universidad politÉcnica salesiana-sede quito facultad de...

167
- I UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE INGENIERÍAS CARRERA DE INGENIERÍA ELÉCTRICA ESTUDIO DE FACTIBILIDAD PARA EL DIMENSIONAMIENTO E IMPLEMENTACIÓN DE UN GENERADOR Y SUBESTACIÓN ELEVADORA PARA LA CENTRAL HIDROELÉCTRICA “SIGCHOS”. TESIS PREVIA A LA OBTENCIÓN DEL TITULO DE INGENIERO ELÉCTRICO AUTOR MIGUEL ÁNGEL SALAZAR MÁRQUEZ DIRECTOR ING. PATRICIO BURBANO DE LARA P. QUITO, NOVIEMBRE DEL 2007

Upload: dinhkhanh

Post on 12-Mar-2018

241 views

Category:

Documents


10 download

TRANSCRIPT

Page 1: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

- I

UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE INGENIERÍAS

CARRERA DE INGENIERÍA ELÉCTRICA

ESTUDIO DE FACTIBILIDAD PARA EL DIMENSIONAMIENTO E IMPLEMENTACIÓN DE UN GENERADOR Y SUBESTACIÓN

ELEVADORA PARA LA CENTRAL HIDROELÉCTRICA “SIGCHOS”.

TESIS PREVIA A LA OBTENCIÓN DEL TITULO DE INGENIERO ELÉCTRICO

AUTOR MIGUEL ÁNGEL SALAZAR MÁRQUEZ

DIRECTOR ING. PATRICIO BURBANO DE LARA P.

QUITO, NOVIEMBRE DEL 2007

Page 2: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

- II -

CERTIFICACIÓN

Luego de revisar la tesis del Señor Miguel Angel Salazar Marquez, con el tema,

ESTUDIO DE FACTIBILIDAD PARA EL DIMENSIONAMIENTO E

IMPLEMENTACIÓN DE UN GENERADOR Y SUBESTACIÓN

ELEVADORA PARA LA CENTRAL HIDROELÉCTRICA “SIGCHOS”.

Certifico que se ha dirigido su elaboración y ha sido culminada satisfactoriamente

cumpliendo las disposiciones emitidas por la Universidad Politécnica Salesiana.

Atentamente, Ing. Patricio Burbano de Lara P.

Page 3: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

- III -

AUTORÍA Yo Miguel Ángel Salazar Márquez, doy fe que soy el único autor del presente documento, por lo tanto me responsabilizo del contenido del mismo. Quito, noviembre del 2007 Miguel Salazar Márquez

Page 4: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

- IV -

DEDICATORIA

Este trabajo va dedicado a mis queridos padres.

Page 5: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

- V -

AGRADECIMIENTO A todos los profesionales que de una u otra manera aportaron con este trabajo, a la compañía CAMERI C.A. y de manera muy especial al Ing. Patricio Burbano de Lara que como director y guía aportó con sus invaluables consejos y experiencia que dan como resultado la terminación de este trabajo.

Page 6: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

- VI -

ÍNDICE GENERAL

AUTORÍA III

DEDICATORIA IV

AGRADECIMIENTO V

ÍNDICE GENERAL VI

ÍNDICE DE CONTENIDO VII

ÍNDICE DE CUADROS VIII

ÍNDICE DE FIGURAS IX

ÍNDICE DE TABLAS X

PLANTEAMIENTO DEL PROBLEMA XI

RESUMEN EJECUTIVO XX

Page 7: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

- VII -

ÍNDICE DE CONTENIDO

CAPITULO I 1

1 INTRODUCCIÓN. 1

1.1 SITUACIÓN DEL SECTOR ELÉCTRICO NACIONAL. 1

1.1.1 ANTECEDENTES. 1

1.1.2 CONSUMIDORES. 2

1.1.3 GENERACIÓN. 3

1.1.3.1 Potencia nominal. 3

1.1.3.2 Potencia efectiva. 3

1.1.3.3 Proyectos de generación particulares en operación y en proceso de construcción. 6

1.1.3.4 Proyectos de generación estatales en operación y en proceso de construcción. 7

1.1.3.5 Interconexiones con Colombia y Perú. 8

1.1.4 PERSPECTIVAS HACIA EL FUTURO DEL MERCADO ELÉCTRICO MAYORISTA. 10

1.2 COMPORTAMIENTO DE LA DEMANDA. 12

1.3 BALANCE DE POTENCIA Y ENERGÍA. 13

1.4 GENERACIÓN HIDROELÉCTRICA. 15

1.5 CLASIFICACIÓN DE LAS CENTRALES HIDROELÉCTRICAS. 17

1.5.1 POR SU POTENCIA. 17

1.5.1.1 Grandes centrales. 17

1.5.1.2 Medianas centrales. 17

1.5.1.3 Pequeñas centrales. 17

1.5.1.4 Minicentrales. 17

1.5.1.5 Microcentrales. 18

1.5.2 POR EL SALTO DE AGUA 18

1.5.2.1 Centrales de alta presión. 18

1.5.2.2 Centrales de media presión. 18

1.5.2.3 Centrales de baja presión. 18

1.5.3 POR SU APORTE AL SISTEMA DE POTENCIA. 19

1.5.3.1 Centrales de base. 19

1.5.3.2 Centrales de punta. 19

1.5.3.3 Central de reserva. 20

1.5.3.4 Centrales de bombeo - generación. 20

1.5.4 SEGÚN LA DISPOSICIÓN DE LAS INSTALACIONES PARA SU APROVECHAMIENTO DEL AGUA. 20

1.5.4.1 Mediante embalse o represa. 21

1.5.4.2 En el cauce del mismo río. 21

1.5.4.3 Mediante azud y canal de toma de agua. 21

1.6 ELEMENTOS CARACTERÍSTICOS DE UNA CENTRAL HIDROELÉCTRICA. 22

1.6.1 OBRAS DE CAPTACIÓN. 22

1.6.1.1 Tipos de represas. 22

1.6.1.1.1 Gravedad. 23

Page 8: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

- VIII -

1.6.1.1.2 Contrafuerte. 23

1.6.1.1.3 Arco-Bóveda. 24

1.6.1.1.4 Tierra o Escollera. 25

1.6.2 EMBALSE O RESERVORIO. 26

1.6.3 CONDUCTOS DE AGUA. 26

1.6.3.1 Túnel de conducción. 26

1.6.3.2 Tanque de carga. 27

1.6.3.3 Tubería de presión. 27

1.6.4 CASA DE MÁQUINAS. 28

1.6.5 CANAL DE DESCARGA. 28

1.6.6 SUBESTACIÓN DE ELEVACIÓN. 29

1.7 VENTAJAS COMPARATIVAS DE LAS CENTRALES HIDROELÉCTRICAS VERSUS LAS CENTRALES DE GENERACIÓN TÉRMICA. 29

1.7.1 VENTAJAS DE UNA CENTRAL HIDROELÉCTRICA. 29

1.7.2 DESVENTAJAS DE UNA CENTRAL HIDROELÉCTRICA. 31

1.7.3 VENTAJAS DE UNA CENTRAL TERMOELÉCTRICA. 32

1.7.4 DESVENTAJAS DE UNA CENTRAL TERMOELÉCTRICA. 33

CAPITULO II 34

PROYECTO “SIGCHOS” 34

2. DESCRIPCIÓN GENERAL DE LA HIDROLOGÍA, SEDIMENTOLOGÍA, GEOLOGÍA Y SISMOLOGÍA. 34

2.1 CUENCA DE LOS RIOS “TOACHI- BLANCO”. 34

2.1.1 CARACTERÍSTICAS FÍSICAS. 34

2.1.2 CARACTERÍSTICAS CLIMÁTICAS EN EL SITIO DEL PROYECTO. 34

2.2 PRECIPITACIÓN MEDIA DE LA CUENCA (HASTA EL SITIO DE LA CAPTACIÓN). 35

2.3 CAUDALES DEL RÍO “TOACHI”. 35

2.3.1 REGISTROS DISPONIBLES. 35

2.3.2 CAUDALES MEDIOS, DIARIOS Y MENSUALES. 35

2.3.3 CAUDALES MEDIOS MENSUALES. 37

2.3.4 CAUDALES MÍNIMOS PARA LA GENERACIÓN 38

2.3.5 CAUDALES DE CRECIDA. 39

2.4 SEDIMENTOLOGÍA. 40

2.4.1 TRANSPORTE DE SEDIMENTOS. 40

2.5 GEOLOGÍA. 41

2.5.1 GEOLOGÍA GENERAL. 41

2.5.2 GEOLOGÍA EN LOS SITIOS DE LAS OBRAS. 41

2.5.2.1 Captación. 41

2.5.2.2 Túnel de carga. 41

2.5.2.3 Tanque de carga. 41

2.5.2.4 Tubería de presión. 42

2.5.2.5 Casa de máquinas. 42

2.6 SISMOLOGÍA Y RIESGO VOLCÁNICO. 42

2.6.1 SISMOLOGÍA. 42

2.6.2 RIESGO VOLCÁNICO. 42

Page 9: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

- IX -

2.7 MATERIALES DE CONSTRUCCIÓN A SER UTILIZADOS EN LAS OBRAS CIVILES. 43

CAPITULO III 44

3 DESCRIPCIÓN GENERAL DE LAS OBRAS CIVILES. 44

3.1 UBICACIÓN. 44

3.2 CARACTERÍSTICAS DE LOS ELEMENTOS PRINCIPALES DEL PROYECTO. 44

3.2.1 CAPTACIÓN o TOMA. 45

3.2.1.1 Caudales de diseño para la central hidroeléctrica. 46

3.2.1.2 Obras de cierre del cauce del río. 46

3.2.1.3 Obras de toma. 48

3.2.1.4 Limpieza de sedimentos en la captación. 50

3.2.2 TÚNEL DE CONDUCCIÓN. 51

3.2.2.1 Características topográficas del área y geometría del túnel. 51

3.2.2.2 Sección básica de excavación. 52

3.2.3 TANQUE DE CARGA O PRESIÓN. 53

3.2.3.1 Componentes del tanque de presión. 54

3.2.3.2 Estanque principal. 55

3.2.3.3 Embocadura. 56

3.2.3.4 Canal “bypass”. 57

3.2.3.5 Vertedero de excesos y canal recolector. 57

3.2.4 TUBERÍA DE PRESIÓN. 57

3.2.4.1 Niveles de operación de la central. 58

3.2.4.2 Estructura de entrada. 58

3.2.4.3 Geometría y características de la tubería de presión. 58

3.2.4.4 Pérdidas hidráulicas y caída neta. 59

3.2.5 CASA DE MÁQUINAS. 59

3.2.6 DESCARGA. 60

3.2.7 CAMINOS DE ACCESO. 61

CAPITULO IV 62

4 SELECCIÓN Y DIMENSIONAMIENTO DEL EQUIPO PRINCIPAL

(TURBINA - GENERADOR) 62

4.1 GENERALIDADES. 62

4.2 CONDICIONES AMBIENTALES EN EL SITIO. 62

4.3 SELECCIÓN DEL NÚMERO DE UNIDADES. 63

4.4 SELECCIÓN DEL TIPO DE TURBINA. 64

4.4.1 VELOCIDAD ESPECÍFICA. 65

4.4.2 DISPOSICIÓN DEL EJE. 66

4.4.2.1 Eje horizontal. 66

4.4.2.2 Eje vertical. 67

4.5 ALTERNATIVA 1: CALCULO DE LA POTENCIA NOMINAL PARA LA CENTRAL HIDROELÉCTRICA “SIGCHOS”, 68

4.5.1 POTENCIA NOMINAL TOTAL DE LA CENTRAL “SIGCHOS” 69

4.5.2 POTENCIA POR UNIDAD 69

Page 10: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

- X -

4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO [ nsj ] 70

4.5.4 VELOCIDAD SINCRÓNICA APROXIMADA [ n ] 71

4.5.5 CÁLCULO DE LA VELOCIDAD DE EMBALAMIENTO [nf ] 71

4.5.6 CÁLCULO DE EL NÚMERO DE POLOS DEL GENERADOR [ p ] 72

4.5.7 CARACTERÍSTICAS FÍSICAS DEL RODETE “PELTON”. 72

4.5.7.1 Coeficiente de velocidad periférica [ ku ]. 72

4.5.7.2 Diámetro del chorro [ Dj ]. 72

4.5.7.3 Diámetro del rodete [ D2 ]. 73

4.5.7.4 Relación [ Dj/D2 ]. 73

4.5.7.5 Diámetro exterior del rodete [D3]. 73

4.5.7.6 Dimensiones del las cucharas del rodete. 74

4.5.7.6.1 Ancho de la cuchara [ H1 ] en metros. 75

4.5.7.6.2 Largo de la cuchara [ H2 ] en metros. 75

4.5.8 Altura [ Hs ] en metros. 75

4.6 ALTERNATIVA 2: CALCULO REALIZADO POR LA EMPRESA CONSULTORA “TRIOLO S.A.”. 76

4.6.1 POTENCIA DE LA CENTRAL 76

4.6.2 POTENCIA POR CADA UNIDAD DE GENERACIÓN. 77

4.6.3 VELOCIDAD ESPECÍFICA POR CHORRO [ nsj] 77

4.6.4 VELOCIDAD ESPECÍFICA TENTATIVA O APROXIMADA DE LA TURBINA [ ns] 77

4.6.5 VELOCIDAD DE GIRO TENTATIVA O APROXIMADA [ n] 77

4.6.6 CÁLCULO DE LA VELOCIDAD ESPECÍFICA REAL [ns]. 78

4.6.7 VELOCIDAD ESPECÍFICA POR CHORRO [nsj]. 78

4.6.7.1 Parámetros del Rodete Pelton. 78

4.6.7.1.1 Coeficiente de velocidad periférica. 78

4.6.7.1.2 Diámetro del Inyector / Diámetro medio del rodete [Dj/D2]. 78

4.6.7.1.3 Diámetro medio del rodete [D2]. 79

4.6.7.1.4 Diámetro del inyector [Dj]. 79

4.6.7.1.5 Diámetro exterior del rodete [D3]. 79

4.6.7.2 Dimensiones del las cucharas. 79

4.6.7.2.1 Ancho de la cuchara [ H1 ]. 80

4.6.7.2.2 Largo de la cuchara [ H2 ]. 80

4.6.7.2.3 Altura [ Hs ]. 80

4.7 ALTERNATIVA 3: Cálculo de las características físicas del rodete Pelton según el documento “CONTROLES DE CALIDAD DE LA FABRICACIÓN DE UN RODETE PELTON” Tesis del Ingeniero Mecánico. Autor HARRY MURRAY. (Lima – Perú) año 2005. 80

4.7.1 CALCULO DE LA VELOCIDAD SINCRÓNICA [n]. 80

4.7.2 VELOCIDAD DEL CHORRO DE AGUA A LA SALIDA DE LA TOBERA. 81

4.7.3 VELOCIDAD TANGENCIAL [U]. 81

4.7.4 CÁLCULO DE LOS DIÁMETROS PRINCIPALES. 82

4.7.4.1 Diámetro del chorro [Dj] 82

4.7.4.2 Velocidad específica [ns] 82

4.7.4.3 Velocidad de embalamiento [nf] 82

4.7.4.4 Forma y dimensiones de las paletas o cucharas del rodete. 82

4.7.4.4.1 Diámetro “Pelton”. 83

4.7.4.4.2 Diámetro exterior del rodete [De]. 83

4.7.4.4.3 Número de paletas del rodete. 84

Page 11: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

- XI -

4.7.4.4.4 Relación de las paletas. 84

4.7.5 CUADRO RESUMEN COMPARATIVO DE LOS PARÁMETROS CALCULADOS POR LA TURBINA DEL PROYECTO “SIGCHOS”. 86

4.7.6 MATERIAL DE LA RUEDA “PELTON”. 87

4.8 GENERADOR SINCRÓNICO. 87

4.8.1 GENERALIDADES. 87

4.8.2 DISEÑO DE UN GENERADOR. 88

4.8.3 SELECCIÓN DE UN GENERADOR SINCRÓNICO. 89

4.8.4 CALCULO DE LA POTENCIA DEL GENERADOR. 90

4.8.5 DIMENSIONAMIENTO Y PESO DEL GENERADOR 91

4.8.6 SELECCIÓN DEL VOLTAJE NOMINAL DE GENERACIÓN. 91

4.9 SERVICIOS AUXILIARES. 92

4.9.1 CARACTERÍSTICAS DEL ESQUEMA DE SERVICIOS AUXILIARES. 93

4.9.2 ESTIMACIÓN DE CARGAS Y DEMANDA PARA SERVICIOS AUXILIARES. 93

4.10 DIMENSIONES DE LA CASA DE MÁQUINAS. 95

CAPITULO V 97

5 ESPECIFICACIONES DE LOS EQUIPOS DE LA CENTRAL Y

SUBESTACIÓN ELEVADORA. 97

5.1 CASA DE MÁQUINAS. 97

5.1.1 TURBINAS. 97

5.1.1.1 Válvulas esféricas. 98

5.1.1.2 Reguladores de velocidad. 98

5.1.2 GENERADORES. 98

5.1.2.1 Interruptor de máquina. 99

5.1.2.2 Excitatriz. 100

5.1.2.3 Transformador de puesta a tierra. 101

5.1.3 CABLES AISLADOS PRINCIPALES DE 13.2kV. 101

5.1.4 BANCO DE BATERÍAS Y CARGADOR. 102

5.1.5 TABLERO DE MEDICIÓN, CONTROL Y PROTECCIÓN. 103

5.1.5.1 MEDICIÓN. 104

5.1.5.2 CONTROL. 104

5.1.5.3 PROTECCIÓN. 105

5.1.6 TRANSFORMADORES DE SERVICIOS AUXILIARES. 106

5.1.7 PUENTE GRÚA. 107

5.1.8 EQUIPO CONTRA INCENDIOS. 107

5.2 EQUIPAMIENTO DE LA SUBESTACIÓN. 108

5.2.1 GENERALIDADES. 108

5.2.1.1 Primera alternativa. 109

5.2.1.2 Segunda alternativa. 110

5.2.1.3 EVALUACIÓN ECONÓMICA DE LOS TRANSFORMADORES 111

5.2.2 TRANSFORMADORES ELEVADORES. 112

5.2.2.1 Lado de media tensión 13.2kv. 113

5.2.3 INTERRUPTORES 69 KV. 113

5.2.4 SECCIONADORES 69 KV. 114

5.2.5 PARARRAYOS 69 KV. 115

Page 12: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

- XII -

5.2.6 TRANSFORMADORES DE CORRIENTE 69 kV. 116

5.2.7 TRANSFORMADORES DE TENSIÓN 69 kV. 117

5.2.8 GRUPO DIESEL DE EMERGENCIA. 118

5.2.8.1 CONDICIONES DE DISEÑO Y FUNCIONAMIENTO. 118

5.2.9 CONDUCTORES. 119

5.2.9.1 Conductores de media tensión. 119

5.2.9.2 Conductores desnudos. 119

5.2.10 MISCELÁNEOS. 120

5.2.10.1 Iluminación interior. 120

5.2.10.2 Iluminación exterior. 120

5.2.10.3 Malla de puesta a tierra. 120

5.3 BOCATOMA. 121

5.3.1 TRANSFORMADOR DE SERVICIOS AUXILIARES “BOCATOMA”. 121

CAPITULO VI 123

6 PRODUCCIÓN DE ENERGÍA Y ESTUDIOS FINANCIEROS DEL

PROYECTO HIDROELÉCTRICO “SIGCHOS” 123

6.1 ENERGÍA FIRME 123

6.2 ENERGÍA MEDIA 124

6.3 ENERGÍA SECUNDARIA 125

6.4 POTENCIA GARANTIZADA. 125

6.5 POTENCIA REMUNERABLE Y PUESTA A DISPOSICIÓN. 126

6.6 PRODUCCIÓN DE ENERGÍA DEL PROYECTO. 126

6.7 ESTUDIO FINANCIERO 127

6.8 INVERSIONES. 127

6.8.1 PERÍODO DE ANÁLISIS: 128

6.8.2 COSTOS DE OPERACIÓN Y MANTENIMIENTO. 128

6.8.2.1 Costos Fijos Anuales. 128

6.8.2.2 Costos Variables Anuales. 129

6.8.2.3 Criterio para la Evaluación de los Costos de Operación y Mantenimiento. 129

6.9 ÍNDICES DE FACTIBILIDAD DEL PROYECTO 133

6.9.1 COSTO TOTAL DE LA INVERSIÓN. 133

6.9.2 COSTO DEL KILOVATIO INSTALADO, 133

6.9.3 COSTO DEL KILOVATIO – HORA. (kWh) 133

6.9.4 VENTA DE ENERGÍA. 134

6.10 EVALUACIÓN FINANCIERA 135

6.10.1 TASA INTERNA DE RETORNO. (TIR) 135

6.10.2 VALOR ACTUAL NETO, (VAN) 137

6.10.3 PERÍODO DE RECUPERACIÓN DE CAPITAL. (PRC) 138

6.10.4 RELACIÓN BENEFICIO/COSTO. (R B/C) 139

CONCLUSIONES - 141

RECOMENDACIONES 143

Page 13: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

- XIII

ÍNDICE DE CUADROS Cuadro Nº 1 Resumen Estadísticas del Sector Eléctrico Ecuatoriano. 2

