produce

notablemente en cortas distancias. Es muy difícil reconocer las características de estos miembros,

y no se puede generalizar el predominio de un miembro u otro en determinados sectores.

Page 10: Verificacion capacidad portante miaria

10

Cuaternario Reciente

Bajo esta denominación se incluye un conjunto de depósitos diferenciados entre sí por su

edad y posición estratigráfica de aluviones modernos. En el mapa estos depósitos se diferencian en

dos grupos denominados: • Depósitos aluviales recientes (Símbolo Qh-a). Que son las

acumulaciones más modernas, incluso actuales, es decir los depósitos que dejan las corrientes

fluviales en la actualidad en los cauces de inundación mayor, islas, orillares, entre otros Depósitos

aluviales sub recientes (Símbolo Qh-as), Que son acumulaciones de litología similar a las

anteriores, pero que su origen se remonta por lo menos a algunos miles de años.

2.3 SISMICIDAD DE LA ZONA.

Intensidades

Según análisis sismo tectónicos, existen en el mundo dos zonas muy importantes de actividad

sísmica conocidas como: el Círculo Alpino Himalayo y el Circulo Pacifico. En esta última zona

han ocurrido el 80%de los eventos sísmicos, quedando el 15% para el Circulo Alpino Himalayo, y

el5% restante se reparte en todo el mundo.

La fuente básica de datos de intensidad es sísmica el trabajo del Silgado (1978), que describe los

principales eventos sísmicos ocurridos en el Perú. De lo anterior se concluye que de acuerdo al

área sísmica donde se ubica la zona en estudio existe la posibilidad de que ocurran sismos de

intensidades del orden VIII en la escala de Mercalli Modificada.

En el área de estudio no hay evidencias recientes de alguna actividad sísmica, que podría afectar

en algún tiempo las estructuras a construirse. Al norte del Lago Titicaca, entre Sicuani, Urcos,

Cusco, Abancay y Ayacucho, existe un sistema de fallas históricamente muy activas, que pasan a

sólo 10 km de la ciudad del Cusco; algunos especialistas señalan indicios de la existencia de una

falla que cruza la misma ciudad. Este sistema de fallas constituye un peligro potencial para las

ciudades de la región Cusco y todo el Sur del Perú.

Cusco se encuentra al borde de la zona sur de gran concentración de sismos intermedios, cuyo

borde occidental sigue la línea de costa desde Lima hasta la frontera con Chile y cuyo borde

oriental pasa cercano a la orilla norte del Lago Titicaca, sigue el límite de las regiones Cusco y

Apurímac hasta el punto en que convergen los límites de ambas regiones la región Ayacucho.

También se encuentra en el borde oriental de la zona norte, desde el punto limítrofe común entre

las regiones Cusco-Apurímac-Ayacucho, sigue por el punto limítrofe de las regiones Cusco-Junín-

Ucayali hacia la localidad de Bolognesi sobre el río Ucayali, desde el cual sigue en dirección casi

norte hasta la frontera con Brasil.

En la zona andina, hay una tendencia general al levantamiento de la corteza, como resultado

de la compresión lateral que produce por el oeste, la placa de Nazca y por el este, el escudo

brasilero. La Cordillera de Ausangate, junto con la cordillera Blanca, Huaytapallana,

Page 11: Verificacion capacidad portante miaria

11

Vilcabamba, están en un proceso de levantamiento significativo asociados con fallas

geológicas activas.

La región Cusco ha reportado la siguiente actividad sísmica de envergadura:

Zonificación Sísmica

Dentro del territorio peruano se han establecido diversas zonas, las cuales Presentan diferentes

características de acuerdo a la mayor o menor presencia de los sismos. Según el mapa de

Zonificación Sísmica del Perú la localidad del Distrito de Echarati, Provincia de la Convención

Dpto. de Cusco, por lo que la zona presenta un riesgo de medio a bajo, en cuanto a intensidad

sísmica comprendida en la Zona Sísmica2, correspondiendo le una sismicidad alta y un factor de

zona Z=0.3g.

Tipo de Suelo y Periodo

De acuerdo a las normas de Diseño Sismo Resistente del Reglamento Nacional de Construcciones,

al suelo de cimentación del mencionado estudio le corresponde un perfil de suelo tipo S3, con un

periodo Tp(s)=0.9seg.Y un factor de suelo S=1.4

Fuerza Horizontal Equivalente

La fuerza horizontal o cortante en la base debido a la acción sísmica se determinara mediante la

siguiente expresión:

V = Z * U * S *C. P

Rd

Page 12: Verificacion capacidad portante miaria

12

Donde:

Z=Factor de Zona

U=Factor de Uso

S=Factor de Suelo

C=Coeficiente Sísmico

Rd=Factor de Ductilidad

P= Peso de la Estructura

PARAMETRO MAGNITUD DESCRIPCION

Zona 2 Mapa de Zonificación Sísmica

Factor de Zona 0,3g. Tabla Nº 1

Perfil de Suelo Tipo S2 Suelos Intermedios.

Parámetros del Suelo

(Tabla Nº 2)

Tp = 0,6 seg.

S = 1,2

Período Predominante

Factor de Amplificación del Suelo

Page 13: Verificacion capacidad portante miaria

13

Mapa de Distribución de Intensidades Sísmicas del Perú.

Page 14: Verificacion capacidad portante miaria

14

Mapa de Distribución de Intensidades Sísmicas del Perú.

Page 15: Verificacion capacidad portante miaria

15

Page 16: Verificacion capacidad portante miaria

16

3.0 INVESTIGACIÓN EXPLORATORIA Y MUESTREO.

3.1 RECONOCIMIENTO DEL TERRENO Y EXPLORACIÓN

El trabajo de campo consistió en el reconocimiento del terreno en estudio y de las áreas del

entorno a fin de determinar la cantidad y tipo de exploración a realizar. Después de efectuado

el reconocimiento antes mencionado se procedió a efectuar las exploraciones correspondientes.

Para determinar el programa de exploración, se ha verificado las condiciones de frontera

establecidas en el Reglamento Nacional de Edificaciones (R.N.E.)

3.1.1 SITUACION ACTUAL DEL TERRENO

El terreno se encuentra sin ninguna construcción, encontrándose pendientes mínimas en el área a construir, se ha verificado la existencia de nivel freático en el terreno.

Page 17: Verificacion capacidad portante miaria

17

3.2 APLICACIÓN DEL PROGRAMA DE EXPLORACIÓN

Para los fines propuestos, se realizaron los siguientes trabajos:

3.2.1 CALICATAS O POZOS DE EXPLORACIÓN

Con la finalidad de identificar y realizar la evaluación geotécnica del suelo de cimentación

existente, se llevó a cabo un programa de exploración de campo, el que consistió en la

evaluación de la excavación y recolección de muestras para ser ensayadas en el laboratorio.

Page 18: Verificacion capacidad portante miaria

18

Se ha realizado la verificación dela capacidad portante en el terreno ya excavado dentro del

emplazamiento del proyecto, la calicatas o pozos a cielo abierto llega hasta los 2.0 m. de

profundidad.

NIVEL DE LA NAPA FREÁTICA

Se encontró napa freática en el terreno, debido a la cercanía de ríos, para lo cual para el

análisis se debera considerar efecto de filtraciones de posibles precipitaciones pluviales en

épocas del año.

3.2.2 Extracción de Muestras

Paralelamente al muestreo se realizaron los registros de exploraciones, en los que se indican

las diferentes características de los estratos subyacentes, tales como tipo de suelo, espesor del

estrato, color, humedad, plasticidad, consistencia y/o compacidad, etc.

En cada ubicación se registró el perfil estratigráfico del suelo, clasificando visualmente los

materiales mediante el procedimiento de campo establecido por el sistema unificado de

clasificación de suelos (S.U.C.S.).

Cuando no se detectó la presencia de cambios de las características de los materiales

encontrados en la excavación, se tomó una muestra representativa para la evaluación e

identificación correspondiente.

De cada estrato de suelo identificado, se tomaron muestras representativas, las que fueron

convenientemente identificadas y empaquetadas en bolsas de polietileno y trasladadas al

laboratorio para efectuar ensayos de sus características físicas y mecánicas.

Sobre la base de la clasificación visual de los suelos, se elaboró un perfil estratigráfico

preliminar de la línea, el cual permitió determinar secciones de características similares,

escogiéndose puntos representativos generales y específicos, los generales para determinar las

características de los suelos predominantes y similares en las calicatas escogidas, y los

específicos para determinar las características mecánicas de los suelos.

3.2.3 Registros de Exploraciones

Paralelamente al muestreo se realizaron los registros de exploraciones, en los que se indican

las diferentes características de los estratos subyacentes, tales como tipo de suelo, espesor del

estrato, color, humedad, plasticidad, consistencia y/o compacidad, etc. Estos se encuentran en

las hojas respectivas para cada calicata en el Anexo I titulado de Registro de exploraciones. El

muestreo del pozo se realizó siguiendo los procedimientos de la Norma ASTM D-420.

TENSION INDUCIDA EN EL SUBSUELO.

(Boussinesq)

Distancia al punto de aplicación de la carga: r = 0,0m.

Carga concentrada: Q = 40 Tn.

Page 19: Verificacion capacidad portante miaria

19

Muestreo.- Se han recogido muestras alteradas e inalteradas por estrato encontrado, y para

los ensayos de resistencia a la profundidad de 2.00 m.

Estratigrafía.- Se realizó la descripción de las capas de sedimentación del suelo,

resaltando los estratos representativos.

.

TÉCNICAS AUXILIARES NORMAS APLICABLES

Pozos o Calicatas ASTM D 420, UNE 7-371:1975

Técnicas de muestreo ASTM D 420

Descripción Visual de Suelos ASTM D 2487

Densidad Natural UNE -103-105-93

3.1 ENSAYOS DE LABORATORIO.

ENSAYO DE LABORATORIO NORMAS APLICABLES

Preparación de Muestras ASTM D 420-69, UNE 103-100-95

Análisis Granulométrico ASTM D 422, UNE 103-101-95

Determination of Water (Moisture) Content of Soil

and Rock ASTM D 4643, WK14112

Límite Líquido y Plástico ASTM D 4318, UNE 103-103-94

Clasificación Unificada de Suelos SUCS - AASHTO ASTM D 2487/00

Ensayo de Corte Directo ASTM D 3080

Page 20: Verificacion capacidad portante miaria

20

4.0 CARACTERÍSTICAS DEL PROYECTO 4.01 OBRA DE CONSTRUCCIÓN Y EDIFICACIÓN

Las estructuras que conforman el Proyecto INSTALACION DEL COMPLEJO DEPORTIVO

EN LA CC. NN. MIARIA, ZONAL BAJO URUBAMBA NORTE, consiste en elementos

estructurales de concreto armado.

4.02 OBRAS DE PREVENCIÓN

De acuerdo a la geodinámica externa, un evento probable es la ocurrencia de

filtraciones superficiales y sub-superficiales producidas por lluvias persistentes sobre la

zona.

Con la finalidad de controlar las humedades provenientes de las filtraciones sub-

superficiales, es recomendable que se proyecten en las cimentaciones armadas, la

protección del acero de refuerzo, al ataque de la corrosión, mediante el uso de

Page 21: Verificacion capacidad portante miaria

21

impermeabilizantes en el concreto o pintura de protección contra la humedad constante,

asi mismo se debe de colocar los entibamientos correspondientes en las paredes de la

excavación o en su defecto colocar bentonita u otro material que ayude a mejorar la

estabilidad de las paredes de la zanja.

5.0 DESCRIPCIÓN ESTRATIGRÁFICA.

CALICATA 01

o Primer Estrato de 0.10m a 2.00 m. corresponde a un suelo fino identificado como una

ARCILLA PLASTICIDAD MEDIA ARENOSA CL, que presenta de baja a media

compresibilidad, color marrón rojizo.

o se evidenció nivel freático superficial a 0.80 metros.

CALICATA 02

o Primer Estrato de 0.10m a 2.00 m. corresponde a un suelo fino identificado como una

ARCILLA PLASTICIDAD MEDIA ARENOSA CL, que presenta de baja a media

compresibilidad, color marrón rojizo.

o se evidenció nivel freático superficial a 0.80 metros.

CALICATA ALTURA MUESTRA

01 249m. M - 01ALTURA

m cm ESTRAT.