Cuadro Nº 2 Potencia instalada nominal al año 2005 4

Cuadro Nº 3 Centrales de generación no conectadas al S.N.I. 5

Cuadro Nº 4 Total de Generación instalada. 6

Cuadro Nº 5 Transacción de Energía con Colombia 9

Cuadro Nº 6 Nuevos proyectos hidroeléctricos 11

Cuadro Nº 7 Proyección de la demanda de potencia y energía en bornes de

generación 12

Cuadro Nº 8 Balance de Potencia Activa Máxima 13

Cuadro Nº 9 Proyectos hidroeléctricos considerados para la modelación “Super” 14

Cuadro Nº 10 Proyectos Termoeléctricos considerados para la modelación “Super”15

Cuadro Nº 11 Cuadro resumen de las centrales de generación según su POTENCIA

18

Cuadro Nº 12 Cuadro resumen de las centrales de generación según su SALTO 19

Cuadro Nº 13 Caudales medios mensuales (m3/seg) 38

Cuadro Nº 14 Caudales mínimos mensuales (m3/seg) 39

Cuadro Nº 15 Niveles de operación de la central. 58

Cuadro Nº 16 Resumen de características físicas de Turbina “Pelton” 86

Cuadro Nº 17 Comparación de las normas internacionales para el acero inoxidable

[Cr Ni 13 4] 87

Page 14: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

- XIV -

ÍNDICE DE FIGURAS Figura Nº 1 Resumen Estadística del Sector Eléctrico Ecuatoriano. 3

Figura Nº 2 Tipo de Generación Potencia Nominal [MW] 4

Figura Nº 3 de Generación Potencia Efectiva [MW] 5

Figura Nº 4 Porcentaje de Generación No conectados al SNI 6

Figura Nº 5 Perfil de las represas Mazar y Amaluza 8

Figura Nº 6 Tasa de crecimiento anual de la energia 12

Figura Nº 7 Componentes Principales de una Central Hidroeléctrica 16

Figura Nº 8 Esquema de una central hidroeléctrica 17

Figura Nº 9 Represa tipo “Gravedad” 23

Figura Nº 10 Represa tipo “Contrafuerte” 24

Figura Nº 11 Represa tipo “Arco” 24

Figura Nº 12 Presa arco bóveda con contrafuertes 25

Figura Nº 13 Tipo tierra o escollera 25

Figura Nº 14 Curvas de Duración General 36

Figura Nº 15 Caudales Medios, Mínimos y Máximos Mensuales 37

Figura Nº 16 Caudales medios mensuales y caudal de diseño. 38

Figura Nº 17 Caudales mínimos mensuales y el caudal de diseño por cada turbina. 39

Figura Nº 18 Obras de captación 46

Figura Nº 19 Obras de cierre del Rió Toachi 47

Figura Nº 20 Ruta de túnel de conducción 52

Figura Nº 21 Sección del Túnel. 53

Figura Nº 22 Túnel tanque de carga y desvío de excesos 54

Figura Nº 23 Tanque de Presión 55

Figura Nº 24 Casa de Maquinas, Canal de descarga 60

Figura Nº 25 Selección del tipo de Turbinas 65

Figura Nº 26 Grupo Turbina - Generador Pelton de 2 Inyectores 67

Figura Nº 27 Turbina tipo Pelton Eje Vertical seis Inyectores (Vista Superior) 68

Figura Nº 28 Velocidad Específica VS Salto de diseño y por número de inyectores.70

Figura Nº 29 Diámetros D2 y D3 Rodete Pelton 74

Figura Nº 30 Dimensiones de la cuchara Pelton 75

Figura Nº 31 Altura de Hs. 76

Figura Nº 32 Relación de las paletas 85

Figura Nº 33 Campos magnéticos de un generador sincrónico 88

Figura Nº 34 Subestación con un solo transformador y barra no seccionada. 109

Figura Nº 35 Subestación con dos transformadores y barra seccionada. 110

Page 15: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

- XV -

ÍNDICE DE TABLAS

Tabla N° 1 Caudales de Crecida 40

Tabla Nº 2 Características principales del túnel. 53

Tabla Nº 3 Condiciones Ambientales Proyecto “Sigchos”. 62

Tabla Nº 4 Tipo de turbinas en función de la velocidad especifica 66

Tabla Nº 5 Equipo mínimo a utilizar en los servicios auxiliares. 94

Tabla Nº 6 Datos técnicos de la Turbina. 97

Tabla Nº 7 Características técnicas de las válvulas esféricas 98

Tabla Nº 8 Datos técnicos de los generadores. 99

Tabla Nº 9 Características del interruptor de máquina 100

Tabla Nº 10 Características del Regulador. 100

Tabla Nº 11 Características del Transformador de puesta a Tierra. 101

Tabla Nº 12 Características de los conductores aislados 102

Tabla Nº 13 Características del Cargador y Banco de baterías. 103

Tabla Nº 14 Equipos de Medida. 104

Tabla Nº 15 Protecciones mínimas a utilizar. 105

Tabla Nº 16 Datos técnicos de los transformadores de servicios auxiliares Casa de Maquinas. 106

Tabla Nº 17 Características del puente grúa. 107

Tabla Nº 18 Precios de los transformadores de potencia. 112

Tabla Nº 19 Datos técnicos de los Transformadores de Potencia. 113

Tabla Nº 20 Datos técnicos de los interruptores. 114

Tabla Nº 21 Datos técnicos de los seccionadores. 115

Tabla Nº 22 Datos técnicos de los pararrayos. 116

Tabla Nº 23 Características de los Transformadores de Corriente. 117

Tabla Nº 24 datos técnicos de los Transformadores de Potencial 118

Tabla Nº 25 Características de la malla de puesta a tierra. 121

Tabla Nº 26 Datos técnicos de los Transformador de SS.AA. de la Bocatoma. 122

Tabla Nº 27 Producción de energía firme anual 124

Tabla Nº 28 Producción de energía media anual 125

Tabla Nº 29 Costo Total de la construcción del proyecto hidroeléctrico 128

Tabla Nº 30 Costo Total de Op y Mto Según Coca Codo Sinclair. 131

Tabla Nº 31 Costo Total de Operación y Mantenimiento 132

Tabla Nº 32 Tasa interna de retorno 136

Tabla Nº 33 Valor Actual Neto. 138

Tabla Nº 34 Período de recuperación de capital. 139

Page 16: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

- XVI -

PLANTEAMIENTO DEL PROBLEMA

Con base a los estudios hidrológicos, sobre el aprovechamiento del cauce del río

Toachi se plantea la factibilidad de realizar el proyecto hidroeléctrico denominado

Sigchos, el mismo que está ubicado en la provincia del Cotopaxi cercana a la

población del mismo nombre.

Para el funcionamiento de la central hidroeléctrica “Sigchos” deberá ser equipada

básicamente con unidades turbina–generador, conectadas a transformadores

elevadores para la entrega de la energía eléctrica generada.

TEMA

Estudio de factibilidad para el dimensionamiento e implementación del generador y

subestación elevadora para la central hidroeléctrica “Sigchos”.

JUSTIFICACIÓN

De acuerdo al potencial de las aguas y la morfología del Río Toachi, los estudios

hidrológicos indican que el máximo aprovechamiento para la generación

hidroeléctrica, será de 17 MVA de potencia instalada máxima.

Es importante la utilización de los recursos hídricos para disponer de energía

eléctrica mas económica, y reemplazar la energía térmica cara, y que contamina y

produce modificaciones al ecosistema, además el incrementar el potencial de

generación del país

Esta central de generación podrá ser conectada mediante una línea de subtrasmisión a

la Subestación “Sigchos” de la Empresa Eléctrica Provincial de Cotopaxi,

“ELEPCO”, integrada al Sistema Nacional Interconectado.

ALCANCE

• Presentación de datos existentes tales como:

Page 17: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

- XVII -

o Estudios hidrológicos del cauce Rió Toachi.

o Estudios existentes de la obra civil y Casa de maquinas.

• Estudio de factibilidad para el dimensionamiento, del generador para la

central Hidroeléctrica Sigchos.

• Estudio de factibilidad para el dimensionamiento, del transformador para

la central Hidroeléctrica Sigchos.

• Especificaciones y estudio de costos para los equipos, Generador,

Transformador y Equipamiento Auxiliares.

• Análisis del costo aproximado del kilovatio instalado, kilovatio hora y

factibilidad de inversión.

OBJETIVOS GENERALES

Elaborar el estudio de factibilidad para el dimensionamiento e implementación del

generador y subestación elevadora para la central hidroeléctrica “Sigchos”.

OBJETIVOS ESPECÍFICOS

• Realizar el dimensionamiento, y especificaciones del generador.

• Realizar el dimensionamiento y especificaciones de la estación elevadora

• Elaborar un estudio de costos para el equipamiento electromecánico de la

Central Hidroeléctrica.

• Elaborar y presentar un análisis del costo aproximado del kilovatio

instalado, y kilovatio hora de energía.

HIPÓTESIS

Con el presente trabajo se podrá establecer la conveniencia o no de la construcción

de la Central Hidroeléctrica Sigchos.

Con el dimensionamiento, especificaciones del generador y la estación elevadora se

podrá cumplir con las características técnicas para el mejor aprovechamiento para la

central hidroeléctrica.

Page 18: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

- XVIII -

METODOLOGÍA

Método deductivo.

Se tomarán normas generales, las cuales enmarcarán las características principales

del equipamiento basadas en las normas ANSI, ASTM, ASME, DIN, IEEE, IEC y

NEMA, especificas para el proyecto.

PLAN DEL PROYECTO

CAPITULACIÓN

CAP I INTRODUCCIÓN GENERALIDADES

• Ubicación.

• Aprovechamiento Hidrológico

• Acceso al sitio.

• Interconexión con una subestación,

CAP II ELEMENTOS CONSTITUTIVOS DE UNA CENTRAL DE

GENERACIÓN HIDROELÉCTRICA

• Bocatoma.

• Tubería de presión.

• Casa de maquinas.

• Estación elevadora

CAP III DIMENSIONAMIENTO, ESPECIFICACIONES Y

PRESUPUESTO DEL GENERADOR.

• Dimensionamiento del generador

• Especificaciones del generador

• Presupuesto del generador

CAP IV DIMENSIONAMIENTO, ESPECIFICACIONES Y

PRESUPUESTO DE LA ESTACIÓN ELEVADORA.

• Dimensionamiento de la estación elevadora

Page 19: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

- XIX -

• Especificaciones de la estación elevadora

• Presupuesto de la estación elevadora

CAP V FACTIBILIDAD DE INVERSIÓN, COSTO DEL

KILOVATIO INSTALADO Y KILOVATIO HORA DE

ENERGÍA.

• Factibilidad de la inversión.

• Costo del kilovatio hora

• Costo del kilovatio hora de energía

CAP VI CONCLUSIONES Y RECOMENDACIONES

ANEXOS

Planos de: Ubicación general.

Disposición de equipos, planta y cortes Casa de maquinas.

Subestación.

Diagramas Eléctricos:

Unifilar de básico del equipamiento, Principal y Servicios Auxiliares. Esquemático de protecciones control y medición para generación y estación elevadora

CRONOGRAMA DESARROLLO DEL PROYECTO

RECOPILACION DE INFORMACIO X X X X X X

DESARROLLO DEL CAP I

X X X X X

DESARROLLO DEL CAP II

X X X X X

DESARROLLO DEL CAP III X X X X X X

DESARROLLO DEL CAP IV

X X X X X X

DESARROLLO DEL CAP V

X X X X X

DESARROLLO DEL CAP VI Y ANEXOS X X X X

ENTREGA DE AVANCES X X X X X X

CORRECION DE AVANCES

X X X X X X

ENTREGA DE TESIS X

DEFENSA DE TESIS X

MES 9MES 8MES 4 MES 5 MES 6MES 1 MES 2 MES 3 MES 7

Page 20: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

- XX -

RESUMEN EJECUTIVO

El proyecto “Estudio de factibilidad para el dimensionamiento e implementación de

un generador y subestación elevadora para la central hidroeléctrica Sigchos”

pretende conocer viabilidad de la misma.

Con este trabajo se pretende incentivar la inversión nacional y extranjera hacia un

campo totalmente en desarrollo en nuestro país como el de la generación

hidroeléctrica.

El diseño y construcción de una central hidroeléctrica es un trabajo delicado y

complejo en el que intervienen varias especialidades tales como: ingeniería civil,

hidráulica, mecánica, eléctrica, electrónica, ambiental, geología y economía entre

otras.

Este trabajo esta encaminado a la selección y dimensionamiento de equipos de una

central hidroeléctrica, teniendo como información inicial el caudal del río en estudio

y datos referenciales del lugar de aplicación de este trabajo.

El capitulo I es un breve análisis del sector eléctrico ecuatoriano y un detalle de tipos

y características de las centrales hidroeléctricas.

En el capitulo II se realiza la descripción general de la hidrológica sedimentología y

sismología del lugar en donde operará la central “Sigchos”.

En el capitulo III se realiza una descripción general de las obras civiles del proyecto.

En el capitulo IV se efectúa el dimensionamiento y selección del equipo principal

turbina-generador

Page 21: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

- XXI -

El capitulo V cubre la especificación de los equipos de la central y la estación

elevadora.

En el capitulo VI se hace la evaluación económica y la producción de energía del

proyecto “Sigchos”.

Finalmente el estudio presenta las conclusiones y recomendaciones para la ejecución

de este proyecto.

Espero que este trabajo cumpla con el interés de todos y cada uno de los lectores para

desarrollar proyectos energéticos provenientes de recursos renovables.

Page 22: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

1

CAPITULO I

1 INTRODUCCIÓN.

La generación de energía eléctrica es una de las principales fuentes de desarrollo y de

mejoramiento de la calidad de vida del hombre actual, ya que gracias a ella, hoy en

día es posible llevar a cabo un sinnúmero de actividades que contribuyen al

crecimiento integral de la sociedad, desde el punto de vista doméstico, empresarial,

industrial, cultural, científico y tecnológico. Por esta razón, la energía eléctrica se ha

convertido en uno de los requerimientos de servicios de mayor demanda e

importancia en el mundo.

1.1 SITUACIÓN DEL SECTOR ELÉCTRICO NACIONAL.

1.1.1 ANTECEDENTES.

Nuestro país cuenta con un potencial hidroeléctrico muy importante en espera de ser

aprovechado por inversionistas nacionales o extranjeros para satisfacer la demanda

del mercado nacional y también del mercado extranjero con venta de potencia y

energía como sucede en otras naciones.

Según estudios del CONELEC, referentes a los proyectos hidroeléctricos futuros a

ser explotados en el Ecuador, mismos que se encuentran en varias etapas de

prefactibilidad, factibilidad, estudio definitivo, construcción etc., la potencia nominal

aproximada es de 6.211MW nominal, (Cuadro 9) frente a 1.784MW nominal,

(cuadro 2) que se encuentran instalados en la actualidad.

Haciendo una comparación porcentual, al momento en el Ecuador está explotado el

22%, que no representa ni la 4ta parte del aprovechamiento total de los recursos

hídricos reconocidos y existentes en el país.

Page 23: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

2

1.1.2 CONSUMIDORES.

“Según las Estadísticas del Sector Eléctrico Ecuatoriano – Año 2005, elaboradas por

el CONELEC en ese año existieron como promedio anual 3’022.508.00 clientes,

entre regulados1 y no regulados2 y a diciembre 2005 había 96 grandes Consumidores

(No regulados)”.3

GRUPO

CONSUMIDORES

[%]

Residencial 2.642.372,00 87,42 Comercial 301.331,00 9,97 Industrial 37.870,00 1,25

Alumbrado publico 378.00,00 0,01 Otros 40.506,00 1,34

TOTAL 2005 3.022.508,00 100.00 Fuente: PLAN DE ELECTRIFICACIÓN DEL ECUADOR 2006-2015 “CONELEC” Cuadro Nº 1 Resumen Estadísticas del Sector Eléctrico Ecuatoriano.

En el grafico Nº 1, se presenta los valores porcentuales por tipo de consumidores

que existen en nuestro país, siendo el mayor de ellos los consumidores residenciales

y en un bajo porcentaje el sector industrial.

1 Consumidores que cancelan sus facturas mediante precios establecidos por tarifas oficiales. 2 Consumidores que tienen contratos directos con empresas de generación o distribución de energía. 3 CONELEC, Plan de electrificación del Ecuador 2006-2015. p10

Page 24: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

3

ESTADISTICA DEL SECTOR ELECTRICO ECUATORIANO

Residencial; 87,42

Otros; 1,34

Comercial; 9,97

Industrial; 1,25

Alumbrado Publico; 0,01

Residencial

Comercial

Industrial

Alumbrado Publico

Otros

Fuente: PLAN DE ELECTRIFICACIÓN DEL ECUADOR 2006-2015 “CONELEC”

Figura Nº 1 Resumen Estadística del Sector Eléctrico Ecuatoriano.