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

00+00 2.00 2.0m

DESCRIPCION DE SONDEO C - 01PROGRESIVA PROFUNDIDAD DIAMENTRO DEL AGUJERO

ESCALALITOLOGIA DESCRIPCION COTA

1

COORDENADAS E: 718539.19

2

ARCILLA

PLASTICIDAD

MEDIA

ARENOSA

-2.00

2.00

Observaciones: Se ha evidenciado presencia de nivel freatico a 0.80 m.

COORDENADAS N: 8749830.79

Page 22: Verificacion capacidad portante miaria

22

6.0 CAPACIDAD DE ADMISIBLE

CARGA ÚLTIMA DE CIMENTACIONES SOBRE TERRENO

La carga última de una cimentación superficial se puede definir como el valor máximo de la carga con el cual en

ningún punto del subsuelo se alcanza la condición de rotura (método de Frolich), o también refiriéndose al valor de

la carga, mayor del anterior, para el cual el fenómeno de rotura se extiende a un amplio volumen del suelo (método

de Prandtl e sucesores).

Prandtl ha estudiado el problema de la rotura de un semiespacio elástico como efecto de una carga aplicada sobre

su superficie con referencia al acero, caracterizando la resistencia a la rotura con una ley de tipo:

= c + tg válida también para los suelos.

Las hipótesis y las condiciones dictadas por Prandtl son las siguientes:

Material carente de peso y por lo tanto =0

Comportamiento rígido - plástico

Resistencia a la rotura del material expresada con la relación =c + tg

Carga uniforme, vertical y aplicada en una franja de longitud infinita y de ancho 2b (estado de deformación

plana)

Tensiones tangenciales nulas al contacto entre la franja de carga y la superficie límite del semiespacio.

En el acto de la rotura se verifica la plasticidad del material contenido entre la superficie límite del semiespacio y

la superficie GFBCD.

En el triángulo AEB la rotura se da según dos familias de segmentos rectilíneos e inclinados en 45°+/2 con respecto al horizontal.

CALICATA ALTURA MUESTRA

02 249m. M - 02ALTURA

m cm ESTRAT.

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

00+00 2.00 2.0m

DESCRIPCION DE SONDEO C - 02PROGRESIVA PROFUNDIDAD DIAMENTRO DEL AGUJERO

ESCALALITOLOGIA DESCRIPCION COTA

1

COORDENADAS E: 718625.52

2

ARCILLA

PLASTICIDAD

MEDIA

ARENOSA

-2.00

2.00

Observaciones: Se ha evidenciado presencia de nivel freatico a 0.80 m.

COORDENADAS N: 8749874.65

Page 23: Verificacion capacidad portante miaria

23

En las zonas ABF y EBC la rotura se produce a lo largo de dos familias de líneas, una constituida por segmentos rectilíneos que pasan respectivamente por los puntos A y E y la otra por arcos de familias de espirales

logarítmicas.

Los polos de éstas son los puntos A y E. En los triángulos AFG y ECD la rotura se da en segmentos inclinados en

±(45°+ /2) con respecto a la vertical.

Individuado así el volumen de terreno llevado a rotura por la carga límite, éste se puede calcular escribiendo la

condición de equilibrio entre las fuerzas que actúan en cualquier volumen de terreno delimitado debajo de

cualquiera de las superficies de deslizamiento.

Se llega por lo tanto a una ecuación q =B c, donde el coeficiente B depende solo del ángulo de rozamiento del terreno.

Para =0 el coeficiente B es igual a 5.14, por lo tanto q=5.14 c.

En el otro caso particular de terreno sin cohesión (c=0, 0) resulta q=0. Según la teoría de Prandtl, no sería entonces posible aplicar ninguna carga en la superficie límite de un terreno incoherente.

En esta teoría, si bien no se puede aplicar prácticamente, se han basado todas las investigaciones y los métodos de

cálculo sucesivos.

En efecto Caquot se puso en las mismas condiciones de Prandtl, a excepción del hecho que la franja de carga no se

aplica sobre la superficie límite del semiespacio, sino a una profundidad h, con h 2b; el terreno comprendido

entre la superficie y la profundidad h tiene las siguientes características: 0, =0, c=0 es decir un medio dotado de peso pero sin resistencia.

Resolviendo las ecuaciones de equilibrio se llega a la expresión:

q = A 1 + B c

que de seguro es un paso adelante con respecto a Prandtl, pero que todavía no refleja la realidad.

Método de Terzaghi (1955)

Terzaghi, prosiguiendo el estudio de Caquot, ha aportado algunos cambios para tener en cuenta las características

efectivas de toda la obra de cimentación - terreno.

Bajo la acción de la carga transmitida por la cimentación, el terreno que se encuentra en contacto con la

cimentación misma tiende a irse lateralmente, pero resulta impedido por las resistencias tangenciales que se

desarrollan entre la cimentación y el terreno.

Esto comporta un cambio del estado tensional en el terreno puesto directamente por debajo de la cimentación; para

tenerlo en cuenta, Terzaghi asigna a los lados AB y EB de la cuña de Prandtl una inclinación respecto a la

horizontal, seleccionando el valor de en función de las características mecánicas del terreno al contacto terreno-obra de cimentación.

1)2/45(

2cot

tge

tggB

Page 24: Verificacion capacidad portante miaria

24

De esta manera se supera la hipótesis 2 =0 para el terreno por debajo de la cimentación. Admitiendo que las

superficies de rotura resten inalteradas, la expresión de la carga última entonces es:

q =A h + B c + C b

donde C es un coeficiente que resulta función del ángulo de rozamiento interno del terreno puesto por debajo del

nivel de cimentación y del ángulo antes definido; b es la semianchura de la franja. Además, basándose en datos experimentales, Terzaghi pasa del problema plano al problema espacial introduciendo

algunos factores de forma.

Una sucesiva contribución sobre el efectivo comportamiento del terreno ha sido aportada por Terzaghi.

En el método de Prandtl se da la hipótesis de un comportamiento del terreno rígido-plástico, en cambio Terzaghi

admite este comportamiento en los terrenos muy compactos.

En éstos, de hecho, la curva cargas-asentamientos presenta un primer tracto rectilíneo, seguido por un breve tracto

curvilíneo (comportamiento elástico-plástico); la rotura es instantánea y el valor de la carga límite resulta

claramente individuado (rotura general).

En un terreno muy suelto en cambio la relación cargas-asentamientos presenta un tracto curvilíneo acentuado

desde las cargas más bajas por efecto de una rotura progresiva del terreno (rotura local). Como consecuencia la

individualización de la carga límite no es tan clara y evidente como en el caso de los terrenos compactos.

Para los terrenos muy sueltos, Terzaghi aconseja tener en consideración la carga última; el valor que se calcula con

la fórmula anterior pero introduciendo valores reducidos de las características mecánicas del terreno y

precisamente:

tgrid = 2/3 tg e crid= 2/3c

Haciendo explícitos los coeficientes de la fórmula anterior, la fórmula de Terzaghi se puede escribir así:

qult = c Nc sc + D Nq + 0.5 B N s donde:

Fórmula de Meyerhof (1963)

Meyerhof propuso una fórmula para calcular la carga última parecida a la de Terzaghi. Las diferencias consisten en

la introducción de nuevos coeficientes de forma.

Introdujo un coeficiente sq que multiplica el factor Nq, factores de profundidad di y de pendencia ii para el caso

en que la carga trasmitida a la cimentación sea inclinada en la vertical.

Los valores de los coeficientes N se obtuvieron de Meyerhof hipotizando varios arcos de prueba BF (v.

mecanismo Prandtl), mientras que el corte a lo largo de los planos AF tenía valores aproximados.

A continuación se presentan los factores de forma tomados de Meyerhof, junto con la expresión de la fórmula.

12

cos2

tan

cot)1(

tan)2/75.0(

)2/45(2

cos2

2

pKN

qNcN

ea

aNq

Page 25: Verificacion capacidad portante miaria

25

Carga vertical qult = c Nc sc dc+ D Nq sq dq+ 0.5BN s d

Carga inclinada qul t=c Nc ic dc+ D Nq iq dq + 0.5 B Nid

factor de forma:

factor de profundidad:

Inclinación:

Donde:

Kp = tan2 (45°+/2)

= Inclinación de la resultante en la vertical.

Fórmula de Hansen (1970)

Es una extensión ulterior de la fórmula de Meyerhof; las extensiones consisten en la introducción de bi que tiene

en cuenta la eventual inclinación en la horizontal del nivel de cimentación y un factor gi para terreno en pendencia.

La fórmula de Hansen vale para cualquier relación D/B, ya sean cimentaciones superficiales o profundas; sin

embargo el mismo autor introdujo algunos coeficientes para poder interpretar mejor el comportamiento real de la cimentación; sin éstos, de hecho, se tendría un aumento demasiado fuerte de la carga última con la profundidad.

Para valores de D/B <1

4.1tan1

cot)1(

2/452

tantan

qNN

qNcN

eNq

0 para 1.01

10 para 2.01

L

Bpksqs

L

Bpkcs

0 para 1

10 para 1.01

2.01

dqd

B

Dpkdqd

B

Dpkcd

0 para 0i

0 para

2

1

2

901

i

ici

Page 26: Verificacion capacidad portante miaria

26

Para valores D/B>1:

En el caso = 0

--------------------------------------------------------------------------------------------

D/B 0 1 1.1 2 5 10 20 100

--------------------------------------------------------------------------------------------

d'c 0 0.40 0.33 0.44 0.55 0.59 0.61 0.62

--------------------------------------------------------------------------------------------

En los factores siguientes las expresiones con ápices (') valen cuando =0. Factor de forma:

Factor de profundidad:

Factores de inclinación de la carga

B

Dqd

B

Dcd

2)sin1(tan21

4.01

B

Dqd

B

Dcd

1tan

2)sin1(tan21

1tan4.01

L

Bs

L

B

cs

L

B

cN

qN

cs

L

B

cs

4.01

tan1qs

continuas nescimentacio para 1

1

2.0''

1 si 1

tan

1 si

cualquier para 1

)sin1(tan21

4.01

4.0''

B

D

B

Dk

B

D

B

Dk

d

kqd

kcd

kc

d

Page 27: Verificacion capacidad portante miaria

27

Factores de inclinación del terreno (cimentación sobre talud):

Factores de inclinación del nivel de cimentación (base inclinada)

Fórmula de Vesic (1975)

La fórmula de Vesic es análoga a la fórmula de Hansen, con Nq y Nc como en la fórmula de Meyerhof y N como se indica a continuación:

N=2(Nq+1)*tan ()

Los factores de forma y de profundidad que aparecen en las fórmulas del cálculo de la capacidad portante son

iguales a los propuestos por Hansen; en cambio se dan algunas diferencias en los factores de inclinación de la

carga, del terreno (cimentación en talud) y del plano de cimentación (base inclinada).

0)(

5

cot

)450/7.0(1

0)(

5

cot

7.01

5

cot

5.01

1

1

15.05.0'

acf

AV

Hi

acf

AV

Hi

acf

AV

Hqi

qN

qi

qici

acf

A

Hci

5)tan5.01(

1471

147

'

gqg

cg

cg

)tan7.2exp(

)tan2exp(

1471

147

'

qb

qb

cb

cb

Page 28: Verificacion capacidad portante miaria

28

6.1 CALCULO DE LA CAPACIDAD ADMISIBLE

DATOS GENERALES

======================================================

Ancho cimentación 1.5 m

Largo cimentación 1.5 m

Profundidad plano de cimentación 1.5 m

Altura de encaje 1.5 m

Inclinación plano de cimentación 0.0°

Inclinación talud 0.0°

Factor de seguridad (Fc) 3.0

Factor de seguridad (Fq) 3.0

Factor de seguridad (Fg) 3.0

Aceleración máxima horizontal 0.15 Asientos después de T años 5.0

Profundidad nivel freático 0.8

==============================================================

ESTRATIGRAFIA TERRENO

DH: Espesor del estrato; Gam: Peso específico; Gams:Peso específico saturado; Fi: Ángulo de rozamiento interno;

Ficorr: Ángulo de rozamiento interno corregido según Terzaghi; c: Cohesión; c Corr: Cohesión corregida según

Page 29: Verificacion capacidad portante miaria

29

Terzaghi; Ey: Módulo elástico; Ed: Módulo edométrico; Ni: Poisson; Cv: Coef. consolidac. primaria; Cs: Coef. consolidación secundaria; cu: Cohesión sin drenar

DH

(m)

Gam

(kN/m³)

Gams

(kN/m³)

Fi

(°)

Fi Corr.

(°)

c

(kN/m²)

c Corr.

(kN/m²)

cu

(kN/m²)

3.0 18.0 19.71 0.0 0 32.02 21.453 0.0

Acciones de proyecto - Estado límite de daño [S.L.D.]

======================================================

Presión normal 60.04 kN/m²

======================================================

Acciones de proyecto - Estado límite último [S.L.U.] ======================================================

Presión normal 0.0 kN/m²

======================================================

CARGA ÚLTIMA SEGÚN HANSEN (1970) (Condición drenada)

======================================================

Factor Nq 1.0

Factor Nc 5.14

Factor Ng 0.0

Factor Sc 0.2

Factor Dc 0.4

====================================================== Presión última 197.76 kN/m²

Presión admisible 65.92 kN/m² = 0.68 kgr/cm²

======================================================

CARGA ÚLTIMA SEGÚN TERZAGHI (1955) (Condición drenada)

======================================================

Factor Nq 1.0

Factor Nc 5.7 Factor Ng 0.0

Factor Sc 1.3

Factor Sg 0.8

======================================================

Presión última 180.3 kN/m²

Presión admisible 60.1 kN/m² = 0.62 kgr/cm²

======================================================

CARGA ÚLTIMA SEGÚN MEYERHOF (1963) (Condición drenada) ======================================================

Factor Nq 1.0

Factor Nc 5.14

Factor Ng 0.0

Factor Sc 1.2

Factor Dc 1.2

Factor Sq 1.0

Factor Dq 1.0

Factor Sg 1.0

Factor Dg 1.0

====================================================== Presión última 180.12 kN/m²

Presión admisible 60.04 kN/m² = 0.62 kgr/cm²

======================================================

Page 30: Verificacion capacidad portante miaria

30

CARGA ÚLTIMA SEGÚN VESIC (1975) (Condición drenada) ======================================================

Factor Nq 1.0

Factor Nc 5.14

Factor Ng 0.0

Factor Sc 0.2

Factor Dc 0.4

======================================================

Presión última 197.76 kN/m²

Presión admisible 65.92 kN/m² = 0.68 kgr/cm²

======================================================

Carga última EC8 (Brinch - Hansen 1970) (Condición drenada)

======================================================

Factor Nq 1.0

Factor Nc 5.14

Factor Ng 0.0

Factor Sc 1.2

Factor Dc 0.4

Factor Ic 1.0

====================================================== Carga del proyecto[Vd] 0.00 kN/m²

Carga última cimentación [Rd] 153.66 kN/m²

Rd>=Vd Verificado

======================================================

LARGO =1.0

Carga admisible Hansen kN/m²

=================================================================================

D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0 =================================================================================

1.0 64.27 63.05 64.27 66.48 69.17 72.15 75.3 78.57 81.91

1.5 65.67 69.6 69.6 71.07 73.27 75.9 78.79 81.85 85.04

2.0 66.15 67.18 71.92 72.66 74.37 76.65 79.27 82.13 85.16

2.5 66.56 67.88 69.59 74.79 76.01 77.94 80.3 82.96 85.82

3.0 67.42 69.01 70.86 72.97 78.47 80.04 82.14 84.59 87.29

3.5 54.35 56.16 58.16 60.35 62.73 68.43 70.27 72.51 75.04

4.0 53.19 55.19 57.33 59.61 62.03 64.6 70.45 72.5 74.86

4.5 51.93 54.09 56.34 58.71 61.2 63.8 66.51 72.48 74.68

5.0 64.3 66.59 68.96 71.41 73.96 76.6 79.34 82.16 88.22

=================================================================================

Carga admisible Terzaghi kN/m²

=================================================================================

D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0

=================================================================================

1.0 58.45 46.22 46.22 46.22 46.22 46.22 46.22 46.22 46.22

1.5 60.1 47.87 47.87 47.87 47.87 47.87 47.87 47.87 47.87

2.0 58.75 46.52 46.52 46.52 46.52 46.52 46.52 46.52 46.52

2.5 57.94 45.71 45.71 45.71 45.71 45.71 45.71 45.71 45.71

3.0 57.94 45.71 45.71 45.71 45.71 45.71 45.71 45.71 45.71

3.5 44.23 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0

4.0 42.58 30.35 30.35 30.35 30.35 30.35 30.35 30.35 30.35 4.5 40.93 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7

5.0 52.99 40.76 40.76 40.76 40.76 40.76 40.76 40.76 40.76

=================================================================================

Page 31: Verificacion capacidad portante miaria

31

Carga admisible Meyerhof kN/m²

=================================================================================

D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0

=================================================================================

1.0 58.39 59.62 62.07 65.01 68.19 71.52 74.93 78.4 81.91

1.5 64.45 64.45 66.29 68.86 71.8 74.95 78.24 81.6 85.04

2.0 67.51 66.29 67.51 69.72 72.41 75.39 78.54 81.81 85.16

2.5 71.11 68.66 69.28 71.11 73.56 76.36 79.38 82.55 85.82

3.0 75.52 71.85 71.85 73.32 75.52 78.15 81.04 84.1 87.29

3.5 66.22 61.32 60.71 61.81 63.77 66.22 68.98 71.94 75.04

4.0 68.98 62.86 61.63 62.37 64.08 66.36 68.98 71.84 74.86

4.5 71.74 64.39 62.55 62.92 64.39 66.49 68.99 71.74 74.68 5.0 88.22 79.64 77.19 77.19 78.41 80.34 82.7 85.36 88.22

=================================================================================

Carga admisible Vesic kN/m²

=================================================================================

D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0

=================================================================================

1.0 64.27 63.05 64.27 66.48 69.17 72.15 75.3 78.57 81.91

1.5 65.67 69.6 69.6 71.07 73.27 75.9 78.79 81.85 85.04

2.0 66.15 67.18 71.92 72.66 74.37 76.65 79.27 82.13 85.16

2.5 66.56 67.88 69.59 74.79 76.01 77.94 80.3 82.96 85.82 3.0 67.42 69.01 70.86 72.97 78.47 80.04 82.14 84.59 87.29

3.5 54.35 56.16 58.16 60.35 62.73 68.43 70.27 72.51 75.04

4.0 53.19 55.19 57.33 59.61 62.03 64.6 70.45 72.5 74.86

4.5 51.93 54.09 56.34 58.71 61.2 63.8 66.51 72.48 74.68

5.0 64.3 66.59 68.96 71.41 73.96 76.6 79.34 82.16 88.22

=================================================================================

LARGO =1.5

Carga admisible Hansen kN/m²

=================================================================================

D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0 =================================================================================

1.0 61.82 59.37 59.37 60.35 61.82 63.57 65.5 67.54 69.66

1.5 63.22 65.92 64.7 64.94 65.92 67.32 68.98 70.82 72.78

2.0 63.7 63.5 67.02 66.53 67.02 68.07 69.47 71.11 72.9

2.5 64.11 64.21 64.68 68.66 68.66 69.36 70.5 71.93 73.56

3.0 64.97 65.34 65.96 66.84 71.11 71.46 72.34 73.56 75.03

3.5 51.9 52.49 53.26 54.22 55.37 59.85 60.46 61.49 62.79

4.0 50.74 51.52 52.43 53.48 54.68 56.02 60.65 61.47 62.61

4.5 49.48 50.41 51.44 52.59 53.85 55.22 56.71 61.45 62.43

5.0 61.85 62.92 64.06 65.29 66.61 68.03 69.53 71.13 75.96

=================================================================================

Carga admisible Terzaghi kN/m²

=================================================================================

D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0

=================================================================================

1.0 46.22 58.45 46.22 46.22 46.22 46.22 46.22 46.22 46.22

1.5 47.87 60.1 47.87 47.87 47.87 47.87 47.87 47.87 47.87

2.0 46.52 58.75 46.52 46.52 46.52 46.52 46.52 46.52 46.52

2.5 45.71 57.94 45.71 45.71 45.71 45.71 45.71 45.71 45.71

3.0 45.71 57.94 45.71 45.71 45.71 45.71 45.71 45.71 45.71

3.5 32.0 44.23 32.0 32.0 32.0 32.0 32.0 32.0 32.0

4.0 30.35 42.58 30.35 30.35 30.35 30.35 30.35 30.35 30.35

Page 32: Verificacion capacidad portante miaria

32

4.5 28.7 40.93 28.7 28.7 28.7 28.7 28.7 28.7 28.7 5.0 40.76 52.99 40.76 40.76 40.76 40.76 40.76 40.76 40.76

=================================================================================

Carga admisible Meyerhof kN/m²

=================================================================================

D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0

=================================================================================

1.0 55.45 55.45 56.67 58.39 60.35 62.45 64.64 66.88 69.17

1.5 61.27 60.04 60.65 62.0 63.72 65.64 67.7 69.84 72.05

2.0 64.08 61.63 61.63 62.61 64.08 65.83 67.76 69.8 71.92

2.5 67.44 63.76 63.15 63.76 64.99 66.56 68.36 70.3 72.34

3.0 71.6 66.7 65.48 65.72 66.7 68.1 69.77 71.6 73.56 3.5 62.06 55.93 54.09 53.97 54.71 55.93 57.46 59.2 61.08

4.0 64.57 57.22 54.77 54.28 54.77 55.82 57.22 58.85 60.65

4.5 67.09 58.51 55.45 54.59 54.84 55.71 56.98 58.51 60.23

5.0 83.32 73.51 69.84 68.61 68.61 69.31 70.45 71.88 73.51

=================================================================================

Carga admisible Vesic kN/m²

=================================================================================

D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0

=================================================================================

1.0 61.82 59.37 59.37 60.35 61.82 63.57 65.5 67.54 69.66 1.5 63.22 65.92 64.7 64.94 65.92 67.32 68.98 70.82 72.78

2.0 63.7 63.5 67.02 66.53 67.02 68.07 69.47 71.11 72.9

2.5 64.11 64.21 64.68 68.66 68.66 69.36 70.5 71.93 73.56

3.0 64.97 65.34 65.96 66.84 71.11 71.46 72.34 73.56 75.03

3.5 51.9 52.49 53.26 54.22 55.37 59.85 60.46 61.49 62.79

4.0 50.74 51.52 52.43 53.48 54.68 56.02 60.65 61.47 62.61

4.5 49.48 50.41 51.44 52.59 53.85 55.22 56.71 61.45 62.43

5.0 61.85 62.92 64.06 65.29 66.61 68.03 69.53 71.13 75.96

=================================================================================

LARGO =2.0

Carga admisible Hansen kN/m²

=================================================================================

D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0

=================================================================================

1.0 60.6 57.53 56.92 57.29 58.14 59.28 60.6 62.02 63.54

1.5 61.99 64.08 62.25 61.88 62.25 63.03 64.08 65.31 66.66

2.0 62.47 61.67 64.57 63.47 63.35 63.78 64.57 65.59 66.78

2.5 62.88 62.37 62.23 65.6 64.99 65.08 65.6 66.42 67.44

3.0 63.75 63.5 63.51 63.78 67.44 67.18 67.44 68.05 68.91

3.5 50.67 50.65 50.81 51.16 51.7 55.56 55.56 55.97 56.67

4.0 49.51 49.68 49.97 50.42 51.01 51.74 55.75 55.95 56.49 4.5 48.25 48.57 48.99 49.52 50.17 50.94 51.81 55.94 56.31

5.0 60.63 61.08 61.61 62.22 62.93 63.74 64.63 65.62 69.84

=================================================================================

Carga admisible Terzaghi kN/m²

=================================================================================

D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0

=================================================================================

1.0 46.22 46.22 58.45 46.22 46.22 46.22 46.22 46.22 46.22

1.5 47.87 47.87 60.1 47.87 47.87 47.87 47.87 47.87 47.87

2.0 46.52 46.52 58.75 46.52 46.52 46.52 46.52 46.52 46.52

2.5 45.71 45.71 57.94 45.71 45.71 45.71 45.71 45.71 45.71

Page 33: Verificacion capacidad portante miaria

33

3.0 45.71 45.71 57.94 45.71 45.71 45.71 45.71 45.71 45.71 3.5 32.0 32.0 44.23 32.0 32.0 32.0 32.0 32.0 32.0