1.1.3 GENERACIÓN.

1.1.3.1 Potencia nominal.

Es el valor a plena carga de la unidad o planta de generación bajo las condiciones

especificadas según diseño del fabricante, expresado en KW. o MW.

Dicha capacidad esta indicada en la placa de características técnicas vinculada al

equipo respectivo de generación.

1.1.3.2 Potencia efectiva.

Es la potencia máxima que se pude obtener de una unidad generadora bajo

condiciones normales de operación, se expresa en kW o también en MW.

Teniendo en cuenta los conceptos arriba anotados se detallan los siguientes cuadros y

figuras referentes a:

Cuadro resumen de la potencia instalada nominal del parque generador disponible en

el Sistema Nacional Interconectado,

Page 25: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

4

Tipo de generación Potencia

[MW nominal]

Potencia [MW

efectiva] Hidroeléctrica 1759.70 1746.20 Térmica Gas 615.00 571.50 Térmica Gas-Natural 140.00 130.00 Térmica MCI4 405.40 270.00 Térmica Vapor 481.80 481.80 TOTAL 3401.90 3199.50

Fuente: Anexo 2.06 PLAN DE ELECTRIFICACIÓN DEL ECUADOR 2006-2015 Cuadro Nº 2 Potencia instalada nominal al año 2005

Adicional debe ser tomado en cuenta los 400MW nominales (340 MW efectivos) del

posible aporte de interconexiones con los países vecinos de Colombia y Perú hasta

diciembre del 2005.

Tipo de Generacion Potencia Nominal [MW]

2 Termica Gas 18%

3 Termica Gas Natural 4%

4 Termica MCI 12%

5 Termica Vapor 14%

1 Hidroelectrica 52%

1 Hidroelectrica

2 Termica Gas

3 Termica Gas Natural

4 Termica MCI

5 Termica Vapor

Fuente: Anexo 2.06 PLAN DE ELECTRIFICACIÓN DEL ECUADOR 2006-2015

Figura Nº 2 Tipo de Generación Potencia Nominal [MW]

4 Motor de Combustión Interna

Page 26: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

5

Tipo de Generacion Potencia Efectiva [MW]

1 Hidroelectrica55%

2 Termica Gas18%

3 Termica Gas Natural

4%

4 Termica MCI8%

5 Termica Vapor 15%

1 Hidroelectrica

2 Termica Gas

3 Termica Gas Natural

4 Termica MCI

5 Termica Vapor

Fuente: Anexo 2.06 PLAN DE ELECTRIFICACIÓN DEL ECUADOR 2006-2015

Figura Nº 3 de Generación Potencia Efectiva [MW]

Como se puede apreciar en la Figura Nº 3, el 55% de la potencia efectiva que se

encuentra conectado al S.N.I.- Sistema Nacional Interconectado, es del tipo

Hidroeléctrico, y sus principales aportantes son: “Agoyán” 156MW, “Pucara”

74MW, “Marcel Laniado” 213 MW y “Paute” 1075 MW.

Centrales de generación no conectadas al S.N.I. pertenecientes a empresas

distribuidoras y empresas autoproductoras.

TIPO DE GENERACIÓN

Potencia [MW nominal] [%]

Potencia [MW

efectiva] [%]

Hidroeléctrica 4.40 2.58 3.50 2.46 Térmica Gas-Natural 26.00 15.25 21.40 15.04 Térmica MCI 140.10 82.17 117.40 82.50 TOTAL 170.50 100.00 142.30 100.00

Fuente: PLAN DE ELECTRIFICACIÓN DEL ECUADOR 2006-2015 Cuadro Nº 3 Centrales de generación no conectadas al S.N.I.

El cuadro Nº 3 asociado con la figura Nº 4, indican la información de las centrales de

auto producción, pero se conoce que existen más unidades de generación particular,

especialmente para emergencia, instaladas en compañías petroleras, mineras,

fábricas, edificios, etc.

Page 27: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

6

Tipo de Generacion Potencia Efectiva [MW]

1 Hidroeléctrica3% 2 Térmica Gas-

Natural15%

3 Térmica MCI82%

1 Hidroeléctrica

2 Térmica Gas-Natural

3 Térmica MCI

Fuente: PLAN DE ELECTRIFICACIÓN DEL ECUADOR 2006-2015

Figura Nº 4 Porcentaje de Generación No conectados al SNI

En el cuadro Nº 4 se presenta el total de la potencia instalada en el Ecuador.

Potencia

[MW nominal]

Potencia

[MW efectiva] Total de Generación

3972.40

3676.50

Fuente: PLAN DE ELECTRIFICACIÓN DEL ECUADOR 2006-2015 Cuadro Nº 4 Total de Generación instalada.

1.1.3.3 Proyectos de generación particulares en operación y en proceso de

construcción.

“San Carlos” S.A. con su central a vapor de 35 MW, la misma que genera la

electricidad por medio del bagazo de caña (biomasa), a fin de aprovechar todo el

volumen resultante del proceso de la molienda del ingenio “San Carlos”. Esta central

ya empezó a realizar transacciones en el mercado eléctrico en enero 2005.

“Ecoelectric” S.A. con una central a vapor del mismo nombre, que usa

principalmente bagazo de caña de azúcar del Ingenio “Valdez”; opera desde junio

2005, con 6 MW.

Page 28: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

7

“Lucega” Electric, S.A. que a fines del año 2005 fue absorbida por “Ecudos” S. A.,

opera una planta a vapor con bagazo de caña, en “La Troncal”, Cañar, desde julio

2005, con 13 MW y desde julio de 2006 con 29,8 MW.

“Hidroabanico S.A.”, con su central hidroeléctrica “Abanico I” de 15 MW, ubicada

cerca de Macas, está aportando al sistema nacional interconectado desde diciembre

de 2005.

“Ulysseas Inc.”, recibió del CONELEC a fines del año 2004 una autorización

temporal, para operar la unidad generadora montada sobre la barcaza “Power Barge

I” (30 MW); y, en agosto de 2005 suscribió un contrato de permiso, con lo cual

continúa funcionando esta fuente de generación termoeléctrica.

“Machala Power” Cía. Ltda. firmó el contrato de concesión para que construya y

opere en tres etapas una central generadora de 312 MW en “Bajo Alto” provincia de

El Oro, usando el gas del Golfo de Guayaquil, concesionado a su compañía matriz,

EDC. La primera etapa, de 130 MW, está operando desde el año 2004 y los plazos

contractuales para las etapas siguientes son junio 2008 y marzo 2011,

respectivamente.

1.1.3.4 Proyectos de generación estatales en operación y en proceso de

construcción.

“Hidropastaza” S.A. como concesionaria de la central hidroeléctrica “San

Francisco”, que inició su construcción desde febrero del 2004, esta localizada en la

parte oriental de la provincia del Tungurahua; la misma que tendrá dos unidades con

una potencia total de 212 MW, equivalentes al 12 por ciento de la generación

disponible en el país. Realizó pruebas de operación de la unidad # 1 en Diciembre

2006, y se espera que en abril /2007 se realicen pruebas de la unidad #2.

“Hidropaute” S.A., como concesionaria del proyecto hidroeléctrico “Paute –Mazar”,

debe instalar la planta de 190MW, en construcción, pero que adicionalmente

asegurará la generación en la Central “Paute – Molino”, de 1075 MW. ubicada aguas

Page 29: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

8

abajo, gracias a la disponibilidad de un reservorio de mayor capacidad que el de la

represa “Daniel Palacios” (410 millones de metros cubicos de agua)

El objetivo de “Mazar” es el de garantizar la suficiente cantidad de agua en su

reservorio, y asegurar la vida útil de la Central Hidroeléctrica “Paute-Molino”.

Con la represa Mazar se retendrá buena parte de los sedimentos que actualmente

llegan al embalse de esta central. El proyecto se encuentra en construcción y se

espera que opere en marzo de 2009.

Fuente: www.hidropaute.com

Figura Nº 5 Perfil de las represas Mazar y Amaluza

Considerando que el proyecto Paute a sido concebido en tres etapas “en cascada”, el

gobierno nacional en abril del 2007 otorgó la concesión de la tercera etapa

“Sopladora” de 400 MW. a la empresa “Hidropaute”, la misma que se construirá

aguas debajo de la central “Molino”

1.1.3.5 Interconexiones con Colombia y Perú.

Las interconexiones eléctricas con los países vecinos de Colombia y de Perú,

vigentes a la fecha tienen las siguientes particularidades.

Ampliación de la capacidad de enlace entre Colombia y Ecuador de 250 MW a

350MW.

Page 30: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

9

Las tres etapas de la interconexión con el Perú, 86 MW en la etapa radial, 125 MW

en la primera fase del “back to back” y 250 MW en la segunda fase similar a la

anterior.

Según estudios energéticos de la interconexión Colombia – Ecuador – Perú, debido

al ingreso de proyectos de gran capacidad en el Ecuador con costos de operación

relativamente bajos como son: “Machala Power” (segunda etapa), “Termoriente”, y

los proyectos hidráulicos “Mazar” y “San Francisco”, “Sopladora”, “Coca-Jubones”,

determina una tendencia decreciente de las importaciones de la energía para el

Ecuador provenientes de Colombia a partir del año 2006, lo indicado se demuestra en

el cuadro Nº 5.

TRANSACCIÓN DE ENERGÍA CON COLOMBIA

ENERGÍA (GWH) VALOR (millones de USD) FECHA

IMPORTACIÓN EXPORTACIÓN IMPORTACIÓN EXPORTACIÓN

Total 2003 1129.26 67.20 80.31 2.48 Total 2004 1681.09 34.97 135.11 0.74 Total 2005 1757.88 16.03 151.73 0.51 Total 2006 1608.61 0.82 126.37 0.05 TOTAL HISTORIA 6.176.84 119.02 493.52 3.78

Fuente: “Diario El Comercio” 23/ENE/2007 CENACE Cuadro Nº 5 Transacción de Energía con Colombia

La tendencia de compra de energía de Ecuador a Colombia en el 2006, se redujo la

importación en un 16%, debido también a que hubo constantes interrupciones en el

flujo de la energía por los atentados guerrilleros en el sistema eléctrico colombiano

que afectaron a las líneas y torres de transmisión, entre junio y diciembre del 2006.

….Ecuador hasta la presente fecha ha comprado 493.52 millones de dólares,

cantidad de dinero necesaria para construir una planta de generación de 400MW

similar al proyecto “Chespi”5…. Argumenta el ministro de Energía Sr. Ec. Alberto

Acosta.

La característica relevante del precio de energía que presenta Perú frente al precio de

importaciones Ecuador es de complementariedad, siendo las máximas transferencias

5 Fuente Diario el Comercio 27/ENERO/2007

Page 31: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

10

de energía por el enlace Ecuador - Perú en épocas secas para el Ecuador, y en

períodos lluviosos para el Perú.

Las exportaciones de energía de Ecuador hacia Perú tenderán a crecer cuando

Ecuador haya expandido sus proyectos de generación hidroeléctricos.

Al momento el CONELEC tiene discutido con las autoridades del Perú los términos

de un contrato de compra-venta de energía, no suscrito todavía según se conoce.

1.1.4 PERSPECTIVAS HACIA EL FUTURO DEL MERCADO

ELÉCTRICO MAYORISTA.

La entrada en operación de nuevos proyectos de generación hidroeléctrica como

“San Francisco”, “Mazar”, “Sibimbe”, “Calope”, “Sigchos”, “Sopladora”, “Coca-

Jubones” así como la segunda interconexión a 250MW, con Colombia y la puesta en

operación de la interconexión radial con el Perú, etapa 1b (190MW) que se encuentra

en construcción, se espera reducir el consumo de combustibles para generación

térmica y por lo tanto disminuir el precio medio de venta de energía en el mercado.

Para analizar y evaluar las diversas posibilidades de la expansión de la generación en

el Ecuador, el CONELEC utiliza el modelo “Sistema Unificado de Planificación

Eléctrica Regional”, “SUPER” desarrollado por la Organización Latinoamericana de

Energía, OLADE, con apoyo del Banco Interamericano de Desarrollo, BID.

Las primeras corridas del programa se realizaron mediante un convenio con OLADE

y el CONAM; y, posteriormente el CONELEC ha continuado estudiando,

considerando varios escenarios, especialmente en lo relacionado con la prospectiva

de la demanda, precios de combustibles, tasas de descuento y proyectos de

generación en construcción y otros en diversas etapas de diseño.

Los estudios más recientes, para el período 2006-2022 consideran un crecimiento

medio de la demanda a precios actuales de combustibles, una tasa de descuento 12%

y fechas obligadas de operación de las centrales: “Sibimbe”, “Abanico”, “Calope”,

“San Francisco” y “Mazar”; y, del 2do. enlace en 230 kV con Colombia más la

operación de la 1ra. Etapa, de la interconexión con Perú. Además, se definen fechas

para salida de operación de pequeñas centrales termoeléctricas de las Empresas

Page 32: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

11

Distribuidoras por razones de costo de la energía, que utilizan diesel en volumen

importado.

Se consideran como factibles y posibles a casi treinta proyectos hidroeléctricos de

mediana y gran potencia, que cuentan con información suficiente sobre hidrología,

costos, etc.; entre ellos el proyecto hidroeléctrico “Sigchos” motivo de esta Tesis así

como unos diez proyectos termoeléctricos incluyendo aquellos en trámites de

concesión.

Los siguientes son los resultados de uno de los casos de optimización estudiados

mediante el módulo MODPIN del modelo SUPER, el cual asume que los proyectos

anotados entran en funcionamiento en enero de cada año como se detalla en el

siguiente cuadro Nº 6.

AÑO DE OPERACIÓN

TIPO DE PLANTA

PROYECTOPOTENCIA

(MW)ENERGIA

(GWh/AÑO)OBSERVACIONES

ene-06 H ABANICO 15 120 ConstruidoINT INTERCONEXION-PE 1 90 487 Construido

ene-07 T ARENILLAS 150 1260 Modelacion SUPERH SIBIMBE 16 102 En ConstrucciónH CALOPE 15 90 En Construcción

INT ITERCONEXION-COL2 250 1973 En Construcción

ene-08 H SAN FRANSICO 212 1455 En ConstrucciónT E. D. COSTA -83 RetiroT E. D. SIERRA -29 Retiro

ene-09 H SABANILLA 30 229 Modelacion SUPERH PILALO 11 73 Modelacion SUPERH ABANICO 2 23 179 Modelacion SUPER

ene-10 H SIGCHOS 18 132 Modelacion SUPERH TIGRILLOS 50 393 Modelacion SUPERH MAZAR 190 904 En Construcción

ene-11 H COCA CODO 1 432 2992 Modelacion SUPER

ene-12 H DELSI TANISAGUA 105 820 Modelacion SUPER

ene-13 H SOPLADORA 312 2252 Modelacion SUPER

ene-15 H COCA CODO 2 427 2977 Modelacion SUPER

ene-16 H CHESPI 167 1072 Modelacion SUPERH RIO LUIS 16 98 Modelacion SUPER

ene-18 H ABITAGUA 177 1359 Modelacion SUPER Fuente: PLAN DE ELECTRIFICACIÓN DEL ECUADOR 2006-2015 “CONELEC”

Cuadro Nº 6 Nuevos proyectos hidroeléctricos

Como se puede observar al final del Cuadro Nº 6, el Ecuador tiene hasta el año 2018

un plan de crecimiento en generación hidroeléctrica con una capacidad máxima de

2594 MW, al mismo tiempo que la salida definitiva de 112 MW de generación

térmica de empresas distribuidoras ubicadas en la costa y sierra.

Page 33: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

12

1.2 COMPORTAMIENTO DE LA DEMANDA.

La evolución del mercado eléctrico ecuatoriano, en lo que a demanda de energía y

potencia se refiere, ha mantenido una situación de crecimiento sostenido durante los

seis últimos años.

A nivel de entrega en barras de subestación los resultados porcentuales son los

siguientes:

Fuente: PLAN DE ELECTRIFICACIÓN DEL ECUADOR 2006-2015 Figura Nº 6 Tasa de crecimiento anual de la energia

Según el plan de electrificación del Ecuador, en la proyección de la demanda se

mantienen tres escenarios: Menor Medio y Mayor en función del crecimiento del

producto interno bruto, las metas del nivel de precios y cobertura del servicio

eléctrico que se desee alcanzar lo que se explica en el cuadro Nº 7.

MENOR MEDIO MAYOR MENOR MEDIO MAYOR

2006 2,585 2,622 2,651 14,444 14,606 17,7442007 2,715 2,772 2,827 15,217 15,527 15,8542008 2,821 2,900 2,978 15,881 16,334 16,8242009 2,925 3,028 3,132 16,538 17,154 17,8222010 3,029 3,160 3,293 17,193 17,992 18,8542011 3,147 3,310 3,476 17,933 18,935 20,0132012 3,255 3,450 3,652 18,610 19,826 21,1342013 3,364 3,596 3,837 19,300 20,750 22,3092014 3,477 3,749 4,033 20,008 21,710 23,5362015 3,602 3,916 4,248 20,778 22,760 24,880

CRESIMIENTO 2006-2016

3.80% 4.60% 5.40% 4.10% 5.10% 6.00%

DEMANDA DE POTENCIA (MW) DEMANDA DE ENERGIA (MW)

PROYECCION DE LA DEMANDA DE POTENCIA Y ENERGIA EN BORNES DE GENERADOR A NIVEL NACIONAL

AÑO

Fuente: PLAN DE ELECTRIFICACIÓN DEL ECUADOR 2006-2015 “CONELEC” Cuadro Nº 7 Proyección de la demanda de potencia y energía en bornes de generación

Page 34: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

13

1.3 BALANCE DE POTENCIA Y ENERGÍA.

El balance entre oferta de potencia y demanda máxima, para cada uno de los años del

período de análisis, se presenta a continuación en el cuadro Nº 8.

Exc (+) Exc (+) Exc (+)

Def(-) Def(-) Def(-)

2,006 272 3,706 2,586 39% 2,621 38% 2,649 37%2,007 766 4,220 2,716 52% 2,772 49% 2,825 46%2,008 916 4,350 2,822 46% 2,899 42% 2,976 39%2,009 1,432 4,866 2,926 56% 3,028 50% 3,131 45%2,010 1,432 4,866 3,030 60% 3,159 53% 3,290 46%2,011 1,519 4,953 3,148 62% 3,308 53% 3,473 46%2,012 1,519 4,953 3,255 61% 3,449 51% 3,649 42%2,013 1,519 4,953 3,365 55% 3,594 45% 3,833 35%2,014 1,519 4,953 3,477 51% 3,746 39% 4,028 29%2,015 1,519 4,953 3,608 46% 3,913 34% 4,243 23%

BALANCE DE POTENCIA ACTIVA MÁXIMA (MW) A NIVEL NACIONAL

CRECIMIENTO DE LA DEMANDADISPONIBILIDAD DE GENERACIÓN

OFERTA TOTAL EFEC

Potencia Adicional

Oferta 2005

AÑO

MEDIO MAYOR

Demanda DemandaDemanda

MENOR

1,746 1,448 240

Hidro. Efec.