4.0 30.35 30.35 42.58 30.35 30.35 30.35 30.35 30.35 30.35

4.5 28.7 28.7 40.93 28.7 28.7 28.7 28.7 28.7 28.7

5.0 40.76 40.76 52.99 40.76 40.76 40.76 40.76 40.76 40.76

=================================================================================

Carga admisible Meyerhof kN/m²

=================================================================================

D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0

=================================================================================

1.0 53.98 53.37 53.98 55.08 56.43 57.92 59.49 61.13 62.8

1.5 59.67 57.84 57.84 58.57 59.67 60.99 62.43 63.96 65.55 2.0 62.37 59.3 58.69 59.06 59.92 61.05 62.37 63.8 65.31

2.5 65.6 61.31 60.09 60.09 60.7 61.66 62.84 64.17 65.6

3.0 69.64 64.13 62.29 61.92 62.29 63.08 64.13 65.36 66.7

3.5 59.97 53.24 50.78 50.05 50.17 50.78 51.7 52.83 54.09

4.0 62.37 54.4 51.34 50.24 50.11 50.55 51.34 52.36 53.55

4.5 64.76 55.57 51.89 50.42 50.06 50.32 50.98 51.89 53.0

5.0 80.87 70.45 66.16 64.32 63.71 63.8 64.32 65.14 66.16

=================================================================================

Carga admisible Vesic kN/m²

================================================================================= D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0

=================================================================================

1.0 60.6 57.53 56.92 57.29 58.14 59.28 60.6 62.02 63.54

1.5 61.99 64.08 62.25 61.88 62.25 63.03 64.08 65.31 66.66

2.0 62.47 61.67 64.57 63.47 63.35 63.78 64.57 65.59 66.78

2.5 62.88 62.37 62.23 65.6 64.99 65.08 65.6 66.42 67.44

3.0 63.75 63.5 63.51 63.78 67.44 67.18 67.44 68.05 68.91

3.5 50.67 50.65 50.81 51.16 51.7 55.56 55.56 55.97 56.67

4.0 49.51 49.68 49.97 50.42 51.01 51.74 55.75 55.95 56.49

4.5 48.25 48.57 48.99 49.52 50.17 50.94 51.81 55.94 56.31

5.0 60.63 61.08 61.61 62.22 62.93 63.74 64.63 65.62 69.84

=================================================================================

LARGO =2.5

Carga admisible Hansen kN/m²

=================================================================================

D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0

=================================================================================

1.0 59.86 56.43 55.45 55.45 55.94 56.71 57.65 58.72 59.86

1.5 61.26 62.98 60.78 60.04 60.04 60.46 61.14 62.0 62.98

2.0 61.74 60.56 63.1 61.63 61.14 61.21 61.63 62.29 63.1

2.5 62.15 61.27 60.76 63.76 62.78 62.5 62.66 63.11 63.76 3.0 63.01 62.4 62.04 61.94 65.23 64.6 64.5 64.74 65.23

3.5 49.94 49.55 49.34 49.32 49.49 52.99 52.62 52.66 52.99

4.0 48.78 48.58 48.5 48.58 48.8 49.16 52.81 52.65 52.81

4.5 47.52 47.47 47.52 47.69 47.97 48.36 48.87 52.63 52.63

5.0 59.89 59.98 60.14 60.39 60.73 61.16 61.69 62.31 66.16

=================================================================================

Carga admisible Terzaghi kN/m²

=================================================================================

D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0

=================================================================================

1.0 46.22 46.22 46.22 58.45 46.22 46.22 46.22 46.22 46.22

Page 34: Verificacion capacidad portante miaria

34

1.5 47.87 47.87 47.87 60.1 47.87 47.87 47.87 47.87 47.87 2.0 46.52 46.52 46.52 58.75 46.52 46.52 46.52 46.52 46.52

2.5 45.71 45.71 45.71 57.94 45.71 45.71 45.71 45.71 45.71

3.0 45.71 45.71 45.71 57.94 45.71 45.71 45.71 45.71 45.71

3.5 32.0 32.0 32.0 44.23 32.0 32.0 32.0 32.0 32.0

4.0 30.35 30.35 30.35 42.58 30.35 30.35 30.35 30.35 30.35

4.5 28.7 28.7 28.7 40.93 28.7 28.7 28.7 28.7 28.7

5.0 40.76 40.76 40.76 52.99 40.76 40.76 40.76 40.76 40.76

=================================================================================

Carga admisible Meyerhof kN/m²

=================================================================================

D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0 =================================================================================

1.0 53.1 52.12 52.36 53.1 54.08 55.2 56.41 57.67 58.98

1.5 58.72 56.51 56.14 56.51 57.25 58.19 59.27 60.43 61.66

2.0 61.34 57.91 56.93 56.93 57.42 58.19 59.13 60.19 61.34

2.5 64.5 59.84 58.25 57.88 58.13 58.72 59.54 60.5 61.56

3.0 68.47 62.59 60.38 59.65 59.65 60.07 60.75 61.61 62.59

3.5 58.72 51.62 48.8 47.7 47.45 47.7 48.25 49.0 49.9

4.0 61.04 52.71 49.28 47.81 47.32 47.39 47.81 48.46 49.28

4.5 63.36 53.81 49.76 47.92 47.19 47.08 47.37 47.92 48.66

5.0 79.39 68.61 63.96 61.75 60.77 60.49 60.65 61.1 61.75

=================================================================================

Carga admisible Vesic kN/m²

=================================================================================

D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0

=================================================================================

1.0 59.86 56.43 55.45 55.45 55.94 56.71 57.65 58.72 59.86

1.5 61.26 62.98 60.78 60.04 60.04 60.46 61.14 62.0 62.98

2.0 61.74 60.56 63.1 61.63 61.14 61.21 61.63 62.29 63.1

2.5 62.15 61.27 60.76 63.76 62.78 62.5 62.66 63.11 63.76

3.0 63.01 62.4 62.04 61.94 65.23 64.6 64.5 64.74 65.23

3.5 49.94 49.55 49.34 49.32 49.49 52.99 52.62 52.66 52.99

4.0 48.78 48.58 48.5 48.58 48.8 49.16 52.81 52.65 52.81 4.5 47.52 47.47 47.52 47.69 47.97 48.36 48.87 52.63 52.63

5.0 59.89 59.98 60.14 60.39 60.73 61.16 61.69 62.31 66.16

=================================================================================

LARGO =3.0

Carga admisible Hansen kN/m²

=================================================================================

D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0

=================================================================================

1.0 59.37 55.69 54.47 54.22 54.47 54.99 55.69 56.51 57.41 1.5 60.77 62.25 59.8 58.82 58.57 58.75 59.18 59.8 60.53

2.0 61.25 59.83 62.12 60.41 59.67 59.5 59.67 60.08 60.65

2.5 61.66 60.53 59.78 62.54 61.31 60.79 60.7 60.9 61.31

3.0 62.52 61.66 61.06 60.71 63.76 62.89 62.54 62.54 62.78

3.5 49.45 48.81 48.36 48.1 48.02 51.27 50.66 50.46 50.54

4.0 48.29 47.84 47.52 47.35 47.33 47.45 50.85 50.44 50.36

4.5 47.03 46.73 46.54 46.46 46.5 46.65 46.91 50.42 50.18

5.0 59.4 59.24 59.16 59.16 59.26 59.45 59.73 60.1 63.71

=================================================================================

Carga admisible Terzaghi kN/m²

=================================================================================

Page 35: Verificacion capacidad portante miaria

35

D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0 =================================================================================

1.0 46.22 46.22 46.22 46.22 58.45 46.22 46.22 46.22 46.22

1.5 47.87 47.87 47.87 47.87 60.1 47.87 47.87 47.87 47.87

2.0 46.52 46.52 46.52 46.52 58.75 46.52 46.52 46.52 46.52

2.5 45.71 45.71 45.71 45.71 57.94 45.71 45.71 45.71 45.71

3.0 45.71 45.71 45.71 45.71 57.94 45.71 45.71 45.71 45.71

3.5 32.0 32.0 32.0 32.0 44.23 32.0 32.0 32.0 32.0

4.0 30.35 30.35 30.35 30.35 42.58 30.35 30.35 30.35 30.35

4.5 28.7 28.7 28.7 28.7 40.93 28.7 28.7 28.7 28.7

5.0 40.76 40.76 40.76 40.76 52.99 40.76 40.76 40.76 40.76

=================================================================================

Carga admisible Meyerhof kN/m²

=================================================================================

D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0

=================================================================================

1.0 52.51 51.28 51.28 51.77 52.51 53.38 54.35 55.37 56.43

1.5 58.08 55.63 55.02 55.14 55.63 56.33 57.16 58.08 59.06

2.0 60.65 56.98 55.75 55.51 55.75 56.28 56.98 57.79 58.69

2.5 63.76 58.86 57.02 56.41 56.41 56.76 57.33 58.04 58.86

3.0 67.68 61.56 59.11 58.13 57.88 58.06 58.49 59.11 59.84

3.5 57.89 50.54 47.48 46.13 45.64 45.64 45.95 46.46 47.11

4.0 60.16 51.58 47.91 46.19 45.46 45.28 45.46 45.87 46.44 4.5 62.43 52.63 48.34 46.26 45.28 44.93 44.97 45.28 45.77

5.0 78.41 67.39 62.49 60.04 58.81 58.29 58.2 58.4 58.81

=================================================================================

Carga admisible Vesic kN/m²

=================================================================================

D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0

=================================================================================

1.0 59.37 55.69 54.47 54.22 54.47 54.99 55.69 56.51 57.41

1.5 60.77 62.25 59.8 58.82 58.57 58.75 59.18 59.8 60.53

2.0 61.25 59.83 62.12 60.41 59.67 59.5 59.67 60.08 60.65

2.5 61.66 60.53 59.78 62.54 61.31 60.79 60.7 60.9 61.31 3.0 62.52 61.66 61.06 60.71 63.76 62.89 62.54 62.54 62.78

3.5 49.45 48.81 48.36 48.1 48.02 51.27 50.66 50.46 50.54

4.0 48.29 47.84 47.52 47.35 47.33 47.45 50.85 50.44 50.36

4.5 47.03 46.73 46.54 46.46 46.5 46.65 46.91 50.42 50.18

5.0 59.4 59.24 59.16 59.16 59.26 59.45 59.73 60.1 63.71

=================================================================================

LARGO =3.5

Carga admisible Hansen kN/m²

================================================================================= D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0

=================================================================================

1.0 59.02 55.17 53.77 53.35 53.42 53.77 54.29 54.94 55.66

1.5 60.42 61.72 59.1 57.94 57.52 57.52 57.78 58.22 58.78

2.0 60.9 59.3 61.42 59.53 58.62 58.27 58.27 58.5 58.9

2.5 61.31 60.01 59.08 61.66 60.26 59.56 59.3 59.33 59.56

3.0 62.17 61.14 60.36 59.84 62.71 61.66 61.14 60.96 61.03

3.5 49.1 48.29 47.66 47.22 46.97 50.05 49.26 48.88 48.79

4.0 47.94 47.32 46.82 46.48 46.28 46.22 49.45 48.87 48.61

4.5 46.67 46.21 45.84 45.58 45.45 45.42 45.51 48.85 48.43

5.0 59.05 58.72 58.46 58.29 58.21 58.22 58.33 58.53 61.96

=================================================================================

Page 36: Verificacion capacidad portante miaria

36

Carga admisible Terzaghi kN/m²

=================================================================================

D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0

=================================================================================

1.0 46.22 46.22 46.22 46.22 46.22 58.45 46.22 46.22 46.22

1.5 47.87 47.87 47.87 47.87 47.87 60.1 47.87 47.87 47.87

2.0 46.52 46.52 46.52 46.52 46.52 58.75 46.52 46.52 46.52

2.5 45.71 45.71 45.71 45.71 45.71 57.94 45.71 45.71 45.71

3.0 45.71 45.71 45.71 45.71 45.71 57.94 45.71 45.71 45.71

3.5 32.0 32.0 32.0 32.0 32.0 44.23 32.0 32.0 32.0

4.0 30.35 30.35 30.35 30.35 30.35 42.58 30.35 30.35 30.35

4.5 28.7 28.7 28.7 28.7 28.7 40.93 28.7 28.7 28.7 5.0 40.76 40.76 40.76 40.76 40.76 52.99 40.76 40.76 40.76

=================================================================================

Carga admisible Meyerhof kN/m²

=================================================================================

D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0

=================================================================================

1.0 52.09 50.69 50.51 50.83 51.39 52.09 52.88 53.72 54.61

1.5 57.63 55.0 54.21 54.16 54.47 55.0 55.66 56.4 57.2

2.0 60.16 56.31 54.91 54.49 54.56 54.91 55.44 56.08 56.8

2.5 63.24 58.16 56.15 55.36 55.19 55.36 55.75 56.29 56.94 3.0 67.12 60.82 58.2 57.04 56.62 56.62 56.88 57.32 57.88

3.5 57.3 49.77 46.53 45.01 44.34 44.17 44.3 44.64 45.11

4.0 59.53 50.78 46.93 45.04 44.13 43.78 43.78 44.01 44.41

4.5 61.77 51.79 47.33 45.07 43.91 43.39 43.26 43.39 43.7

5.0 77.71 66.51 61.44 58.81 57.41 56.71 56.45 56.48 56.71

=================================================================================

Carga admisible Vesic kN/m²

=================================================================================

D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0

=================================================================================

1.0 59.02 55.17 53.77 53.35 53.42 53.77 54.29 54.94 55.66 1.5 60.42 61.72 59.1 57.94 57.52 57.52 57.78 58.22 58.78

2.0 60.9 59.3 61.42 59.53 58.62 58.27 58.27 58.5 58.9

2.5 61.31 60.01 59.08 61.66 60.26 59.56 59.3 59.33 59.56

3.0 62.17 61.14 60.36 59.84 62.71 61.66 61.14 60.96 61.03

3.5 49.1 48.29 47.66 47.22 46.97 50.05 49.26 48.88 48.79

4.0 47.94 47.32 46.82 46.48 46.28 46.22 49.45 48.87 48.61

4.5 46.67 46.21 45.84 45.58 45.45 45.42 45.51 48.85 48.43

5.0 59.05 58.72 58.46 58.29 58.21 58.22 58.33 58.53 61.96

=================================================================================

LARGO =4.0

Carga admisible Hansen kN/m²

=================================================================================

D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0

=================================================================================

1.0 58.76 54.78 53.24 52.69 52.63 52.85 53.24 53.75 54.35

1.5 60.16 61.33 58.57 57.28 56.73 56.6 56.73 57.04 57.47

2.0 60.63 58.91 60.9 58.87 57.83 57.35 57.22 57.32 57.59

2.5 61.05 59.61 58.56 61.01 59.47 58.64 58.25 58.15 58.25

3.0 61.91 60.74 59.83 59.18 61.92 60.74 60.09 59.78 59.72

3.5 48.84 47.89 47.13 46.57 46.19 49.13 48.21 47.7 47.48

4.0 47.68 46.92 46.3 45.82 45.49 45.3 48.4 47.68 47.3

Page 37: Verificacion capacidad portante miaria

37

4.5 46.41 45.82 45.32 44.93 44.66 44.5 44.46 47.67 47.12 5.0 58.79 58.32 57.93 57.63 57.42 57.3 57.28 57.35 60.65

=================================================================================

Carga admisible Terzaghi kN/m²

=================================================================================

D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0

=================================================================================

1.0 46.22 46.22 46.22 46.22 46.22 46.22 58.45 46.22 46.22

1.5 47.87 47.87 47.87 47.87 47.87 47.87 60.1 47.87 47.87

2.0 46.52 46.52 46.52 46.52 46.52 46.52 58.75 46.52 46.52

2.5 45.71 45.71 45.71 45.71 45.71 45.71 57.94 45.71 45.71

3.0 45.71 45.71 45.71 45.71 45.71 45.71 57.94 45.71 45.71 3.5 32.0 32.0 32.0 32.0 32.0 32.0 44.23 32.0 32.0

4.0 30.35 30.35 30.35 30.35 30.35 30.35 42.58 30.35 30.35

4.5 28.7 28.7 28.7 28.7 28.7 28.7 40.93 28.7 28.7

5.0 40.76 40.76 40.76 40.76 40.76 40.76 52.99 40.76 40.76

=================================================================================

Carga admisible Meyerhof kN/m²

=================================================================================

D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0

=================================================================================

1.0 51.77 50.24 49.94 50.12 50.55 51.12 51.77 52.49 53.24 1.5 57.28 54.53 53.61 53.42 53.61 54.0 54.53 55.14 55.81

2.0 59.79 55.81 54.28 53.73 53.67 53.89 54.28 54.79 55.38

2.5 62.84 57.64 55.49 54.57 54.27 54.31 54.57 54.98 55.49

3.0 66.7 60.27 57.51 56.23 55.68 55.54 55.68 55.98 56.41

3.5 56.85 49.19 45.82 44.17 43.37 43.07 43.07 43.27 43.62

4.0 59.06 50.18 46.19 44.17 43.13 42.65 42.52 42.62 42.89

4.5 61.27 51.16 46.56 44.18 42.89 42.23 41.97 41.97 42.15

5.0 77.19 65.86 60.65 57.89 56.36 55.53 55.14 55.03 55.14

=================================================================================

Carga admisible Vesic kN/m²

================================================================================= D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0

=================================================================================

1.0 58.76 54.78 53.24 52.69 52.63 52.85 53.24 53.75 54.35

1.5 60.16 61.33 58.57 57.28 56.73 56.6 56.73 57.04 57.47

2.0 60.63 58.91 60.9 58.87 57.83 57.35 57.22 57.32 57.59

2.5 61.05 59.61 58.56 61.01 59.47 58.64 58.25 58.15 58.25

3.0 61.91 60.74 59.83 59.18 61.92 60.74 60.09 59.78 59.72

3.5 48.84 47.89 47.13 46.57 46.19 49.13 48.21 47.7 47.48

4.0 47.68 46.92 46.3 45.82 45.49 45.3 48.4 47.68 47.3

4.5 46.41 45.82 45.32 44.93 44.66 44.5 44.46 47.67 47.12

5.0 58.79 58.32 57.93 57.63 57.42 57.3 57.28 57.35 60.65 =================================================================================

LARGO =4.5

Carga admisible Hansen kN/m²

=================================================================================

D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0

=================================================================================

1.0 58.55 54.47 52.84 52.18 52.02 52.14 52.43 52.84 53.33

1.5 59.95 61.02 58.16 56.77 56.12 55.89 55.92 56.12 56.45

2.0 60.43 58.6 60.49 58.36 57.22 56.64 56.4 56.4 56.57

2.5 60.84 59.31 58.15 60.5 58.86 57.93 57.43 57.23 57.23

Page 38: Verificacion capacidad portante miaria

38

3.0 61.71 60.44 59.43 58.67 61.31 60.03 59.27 58.86 58.7 3.5 48.63 47.59 46.73 46.06 45.57 48.42 47.4 46.78 46.46

4.0 47.47 46.62 45.89 45.31 44.88 44.59 47.58 46.77 46.28

4.5 46.21 45.51 44.91 44.42 44.05 43.79 43.64 46.75 46.1

5.0 58.58 58.02 57.52 57.12 56.81 56.59 56.47 56.43 59.63

=================================================================================

Carga admisible Terzaghi kN/m²

=================================================================================

D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0

=================================================================================

1.0 46.22 46.22 46.22 46.22 46.22 46.22 46.22 58.45 46.22

1.5 47.87 47.87 47.87 47.87 47.87 47.87 47.87 60.1 47.87 2.0 46.52 46.52 46.52 46.52 46.52 46.52 46.52 58.75 46.52

2.5 45.71 45.71 45.71 45.71 45.71 45.71 45.71 57.94 45.71

3.0 45.71 45.71 45.71 45.71 45.71 45.71 45.71 57.94 45.71

3.5 32.0 32.0 32.0 32.0 32.0 32.0 32.0 44.23 32.0

4.0 30.35 30.35 30.35 30.35 30.35 30.35 30.35 42.58 30.35

4.5 28.7 28.7 28.7 28.7 28.7 28.7 28.7 40.93 28.7

5.0 40.76 40.76 40.76 40.76 40.76 40.76 40.76 52.99 40.76

=================================================================================

Carga admisible Meyerhof kN/m²

================================================================================= D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0

=================================================================================

1.0 51.53 49.9 49.49 49.57 49.9 50.36 50.92 51.53 52.18

1.5 57.02 54.16 53.14 52.85 52.93 53.23 53.65 54.16 54.73

2.0 59.51 55.42 53.79 53.14 52.97 53.09 53.38 53.79 54.28

2.5 62.54 57.23 54.98 53.96 53.55 53.49 53.65 53.96 54.37

3.0 66.38 59.84 56.98 55.59 54.94 54.71 54.74 54.94 55.27

3.5 56.5 48.74 45.27 43.52 42.62 42.21 42.11 42.21 42.45

4.0 58.69 49.71 45.62 43.5 42.35 41.77 41.54 41.54 41.7

4.5 60.88 50.67 45.97 43.48 42.09 41.33 40.97 40.87 40.95

5.0 76.78 65.35 60.04 57.18 55.54 54.61 54.11 53.91 53.91

=================================================================================

Carga admisible Vesic kN/m²

=================================================================================

D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0

=================================================================================

1.0 58.55 54.47 52.84 52.18 52.02 52.14 52.43 52.84 53.33

1.5 59.95 61.02 58.16 56.77 56.12 55.89 55.92 56.12 56.45

2.0 60.43 58.6 60.49 58.36 57.22 56.64 56.4 56.4 56.57

2.5 60.84 59.31 58.15 60.5 58.86 57.93 57.43 57.23 57.23

3.0 61.71 60.44 59.43 58.67 61.31 60.03 59.27 58.86 58.7

3.5 48.63 47.59 46.73 46.06 45.57 48.42 47.4 46.78 46.46 4.0 47.47 46.62 45.89 45.31 44.88 44.59 47.58 46.77 46.28

4.5 46.21 45.51 44.91 44.42 44.05 43.79 43.64 46.75 46.1

5.0 58.58 58.02 57.52 57.12 56.81 56.59 56.47 56.43 59.63

=================================================================================

LARGO =5.0

Carga admisible Hansen kN/m²

=================================================================================

D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0

=================================================================================

1.0 58.39 54.22 52.51 51.77 51.53 51.56 51.77 52.1 52.51

Page 39: Verificacion capacidad portante miaria

39

1.5 59.79 60.78 57.84 56.36 55.63 55.31 55.26 55.38 55.63 2.0 60.27 58.36 60.16 57.96 56.73 56.07 55.75 55.67 55.75

2.5 60.68 59.06 57.82 60.09 58.37 57.36 56.78 56.49 56.41

3.0 61.54 60.19 59.1 58.26 60.82 59.46 58.62 58.13 57.88

3.5 48.47 47.34 46.4 45.65 45.08 47.84 46.74 46.05 45.64

4.0 47.31 46.37 45.56 44.9 44.39 44.02 46.93 46.03 45.46

4.5 46.04 45.26 44.58 44.01 43.56 43.22 42.99 46.01 45.28

5.0 58.42 57.77 57.2 56.71 56.32 56.02 55.81 55.69 58.81

=================================================================================

Carga admisible Terzaghi kN/m²

=================================================================================

D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0 =================================================================================

1.0 46.22 46.22 46.22 46.22 46.22 46.22 46.22 46.22 58.45

1.5 47.87 47.87 47.87 47.87 47.87 47.87 47.87 47.87 60.1

2.0 46.52 46.52 46.52 46.52 46.52 46.52 46.52 46.52 58.75

2.5 45.71 45.71 45.71 45.71 45.71 45.71 45.71 45.71 57.94

3.0 45.71 45.71 45.71 45.71 45.71 45.71 45.71 45.71 57.94

3.5 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 44.23

4.0 30.35 30.35 30.35 30.35 30.35 30.35 30.35 30.35 42.58

4.5 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7 40.93

5.0 40.76 40.76 40.76 40.76 40.76 40.76 40.76 40.76 52.99

=================================================================================

Carga admisible Meyerhof kN/m²

=================================================================================

D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0

=================================================================================