Termo. Efec.

Interco nax

Fuente: Anexo 5.15 PLAN DE ELECTRIFICACIÓN DEL ECUADOR 2006-2015 “CONELEC”

Cuadro Nº 8 Balance de Potencia Activa Máxima

Considerando que, si entran en operación en las fechas previstas las nuevas centrales

generadoras y, se mantienen en el mercado las que están disponibles, se contaría

durante todo el período, con reservas de potencia superiores a la unidad más grande

del sistema (133 MW) y equivalente al 10% del total.

Se puede concluir que el problema del sistema eléctrico ecuatoriano, no es de

potencia sino de energía, especialmente en los períodos de estiaje de los ríos de la

vertiente oriental o Amazónica (Octubre - Marzo), pues de ella depende la mayor

producción hidroeléctrica, se espera y conviene la entrada en operación de centrales

que operen con ríos de la vertiente occidental como son los proyectos “Toachi –

Pilatón”, ubicado en el cantón Sto. Domingo de los Colorados Provincia del

Pichincha; el proyecto “Sigchos”, en el cantón, Sigchos provincia del Cotopaxi, el

proyecto “Baba” ubicado en “Corriente Larga” entre las provincias de Pichincha y

Los Rios; los proyectos “Chespi” y “Villadora” con el aprovechamiento de las aguas

del rio Guayllabamba entre otros.

Page 35: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

14

Sin embargo, puede presentarse un déficit de potencia durante períodos que

normalmente se esperan altos caudales en las centrales hidroeléctricas en operación,

las salidas de las unidades termoeléctrica e hidroeléctricas por mantenimientos

programados anuales, restricciones en las interconexiones internacionales, lo que

significa brindar más apoyo tanto del gobierno como del sector privado a la

implementación de diversos proyectos de generación tanto hidroeléctricos como

termoeléctricos.

De allí la razón justificativa de la presente tesis relativa al proyecto “Sigchos”.

NOMBRECAPACIDAD

NOMINAL (MW)RIO

COSTO DE INVERSION (MN

USD)SAN FRANCISCO 212.0 Paztaza 244MAZAR 190.0 Paute 300SIBIMBE 15.8 Sibimbe 22ABANICO 15.0 Abanico 158CALOPE 15.0 Calope 18ABITAGUA 177.0 Pastaza 215SOPLADORA 312.0 Paute 316CHESPI 167.0 Guallabamba 177VILLADORA 270.0 Guallabamba 589APAQUI 44.0 Apaqui 62TOACHI PILATON 190.0 Pilatón-Toachi 224ANGAMARCA SINDE 29.0 Angamarca-Sinde 49GUALAQUIZA 800.0 Zamora 892SAN MIGUEL 704.0 Zamora 613QUIJOS 50.0 Papallacta-Quijos 74SABANILLA 30.0 Sabanilla 40MINAS 337.0 Jubones 421RIO LUIS 15.5 Luis 27TIGRILLOS 19.6 Abanico 64TOPO 22.8 Topo 36OCANA 26.0 Ocaña 47SIGCHOS 18.0 Toachi 21PILALO 3 10.8 Pilalo 13JONDACHI 12.0 Jondachi 19ABANICO 2 22.5 Abanico 18CALUMA BAJO 12.0 La playa-Escaleras 18DELSI-TANISAGUA 105.0 Zamora 104CODO CODO 1500 1500.0 Coca 987CODO SINCLAIR 1 432.0 Coca 472CODO SINCLAIR 2 427.0 Coca 275

PROYECTOS HIDROELECTRICOS DEL ECUADOR CONSIDERADOS EN LA MODELACION CON SUPER

Fuente: Anexo 5.20 Plan de electrificación del Ecuador 2006-2015 “CONELEC” Cuadro Nº 9 Proyectos hidroeléctricos considerados para la modelación “Super”

Page 36: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

15

NOMBRECAPACIDAD

NOMINAL (MW)

COSTO DE INVERSION (MN

USD)COMBUSTIBLE

TERMORIENTE 270 240 RESIDUOCICLO COMBINADO 150 135 GAS NATURALCICLO COMBINADO 150 135 GAS NATURALCICLO COMBINADO 150 135 GAS NATURAL2 MACHALA POWER 95 76 GAS NATURAL3 MACHALA POWER 87 44 GAS NATURALINTERCON - COL2 250 36 N.AINTERCON - PE1 90 14 N.APOWER BARGE 2 50 32 BUNKERKEPPEÑ 150 80 RESIDUOARENILLAS 150 60 GAS PERU

PROYECTOS TERMOELECTRICOS DEL ECUADOR CONSIDERADOS EN LA MODELACION CON SUPER

Fuente: Anexo 5.20Plan de electrificación del Ecuador 2006-2015 “CONELEC”

Cuadro Nº 10 Proyectos Termoeléctricos considerados para la modelación “Super”

1.4 GENERACIÓN HIDROELÉCTRICA.

En general puede decirse que la energía eléctrica de origen hidráulico ha sido la de

mayor acogida inicial a nivel mundial, a pesar del surgimiento de otras formas de

obtención de energía eléctrica a partir de la termoeléctrica, nuclear, y las no

convencionales como la energía eólica y solar, entre otras.

La generación hidroeléctrica por facilidades de construcción, economía a largo plazo

impacto ambiental, costos de operación y mantenimiento, se la utiliza masivamente

en algunos países por ser el agua un recurso renovable, de allí se ha llegado a la

saturación, requiriendo por lo mismo otras fuentes alternativas de energía como la

térmica y la nuclear.

Page 37: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

16

Fuente: www.hispagua.cedex.es

Figura Nº 7 Componentes Principales de una Central Hidroeléctrica

En la figura Nº 7 se explica los componentes principales de una central hidroeléctrica

con embalse constituida básicamente por:

El embalse, la represa, obras de toma, túnel de carga o galería de conducción,

chimenea de equilibrio, casa de máquinas, canal de desfogue, representando una

serie de obras civiles, equipamientos hidromecánicos y electromecánicos.

Las centrales hidroeléctricas son estaciones en las cuales se aprovecha la energía de

un salto de agua para convertirla en energía mecánica y luego en energía eléctrica

mediante el acople turbina generador.

La mayoría de las grandes centrales hidroeléctricas se construyen en zonas aisladas,

lejanas de los centros de carga, y dependiendo de su capacidad de generación son de

gran importancia para el sistema de potencia al cual se conectan mediante las líneas

de transmisión y subtrasmisión.

En la figura Nº 8 se muestra a continuación la forma esquemática simplificada de una

central hidroeléctrica.

Page 38: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

17

Fuente: www.eeq.com.ec

Figura Nº 8 Esquema de una central hidroeléctrica 1.5 CLASIFICACIÓN DE LAS CENTRALES HIDROELÉCTRICAS6.

Las centrales hidroeléctricas pueden ser clasificadas en función de su potencia, por el

salto de agua y por la modalidad de aporte al sistema de potencia.

1.5.1 POR SU POTENCIA.

Respecto a la clasificación de las centrales hidroeléctricas, aun no existe una

convención mundial aceptada respecto a nombres y rangos de potencia, pero en

varios textos los clasifican como a continuación se detalla:

1.5.1.1 Grandes centrales.

Centrales cuya potencia de generación es superior a los 50MW.

1.5.1.2 Medianas centrales.

Se denominadas medianas centrales cuando su potencia de generación oscila entre

5MW y 50 MW.

1.5.1.3 Pequeñas centrales.

Centrales cuya potencia de generación oscila entre 1MW y 5MW.

1.5.1.4 Minicentrales.

6 www.hispagua.cedex.es

Page 39: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

18

Para rangos entre los 100 kW y 1MW.

1.5.1.5 Microcentrales.

Su potencia máxima de entrega varía entre 1,5 kW y 100 kW.

A continuación se muestra un cuadro resumen de lo arriba mencionado:

POTENCIA

TIPO

Superior a 50MW Grandes Centrales 5-50 MW Mediana Central 1-5 MW Pequeña Central 100 kW – 1MW Minicentrales 1.5 kW – 100kW Microcentrales

Cuadro Nº 11 Cuadro resumen de las centrales de generación según su POTENCIA

1.5.2 POR EL SALTO DE AGUA7

A las centrales hidroeléctricas también se las clasifica según el salto de agua, esto es

la diferencia que hay entre el nivel de la cota máxima del agua en el tanque de carga

y el nivel al que se encuentra el rodete de la turbina que acciona o mueve al

generador.

1.5.2.1 Centrales de alta presión.

Se denomina centrales de alta presión a las que tienen Saltos Grandes superiores a

los 300metros

1.5.2.2 Centrales de media presión.

Se denomina centrales de mediana presión a las que tienen Saltos que están entre los

(15 y 300 metros).

1.5.2.3 Centrales de baja presión.

7 www.hispagua.cedex.es

Page 40: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

19

Las que tienen Saltos pequeños inferiores a los 15 m.

A continuación se presenta un cuadro resumen.

CAÍDA EN METROS

CLASIFICACIÓN TIPO DE SALTO ALTURA (mts) Alta Presión Saltos Grandes H > 300 Media Presión Saltos Medios 15< H < 300 Baja Presión Saltos Pequeños H < 15

Cuadro Nº 12 Cuadro resumen de las centrales de generación según su SALTO

1.5.3 POR SU APORTE AL SISTEMA DE POTENCIA.

Otra manera de clasificar a las centrales de generación eléctrica es según como se las

utiliza para cubrir la curva de carga.

1.5.3.1 Centrales de base.

Son las que están destinadas a suministrar energía eléctrica de manera continua en el

tiempo. Se caracterizan por ser de una potencia elevada y normalmente son las

centrales hidráulicas, nucleares, y algunas termoeléctricas cuya operación es muy

económica (USD/kWh), confiable y segura.

1.5.3.2 Centrales de punta.

Estas centrales tienen como principal función cubrir la demanda de energía eléctrica

durante los llamados picos de consumo, o sea durante las horas punta. Trabajan en

espacios cortos de tiempo, su funcionamiento es periódico y sirven de apoyo a las

centrales de base.

El costo del kWh es más caro que en el primer caso.

Page 41: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

20

1.5.3.3 Central de reserva.

El concepto de reserva implica la disponibilidad de instalaciones capaces de sustituir,

total o parcialmente, a las centrales de base o de punta durante períodos de sequía,

mantenimientos no programados de centrales y cuando hay escasez de combustibles.

Algunas de estas centrales pueden ser antiguas pero disponibles para su operación y

aporte energético al sistema de potencia; el costo en kWh generalmente es mas

elevado que en las centrales anteriores.

1.5.3.4 Centrales de bombeo - generación.

Las centrales de bombeo-generación posibilitan un empleo más racional del recurso

hídrico, o sea del agua de un país que disponga del recurso correspondiente.

Cuando la demanda de energía eléctrica alcanza su máximo nivel a lo largo del día,

las centrales de bombeo generación funcionan como una central convencional

generando energía, al descargar el agua de la fuente superior acumulada en el

reservorio natural, o lago artificial hacia el embalse inferior.

Durante las horas del día en las que la demanda de energía es menor y más barata, el

agua es bombeada nuevamente al embalse superior para que pueda realizar el ciclo

productivo nuevamente, es decir en este caso operan las turbinas como bombas y los

generadores como motores consumiendo energía eléctrica cuando es barata.

1.5.4 SEGÚN LA DISPOSICIÓN DE LAS INSTALACIONES PARA SU

APROVECHAMIENTO DEL AGUA.

Las obras de captación por derivación a filo de agua captan el recurso del afluente sin

almacenamiento, aprovechando el caudal que hay disponible en el momento dado en

el río.

Todas las obras de captación deben cumplir las siguientes condiciones:

• con cualquier calado del río deben captar una cantidad prácticamente

constante de caudal.

Page 42: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

21

• impedir al máximo la entrada de material sólido flotante o en suspensión a

la conducción y hacer que este siga por el cauce.

• satisfacer las condiciones mínimas de seguridad.

• disponer de una estructura de retención que garantice una cota específica

de nivel con cualquier caudal del río.

1.5.4.1 Mediante embalse o represa.

La represa se construye en forma perpendicular al cauce del río con la finalidad de

retener y acumular el agua en un nivel suficiente.

Hay varios tipos de represas: de tierra o de escollera, arco bóveda, gravedad, y

contrafuerte.

Las represas pueden tener capacidad de almacenamiento mensual anual, estacional, y

multianual.

1.5.4.2 En el cauce del mismo río.

La captación puede realizarse sin ninguna obra en el cauce del río, en este caso el

caudal es llevado directamente por un canal lateral; sin embargo la obra esta expuesta

al deterioro por amenazas potenciales.

1.5.4.3 Mediante azud y canal de toma de agua.

Esta se caracteriza por tener una pequeña presa que no tiene la capacidad de

almacenar agua, por lo que no posee regulación, la presa obliga a que parte del

caudal fluya a través de la toma y el excedente se vierta por el aliviadero de la presa,

es muy usual instalarla en ríos de montaña con las siguientes características.

• Pendientes longitudinales fuertes que pueden llegar al 10% o más.

• Crecidas súbitas causadas por lluvias de corta duración y que llevan gran

cantidad de piedras y basuras.

• Grandes variaciones de caudal cuando provienen de nevados.

• Pequeños sedimentos finos de agua y o relativamente limpia durante el

estiaje.

Page 43: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

22

• Un dique cierra el cauce del río obligando al agua que se encuentra por

debajo de la cota de su cresta a pasar por la conducción. En el tiempo de

crecidas el agua en exceso pasa por encima del dique o azud.

1.6 ELEMENTOS CARACTERÍSTICOS DE UNA CENTRAL

HIDROELÉCTRICA.

Como se anota en la figura Nº 7 del numeral 1.4 estos elementos son:

o Obras de captación

o Embalse

o Conductos de agua

o Casa de máquinas

o Turbina

o Generador

o Elementos auxiliares

o Descarga

o Subestación de elevación.

1.6.1 OBRAS DE CAPTACIÓN8.

Son construcciones de ingeniería civil que permiten captar el agua para llevarla hacia

la casa de máquinas por medio de azudes, canales, tuberías o túneles con ayuda de

compuertas y rejillas.

Las obras de captación se derivan a filo de agua y desvían el recurso del afluente que

en algunos casos es almacenado en el reservorio antes de ser utilizado en generación.

1.6.1.1 Tipos de represas.

Su construcción es normalmente de hormigón, o mediante la acumulación de

materiales, la misma que construye sobre el lecho del río y perpendicular a su

dirección con la finalidad de retener el agua, y para elevarla a un nivel suficiente

formando un embalse.

8 www.hispagua.cedex.es

Page 44: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

23

Dependiendo de las características orográficas y de su emplazamiento, se escogerá el

tipo de represa mas adecuado para un determinado proyecto.

1.6.1.1.1 Gravedad.

Retiene el agua gracias al tipo de materiales empleados, como mampostería u

hormigones, además la estabilidad de la presa es confiada a su propio peso y al

esfuerzo del terreno lateral y profundo sobre el que se apoya, es muy difundida y

segura.

Fuente: www.hispagua.cedex.es

Figura Nº 9 Represa tipo “Gravedad” 1.6.1.1.2 Contrafuerte.

Está formada por una pared impermeable aguas arriba, y contrafuertes aguas abajo

resistentes para su estabilidad. Son utilizadas en valles anchos.

Page 45: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

24

Fuente: www.hispagua.cedex.es

Figura Nº 10 Represa tipo “Contrafuerte” 1.6.1.1.3 Arco-Bóveda.

Las de arco-bóveda son las que aprovechan el efecto transmisor del arco para

transferir los empujes del agua al terreno o laterales del valle; son presas más ligeras

y se las utiliza en valles estrechos y profundos.

Fuente: www.hispagua.cedex.es

Figura Nº 11 Represa tipo “Arco”

En la figura 12 se puede observar una represa, de arco bóveda con contrafuertes.

Page 46: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

25

Fuente: www.hispagua.cedex.es

Figura Nº 12 Presa arco bóveda con contrafuertes 1.6.1.1.4 Tierra o Escollera.

Consta de un núcleo de material arcilloso, que a veces es tratado químicamente o

mediante inyecciones de cemento.

www.hispagua.cedex.es

Figura Nº 13 Tipo tierra o escollera

Page 47: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

26

1.6.2 EMBALSE O RESERVORIO.

Puede ser de mediana o gran capacidad de almacenamiento de agua dependiendo del

caudal del río. Asegura la disponibilidad de adecuados volúmenes del líquido para el

aporte de la demanda especialmente durante las épocas de estiaje.

El reservorio ayuda a que se decante el material suspendido en el agua (arena) y se

detengan basuras y demás elementos que puedan afectar la operación de la turbina.

Los reservorios son divididos generalmente en sectores y disponen de aliviaderos,

válvulas compuertas de desfogue y rejillas de limpieza manual o mecánica.

1.6.3 CONDUCTOS DE AGUA9.

El caudal ha ser aprovechado para la generación de la energía eléctrica es captado y

conducido a través de un canal o conductos; el trazado pasa por diferentes accidentes

topográficos que son sorteados con obras especiales como acueductos, túneles y

sifones hasta llegar al tanque de presión.

Los canales pueden ser construidos de diversas secciones y materiales.

1.6.3.1 Túnel de conducción.

El túnel es una obra subterránea que se excava siguiendo un eje y se utiliza es los

siguientes casos:

• Cuando es más económico atravesar un macizo montañoso mediante

túnel, que construir un canal superficial rodeando dicho macizo.

• Cuando la pendiente transversal del terreno es elevada (mayor al 45%) y

las características del material no permiten asegurar la estabilidad y

seguridad del canal.

El túnel de conducción de una central hidroeléctrica a filo de agua trabaja a presión

atmosférica, simulando un canal abierto.

El túnel debe mantener la pendiente del canal y seguir la distancia más corta la cual

es alterada por situaciones topográficas y geológicas del terreno.

9 ORTIZ, Ramiro, “Pequeñas Centrales Hidroeléctricas” .p147, Primera Edición.

Page 48: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

27

La forma de sección del túnel debe ser tal que su área permita la circulación del

caudal máximo, y resista las presiones las cuales determinan la forma de su sección y

el tipo de revestimiento del túnel.

Los túneles pueden tener forma circular, de herradura o de baúl.

La forma circular garantiza el área óptima pero es de difícil construcción, por lo que

la de baúl es más sencilla en su construcción.