1.0 51.33 49.62 49.13 49.13 49.37 49.76 50.23 50.76 51.33

1.5 56.81 53.87 52.76 52.4 52.4 52.61 52.95 53.38 53.87

2.0 59.28 55.11 53.4 52.66 52.42 52.45 52.66 52.99 53.4

2.5 62.29 56.9 54.57 53.47 52.98 52.84 52.92 53.14 53.47

3.0 66.11 59.5 56.56 55.09 54.35 54.04 53.99 54.11 54.35

3.5 56.22 48.38 44.83 42.99 42.01 41.52 41.34 41.36 41.52

4.0 58.4 49.33 45.16 42.96 41.73 41.07 40.75 40.67 40.75 4.5 60.57 50.28 45.5 42.93 41.46 40.62 40.17 39.99 39.99

5.0 76.45 64.94 59.55 56.61 54.89 53.88 53.3 53.01 52.93

=================================================================================

Carga admisible Vesic kN/m²

=================================================================================

D B=1.0 B=1.5 B=2.0 B=2.5 B=3.0 B=3.5 B=4.0 B=4.5 B=5.0

=================================================================================

1.0 58.39 54.22 52.51 51.77 51.53 51.56 51.77 52.1 52.51

1.5 59.79 60.78 57.84 56.36 55.63 55.31 55.26 55.38 55.63

2.0 60.27 58.36 60.16 57.96 56.73 56.07 55.75 55.67 55.75 2.5 60.68 59.06 57.82 60.09 58.37 57.36 56.78 56.49 56.41

3.0 61.54 60.19 59.1 58.26 60.82 59.46 58.62 58.13 57.88

3.5 48.47 47.34 46.4 45.65 45.08 47.84 46.74 46.05 45.64

4.0 47.31 46.37 45.56 44.9 44.39 44.02 46.93 46.03 45.46

4.5 46.04 45.26 44.58 44.01 43.56 43.22 42.99 46.01 45.28

5.0 58.42 57.77 57.2 56.71 56.32 56.02 55.81 55.69 58.81

=================================================================================

Page 40: Verificacion capacidad portante miaria

40

7.0 ASENTAMIENTOS.

ASIENTOS ELÁSTICOS

Los asentamientos de una cimentación rectangular de dimensiones BL puesta en la superficie de un semiespacio elástico se pueden calcular con base en una ecuación basada en la teoría de la elasticidad

(Timoshenko e Goodier (1951)):

donde:

q0 = Intensidad de la presión de contacto

B' = Mínima dimensión del área reactiva,

E e = Parámetros elásticos del terreno.

Ii = Coeficientes de influencia dependientes de: L'/B', espesor del estrato H, coeficiente de Poisson ,

profundidad del nivel de cimentación D;

Los coeficientes I1 y I2 se pueden calcular utilizando las ecuaciones de Steinbrenner (1934) (V. Bowles), en

función de la relación L'/B' y H/B, utilizando B'=B/2 y L'=L/2 para los coeficientes relativos al centro y B'=B

y L'=L para los coeficientes relativos al borde.

El coeficiente de influencia IF deriva de las ecuaciones de Fox (1948), que indican el asiento se reduce con la

profundidad en función del coeficiente de Poisson y de la relación L/B.

Para simplificar la ecuación (1) se introduce el coeficiente IS:

El asentamiento del estrato de espesor H vale:

Para aproximar mejor los asientos se subdivide la base de apoyo de manera que el punto se encuentre en

correspondencia con un ángulo externo común a varios rectángulos. En práctica se multiplica por un factor

igual a 4 para el cálculo de los asentamientos en el centro y por un factor igual a 1 para los asentamientos en el

borde.

En el cálculo de los asientos se considera una profundidad del bulbo tensiones igual a 5B, si el substrato rocoso

se encuentra a una profundidad mayor.

A tal propósito se considera substrato rocoso el estrato que tiene un valor de E igual a 10 veces el del estrato que está por encima.

El módulo elástico para terrenos estratificados se calcula como promedio ponderado de los módulos elásticos

de los estratos interesados en el asiento inmediato.

ASIENTOS EDOMÉTRICOS

El cálculo de los asientos con el método edométrico permite valorar un asiento de consolidación de tipo

unidimensional, producto de las tensiones inducidas por una carga aplicada en condiciones de expansión lateral

(1) 21

21

1

21'0 F

IIIsE

BqH

21

21

1II

SI

FI

SI

SE

BqH21'

0

Page 41: Verificacion capacidad portante miaria

41

impedida. Por lo tanto la estimación efectuada con este método se debe considerar como empírica, en vez de teórica.

Sin embargo la simplicidad de uso y la facilidad de controlar la influencia de los varios parámetros que intervienen

en el cálculo, lo hacen un método muy difuso.

El procedimiento edométrico en el cálculo de los asientos pasa esencialmente a través de dos fases:

El cálculo de las tensiones verticales inducidas a las diferentes profundidades con la aplicación de la teoría de la elasticidad;

La valoración de los parámetros de compresibilidad con la prueba edométrica.

En referencia a los resultados de la prueba edométrica, el asentamiento se valora como:

si se trata de un terreno súper consolidado (OCR>1), o sea si el incremento de tensión debido a la aplicación de la

carga no hace superar la presión de preconsolidación ’p ( <’p).

Si en cambio el terreno es consolidado normal ( =’p) las deformaciones se dan en el tracto de compresión y

el asiento se valora como:

donde: RR Relación de recompresión;

CR Relación de compresión;

H0 espesor inicial del estrato;

’v0 tensión vertical eficaz antes de la aplicación de la carga;

v incremento de tensión vertical debido a la aplicación de la carga.

Como alternativa a los parámetros RR y CR se hace referencia al módulo edométrico M; pero en tal caso se debe

seleccionar oportunamente el valor del módulo a utilizar, teniendo en cuenta el intervalo tensional ( )

significativo para el problema en examen.

Para la aplicación correcta de este tipo de método es necesario:

a) la subdivisión de los estratos compresibles en una serie de pequeños estratos de modesto espesor (< 2.00 m);

b) la estimación del módulo edométrico en el ámbito de cada estrato;

c) el cálculo del asiento como suma de las contribuciones para cada pequeño estrato Muchos usan las expresiones antes indicadas para el cálculo del asentamiento de consolidación tanto para las

arcillas como para las arenas de granulometría de fina a media, porque el módulo de elasticidad usado viene

tomado directamente de pruebas de consolidación. Sin embargo, para terrenos con grano más grueso las

dimensiones de las pruebas edométricas son poco significativas del comportamiento global del estrato y, para las

arenas, es preferible utilizar pruebas penetrométricas estáticas y dinámicas.

Asiento secundario

El asiento secundario se calcula con referencia a la relación:

en donde:

Hc es la altura del estrato en fase de consolidación;

C es el coeficiente de consolidación secundaria como pendencia en el tracto secundario de la curva asiento-

logaritmo tiempo;

T tiempo en que se desea el asiento secundario;

'0

'0log

0v

vvRR

vv '

0

'

0v

'0

'0log

0v

vvCR

vv '

0

100

logT

TCcs

Page 42: Verificacion capacidad portante miaria

42

T100 tiempo necesario para terminar el proceso de consolidación primaria.

ASIENTOS DE SCHMERTMANN

Un método alternativo para calcular los asientos es el propuesto por Schmertmann (1970), el cual ha correlaciona

la variación del bulbo tensiones a la deformación. Schmertmann por lo tanto propone considerar un diagrama de

las deformaciones de forma triangular donde la profundidad a la cual se tienen deformaciones significativas se

toma como igual a 4B, en el caso de cimentaciones corridas, para cimentaciones cuadradas o circulares es igual a

2B.

Según este acercamiento el asiento se expresa con la siguiente ecuación:

en la cual:

q representa la carga neta aplicada a la cimentación;

Iz es un factor de deformación cuyo valor es nulo a la profundidad de 2B, para cimentaciones circulares o

cuadradas, y a profundidad 4B, para cimentaciones corridas (lineales).

El valor máximo de Iz se verifica a una profundidad respectivamente igual a:

B/2 para cimentaciones circulares o cuadradas

B para cimentaciones corridas

y vale

donde ’vi representa la tensión vertical eficaz a la profundidad B/2 para cimentaciones circulares o cuadradas, y

a profundidad B para cimentaciones corridas.

Ei representa el módulo de deformación del terreno correspondiente al estrato i-ésimo considerado en el cálculo;

zi representa el espesor del estrato i-ésimo;

C1 e C2 son dos coeficientes correctores.

El módulo E se considera igual a 2.5 qc para cimentaciones circulares o cuadradas e igual a 3.5 qc para

cimentaciones corridas. En los casos intermedios, se interpola en función del valor de L/B.

El término qc que interviene en la determinación de E representa la resistencia a la puntaza obtenida con la prueba

CPT.

Las expresiones de los dos coeficientes C1 y C2 son:

que toma en cuenta la profundidad del plano de cimentación.

que toma en cuenta las deformaciones diferidas en el tiempo por efecto secundario. En la expresión t representa el tiempo, expresado en años después de haber terminado la construcción, de acuerdo

con el cual se calcula el asentamiento.

E

zzIqCCw

21

5.0

'1.05.0max

vi

qzI

5.0q

'0v5.011C

1.0log2.01

2

tC

Page 43: Verificacion capacidad portante miaria

43

7.1 CALCULO DE ASENTAMIENTO

ASIENTOS POR ESTRATO

ASIENTOS POR ESTRATO

*Asiento edométrico calculado con: Método logarítmico de Terzaghi

Z: Profundidad promedio del estrato; Dp: Incremento de tensiones; Wc: Asiento de consolidación; Ws:Asiento

secundario (deformaciones viscosas); Wt: Asiento total.

Estrato Z

(m)

Tensión

(kN/m²)

Dp

(kN/m²)

Método Wc

(cm)

Ws

(cm)

Wt

(cm)

1 2.25 28.759 27.13 Edométrico 1.134 0.0 1.134

Asiento total Wt=1.134 cm

8.0 PROBLEMAS ESPECIALES DE LA CIMENTACIÓN

8.10 ATAQUE QUÍMICO POR SUELOS Y AGUAS SUBTERRÁNEAS AL CONCRETO

DE CIMENTACIÓN.

Del análisis de los resultados de los análisis químicos de los suelos: sulfatos y cloruros; se

puede afirmar que los suelos no son agresivos al concreto ni al acero de refuerzo, por lo que se

recomienda en esta zona usar cemento portland Tipo I.

Tabla de agresividad química del suelo

Presencia en el suelo de p.p.m. Grado de alteración Observaciones

Sulfatos (SO4)*

0 – 1,000

1000 – 2,000 2000 – 20,000

> 20,000

Leve

Moderado Severo

Muy severo

Ocasiona un ataque químico al concreto de la cimentación

Cloruros (CL)**

> 6,000 Perjudicial Ocasiona problemas de corrosión a

las armaduras o elementos metálicos.

Sales Solubles Totales (SST) > 1,500 Perjudicial Problemas al concreto y unidades de

albañilería.

* Comité 318-83 ACI.

** Experiencia existente.

Verificar esto en el proceso de construcción.

8.20 LICUEFACCIÓN DE SUELOS

En aplicación de la metodología establecida en la N.T. E.050 del Reglamento Nacional de

Edificaciones (R.N.E.), el fenómeno denominado licuación (pérdida momentánea de la

resistencia al corte del suelo), se presentan en suelos granulares finos ubicados bajo la napa

freática y en algunos suelos cohesivos.

Page 44: Verificacion capacidad portante miaria

44

Los suelos a evaluar de la zona no presenta el fenómeno de Licuefacción por no cumplir

criterios ni el criterio de Seed e Idriss (1982) – Método chino, que establece como criterio w >

0.9LL para licuación.

8.30 SUELOS COLAPSABLES

En aplicación de la metodología establecida en la N.T. E.050 del reglamento nacional de

edificaciones (R.N.E.), la relación entre los suelos colapsables y no colapsables y los

parámetros de límite líquido y densidad natural seca se muestra en la gráfica siguiente:

Del ensayo de límite líquido (ASTM D 2435) y de las características de suelo, efectuado a las

muestras M-2 de ARCILLA PLASTICIDAD MEDIA ARENOSA CL, se tiene:

Peso unitario seco del suelo d = 1.8 gr/cm3

Límite líquido del suelo LL = 40,26%

Evaluándose, No presentan características de un suelo colapsable.