1.6.3.2 Tanque de carga.

El tanque de carga es una estructura de hormigón ubicada al final del reservorio o del

túnel de carga en el cual se alojan las aguas previas a ingresar a la tubería de presión,

las mismas que posteriormente serán turbinadas en la casa de máquinas.

Los tanques de carga disponen de unas compuertas y válvulas que permiten regular

el caudal y están equipadas por rejillas metálicas para evitar la entrada de elementos

sólidos o extraños al agua.

1.6.3.3 Tubería de presión10.

Conecta el tanque de carga con la casa de máquinas y conduce las aguas hasta los

rodetes, donde la energía cinética es transformada en energía mecánica y luego en

energía eléctrica.

La tubería de presión debe tener preferiblemente una alineación recta y puede ser de

acero o de hormigón armado.

La tubería de presión esta compuesta por los siguientes elementos:

• Toma de agua, con rejillas.

• Codos para variación de pendiente y direcciones del eje de la tubería.

• Juntas de unión soldadas, bridas, uniones de espiga y campana.

• Juntas de expansión ubicadas entre anclajes, las cuales asimilan la

contracción o dilatación del material por variación de temperatura.

• Bifurcaciones inferiores que pueden dividir el caudal para varias turbinas.

• Anclajes y apoyos de hormigón armado que se encargan de sostener y

asegurar la tubería a la pendiente natural del terreno.

10 ORTIZ, Ramiro, “Pequeñas Centrales Hidroeléctricas” .p214, Primera Edición

Page 49: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

28

1.6.4 CASA DE MÁQUINAS.

La casa de máquinas es una estructura civil que aloja la mayor parte del

equipamiento electromecánico como es el grupo turbina-generador, los diversos

equipos auxiliares que permiten el normal funcionamiento y operación de la central

como son los tableros de control de la turbina – generador, interruptores de maquina,

válvulas, puente grúa, bombas, banco de baterías etc.; se construyen sobre el nivel

del suelo, semienterradas y subterráneas.

La ubicación de la casa de maquinas es muy importante para el buen funcionamiento

de la central y se la decide teniendo en cuenta los siguientes parámetros:

• Debe estar situada cerca del afluente en el cual se entregará el agua

turbinada, teniendo en cuenta que en el canal de desagüe no se depositen

sedimentos que afecten su operación.

• Debe ubicarse en una zona de terrenos estables, que estén fuera del

alcance de las riadas que pueden depositar una gran cantidad de

sedimentos en el canal de desagüe o en caso extremo en el área propia de

la casa de maquinas; libre de derrumbes, deslaves e inundaciones.

• Disponer de un área posible de ampliación futura en caso de ser necesario.

• Disponer facilidades de acceso.

• Las obras a asentarse debe guardar armonía con el medio ambiente y con

la mínima afectación posible.

1.6.5 CANAL DE DESCARGA.

El canal de descarga en un componente importante en el diseño de una central

hidroeléctrica ya que por su intermedio las aguas turbinadas son evacuadas y

devueltas al curso normal del río.

Page 50: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

29

1.6.6 SUBESTACIÓN DE ELEVACIÓN.

Como generalmente las centrales hidroeléctricas están retiradas de los centros de

carga, se requiere de uno o varios transformadores para elevar el voltaje a la tensión

de transmisión para el transporte de la potencia y energía generada, dichos

transformadores con otros equipos conforman la subestación.

Para el normal funcionamiento de la subestación se requiere de varios equipos tales

como:

o Transformadores de potencia.

o Interruptores.

o Seccionadores.

o Seccionadores de puesta a tierra.

o Pararrayos, transformadores de medida (TC, TPs).

o Estructuras metálicas de soporte para los equipos y barras.

o Barras.

1.7 VENTAJAS COMPARATIVAS DE LAS CENTRALES

HIDROELÉCTRICAS VERSUS LAS CENTRALES DE

GENERACIÓN TÉRMICA.

Se ha considerado que la electricidad de origen hidráulico es una alternativa no

contaminante comparada con una central termoeléctrica, no obstante, la construcción

de una central hidroeléctrica implica obligatoriamente un efecto de impacto en el

medio ambiente porque se altera en mayor grado el menor el medio natural de los

diversos sitios del proyecto donde se asientan sus obras como son las represa,

canales, túneles de conducción, casa de máquinas, y subestación.

1.7.1 VENTAJAS DE UNA CENTRAL HIDROELÉCTRICA.

o Genera energía limpia, no contamina el aire y el agua.

o Implica experiencia y tecnología fácilmente disponible en muchos países.

o El recurso utilizado por ser renovable no se agota; se lo toma en una cota

superior y se devuelve en una cota o nivel inferior.

Page 51: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

30

o El costo del kWh generado de un proyecto hidroeléctrico es menor que en un

termoeléctrico.

o Genera puestos de trabajo durante la construcción, operación mantenimiento

y vida útil del proyecto incluyendo actividades laborales diversas que se

realizan antes durante y después de la obras.

o Las turbinas hidráulicas son sencillas, eficientes y seguras en su operación y

mantenimiento donde se aplican tecnologías no mayormente complejas.

o Reducidos costos de operación y mantenimiento, en comparación con las

centrales termoeléctricas lo que hace atractiva la inversión a largo plazo.

o Larga vida útil de buena parte del conjunto de instalaciones de la central.

o El agua puede ser de uso múltiple como generación de energía eléctrica,

irrigación de campos, agua potable, lo que implica optimización de

inversiones y del recurso hídrico.

o Otra ventaja muy importante de la generación hidroeléctrica es lo acordado

en el protocolo de Kioto-Japón11, que contempla la posibilidad de utilizar el

procedimiento conocido como "mecanismo de flexibilidad", para limitar y

reducir las emisiones de los gases de efecto invernadero. El Modelo de

Desarrollo Limpio MDL, es uno de estos mecanismos de flexibilidad.

Los objetivos del protocolo de Kyoto-Japón son facilitar a los países

desarrollados el cumplimiento de sus compromisos de reducción y limitación de

emisiones de gases y al mismo tiempo apoyar, el desarrollo sostenible mediante

inversiones y accesos a tecnologías limpias.

Esta reducción se lleva a cabo a través de los (MDL), lo que permite a los países

industrializados y empresas, comprar parte de las reducciones de gases que

provocan el calentamiento de la tierra, como el carbono (CO2), a las empresas de

los países en desarrollo.

11 El objetivo del Protocolo de Kyoto es conseguir reducir un 5,2% las emisiones de gases de efecto invernadero globales sobre los niveles de 1990 para el período 2008-2012. Este es el único mecanismo internacional para empezar a hacer frente al cambio climático y minimizar sus impactos. Para ello contiene objetivos legalmente obligatorios para que los países industrializados reduzcan las emisiones de los 6 gases de efecto invernadero de origen humano como: “dióxido de carbono (CO2)”, “metano (CH4)” , y “óxido nitroso (N2O)”, Además de tres gases industriales fluorados lo son: “hidrofluorocarbonos (HFC)”, “perfluorocarbonos (PFC)” y “hexafluoruro de azufre (SF6)”.

Page 52: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

31

De esta forma “Sigchos” también ingresa al mercado internacional de la

descontaminación ambiental.

En definitiva, significa que una central de generación que no produce emisiones

de CO2 puede vender esta "reducción" a países desarrollados que estén obligados

a emitir menos gases de efecto invernadero, generando beneficios tanto

económicos como ambientales.

Hay que tener en cuenta la siguiente equivalencia para las centrales que tienen

como combustible los derivados del petróleo (1 GWh de Energía equivale a 645

Ton de Anhídrido Carbónico CO2 ),

Este ingreso de los bonos del carbono representa un ingreso adicional para el

financiamiento de la deuda por el costo de construcción de la central

hidroeléctrica, reduciendo en un porcentaje el tiempo de recuperación de la

inversión total del proyecto, gracias al valor de dichos bonos.

1.7.2 DESVENTAJAS DE UNA CENTRAL HIDROELÉCTRICA.

o Puede alterar el normal desenvolvimiento de vida biológica (animal y

vegetal) del río principal y sus afluentes.

o Las centrales de embalse especialmente grandes tienen el problema de la

evaporación de agua. La construcción de una represa grande puede afectar el

entorno natural.

o En el caso de centrales de embalse construidas en regiones tropicales, los

estudios realizados demuestran que generan como consecuencia del

estancamiento de las aguas, focos infecciosos de bacterias, la proliferación de

plantas como los “lechuguines”, que afectan a la operación de las centrales,

requiriendo limpieza periódica de los mismos.

o De no existir una limpieza programada y periódica del embalse existirá una

acumulación de sedimentos, que disminuyen el volumen útil de agua

almacenada.

o El emplazamiento de un proyecto hidroeléctrico por sus características

naturales generalmente está lejos del centro o centros de consumo, de tal

Page 53: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

32

forma que exige la construcción de un sistema de transmisión de electricidad,

con el incremento de la inversión y el costo total del proyecto.

o La construcción de una central hidroeléctrica implica más tiempo en

comparación de una central termoeléctrica debido a la mayor complejidad y

diversidad de las obras de ingeniería civil, y electromecánicas.

o La producción de la energía es afectada por las variaciones meteorológicas

estacionales, períodos de sequías imprevistos, derrumbes.

o Puede provocarse conflictos socioeconómicos por eventuales contradicciones

e intereses en las prioridades del uso del agua para riego, agua potable o para

generar electricidad y reubicación de poblados aledaños.

o Un proyecto hidroeléctrico es más costoso que un equivalente térmico, por lo

que su financiamiento se hace más complejo y difícil de obtenerlo.

o El tiempo de puesta en servicio es mayor que en una térmica por el tipo y

cantidad de obras a ser ejecutadas y su equipamiento.

o Varios proyectos hidroeléctricos en el Ecuador por diversas razones e

intereses han sido pospuestos y retrasados en su construcción con los

consiguientes efectos negativos en la economía del país, lo que ha obligado a

la instalación de centrales térmicas de costos elevados de producción

especialmente si son a diesel (combustión interna) y turbinas a gas.

1.7.3 VENTAJAS DE UNA CENTRAL TERMOELÉCTRICA.

o Una central termoeléctrica clásica posee, dentro del propio recinto de la

planta, sistemas de almacenamiento del combustible que utiliza para asegurar

la disponibilidad permanentemente e inmediata del mismo.

o Muchas centrales termoeléctricas están diseñadas para permitir quemar

indistintamente combustibles fósiles diferentes (carbón, fuel oil-gas, carbón-

fuel oil, fuel oil – diesel) dependiendo de la disponibilidad de tales

carburantes y tipos de motores.

o Generalmente están cerca de los centros de carga, lo que reduce de costo de la

línea de transmisión.

o El financiamiento es más atractivo, en especial el extranjero, por tener un

período menor de tiempo para la recuperación del capital invertido.

o La puesta en operación toma menos tiempo que una central hidroeléctrica.

Page 54: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

33

1.7.4 DESVENTAJAS DE UNA CENTRAL TERMOELÉCTRICA.

o El elevado valor en los costos de los combustibles utilizados para su

generación, se ha ido incrementando con el paso del tiempo.

o Los combustibles son recursos no renovables y se agotan, (Se estima que no

habrá petróleo para el 2.050).

o La incidencia negativa de este tipo de centrales sobre el medio ambiente se

produce por la emisión de contaminantes a la atmósfera (procedentes de la

combustión de los combustibles) y el ruido que emiten al área circundante

afectando a los vecinos y los cultivos.

o La combustión del carbón, diesel, bunker y crudo provoca la emisión de

partículas y ácidos de azufre con la consiguiente afectación del medio

ambiente.

o Las centrales termoeléctricas tienen riesgos de incendios y explosiones por tal

razón necesitan de un buen sistema de seguridad que eleva su costo de

financiamiento.

Page 55: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

34

CAPITULO II

PROYECTO “SIGCHOS” 2. DESCRIPCIÓN GENERAL DE LA HIDROLOGÍA,

SEDIMENTOLOGÍA, GEOLOGÍA Y SISMOLOGÍA. 12 2.1 CUENCA DE LOS RIOS “TOACHI- BLANCO”.

2.1.1 CARACTERÍSTICAS FÍSICAS.

La cuenca bajo estudio constituye el área del curso superior de los ríos “Toachi –

Blanco” y tiene sus orígenes en la cordillera Occidental de los Andes. El valle tiene

una orientación de sur a norte y abarca las áreas flanqueadas al este por los “Ilinizas”

(5245 msnm) y el cerro “Yanahurcu” (4330 msnm), al oeste por la Cordillera de

“Chugchilán” con el cerro “Yuricsalto” (3670 msnm), al sur por los Páramos de

“Apagua” con el cerro “Eraurcu” (4473 msnm).

La cuenca tiene una forma alargada con una longitud de 53 km y un ancho de 22 km,

abarcando un área de 754 km2 hasta el sitio de captación y 790 km2 hasta el sitio

definido para ubicar la casa de máquinas.

La mayor parte de los suelos de la cuenca se destina a la agricultura y está

conformada principalmente por arenas de origen volcánico, que proporcionan la

mayor parte de sedimentos del río “Toachi”.

2.1.2 CARACTERÍSTICAS CLIMÁTICAS EN EL SITIO DEL PROYECTO.

En el área de desarrollo del proyecto predomina el clima denominado mesotérmico13

semihúmedo.

12 Investigación del Resumen Ejecutivo “Hidrológica Sedimentologia, Sismología y Geología de la cuenca del Rio “Toachi –Blanco”

Page 56: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

35

La vegetación, antes densa y exuberante, ha sido con el paso del tiempo reemplazada

por pastizales y cultivos.

Las temperaturas medias anuales están comprendidas entre 15 y 17 ºC, las

temperaturas mínimas rara vez descienden a 0 ºC, mientras que las máximas no

superan los 29 ºC.

La humedad relativa adopta valores cercanos al 85 % y las precipitaciones medias

anuales de toda la cuenca tienen valores entre 1000 y 1600 mm/año y presentan dos

estaciones lluviosas, la más marcada de enero hasta mayo y otra más baja en octubre

y diciembre.

La estación seca principal se extiende una de julio a diciembre lo indicado se explica

en la Figura Nº 15.

2.2 PRECIPITACIÓN MEDIA DE LA CUENCA (HASTA EL SITIO DE

LA CAPTACIÓN).

La precipitación media de la cuenca hasta el sitio de captación es de 865 mm/año,

pudiendo afirmarse que en las cabeceras de la cuenca llueve menos.

Casi la totalidad del área de drenaje hasta la captación tiene un régimen de

precipitación relativamente bajo.

2.3 CAUDALES DEL RÍO “TOACHI”.

2.3.1 REGISTROS DISPONIBLES.

La cuenca en estudio no cuenta con estaciones pluviométricas que registren los

caudales que pasan por el sitio de captación, por esta razón, se han utilizado los datos

de la estación Toachi en “Las Pampas”, ubicada aguas abajo unos 80 mts. y que

controla un área de 1040 km2.

2.3.2 CAUDALES MEDIOS, DIARIOS Y MENSUALES.

Con los registros de niveles y las curvas de descarga definidas se han calculado los

caudales medios diarios de la estación “Toachi” en “Las Pampas”.

13 En una zona intertropical existen cuatro pisos térmicos, entre ellos el mesotermico que representa a una extensión de 1 a 3 km con temperaturas de 10 a 20º C en clima montañoso.

Page 57: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

36

Para obtener los caudales diarios en el sitio de captación de la central “Sigchos”, se

aplicó a los caudales de “Toachi” en “Las Pampas”, 0.56 como coeficiente de

reducción que considera las respectivas áreas de drenaje, así como las precipitaciones

areales medias.

A partir de los caudales medios diarios se calcularon los caudales medios mensuales

para el período 1966-1994, los cuales se indican en la figura Nº 14 siguiente.

Fuente: Resumen Ejecutivo “Hidrológica Sedimentologia, Sismología y Geología.

Figura Nº 14 Curvas de Duración General

En la Figura Nº 15 que sigue a continuación se indica los caudales máximos

mensuales, caudales medios mensuales y los caudales mínimos mensuales

Page 58: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

37

Fuente: Resumen Ejecutivo “Hidrológica Sedimentologia, Sismología y Geología. Figura Nº 15 Caudales Medios, Mínimos y Máximos Mensuales

En la Figura 15 Se puede apreciar que el período seco comprende entre los meses de

agosto diciembre.

2.3.3 CAUDALES MEDIOS MENSUALES.

En la Figura Nº 16 se realiza una comparación entre los caudales medios mensuales y

el caudal de diseño para la Central Hidroeléctrica “Sigchos” que es de 7 m3/seg cuya

concesión de aprovechamiento del agua para la generación ha sido solicitada al

Consejo Nacional de Recursos Hídricos, y por la ubicación del proyecto, la jefatura

de Latacunga será la encargada de entregar dicha autorización.

Los valores cancelados por dicha concesión no influirá en el costo del kWh,

generado por la central, ya que dicho valor no entra en los costos fijos ni variables de

operación y mantenimiento.

Page 59: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

38

CAUDALES MEDIOS MENSUALES

ENE

FEB MAR ABR MAY JUN JUL AGO SEP OCT NOV DIC PROM

13,17

20,00 20,53 21,38 17,21 10,59 6,82 5,18 5,04 5,81 5,79 6,95 11.54

Fuente: Resumen Ejecutivo “Hidrológica Sedimentologia, Sismología y Geología. Cuadro Nº 13 Caudales medios mensuales (m3/seg)

CAUDALES MEDIOS MENSUALES y CAUDAL DE DISEÑO

13.2

20.020.5

21.4

17.2

10.6

6.8

5.2 5.05.8 5.8

6.957.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0

0.0

5.0

10.0

15.0

20.0

25.0

ENE FEB MAR ABR MAY JUN JUL AGO SEP OCT NOV DIC

MESES

CA

UD

AL

ES

ME

DIO

S(M

3/S

EG

)

Q medio Mensual

Q de Diseño

Fuente: Resumen Ejecutivo “Hidrológica Sedimentologia, Sismología y Geología.

Figura Nº 16 Caudales medios mensuales y caudal de diseño.

2.3.4 CAUDALES MÍNIMOS PARA LA GENERACIÓN

De la figura 15 se puede obtener el resumen que se muestra en la tabla 14, misma

que indica los caudales mínimos para la generación, caudal Q90% quiere decir que

tiene el 90% de seguridad de su presencia, Menor valor de porcentaje implica que la

probabilidad de su ocurrencia es también menor

La cantidad de agua dependerá de la temporada en que se encuentre, esto quiere decir

que, durante la época de invierno se aprovechará el caudal de diseño de la Central, 7

m3/s. En cambio, durante la época de estiaje se aprovechará el caudal disponible del

río, descontado el caudal ecológico del 10% por la confirmación de la inexistencia de

Page 60: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

39

especies bio-acuáticas en el curso superior del río Toachi, desde Casa de Máquinas

aguas arriba.

CAUDALES MÍNIMOS PARA LA GENERACIÓN

ENE FEB MAR ABR MAY JUN JUL AGO SEP OCT NOV DIC

4,3 7,4 9,4 10,4 8,2 5,4 4,4 3,4 3,0 3,0 3,1 3,2

Fuente: Resumen Ejecutivo “Hidrológica Sedimentologia, Sismología y Geología. Cuadro Nº 14 Caudales mínimos mensuales (m3/seg)

CAUDALES MINIMOS MENSUALES Y CAUDAL DE DISEÑO POR CADA TURBINA

4.3

7.4

9.4

10.4

8.2

5.4

4.4

3.43.0 3.0 3.1 3.2

3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5

0.0

2.0

4.0

6.0

8.0

10.0

12.0

ENE FEB MAR ABR MAY JUN JUL AGO SEP OCT NOV DIC

MESES

CA

UD

ALE

S M

INIM

OS

(M3/

SE

G) CAUDAL 90%

Q de diseño por cada turbina

Fuente: Resumen Ejecutivo “Hidrológica Sedimentologia, Sismología y Geología.

Figura Nº 17 Caudales mínimos mensuales y el caudal de diseño por cada turbina.

En estas condiciones se considera que una turbina funcionará todo el tiempo y en su

plena capacidad, en cambio la otra turbina funcionará en forma parcial y

dependiendo de la cantidad de agua que se disponga del río “Toachi”.

Por consiguiente, la producción de energía será variable en función de la época.

2.3.5 CAUDALES DE CRECIDA.

Los caudales de crecida para el sitio de captación del proyecto “Sigchos” se

definieron a base de una comparación con los caudales adoptados para crecidas en

varios proyectos ubicados en la vertiente occidental de los Andes, tales como:

Page 61: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

40

“Toachi-Pilaton” y “Pilalo”, llegando a definir una curva de caudales específicos de

crecida (lt/s/km2) en función del período de retorno de 10, 20, 50, y 100 años. Mas

largo el período de tiempo también es más probable una crecida con mayor caudal

Los caudales de crecida definidos de esta manera en m3/seg se indica en la tabla Nº 1

siguiente:

Caudales de crecida.

Período de retorno (años)

10 20 50 100

Caudal de crecida (m3/s) 135 195 285 390

Fuente: Resumen Ejecutivo “Hidrológica Sedimentologia, Sismología y Geología. Tabla N° 1 Caudales de Crecida

2.4 SEDIMENTOLOGÍA.

2.4.1 TRANSPORTE DE SEDIMENTOS.

Los sedimentos son materiales que se encuentran suspendidos en el agua de un río, y

que otros reposan también en el fondo del mismo por su mayor peso.

La estimación de la cantidad de sedimentos en suspensión se ha hecho partiendo de

datos de aforos en la estación “Toachi” en “Las Pampas”.

Se ha calculado que para el sitio de captación se tiene un transporte medio anual de

sedimentos en suspensión de 1’334.000 ton/año.

En base a valores asumidos para otros proyectos similares, se ha estimado que el

arrastre de fondo será el 30 % del valor de los sedimentos en suspensión incluyendo

aquí el sedimento no medido (1’334.000 ton/año) que por encontrarse en el fondo no

es detectado por los muestreadores, lo cual da una cantidad de 400.200 ton/año, o sea

el (30% de 1’334.000ton/año).

El tipo y la cantidad de material de arrastre tienen influencia por su efecto erosivo

sobre compuertas, rejillas, válvulas y principalmente en el desgaste progresivo del

rodete de la turbina, y al mismo tiempo influye en la frecuencia-costo del

mantenimiento así como el costo por paro operativo de la unidad generadora.

Page 62: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

41

2.5 GEOLOGÍA.

2.5.1 GEOLOGÍA GENERAL.

En el área del proyecto “Sigchos”, el basamento rocoso lo conforman lavas y brechas

del período Paleoceno, que corresponden a las unidades “Macuchi” y “Mulaute”.

Este basamento, está cubierto por capas estratificadas principalmente de lutitas,

limolitas, areniscas y conglomerados.

Depósitos cuaternarios de origen volcánico como tobas finas, tobas aglomeráticas y

ceniza volcánica cubren las rocas más antiguas.

Los niveles de terrazas se encuentran adosados a las laderas del valle y pequeños

depósitos de aluvial, están en el lecho aparente del río “Toachi”.

2.5.2 GEOLOGÍA EN LOS SITIOS DE LAS OBRAS.

2.5.2.1 Captación.

Las obras de captación y obras anexas, se cimentarán en brechas volcánicas, de

buenas características geomecánicas.

En este sitio las laderas no presentan evidencia de procesos erosivos importantes que

afecten su estabilidad.

2.5.2.2 Túnel de carga.

El Túnel de carga en un 60%, será excavado en brechas volcánicas, con categoría

RMR14 de categoría Buena a Muy Buena. En forma preliminar, el 40% será

excavado en lavas fracturadas, con categoría de Buena a Regular.

2.5.2.3 Tanque de carga.

El Tanque de carga se localiza en una “silla topográfica”, de buena estabilidad y su

cimentación será en lavas meteorizadas.

14 Rock Mass Rainting, (RMR), método para la clasificación de macizos rocosos duros o resistentes.

Page 63: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

42

2.5.2.4 Tubería de presión.

La tubería de presión, baja una “nariz topográfica” de mediana amplitud y los

procesos erosivos presentes son bajos que no afectan su estabilidad. Se cimentará en

rocas meteorizadas y fracturadas.

2.5.2.5 Casa de máquinas.

La casa de máquinas se ubicará en una pequeña terraza, en la unión de los ríos

“Toachi” y quebrada “Pugsiloma”. La cimentación será en aluvial de granulometría

gruesa.

2.6 SISMOLOGÍA Y RIESGO VOLCÁNICO.

2.6.1 SISMOLOGÍA.

Del estudio del riesgo sísmico, se concluye que la zona de implantación del proyecto,

corresponde a una región atravesada por una serie de fallas geológicas activas,

capaces de generar movimientos sísmicos de importancia.

El valor de la aceleración para el cálculo estructural de las obras, se recomienda en

0.30 de la gravedad, ante la posibilidad de un sismo de magnitud de 6.5 en la escala

“Richter”.

Para información comparativa en el proyecto “Agoyan” se adoptaron valores de

aceleración de la gravedad de 0.5 y un sismo de magnitud 7 en la escala de

“Richter”, el proyecto “Victoria” de la central hidroeléctrica “Quijos” también

adopta un valor de 0.30 de la gravedad.

2.6.2 RIESGO VOLCÁNICO.

Del estudio del Riesgo Volcánico, se determina, que la probabilidad de erupción de

los volcanes “Quilotoa” y del “Iliniza”, durante la vida útil del proyecto está entre

Baja a Nula.

Page 64: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

43

2.7 MATERIALES DE CONSTRUCCIÓN A SER UTILIZADOS EN LAS

OBRAS CIVILES.

De las investigaciones preliminares, los agregados gruesos para el hormigón, serán

tomados de las excavaciones rocosas en lavas y brechas del túnel. También, se

analizan los materiales de las terrazas ubicadas aguas arribas del azud y aguas abajo

de casa de máquinas.

Se espera que concluyan las investigaciones de las calicatas y ensayos

correspondientes para definir los volúmenes de los agregados finos a ser utilizados

en este proyecto.

Como es obvio mientras más cercanas estén las fuentes de abastecimiento de

agregados gruesos y finos para la construcción el costo de los mismos y su transporte

se optimizan en beneficio propio del valor final del proyecto “Sigchos”.

Page 65: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

44

CAPITULO III

PROYECTO “SIGCHOS”

3 DESCRIPCIÓN GENERAL DE LAS OBRAS CIVILES15.

3.1 UBICACIÓN.

El proyecto “Sigchos” está localizado en el centro del cantón del mismo nombre, a

150 Kms. al sur de la ciudad de Quito, en la Provincia de Cotopaxi, República del

Ecuador.

El acceso al sitio del proyecto se realiza desde la carretera Panamericana, en el sector

de “Lasso”, utilizando la vía hacia “Saquisilí” y luego mediante un camino de tercer

orden que sale con dirección oeste hacia las poblaciones de “Tanicuchí”, “Toacazo”,

“Isinliví” y “Sigchos”, en una longitud aproximada total de 52,0 Km. en derivación

desde la carretera Panamericana Sur.

Esta región climática se ubica entre los 1800 y 3000 (msnm) metros sobre el nivel

del mar y se caracteriza por presentar una temperatura media entre 12º y 18°C, y

recibe una precipitación promedia total anual entre 1.000 y 1.500 mm.

La distribución de las lluvias es de tipo zenital16. La estación seca varia, pero

generalmente se presenta con mayor intensidad durante los meses de julio y agosto.

3.2 CARACTERÍSTICAS DE LOS ELEMENTOS PRINCIPALES DEL

PROYECTO.

Siendo el propósito de la tesis el “estudio de factibilidad para el dimensionamiento

e implementación de un generador y estación elevadora para la central

hidroeléctrica “Sigchos” se hace a continuación una descripción general de los

15 HIDROPLAN Cia Ltda, Resumen Ejecutivo de Obras Civiles-Diseño Hidráulico. Proyecto Hidroeléctrico “Sigchos”. 16 Debido a la atracción gravitatoria de la Tierra, las lluvias no siguen una trayectoria recta, sino hiperbólica, uno de cuyos focos se sitúa en el centro del globo terrestre.

Page 66: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

45

detalles más importantes de los diversos elementos del proyecto en lo que se refiere a

las obras de ingeniería civil, a fin de ilustrar como se ha concebido el diseño integral

de la obra.

3.2.1 CAPTACIÓN o TOMA.

Es el lugar en el cual se aprovecha de las aguas para mediante su conducción y salto

aprovecharlas en la generación hidroeléctrica, tiene las coordenadas:

N 9927720 y E 736130

La toma o captación de las aguas del río “Toachi”, se realiza en la cota 2.265,00

metros sobre el nivel del mar (msnm), en el sector denominado “Cununyacu”. Es de

tipo convencional prevista para un caudal medio anual de 11,54m3/s y consta de un

azud de hormigón de 35,00 metros de ancho y 7,00 metros de alto, que permite

evacuar una crecida cada 100 años de 400,00 metros cúbicos por segundo (m3/s).

En la margen izquierda del río se ubica la Estructura de Toma con una rejilla de

entrada de 7,33 metros de largo por 1,97 metros de alto, que se comunica con la

Cámara del Desripiador y con el Desarenador desde donde a través de un vertedero

frontal, el agua pasa a la conducción.

El ingreso al Desarenador está controlado por dos compuertas planas de 1,60 metros

de ancho y 1,60 metros de altura.

Parte integrante de la Toma es el Canal de Limpieza de Sedimentos y el Canal de

Limpieza del Desarenador de sección 1,00 x 1,00 metros, direccionados

convenientemente hacia el curso del río “Toachi”.

El Desarenador consta de dos cámaras y se lo ha diseñado para una altura útil de 4,27

metros, una longitud de 39,00 metros y 5,50 metros de ancho para cada una.

En el muro lateral derecho del Desarenador se ha previsto un Vertedero de Excesos,

de 17,20 metros de largo, y dos compuertas de limpieza de 2,80 metros de ancho y

1,00 metro de altura.

Page 67: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

46

Por medio de un canal de sección 2,00 x 2,00 metros las aguas en exceso, irán

directamente hacia el río Toachi, así como todos los sedimentos que necesitan ser

evacuados.

Al final de esta estructura se tiene un Vertedero Frontal, que permite el paso del agua

limpia al Túnel de Conducción. Ver Figura Nº 18

Figura Nº 18 Obras de captación

3.2.1.1 Caudales de diseño para la central hidroeléctrica.

Para el diseño integral del proyecto hidroeléctrico se ha adoptado los siguientes

valores de caudales.

Caudal medio diario disponible el 90 % del tiempo es de 3,79 m3/s.

Caudal de diseño del proyecto 7 m3/s.

3.2.1.2 Obras de cierre del cauce del río.

Las obras de cierre del cauce del río estarán conformadas por un azud o vertedero,

una compuerta, canal para el control de crecidas y canal de servicio.

Page 68: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

47

Por el vertedero pasarán hasta 195 m3/s, correspondientes a una crecida con un

período de retorno de 20 años se ha proyectado un vertedero de 16 m de ancho y 5 m

de alto sobre el nivel natural del cauce. La cota de la cresta del vertedero será de

2267,70 msnm y el nivel máximo de crecida 2270,86 msnm, lo indicado se explica

en la figura Nº 19.

Figura Nº 19 Obras de cierre del Rió Toachi

El azud dispondrá de un zampeado o cuenco de disipación aguas abajo, para la

formación del resalto de disipación de energía y disminuir al máximo el efecto

erosivo del agua.

La compuerta y canal de crecidas desempeñan cuatro funciones importantes que son:

1.- Descargan los caudales de crecida sobre los 195 m3/s;

2.- Eliminan parte de los sedimentos que se depositan detrás del vertedero de

crecidas;

3.- Sirven como elemento de desvío del río durante la etapa de construcción del

vertedero;

4.- Permiten pasar las aguas del río “Toachi” durante las paradas de la central.

La compuerta será del tipo radial y tendrá un ancho de 6 m y alto de 3,5 m. que

completamente abierta tiene una capacidad máxima de descarga de 141 m3/s.

Page 69: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

48

El canal que evacua la descarga de la compuerta tiene 7 m de ancho y una pendiente

del 2 %. La longitud del canal será de 31 m hacia aguas abajo del eje de la captación

y se prolonga 10 m hacia aguas arriba del mismo eje.

La compuerta y canal de servicio desempeñan dos funciones importantes:

1.- Ayudan a lavar los sedimentos depositados en el frente de la rejilla;

2.- Descargan los caudales ecológicos que se requieran hacia aguas abajo.

También se los puede considerar como elementos de emergencia durante el paso de

crecidas extraordinarias.

La compuerta será de tipo plano, con un ancho de 2 m y alto de 2 m, completamente

abierta, la compuerta tiene una capacidad máxima de descarga de 27,7 m3/s.

El canal de servicio tiene 2 m de ancho y una pendiente del 5 %. La longitud de 31 m

hacia aguas abajo del eje de la captación se prolonga hacia aguas arriba del mismo

eje hasta abarcar todo el frente de la rejilla de entrada.

La pared derecha del canal se prolonga 18 m hacia aguas arriba del eje de la

captación y esta tiene como objetivo evitar el depósito de material grueso en el frente

de la rejilla. Esta protección del frente de la rejilla se completará con la construcción

de un pequeño dique de cierre en el inicio del canal de servicio.

3.2.1.3 Obras de toma.

La toma está conformada por los siguientes elementos, siguiendo la dirección de

aguas arriba hacia aguas abajo:

• Rejilla.

• Desripiador, compuerta y canal de descarga del desripiador.

• Vertedero de excesos, canal recolector y descarga del vertedero de excesos.

• Compuertas de regulación de caudales de ingreso a desarenadores.

• Transición de ingreso a desarenadores.

• Desarenadores con vertedero frontal de salida de caudales.

• Compuertas y canal de limpieza de desarenadores.

• Canal recolector del agua que pasa sobre vertedero de desarendores.

Page 70: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

49

Para el dimensionado de la rejilla se ha asumido que la velocidad máxima de flujo

sea 0,68 m3/s, considerando una obstrucción del 30 %.

La rejilla estará constituida por barrotes rectangulares de 25 mm de espesor y 120

mm de ancho, con un espaciamiento entre barrotes de 75 mm. La rejilla tendrá 2 m

de alto y 9,875 m de longitud, en esta longitud están incluidas dos pilas de 0,5 m de

espesor.

La limpieza de las rejillas será ejecutada con rastrillo mecánico.

Aguas abajo de la rejilla se dispondrá de un desripiador que permita atrapar

cualesquier grava inferior a 75 mm que pueda pasarse por la rejilla.

Para la limpieza del desripiador se dispone de una compuerta plana de 1,4 m de

ancho y 1,4 m de alto, cuya descarga se conduce por un canal de la misma sección de

la compuerta, con una pendiente del 5 %, que entrega el caudal al canal de servicio.

Para el control de los caudales de exceso que pasan por la rejilla, en la pared derecha

del canal de aproximación hacia los desarenadores se ha proyectado un vertedero de

excesos de 10 m de longitud.

Durante la ocurrencia del caudal de diseño del vertedero principal, se ha calculado

que por el vertedero de excesos pasarán 22,58 m3/s. El canal de descarga del

vertedero tiene 2,5 m de ancho y una pendiente del 5 %.

A continuación del desripiador se tiene un canal de aproximación a los desarenadores

que tiene una longitud de 12 m y ancho 7,9 m; en este tramo se uniformiza el flujo

que sale de la curva.

Luego del canal de aproximación se tiene la bifurcación para el ingreso a los dos

desarenadores. El canal de ingreso a cada desarenador tiene 2m de ancho y 5m de

longitud; en este tramo se ubica la compuerta de regulación de caudales de ingreso

hacia el desarenador; la compuerta será plana de 2m de ancho y 2m de alto.

Después del tramo de compuertas de regulación, se inicia una transición de sección,

que permite cambiar de sección rectangular a sección trapecial, tiene 7,5 m de

longitud, y cambia en forma gradual de un ancho de 2 m a 5,4 m.

Page 71: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

50

La sedimentación de las arenas se la realiza en dos desarenadores que funcionan en

paralelo cada uno diseñado para un caudal de 3,5 m3/s; son de lavado intermitente, es

decir, en cada lavado debe ser vaciado el desarenador, mientras el alterno sigue

trabajando.

Cada cámara tendrá las siguientes dimensiones: 38 m de longitud, 5,4 m de ancho y

2,95 m de profundidad. La sección de sedimentación será rectangular, mientras que

la sección de depósito de sedimentos en el fondo será trapecial; el ancho en la base

del trapecio es 1,4 m.

Para el lavado de los sedimentos decantados, al final del desarenador, pasando el

canal recolector, está dispuesta una estructura que aloja una compuerta plana de 1,4

m de ancho y 1,4 m de alto.

Tanto la compuerta de lavado del desarenador izquierdo, como la de lavado del

desarenador derecho, descargan en un mismo canal que restituye las aguas al río

Toachi. Este canal de limpieza tiene una sección de 1,4 x 1,6 m y una pendiente

longitudinal de 4 %.

Los caudales desarenados pasan frontalmente por encima de los vertederos ubicados

al final del desarenador hacia el canal recolector que los dirige hacia el túnel.

El canal recolector de los caudales que pasan sobre el vertedero, se ha definido del

mismo ancho del túnel de conducción, esto es, 3 m y una pendiente del 8 %.

A la salida del canal recolector se inicia la pendiente de 1,5 ‰ que es la pendiente

calculada para el túnel, cuyo inicio está ubicado a 18,03 m del eje de los

desarenadores.

3.2.1.4 Limpieza de sedimentos en la captación.

El arrastre de fondo, estimado en 400.000 ton/año, casi en su totalidad se depositará

detrás de la de captación, siendo el período de invierno el más crítico para el

mantenimiento de la toma.