8.40 POTENCIAL DE EXPANSIÓN

De acuerdo a Seed, Woodwuard y Lundgren, establecieron la siguiente tabla de potencial

de expansión determinada en laboratorio

INDICE DE

PLASTICIDAD

POTENCIAL DE

EXPANSION

0-15 BAJO

15-35 MEDIO

35-55 ALTO

Mas de 55 >55 MUY ALTO

Page 45: Verificacion capacidad portante miaria

45

Con los datos obtenidos en el laboratorio se tiene:

Comparando estos valores con los Índices Plásticos de los suelos encontrados (CL), se concluye

que el potencial de expansión es MEDIO.

9.0 RESUMEN DE RESULTADOS

C - 1 CLZAPATAS CON VIGAS DE

CIMENTACION0,68 Kg/cm² 0,62 Kg/cm² 0,62 Kg/cm² 0,68 Kg/cm² SI 1,134

C - 2 CLZAPATAS CON VIGAS DE

CIMENTACION0,68 Kg/cm² 0,62 Kg/cm² 0,62 Kg/cm² 0,68 Kg/cm² SI 1,134

Asentamien

to (cm)

Pozo a Cielo

abierto SUCS

Tipo de estructura

planteada

Carga Última

Según

Hansen

Carga Última

Según

Terzaghi

Presencia

de Nivel

Freatico

Carga Última

Según

Meyerhof

Carga Última

Según Vesic

CALICATA PROF. (m)

INDICE DE

PLASTICIDA

D

POTENCIAL DE EXPANSIÓN

C - 1 1.50 26.16 MEDIO

C - 2 1.50 26.16 MEDIO

Page 46: Verificacion capacidad portante miaria

46

10.0 CONCLUSIONES Y RECOMENDACIONES.

De acuerdo al resultado de los Cálculos, Características Físico– Mecánica de los

Suelos, se establecen las siguientes consideraciones finales:

1. El Presente Trabajo ha consistido en la verificación de la capacidad portante del terreno del

Proyecto: “INSTALACION DEL COMPLEJO DEPORTIVO EN LA CC. NN. MIARIA,

ZONAL BAJO URUBAMBA NORTE”, ubicado en el Distrito de Echarati, Provincia la

Convención y en el Departamento de Cusco.

2. El Perfil Estratigráfico que se presenta ha sido elaborado mediante la interpretación de

la estratigrafía encontrada en las calicatas. El subsuelo del área de estudio es homogéneo

en profundidad, estando conformado por ARCILLA PLASTICIDAD MEDIA ARENOSA

CL

3. Se recomienda que el tipo de cimentación a utilizar sea Zapatas con Vigas de

Cimentación, para evitarlos asentamientos diferenciales.

4. Se ha verificado la Presencia de nivel freático a 0.80 m., en tal sentido se recomienda

realizar sistemas de drenaje debido a la presencia de nivel freático y por la ocurrencia de

precipitaciones típicas de la zona

5. De los resultados de los análisis químicos, se deduce que bastará usar cemento Tipo I, en

todos los casos para la elaboración de los concreto..

6. La profundidad del plano de cimentación deberá ser de 1.50 m. como mínimo.

7. El asentamiento calculado en Vigas de Cimentación en un período de 5 años es de: 1.134

cm.

8. El esfuerzo admisible o portante del terreno en Zapatas con Vigas de Cimentación que

presenta el suelo es 0,68 Kg/cm².

9. Se debe de tener en cuenta que una vez hecha las zanjas y si son dejadas a la intemperie las

propiedades físico-mecánicas del suelo de fundación se pueden alterarse esto se agudiza

más si está expuesto a lluvias constantes.

10. Las excavaciones próximas a las edificaciones adyacentes deberán hacerse usando

sistemas de calzaduras o sistemas alternativos.

11. La excavación de zanjas pueden ser con maquinaria o personal de obra, sin embargo se

deberá de realizar los entibamientos en ambos casos.

12. Las conclusiones y recomendaciones presentes, sólo se aplican al terreno estudiado, no

pudiendo aplicarla para otros fines o a otros sectores.

Es mi informe.

Page 47: Verificacion capacidad portante miaria

47

11.00 RESUMEN DE LAS CONDICIONES DE VERIFICACION

DEL CAPACIDAD PORTANTE DEL TERRENO

(Para ser transcritas en el plano de cimentaciones)

Tipo de Cimentación recomendada: ZAPATAS CON VIGAS DE CIMENTACION.

Estrato de apoyo: ARCILLA PLASTICIDAD MEDIA ARENOSA CL

Profundidad de cimentación: Df = 1.50m.

Capacidad Portante: qadm.= 0,68 Kg/cm².

Factor de Seguridad: 3,00

Asentamientos tolerables: Para un período de 5 años es de: 1.134 cm.

Distorsión angular tolerable: 1/500

Sismicidad y Dinámica de suelos: Factor de zona = 0,30g.

Perfil de suelo: Tipo S3

Período predominante: Tp = 0,9seg.

Factor de amplificación del suelo: S = 1,4

PROYECTO : “INSTALACION DEL COMPLEJO DEPORTIVO EN

LA CC. NN. MIARIA, ZONAL BAJO URUBAMBA

NORTE”.

UBICACIÓN : Echarati–La Convención– Cusco

FECHA : Quillabamba, 10 de febrero del 2014

Page 48: Verificacion capacidad portante miaria

48

12.0 BIBLIOGRAFIA. Norma E-050, Suelos y Cimentaciones.

Norma E-030, Diseño Sismorresistente.

Braja M. Das/ Principios de Ingeniería de Cimentaciones. 4 Edición 1999.

Rico – Castillo / La Ingeniería de Suelos, Vol. 1 y 2. 1 edición 1998.

Peck/Hanson/ Thornburn: Ingeniería de Cimentaciones.

M.J. Tomlinson / Cimentaciones: Diseño y Construcción. Quinta Edición 1996.

Roy Whitlow / Fundamentos de Mecánica de Suelos. 1 edición 2000.

Manuel Delgado Vargas / Ingeniería de Cimentaciones/ 2da edición 1999.

Peter L. Berry / Mecánica de Suelos/ 1998.

Juarez Badillo - Rico Rodriguez: Mecánica de Suelos, Tomos I,II yIII.

Karl Terzaghi / Ralph B. Peck: Mecánica de suelos en la ingeniería Práctica. Segunda

Edición 1973.

Ing. Carlos Crespo : Mecánica de suelos y Cimentaciones.

T. William Lambe / Robert V. Whitman. Primera Edición 1972.

Roberto Michelena / Mecánica de Suelos Aplicada. Primera Edición 1991.

Reglamento Nacional de Construcciones - CAPECO. Quinta. Edición 1987.

RNC Normas de Diseño Sismo Resistente.

Alva Hurtado J.E., Meneses J. y Guzmán V. (1984), "Distribución de Máximas

Intensidades Sísmicas Observadas en el Perú", V Congreso Nacional de Ingeniería Civil,

Tacna, Perú.

Cimentaciones de Concreto Armado en Edificaciones - ACI American Concrete

Institute.Segunda Edición 1998.

Geotecnia para Ingenieros, Principios Básicos. Alberto J. Martínez Vargas / CONCYTEC

1990.

Page 49: Verificacion capacidad portante miaria

49

13.00 ENSAYOS DE

LABORATORIO

Page 50: Verificacion capacidad portante miaria

50

SISTEMA UNIFICADO DE CLASIFICACIÓN DE SUELOS (S.U.C.S.)

ENSAYO DE ANALISIS GRANULOMÉTRICO POR TAMIZADO MTC E - 107 - 99

PROYECTO: FECHA: 10 de febrero del 2014

UBICACIÓN: Echarate - La Convencion - Cusco PROFUNDIDAD: 2,00m. CALICATA 01

PETICIONARIO: Municipalidad Distrital de Echarati ESTRATO: Segundo Estrato

Tamiz Pasa Pasante Retenido Retenido NORMAS REFERENCIALES

(mm) (%) (%) Acumulado (%) Parcial (%) St andard Test M et hod f o r C lassif icat ion o f So ils

100 100.00 100.00 0.00 0.00 f o r Eng ineering Purposes A STM D - 2 4 8 7 - 0 0

80 100.00 100.00 0.00 0.00 A nálisis Granulomét r ico de Suelos por Tamizado

63 100.00 100.00 0.00 0.00 U N E : 10 3 10 1 : 19 9 5

50 100.00 100.00 0.00 0.00

40 100.00 100.00 0.00 0.00

25 100.00 100.00 0.00 0.00 SUELOS

20 100.00 100.00 0.00 0.00 GRANULARES

12.5 100.00 100.00 0.00 0.00

10 100.00 100.00 0.00 0.00

6.3 100.00 100.00 0.00 0.00

5 94.26 94.26 5.74 5.74

2 88.05 88.05 11.95 6.21 SUELOS

1.25 82.35 82.35 17.65 5.70 COHESIVOS

0.4 76.18 76.18 23.82 6.17

0.160 69.42 69.42 30.58 6.76

0.080 58.29 58.29 41.71 11.13

Límite Líquido 40.44

Límite Plastico 14.28

Índice Plasticidad 26.16

Pasa tamiz Nº 4 (5mm): 94.26 %

Pasa tamiz Nº 200 (0,080 mm): 58.29 %

D60: 0.09 mm

D30: mm

D10 (diámetro efectivo): mm

Coeficiente de Uniformidad (Cu):

Grado de Curvatura (Cc):

Sistema unificado de clasificación de suelos (S.U.C.S.)

Suelo de partículas finas.

Arcilla media plasticidad arenosa CL

INSTALACION DEL COMPLEJO DEPORTIVO EN LA

CC. NN. MIARIA, ZONAL BAJO URUBAMBA NORTE

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0.0010.010.1110100

PA

SA

(%

)

TAMIZ (mm)

GRANULOMETRIA

0

10

20

30

40

50

60

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

Índ

ice

pla

sti

cid

ad

Límite líquido

Ábaco de Casagrande

OH ó MH

CH

CL

ML ú OLCL - MLML

Línea A

Línea B

SISTEMA UNIFICADO DE CLASIFICACION DE SUELOS

GW

GP

GM

GC

SW

SP

SM

SC

ML

CL

OL

MH

CH

OH

Pt

SU

EL

O D

E G

RA

NO

GR

UE

SO

, MA

S D

EL

50%

RE

TE

NID

O E

N

LA

MA

LL

A N

° 20

0

GR

AV

A Y

SU

EL

O

GR

AV

OS

O

, más

del

50%

reti

ene

AR

EN

A Y

SU

EL

O

AR

EN

OS

O

, más

del

50%

pas

a

mal

la N

° 4

Gravas bien graduadas

Gravas mal graduadas

Gravas Limosas

Gravas Arcillosas

Arcillas Inorgánicas de alta plasticidad

Arcillas Orgánicas de media a alta plasticidad

Arenas bien graduadas

Arenas mal graduadas

Arenas Limosas

Arenas Arcillosas

Altamente Orgánico Turba y otros suelos altamente orgánicos

SU

EL

O D

E

GR

AN

O F

INO

,

50%

O M

AS

PA

SA

LA

MA

LL

A N

°200

LIM

OS

Y

AR

CIL

L

AS

(LL

<50) Limo Inorgánicos

Arcillas Inorgánicas de baja plasticidad

Limos Orgánicos y Arcillas Limosas Orgánicas

LIM

OS

Y

AR

CIL

L

AS

(LL

>50) Limos Inorgánicos

Page 51: Verificacion capacidad portante miaria

51

SISTEMA UNIFICADO DE CLASIFICACIÓN DE SUELOS (S.U.C.S.)

ENSAYO DE ANALISIS GRANULOMÉTRICO POR TAMIZADO MTC E - 107 - 99

PROYECTO: FECHA: 10 de febrero del 2014

UBICACIÓN: Echarate - La Convencion - Cusco PROFUNDIDAD: 2,00m. CALICATA 02

PETICIONARIO: Municipalidad Distrital de Echarati ESTRATO: Segundo Estrato

Tamiz Pasa Pasante Retenido Retenido NORMAS REFERENCIALES

(mm) (%) (%) Acumulado (%) Parcial (%) St andard Test M et hod f o r C lassif icat ion o f So ils

100 100.00 100.00 0.00 0.00 f o r Eng ineering Purposes A STM D - 2 4 8 7 - 0 0

80 100.00 100.00 0.00 0.00 A nálisis Granulomét r ico de Suelos por Tamizado

63 100.00 100.00 0.00 0.00 U N E : 10 3 10 1 : 19 9 5

50 100.00 100.00 0.00 0.00

40 100.00 100.00 0.00 0.00

25 100.00 100.00 0.00 0.00 SUELOS

20 100.00 100.00 0.00 0.00 GRANULARES

12.5 100.00 100.00 0.00 0.00

10 100.00 100.00 0.00 0.00

6.3 100.00 100.00 0.00 0.00

5 95.68 95.68 4.32 4.32

2 87.35 87.35 12.65 8.33 SUELOS

1.25 81.35 81.35 18.65 6.00 COHESIVOS

0.4 75.08 75.08 24.92 6.27

0.160 70.36 70.36 29.64 4.72

0.080 59.02 59.02 40.98 11.34

Límite Líquido 40.26

Límite Plastico 14.20

Índice Plasticidad 26.06

Pasa tamiz Nº 4 (5mm): 95.68 %

Pasa tamiz Nº 200 (0,080 mm): 59.02 %

D60: 0.09 mm

D30: mm

D10 (diámetro efectivo): mm

Coeficiente de Uniformidad (Cu):

Grado de Curvatura (Cc):

Sistema unificado de clasificación de suelos (S.U.C.S.)

Suelo de partículas finas.

Arcilla media plasticidad arenosa CL

INSTALACION DEL COMPLEJO DEPORTIVO EN LA

CC. NN. MIARIA, ZONAL BAJO URUBAMBA NORTE

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0.0010.010.1110100

PA

SA

(%

)

TAMIZ (mm)

GRANULOMETRIA

0

10

20

30

40

50

60

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

Índ

ice

pla

sti

cid

ad

Límite líquido

Ábaco de Casagrande

OH ó MH

CH

CL

ML ú OLCL - MLML

Línea A

Línea B

SISTEMA UNIFICADO DE CLASIFICACION DE SUELOS

GW

GP

GM

GC

SW

SP

SM

SC

ML

CL

OL

MH

CH

OH

Pt

SU

EL

O D

E G

RA

NO

GR

UE

SO

, MA

S D

EL

50%

RE

TE

NID

O E

N

LA

MA

LL

A N

° 20

0

GR

AV

A Y

SU

EL

O

GR

AV

OS

O

, más

del

50%

reti

ene

AR

EN

A Y

SU

EL

O

AR

EN

OS

O

, más

del

50%

pas

a

mal

la N

° 4

Gravas bien graduadas

Gravas mal graduadas

Gravas Limosas

Gravas Arcillosas

Arcillas Inorgánicas de alta plasticidad

Arcillas Orgánicas de media a alta plasticidad

Arenas bien graduadas

Arenas mal graduadas

Arenas Limosas

Arenas Arcillosas

Altamente Orgánico Turba y otros suelos altamente orgánicos

SU

EL

O D

E

GR

AN

O F

INO

,

50%

O M

AS

PA

SA

LA

MA

LL

A N

°200

LIM

OS

Y

AR

CIL

L

AS

(LL

<50) Limo Inorgánicos

Arcillas Inorgánicas de baja plasticidad

Limos Orgánicos y Arcillas Limosas Orgánicas

LIM

OS

Y

AR

CIL

L

AS

(LL

>50) Limos Inorgánicos

Page 52: Verificacion capacidad portante miaria

52

Calicata N' 01

UBICACIÓN : Dist. Echarate Prov. La Convencion Dpto Cusco Segundo Estrato

SOLICITADO: Municipalidad Distrital de Echarati MUESTRA : Suelo

FECHA : 10 de febrero del 2014

LIMITE LIQUIDO OBSERVACIONES:

Muestra N° 1 2 3 4

Peso de la capsula 13.25 10.25 12.35 10.25

Peso capsula. + suelo humedo 95.02 103.11 103.51 110.72

Peso capsula + suelo seco 80.65 83.35 81.64 81.35

Numero de golpes 46 38 32 26

Peso suelo seco 67.4 73.1 69.29 71.1

Peso agua 14.37 19.76 21.87 29.37

% humedad 21.32% 27.03% 31.56% 41.31%

LIMITE PLASTICO RESULTADOS

Muestra 1 2 3

Peso de la capsula 5.23 5.64 6.22

Peso capsula. + suelo humedo 9.49 9.38 10.03 LIM ITE LIQU IDO 40.44%

Peso capsula + suelo seco 8.96 8.91 9.55

Peso suelo seco 3.73 3.27 3.33 LIM ITE PLASTIC O 14.28%

Peso agua 0.53 0.47 0.48

% humedad 14.15% 14.30% 14.39% IND IC E PLASTIC O 26.16%

ENSAYO DE LIMITES DE CONSISTENCIA

INSTALACION DEL COMPLEJO DEPORTIVO EN LA CC. NN. MIARIA, ZONAL BAJO

URUBAMBA NORTE

PROYECTO :

21.0%

26.0%

31.0%

36.0%

41.0%

10 100

% D

E H

UM

ED

AD

No DE GOLPES

LIMITE LIQUIDO

Page 53: Verificacion capacidad portante miaria

53

Calicata N' 02

UBICACIÓN : Dist. Echarate Prov. La Convencion Dpto Cusco Segundo Estrato

SOLICITADO: Municipalidad Distrital de Echarati MUESTRA : Suelo

FECHA : 10 de febrero del 2014

LIMITE LIQUIDO OBSERVACIONES:

Muestra N° 1 2 3 4

Peso de la capsula 13.25 10.25 12.35 10.25

Peso capsula. + suelo humedo 94.96 103.06 103.52 110.66

Peso capsula + suelo seco 80.69 83.39 81.71 81.42

Numero de golpes 46 38 32 26

Peso suelo seco 67.44 73.14 69.36 71.17

Peso agua 14.27 19.67 21.81 29.24

% humedad 21.16% 26.89% 31.44% 41.08%

LIMITE PLASTICO RESULTADOS

Muestra 1 2 3

Peso de la capsula 5.23 5.64 6.22

Peso capsula. + suelo humedo 9.49 9.38 10.03 LIM ITE LIQU IDO 40.26%

Peso capsula + suelo seco 8.96 8.92 9.56

Peso suelo seco 3.73 3.28 3.34 LIM ITE PLASTIC O 14.20%

Peso agua 0.53 0.47 0.48

% humedad 14.15% 14.20% 14.24% IND IC E PLASTIC O 26.06%

ENSAYO DE LIMITES DE CONSISTENCIA

PROYECTO :INSTALACION DEL COMPLEJO DEPORTIVO EN LA CC. NN. MIARIA, ZONAL BAJO

URUBAMBA NORTE

21.0%

26.0%

31.0%

36.0%

41.0%

10 100

% D

E H

UM

ED

AD

No DE GOLPES

LIMITE LIQUIDO

Page 54: Verificacion capacidad portante miaria

54

Ubicación : Echarate - La Convencion - Cusco Calicata 01

Solicitante : Municipalidad Distrital de Echarati

cusco : 10 de febrero del 2014 Prof : 2,00m.

muestra N· 01 N 02

Profundidad (Mt) 2.00 2.00

Peso de Capsula (gr) 50.25 49.25

Peso Capsula + Suelo Humedo (gr) 100.72 101.78

Peso de la Capsula + Suelo Seco (gr) 94.18 95.11

Peso del Suelo Humedo (gr) 50.47 52.53

Peso del Suelo Seco (gr) 43.93 45.86

Peso del Agua (gr) 6.54 6.67

Contenido de Humedad (w) 14.89 14.54

Promedio : 14,72%

Proyecto : INSTALACION DEL COMPLEJO DEPORTIVO EN LA CC. NN. MIARIA, ZONAL

BAJO URUBAMBA NORTE

MICROOVEN METHOD

CONTENIDO DE HUMEDAD

MTC - E 108 - 99

Series1

Series2

0

3

6

9

12

15

14.89

14.54

CO

NT

EN

IDO

DE

AG

UA

( % )

GRAFICO DE HUMEDADES

Page 55: Verificacion capacidad portante miaria

55

Calicata 01

PROFUNDIDAD : 2.00 Mt.

UBICACIÓN : DESCRIPCIÓN : Arcilla compacta, color amarillento

FECHA : TECNICO :

CONTENIDO DE HUMEDAD DENSIDADES

1

Peso del Tarro gr. 42.24 Altura (cm) Diámetro (cm) Area Inicial

Peso del T. + Suelo Humedo gr. 388.62 h1 8.28 d1 5.16

Peso del T. + Suelo Seco gr. 358.63 h2 8.34 d2 5.18

Peso del Agua gr. 29.99 h3 8.33 d3 5.08

Peso del Suelo Seco gr. 316.39 Prom. 8.32 Prom. 5.14 20.75 cm2

Contenido de Humedad % 9.48 Volumen Promedio Vo = 172.6 cm3

Peso Húmedo briqueta Po = 346.38 gr

Densidad Húmeda Dh = 2.01 gr/cm3

CONSTANTE DEL ANILLO DE CARGA Densidad Seca Ds = 1.84 gr/cm3

Prensa de Compresión MODELO U-130 = 0.1407

DIAL DE CARGA DIAL DEF. DEF. DEF. AREA ESFUERZO

CARGA AXIAL DEF. TOTAL TOTAL UNITAR. CORREG.

0.0001 Kg Pulg. cm E 1-E cm2 kg/cm2

32 4.5024 10 0.010 0.0254 0.0031 0.9969 20.8136 0.216 ESF.COMPRESION MAXIMA

35 4.9245 20 0.020 0.0508 0.0061 0.9939 20.8775 0.236 qumax= 0.653 kg/cm2

41 5.7687 30 0.030 0.0762 0.0092 0.9908 20.9419 0.275

53 7.4571 40 0.040 0.1016 0.0122 0.9878 21.0066 0.355 COHESION APARENTE

69 9.7083 50 0.050 0.1270 0.0153 0.9847 21.0718 0.461 C = 0.327 kg/cm2

83 11.6781 60 0.060 0.1524 0.0183 0.9817 21.1373 0.552

92 12.9444 70 0.070 0.1778 0.0214 0.9786 21.2033 0.61 CONTENIDO DE HUMEDAD

96 13.5072 80 0.080 0.2032 0.0244 0.9756 21.2697 0.635 w % = 9.48

99 13.9293 90 0.090 0.2286 0.0275 0.9725 21.3365 0.653

95 13.3665 100 0.100 0.2540 0.0305 0.9695 21.4037 0.624 DENSIDADES

Humeda= 2.01 tn/m3

Seca = 1.84 tn/m3

INSTALACION DEL COMPLEJO DEPORTIVO EN LA CC. NN. MIARIA,

ZONAL BAJO URUBAMBA NORTE.

RESULTADOS

ENSAYO DE COMPRESION NO CONFINADA

Echarate - La Convencion - Cusco

Quillabamba, 10 de febrero del 2014

PROYECTO :

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.0000 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350

ES

FU

ER

ZO

(k

g/c

m2)

DEFORMACION UNITARIA

CURVA ESFUERZO - DEFORMACION

Page 56: Verificacion capacidad portante miaria

56

ENSAYO DE SALES TOTALES Y SULFATOS EN AGUA ASTM D-516 D-1293

PROYECTO: INSTALACION DEL COMPLEJO DEPORTIVO EN LA CC. NN. MIARIA, ZONAL

BAJO URUBAMBA NORTE.

Gramos muestra 140 no flocula Crisol N° 02

Capsula N° 01 Crisol + Ss = a 248

Ccapsula + sal = a 280 Tara Crisol b 134

Tara capsulada 33 Sulfato en Grs = (a-b) 114

Sales en gramos 3,4 1,3 Sulfatos = 5*0.608 (a-b) 312,2

Sales = 5(a-b) 0,0021 0,0345

Agua 2,3

Observaciones: LA MUESTRA DE AGUA NO FLOCULA, POR LO QUE SU REACCION AL

CONCRETO SERA NULA, POR LO QUE SE DEBERA EMPLEAR CEMENTO TIPO I.