Page 72: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

51

Cuando la central se encuentre operando, el transporte de fondo depositado detrás del

vertedero y de la compuerta de crecidas puede limpiarse con lavados hidráulicos

mediante aperturas pequeñas y esporádicas de la compuerta de crecidas. De igual

manera, los sedimentos gruesos y pesados depositados en el frente de la rejilla

pueden limpiarse mediante aperturas parciales y esporádicas de la compuerta de

servicio.

Los sedimentos gruesos que no logren eliminarse con el lavado hidráulico, deberán

sacarse mediante la utilización de equipo mecánico pesado, consistente en una

retroexcavadora y una volqueta que transporte el material hacia las escombreras. Este

equipo pesado podrá operar desde la losa de operación y patios previstos en el

proyecto de captación, de modo que se pueda tener limpio el frente de la compuerta

de crecidas y el frente de ingreso hacia la zona de rejillas.

Cuando por algún motivo se pare la operación de la central, se tratará de limpiar los

sedimentos depositados en el cauce del río con un lavado hidráulico, con aperturas

parciales de la compuerta de crecidas, llenando y vaciando el pequeño embalse, para

a continuación ingresar al cauce del río el equipo pesado como un tractor de oruga,

una retroexcavadora y volquetas para ejecutar la limpieza de los sedimentos

depositados.

3.2.2 TÚNEL DE CONDUCCIÓN.

3.2.2.1 Características topográficas del área y geometría del túnel.

La topografía de la zona en donde se desarrollará el túnel de conducción presenta un

relieve muy irregular, con macizos montañosos rocosos de fuerte pendiente del

terreno. En todo este relieve se destaca muy claramente la montaña “Oquendo”.

El túnel con una pendiente de 1.5 ‰ se inicia inmediatamente aguas abajo del canal

recolector que recoge los caudales que pasan sobre los vertederos al final de los

desarenadores como se muestra en la siguiente figura.

Page 73: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

52

T4

T3

T2

T1

T1-T2 82.038mts S62.1752° W

T2-T3 2996.643mts N87.1308° W

T3-T4 333.807mts N22.2544° W

Figura Nº 20 Ruta de túnel de conducción Los resultados de los estudios geológicos y geotécnicos indican que casi todo el túnel

se encontrará en roca de buena calidad, de modo que la sección no requerirá de

protección, excepto eventuales revestimientos puntuales de hormigón lanzado.

El túnel tendrá una solera plana en hormigón convencional para mejorar su

capacidad hidráulica y para facilitar el tráfico del equipo de construcción.

Se ha previsto que la construcción del túnel se ejecutará con un solo frente por

razones que facilitaran el flujo a gravedad de las aguas de infiltración.

3.2.2.2 Sección básica de excavación.

En función del caudal de diseño, de 7 m³/s, el valor del diámetro del túnel de

conducción responde a un diámetro mínimo desde el punto de vista constructivo.

De acuerdo a las experiencias de túneles construidos en el Ecuador, el diámetro

mínimo que facilita la maniobrabilidad de los equipos de construcción es 3 m; este es

el diámetro que se ha adoptado para el túnel del proyecto “Sigchos”.

Por consideraciones geotécnicas se proyecta una sección tipo baúl con corona o

bóveda circular de 1,5 m de radio y paredes verticales de 1,5 m de alto. En esta

sección se construirá una solera de hormigón de 0,15 m de espesor. También está

prevista una cuneta de drenaje de 0,3x0,3 m.

Page 74: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

53

Un resumen de las características principales del túnel es el siguiente:

SECCIÓN:

TIPO BAÚL

Radio de la bóveda: 1,5 m Alto de paredes: 1,5 m

TIPO DE ACABADO:

Bóveda y paredes: Roca Solera: hormigón de 0,15 m de espesor Longitud de túnel: 3384,7 m Pendiente de túnel: 1,5‰ Cota solera en inicio: 2265,081 msnm Cota solera al final: 2260,001 msnm

Fuente: Resumen Ejecutivo de Obras Civiles-Diseño Hidráulico. Tabla Nº 2 Características principales del túnel.

Figura Nº 21 Sección del Túnel.

3.2.3 TANQUE DE CARGA O PRESIÓN.

El Tanque de Carga se ha diseñado un volumen aproximado de 1.070,00 m3.

Las dimensiones del tanque son: longitud 18,70 metros, ancho 11,00 metros y altura

promedio 5,22 metros.

Page 75: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

54

En la cabeza del Tanque de Carga está prevista la colocación de una reja fina de 3,49

metros de ancho y 4,67 metros de altura para garantizar una limpieza adicional del

agua y, a continuación, una compuerta que permita controlar el paso del agua a la

tubería de presión.

También se ha previsto en el muro derecho un vertedero de excesos y la instalación

de una compuerta de limpieza de 1,00 metro de ancho por 1,00 metro de altura, que

se conecta directamente con la rápida de excesos.

La rápida de excesos se comunica con la quebrada que está a la derecha de las obras

de presión y es un canal rectangular de sección 2,00 x 2,00 metros y longitud

aproximada de 300,00 metros. Este canal, que recoge las descargas del Tanque de

Carga, será de hormigón armado, conduciendo los sedimentos y los excesos de agua

hacia el río “Toachi”.

Figura Nº 22 Túnel tanque de carga y desvío de excesos 3.2.3.1 Componentes del tanque de presión.

Los componentes del tanque de presión son los siguientes.

o Estanque principal.

o Embocadura.

Page 76: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

55

o Canal “bypass”.

o Vertedero de excesos.

o Canal de excesos, todo esto se puede ver en la Figura Nº 23.

Figura Nº 23 Tanque de Presión

3.2.3.2 Estanque principal.

Entre el portal de salida del túnel y el inicio del tanque de presión hay un tramo de

77,07 m de canal de 2,2 m de ancho y 2 m de alto, que tiene la misma pendiente del

túnel, esto es, 1,5‰. Este canal entrega directamente el caudal al estanque principal.

Dos metros aguas arriba de la llegada al tanque se ha proyectado una compuerta

plana de 2,2 m de ancho y 2 m de alto, la cual servirá para cerrar el flujo hacia el

tanque, cuando se lo vaya a vaciar y limpiar. Entonces se abrirá la compuerta de

entrada al canal “bypass” para desviar el flujo por el mismo, de esta manera, la

central continuará funcionando mientras se limpian los sedimentos del tanque. La

compuerta de ingreso al “bypass” tiene 2 m de ancho 2 m de alto.

Las paredes del tanque son verticales y en la pared izquierda estará ubicado un

vertedero de excesos de 40 m de longitud.

La solera del tanque de presión es plana; tiene una pendiente longitudinal del 1%.

Page 77: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

56

Entre el nivel máximo normal de operación y el nivel mínimo normal de operación

se disponen de 1204 m³ que constituye el “volumen útil”. Entre el nivel mínimo

normal de operación y el nivel mínimo de emergencia hay un volumen de 301 m³

que se lo denomina “volumen de emergencia”. Entre el nivel mínimo de emergencia

y la solera se tienen 435 m³, que corresponden al “volumen muerto”, o volumen

disponible para el depósito de sedimentos.

3.2.3.3 Embocadura.

Se denomina embocadura al tramo de aproximación del flujo hacia la estructura de

entrada a la tubería de presión, comprendido entre el fin de la transición y la entrada

a la tubería. De acuerdo a esta denominación, la embocadura tiene una longitud total

de 16 m y un ancho de 3,3 m. contiene los siguientes elementos:

o Área de compuertas.

o Rejilla de entrada.

o Área de profundización del tanque.

En la pared izquierda se tiene ubicada la compuerta de limpieza del tanque, que

permite el vaciado y posterior limpieza. La compuerta es plana de 1,2 m de ancho y

1,2 m de alto. El caudal que sale de la compuerta se encauza por un canal cerrado de

hormigón del 2% de pendiente longitudinal, 1,6 m de ancho que desemboca en el

canal de excesos.

A continuación está proyectada una compuerta plana que abarca todo el ancho de la

embocadura, esto es, 3,3 m, con un alto de 3,6 m. Esta compuerta se utilizará para

aislar el estanque principal, cuando se lo va a vaciar y limpiar, con el agua fluyendo

hacia la central por el canal “bypass”. A unos 2 m aguas abajo de esta compuerta

llega el canal “bypass”.

La rejilla de 3.3m de ancho se encuentra inmediatamente aguas abajo del área de

compuertas, dimensionada para el paso de 7m³/s.

Page 78: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

57

3.2.3.4 Canal “bypass”.

Este canal funcionará solamente cuando se tenga que limpiar los sedimentos del

tanque de carga, para lo cual se deberán abrir las dos compuertas que están a la

entrada y a la salida del canal “bypass” y cerrar las compuertas ubicadas a la entrada

y a la salida del tanque. De este modo, la central podrá seguir operando, mientras el

estanque principal está en mantenimiento.

3.2.3.5 Vertedero de excesos y canal recolector.

El vertedero de excesos se encuentra sobre la pared izquierda del tanque de presión,

ocupando una longitud de 40 m. Se ha definido esta longitud con el objeto de generar

en el tanque niveles de agua que sean compatibles con los niveles de llegada en la

conducción.

El canal recolector tiene una pendiente del 2 %. A la salida del canal recolector se

inicia la pendiente de 2,4 ‰ que es la pendiente calculada para el canal de excesos.

3.2.4 TUBERÍA DE PRESIÓN.

La Tubería de Presión es de acero y vence un desnivel de 301,00 metros desde el

Tanque de Carga hasta la Casa de Máquinas.

El diámetro de la tubería de presión será de 1,60 metros, longitud de 561 metros; en

el tramo de llegada a la casa de máquinas contará con una bifurcación de 1,10 metros

de diámetro, para cada turbina.

La Tubería descansará a lo largo de su desarrollo sobre apoyos conformados por

dados de hormigón y anclajes de hormigón armado en los cambios de pendiente de la

misma. Estas obras serán construidas en una zanja trapezoidal, cuya solera tendrá

3,20 metros de ancho y 0,40 metros de espesor en hormigón, cunetas laterales para la

evacuación de las aguas lluvias y gradas de circulación en el lado derecho.

La configuración topográfica de la montaña facilita el trazado en planta de la tubería

de presión siguiendo una sola alineación. Sólo se necesita una deflexión al inicio,

para poder conectar con el eje del tanque de carga.

Page 79: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

58

3.2.4.1 Niveles de operación de la central.

Con el objeto de poder definir la geometría de la tubería de presión, es necesario

conocer los niveles de operación de la central:

Nº DESCRIPCIÓN m.s.n.m. DIFERENCIA DE

ALTURAS 1 Nivel máximo normal de operación (msnm) 2261,20 (1 y 4) 297.70 caída neta

2 Nivel mínimo normal de operación (msnm) 2259,20 (2 y 4) 295.70 3 Nivel mínimo de emergencia (msnm) 2258,70 (3 y 4) 295.20 4 Nivel del eje del rodete de la turbina (msnm) 1963,50 Fuente: Resumen Ejecutivo de Obras Civiles-Diseño Hidráulico.

Cuadro Nº 15 Niveles de operación de la central. 3.2.4.2 Estructura de entrada.

La estructura de entrada se la ha denominado como el inicio de la tubería de presión,

en este tramo se encuentran la transición de entrada que es una campana de 0,75 m

de longitud conformada en la pared de hormigón, con un diámetro inicial de 1,95 m y

un diámetro final de 1,5 m. El blindaje comienza al final de la campana.

A continuación de la campana se encuentra una cámara de válvulas de 3,85 m de

longitud y 6,70m de ancho que alojará una válvula mariposa de 1,5 m de diámetro

que permite cerrar el flujo en el caso de alguna emergencia en la tubería de presión;

también están previstos una válvula de aire y un medidor ultrasónico de caudal.

3.2.4.3 Geometría y características de la tubería de presión.

Las condiciones topográficas favorecen el proyecto de tubería de presión con una

sola alineación por lo que solamente en el inicio se requiere de una deflexión de

58,9164º para empatar con el eje del tanque de carga.

La tubería de presión irá instalada a un promedio de 3m bajo tierra, copiando el perfil

del terreno, lo cual ayuda a reducir el volumen de excavación así como los costos de

los anclajes.

Page 80: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

59

La tubería se instalará en una zanja de 2.7 m de ancho (0.6 m libres a cada lado de la

tubería para su manipulación y trabajos de soldadura), e irá asentada sobre una cama

de arena de 0,1 m de espesor.

El blindaje en la tubería de presión es de 1500 mm de diámetro interior tiene una

longitud de 528,83 m hasta antes del cono de reducción de sección, el cual reduce el

diámetro de 1500 a 1250 mm y tiene una longitud de 1,5 m.

A continuación del cono está el codo de deflexión y luego la bifurcación de 80º de

1250x850x850 mm que dirige el flujo hacia dos ramales de 850 mm de diámetro

interior que llegan hasta un cono reductor de 850 a 813 mm, que es el diámetro de las

válvulas esféricas que permitirán el paso final del agua a cada turbina.

Para el caudal de diseño, la velocidad del flujo varía entre 3,96 m/s en la tubería de

presión de 1500 mm hasta 6,17 m/s en el ramal de llegada a cada válvula esférica.

3.2.4.4 Pérdidas hidráulicas y caída neta.

Se han calculado las siguientes pérdidas hidráulicas17:

Pérdidas por fricción (m) 3,043 Pérdidas locales (m) 1,085

Pérdida total (m) 4,128

El valor de la caída neta para el caudal de diseño es:

Nivel máximo normal de operación (msnm) 2261,200 Nivel eje rodete de turbina (msnm) 1963,500 Caída bruta (m) 297,700 Perdida total (m) 4,128 Caída neta (m) 293,572

3.2.5 CASA DE MÁQUINAS.

La Casa de Máquinas será superficial, o sea construida a nivel del terreno. Con un

área de 428,00 m2 (36,00 x 10,90 m) y en ella se instalarán los equipos hidro y

electromecánicos, consistentes en turbinas Pelton, válvulas, generadores, equipos de

medida, control y auxiliares.

17 Resumen Ejecutivo de Obras Civiles-Diseño Hidráulico

Page 81: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

60

El área incluye espacio para montaje, reparación, control de los equipos, oficinas y

bodegas.

La casa de máquinas se localizará en una pequeña planicie conformada por material

aluvial en el área de confluencia del río “Toachi” y la quebrada “Pugsiloma”.

3.2.6 DESCARGA.

Las aguas turbinadas se descargarán al río “Toachi” por medio de un canal

rectangular de hormigón armado, de 2,00 x 2,00 metros de sección y 50,00 metros de

longitud.

El flujo que pasa por las turbinas es descargado al cárcamo blindado y de allí hacia el

canal de descarga de cada unidad, que tiene 1,6 m de ancho. Los dos canales se

juntan en uno solo, previo a la restitución de los caudales al río “Toachi” que tiene

3,2 m de ancho.

El canal de entrega dispone de un vertedero de 0,70 m de alto, cuyo objeto es evitar

que los sedimentos transportados por el río se depositen en la descarga de la central.

Ver Figura 24.

Figura Nº 24 Casa de Maquinas, Canal de descarga

Page 82: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

61

La crecida con un período de retorno de 10 años es de 135 m3/s, para este caudal el

nivel del río es 1959,31 msnm; lo que significa que hasta con crecidas de 10 años el

río no influirá en los niveles de la descarga.

Para niveles en el río superiores a 1960 msnm, deben cerrarse las compuertas de las

descargas de cada turbina.

La crecida con un período de retorno de 100 años es de 390 m3/s, para este caudal el

nivel del río estará en 1961 msnm, que es menor a la cota 1962,53 msnm del piso

principal de casa de máquinas.

3.2.7 CAMINOS DE ACCESO.

Los caminos permanentes de acceso, se ejecutarán a partir de las vías existentes, y

serán ejecutados de acuerdo con los planos de diseño y las normas e instructivos que

proporcione la Ilustre Municipalidad del Cantón “Sigchos”.

A más de las vías de acceso hasta la ciudad de “Sigchos”, será necesario mejorar la

vía de acceso hasta el sector de “Guacusí”, en una longitud aproximada de 7,0 Km.,

mismo que está cercano al sitio de las Obras de Toma.

Para la ejecución de las obras será necesario la construcción de caminos de acceso

hasta las Obras de Toma y de igual forma al portal de entrada al Túnel de

Conducción, estos caminos tendrán una longitud máxima de 3,0 kilómetros, de igual

forma se lo deberá hacer hasta la salida del Túnel, Tanque de Carga y Tubería de

Presión, de una longitud de 6,0 Km.

Se tendrá que construir el acceso desde la toma hasta el sitio en que se encuentra la

Casa de Máquinas y Subestación en una longitud de 2.5 Km.

En resumen los caminos que deberán ser implementados y que son trabajos

obligados para la construcción de las obras son los siguientes:

• Construcción de la vía a la Toma,

• Construcción de la vía Toma – Tanque de Carga,

• Construcción de la vía Toma – Casa de Máquinas

Page 83: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

62

CAPITULO IV

PROYECTO “SIGCHOS”

4 SELECCIÓN Y DIMENSIONAMIENTO DEL EQUIPO PRINCIPAL

(TURBINA - GENERADOR)

4.1 GENERALIDADES.

Con base en los principales parámetros del aprovechamiento hidráulico se procede a

la selección del equipo electromecánico para la central, cuyas características básicas

son las siguientes:

Caída neta: 293.57 m Caudal máximo de diseño: 7.00 m³/s

4.2 CONDICIONES AMBIENTALES EN EL SITIO.

Temperatura máxima absoluta 40°C

Temperatura mínima absoluta 0 °C

Grado de asoleamiento 20 °C

Temperatura media anual 15 °C

Viento máximo 130 km/h

Viento máximo excepcional 165 km/h

Humedad relativa máxima 100 %

m.s.n.m 2000

Coeficiente sísmico Co= 0,3

Fuente: Resumen Ejecutivo “Hidrológica Sedimentologia, Sismología y Geología. Tabla Nº 3 Condiciones Ambientales Proyecto “Sigchos”.

Page 84: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

63

4.3 SELECCIÓN DEL NÚMERO DE UNIDADES.

En una central hidroeléctrica, la tendencia actual es el empleo del menor número de

unidades ya que existen ventajas económicas técnicas como los costos de la turbina y

generador. Con menos equipos, se favorece una mejor automatización, el costo total

de la instalación disminuye, reduciéndose también las probabilidades de falla y de

accidentes.

Para la selección de la cantidad de unidades se propone los siguientes criterios y

razonamientos:

• En una central hidroeléctrica, no es recomendable que toda su potencia se

concentre en una sola unidad, pues al sufrir cualquier daño, o al ser

desconectada del sistema para someterse a mantenimientos programados

o no, se perdería la totalidad de la potencia instalada.

• La operación, control y el mantenimiento de una casa de máquinas con

menor número de unidades es más económico

• Se necesitaría un puente grúa de mayor capacidad y costos en el caso de

la instalación de una sola unidad debido a que la maquina y sus partes

serían más pesadas y voluminosas que al contar con dos o más unidades

de menores dimensiones y pesos.

• Si se trata de una sola unidad el tamaño de las piezas son más

voluminosas y más pesadas que podrían exceder las limitaciones de

diseño de ciertos caminos, alcantarillas puentes, túneles de acceso al sitio

de la obra o en su defecto tener que reforzarlos.

• Dos unidades tendrían la ventaja de ajustar mejor la producción a la

disponibilidad de agua en el tiempo y, eventualmente, a los

requerimientos de la carga, pero con un costo mayor que con una

máquina. Disponer de dos unidades ayuda a que en el caso de

mantenimiento o de falla de una de ellas se tendría potencia y energía de

la otra unidad.

• Instalar tres unidades, tampoco sería lo recomendable y económico por

cuanto resultarían máquinas demasiado pequeñas, menos eficientes;

además adquirir e instalar tres máquinas pequeñas es más caro que sólo

dos unidades de mayor tamaño, lo que significaría una casa de máquinas

Page 85: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

64

más grande, con el consiguiente encarecimiento de la obra civil y

prolongación del tiempo de construcción e instalación, además dificulta

controlar el plan de operación optimo del puente grúa durante el montaje

y el mantenimiento de una o dos unidades.

• Respecto a los costos relativos de una central en función del número de

unidades se tiene la siguiente proporción18.

o Una unidad costo relativo 1,00 o Dos unidades costo relativo 1,40 o Tres unidades costo relativo 1,55

• En el proyecto “Sigchos” el caudal firme de 3.5 m3/seg con una seguridad

del 90%, implica que mínimo una unidad estará trabajando al 100% de su

capacidad lo cual es correcto por la eficiencia combinada del grupo

turbina-generador.

• Teniendo en cuenta la potencia instalada de la Central Hidroeléctrica

“Sigchos” de 18MW, esta no representa sino el 0,6% de la demanda del

país correspondiente al año 2008, concluyéndose que no va ha ser una

central gravitante dentro del sistema nacional lo que suguire instalar dos o

más unidades y no una sola.

En función de los razonamientos anteriores, experiencias de otros proyectos y los

caudales disponibles variables durante el año, se concluye la conveniencia técnico

económico de la instalación de dos unidades.

4.4 SELECCIÓN DEL TIPO DE TURBINA.

Con frecuencia, los dilemas en la elección de la turbina se presentan entre las tipo

“Pelton” y las “Francis”, debido a su buena comercialización y las condiciones de

funcionamiento que ambas ofrecen.

Es muy conveniente la utilización de las turbinas tipo “Pelton”, cuando los caudales

son reducidos y su altura es elevada, otras características ventajosas que ofrecen son

el fácil mantenimiento y reposición a un bajo costo relativo y tiempo de la boquilla

18 GÓMEZ NAVARRO José L., “Saltos de Agua y Presas de Embalse”, Tercera Ed. Madrid 1958

Page 86: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

65

de los inyectores cuando el agua arrastra materiales sólidos, lo que hace más agresiva

contra la turbina

También existen ábacos o tablas de los fabricantes que orientan mejor para una

buena elección del tipo de turbina a ser utilizada en una central hidroeléctrica como

la que se presenta a continuación en la Figura Nº 24 en donde el salto del agua está

en función del caudal.

Se observa en el caso específico de esta tesis que para un caudal de 3,5m3/seg y una

caída de 300mts corresponde a la zona de aplicación o de utilización de las turbinas

“Pelton”.

Fuente: www.es.wikipedia.org

Figura Nº 25 Selección del tipo de Turbinas

4.4.1 VELOCIDAD ESPECÍFICA.

Se entiende por velocidad específica, a la velocidad a la que giraría la turbina del

proyecto “Sigchos”, si se la redujere a una escala menor de tal manera que se

obtenga una potencia de 1kW con un salto de agua de 1metro; en el sistema

internacional. Si se hace referencia al sistema inglés la relación estaría dada por

obtención de 1HP de potencia con una altura de salto de 1 pie.

Page 87: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

66

Si consideramos que H y P son constantes la velocidad específica depende

exclusivamente de la velocidad, esto implica determinar la velocidad de rotación de

la unidad, que afecta al peso y dimensiones de la máquina.

La velocidad especifica [ns], está definida por la siguiente formula.

45

H

Pnns =

Donde: ns : Velocidad Especifica [RPM] n : Velocidad de rotación de la Turbina [RPM] P : Potencia de salida a máxima eficiencia [kW] H : Caida Neta [m]

La tecnología de las turbinas hidráulicas clasifican a las mismas en función de la

velocidad especifica como se explica en la Tabla Nº 2 que se muestra a continuación.

TIPO DE TURBINA

Valores de ns

Pelton 1 inyector Hasta 30 Pelton 2 Inyectores 14 – 42

Pelton 3 o mas inyectores 17 – 73 Michel – Banki 59 – 165 Francis Lenta 60 – 125

Francis Normal 125 – 225 Francis Rápida 225 – 450

Axiales 350 – 1000 Fuente: OLADE – BID “Manual de Diseño de Pequeñas centrales Hidroeléctricas”.

Tabla Nº 4 Tipo de turbinas en función de la velocidad especifica19

4.4.2 DISPOSICIÓN DEL EJE.

Existen dos tipos de disposición de los ejes en las turbinas “Pelton”.

4.4.2.1 Eje horizontal.

En la disposición horizontal sólo se pueden instalar turbinas con uno o dos inyectores

como máximo, debido al complicado montaje y mantenimiento de los mismos.

19 OLADE – BID “Manual de Diseño de Pequeñas centrales Hidroeléctricas”, Equipos Volumen IV, 1985

Page 88: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

67

Sin embargo, en esta posición, la inspección del rodete en general es más sencilla,

por lo que las reparaciones por desgastes se pueden solucionar sin necesidad de

desmontar la turbina.

La casa de máquinas se hace más ancha, influyendo en el costo del puente grúa, pero

en cambio baja el costo del tipo de cojinete para la turbina – generador porque se

distribuyen los pesos más eficientemente, disminuyen los costos de excavación para

construir la casa de máquinas, la inspección y control es más simple al tener al

conjunto turbina – generador a un solo nivel o piso de la central.

Fuente: www.personales.ya.com

Figura Nº 26 Grupo Turbina - Generador Pelton de 2 Inyectores

4.4.2.2 Eje vertical.

Esta posición facilita la fijación de la alimentación del caudal en un plano horizontal

haciéndole posible aumentar el número de inyectores en un máximo de seis, lo que

disminuye las dimensiones de la turbina.

Se debe tomar en cuenta que en la disposición vertical el mantenimiento se hace algo

más difícil y, por ende, más caro, siendo aconsejable para aquellos lugares en donde

se tienen aguas limpias y que no produzcan gran efecto abrasivo sobre los alabes del

rodete de la turbina.

Page 89: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

68

Como ventaja se acorta la longitud entre la turbina y el generador, disminuye al

diámetro de la rueda y se puede aumentar la velocidad de giro bajando el costo de la

turbina.

Disminuye el costo del puente grúa porque la casa de maquinas es más angosta.

Con esta disposición aumenta el costo de la excavación de la casa de maquinas.

El control e inspección visual del conjunto turbina - generador tiene que hacerse en

diversos pisos o niveles de la casa de maquinas lo que puede representar un

inconveniente especialmente durante emergencias.

Además el sistema de cojinetes es más complicado y caro que con una disposición de

eje horizontal. Ver Figura 27

Fuente: personales.ya.com Figura Nº 27 Turbina tipo Pelton Eje Vertical seis Inyectores (Vista Superior)

4.5 ALTERNATIVA 1: CALCULO DE LA POTENCIA NOMINAL PARA LA

CENTRAL HIDROELÉCTRICA “SIGCHOS”,

Para el cálculo de la potencia nominal de la Central Hidroeléctrica “Sigchos” se

aplica la siguiente expresión:

Page 90: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

69

[ ]

[ ]

[ ]

[ ]kWQHP

kWQHnP

seg

mKgkW

quepuesto

HnQnteensionalmeseg

mKgP

seg

mQmHn

m

KgP

TnT

TT

Tt

Tt

η

η

η

η

×××=

×××=

=

=

=

×

××

=

81.9102

1000

1021

:

1000dim

10003

3

Donde:

PT potencia de la turbina. [Kk] Hn caída neta en =293,57 [mts.] Q Caudal de diseño =7,00 [ m3/seg] ηT Eficiencia de la turbina [ 0.90]

4.5.1 POTENCIA NOMINAL TOTAL DE LA CENTRAL “SIGCHOS”

Aplicando la siguiente expresión la potencia de la Central se tiene:

kWP

P

QHP

T

T

TnT

5.18143

9.0757.29381.9

81.9

=

×××=

×××= η

4.5.2 POTENCIA POR UNIDAD

La potencia total de la central será compartida entre dos turbinas.

turbinaporkWP

kWP

90722

5.18143

=

=

Page 91: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

70

Fuente: Water Power & Dam Construction, 1978

Figura Nº 28 Velocidad Específica VS Salto de diseño y por número de inyectores.20 Mediante tablas se obtiene el valor de la velocidad específica aproximada ns = 32.33

para turbinas “Pelton” de dos inyectores.

4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO [ nsj ]

( )

( )

( )

( )

inn

i

nn

i

Hi

Pn

HPn

n

n

Hi

Pn

H

i

P

nn

HPnH

Pnn

sjs

ssj

n

n

sj

s

n

KW

sj

n

n

KWs

•=

=

=

=⇒

==

==

;

··

··

)2(

)1(

··)2(

··)1(

25,15,0

25,15,0

25,15,0

45

25,15,0

45

Donde:

i Numero de inyectores o números de chorros=2 ns velocidad específica del rodete =32.33 20 Para la selección del tipo de turbinas nos hemos guiado del cuadro publicado por Water Power & Dam Construction Diciembre 1978, Tema: MODERN TRENDS IN SELECTING AND DESIGNING PELTON TURBINES by F. de Siervo and A. Lugaresi.

Page 92: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

71

nsj velocidad específica por velocidad o por chorro.

86.222

33.32

=

=

=

sj

sj

ssj

n

n

i

nn

Según Tabla 1 corresponde a Turbina “Pelton” de dos Inyectores

4.5.4 VELOCIDAD SINCRÓNICA APROXIMADA [ n ]

Donde: i Numero de inyectores ns velocidad sincrónica Hn Caída neta en metros PkW Potencia total de la turbina nsj velocidad especifica de la turbina por chorro

( )

[ ]RPMn

n

i

P

Hnn

kW

nsj

45.4122

9072

57.29386.22

45

45

=

=

=

Se selecciona una velocidad sincrónica estandarizada n=450 rpm, (cercana al valor

de 412.45) referente al generador acoplado directamente a la turbina que gira con

igual velocidad.

4.5.5 CÁLCULO DE LA VELOCIDAD DE EMBALAMIENTO [nf ]

Page 93: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

72

RPMn

n

nnn

n

nan

n

f

f

f

f

sjf

810

)450(8.1

)(8.1

8.1

)(84.176.1

=

=

=

4.5.6 CÁLCULO DE EL NÚMERO DE POLOS DEL GENERADOR [ p ]

Donde: f frecuencia [Hz=60 ciclos/seg] n velocidad en [rpm]

( )

( )

polosp

p

n

fp

16450

26060

260

=

××=

××=

4.5.7 CARACTERÍSTICAS FÍSICAS DEL RODETE “PELTON”.

4.5.7.1 Coeficiente de velocidad periférica [ ku ].

45.0

)86.22(039.05445.0

039.05445.0

=

−=

−=

Ku

Ku

nKu sj

4.5.7.2 Diámetro del chorro [ Dj ].

Donde φ Eficiencia del chorro [0.976] g aceleración de la gravedad [9.81 m/s2]

Page 94: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

73

( ) ( ) ( )

mDj

Dj

Dj

gHDj

iH

PDj

gHDj

iHP

librecaidaenaguadelvelocidadchorroefchorrosdechorro

caudalHP

n

T

nT

nT

1733.0

03005.0

57.29381.92976.0257.2939.081.9

5.90624

24

81.9

4

24

81.9

·.·#·81.9

2

2

2

2

2

=

=

××××××××

×=

×××××

×=

×××××=

×××=

π

φπη

φπη

η

4.5.7.3 Diámetro del rodete [ D2 ].

[ ]

( )[ ]

][589.1

86.22796.174.25086.22

1733.0

796.174.250

796.174.250

1

2

2

2

2

mD

D

nn

DjD

nn

D

Dj

sjsj

sjsj

=

−=

−=

−=

4.5.7.4 Relación [ Dj/D2 ].

11.0109.0

589.1

1733.0

2

2

≈=

=

D

Dj

D

Dj

4.5.7.5 Diámetro exterior del rodete [D3].

( )[ ]][10.2

86.22013.0028.1589.1

013.0028.1

3

3

2

3

mD

D

nD

Dsj

=

+=

+=

Page 95: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

74

En el grafico Nº 29 siguiente se puede apreciar las medidas D2 y D3 del rodete

“Pelton” calculadas anteriormente.

D2 = Diámetro medio del Rodete.

D3 = Diámetro exterior del Rodete

Fuente: Pequeñas Centrales Hidroeléctricas

Figura Nº 29 Diámetros D2 y D3 Rodete Pelton

4.5.7.6 Dimensiones del las cucharas del rodete.

En el grafico que se muestra a continuación se pude apreciar las dimensiones de las

cucharas, del rodete de la turbina H1 (ancho) y H2 (Largo) que se relacionan con las

siguientes expresiones:

Page 96: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

75

Fuente: Pequeñas Centrales Hidroeléctricas

Figura Nº 30 Dimensiones de la cuchara Pelton 4.5.7.6.1 Ancho de la cuchara [ H1 ] en metros.

( )mH

H

DjH

5948.0

1733.02.3

2.3

1

96.01

96.01

=

=

=

4.5.7.6.2 Largo de la cuchara [ H2 ] en metros.

( )mH

H

DjH

54.0

1733.023.3

23.3

2

02.12

02.12

=

=

=

4.5.8 Altura [ Hs ] en metros.

Es la distancia entre el centro del rodete y el máximo nivel del agua dentro de la

carcasa, en la descarga.

mH

H

n

QH

s

s

ss

11.2

33.32

5.324.287.1

24.287.1

=

+=

+=

Page 97: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

76

Figura Nº 31 Altura de Hs.

4.6 ALTERNATIVA 2: CALCULO REALIZADO POR LA EMPRESA

CONSULTORA “TRIOLO S.A.”.

La central Hidroeléctrica “Sigchos” esta siendo diseñada al momento por la empresa

italiana “Triolo” S.A. por lo que resulta interesante realizar un estudio comparativo

de los parámetros de la turbina obtenidos en esta Tesis, “Triolo” S.A. y una tercera

alternativa aplicando las fórmulas planteadas en la Tesis de Grado del Ing. Harry

Murray en el Perú.

A continuación se presentan los cálculos realizados por los ingenieros consultores,

con fines de comparación de los resultados obtenidos.

4.6.1 POTENCIA DE LA CENTRAL

Para determinar la potencia instalada a la salida de la central hidroeléctrica

“Sigchos”, partimos de la conocida relación:

][kWkHQP GTndT ××××= ηη

Page 98: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

77

Donde:

PT = Potencia instalada de la central kW

Qd = Caudal de diseño: 7.00 m3/s

Hn = Altura neta: 293.57 m

η T = eficiencia de turbina: 0.90

η G = eficiencia de generador: 0.98

kte = 9.81

kWP

P

kWkteHQP

T

T

GTndT

17780

81.998.09.057.2937

][

=

××××=

××××= ηη

4.6.2 POTENCIA POR CADA UNIDAD DE GENERACIÓN.

kWP

PP

T

TU

88902

=

=

4.6.3 VELOCIDAD ESPECÍFICA POR CHORRO [ nsj]

( )

49.21

57.29349.85

49.85243.0

243.0

=

=

=

aproxn

aproxn

Haproxn

sj

sj

nsj

4.6.4 VELOCIDAD ESPECÍFICA TENTATIVA O APROXIMADA DE LA

TURBINA [ ns]

( )40.30

49.212

=

=

=

aproxn

aproxn

aproxniaproxn

s

s

sjs

4.6.5 VELOCIDAD DE GIRO TENTATIVA O APROXIMADA [ n]

Page 99: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

78

( )

][78.3918890

57.29340.30

45

45

rpmn

n

P

Hnn

KW

ns

=

=

=

Se elije la velocidad sincrónica estandarizada, superior y cercana a 391.79, o sea 450

RPM.

4.6.6 CÁLCULO DE LA VELOCIDAD ESPECÍFICA REAL [ns].

( )91.34

57.293

8890450

45

45

=

=

=

s

s

n

kWs

n

n

H

Pnn

4.6.7 VELOCIDAD ESPECÍFICA POR CHORRO [nsj].

68.242

91.34

=

=

=

sj

sj

ssj

n

n

i

nn

4.6.7.1 Parámetros del Rodete Pelton.

4.6.7.1.1 Coeficiente de velocidad periférica.

( )

45.0

448.0

68.240039.05445.0

0039.05445.0

=

−=

−=

u

u

u

sju

K

K

K

nK

4.6.7.1.2 Diámetro del Inyector / Diámetro medio del rodete [Dj/D2].

Page 100: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

79

( )

12.0

1194.0

68.2479.174.250

68.24

79.174.250

2

2

2

2

=

−=

−=

D

Dj

D

Dj

D

Dj

n

n

D

Dj

sj

sj

4.6.7.1.3 Diámetro medio del rodete [D2].

( )( )

][45.1

449.1450

57.29381.9245.060

260

2

2

2

2

mD

D

D

n

gHKD nu

=

=

×

××=

×

××=

π

π

4.6.7.1.4 Diámetro del inyector [Dj].

][13.0

45.109.0

09.0 2

mDj

Dj

DDj

=

×=

×=

4.6.7.1.5 Diámetro exterior del rodete [D3].

( )[ ]][14.2

68.24013.0028.159.1

0137.0028.1

3

3

2

3

mD

D

nD

Dsj

=

+=

+=

4.6.7.2 Dimensiones del las cucharas.

Las dimensiones de las cucharas se relacionan con las siguientes expresiones.

Page 101: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

80

4.6.7.2.1 Ancho de la cuchara [ H1 ].

( )][583.0

17.02.3

2.3

1

96.01

96.01

mH

H

DjH

=

=

=

4.6.7.2.2 Largo de la cuchara [ H2 ].

( )][529.0

17.023.3

23.3

2

02.12

02.12

mH

H

DjH

=

=

=

4.6.7.2.3 Altura [ Hs ].

][09.2

91.34

5.324.287.1

24.287.1

mH

H

n

QH

s

s

ss

=

+=

+=

4.7 ALTERNATIVA 3: Cálculo de las características físicas del rodete Pelton

según el documento “CONTROLES DE CALIDAD DE LA FABRICACIÓN

DE UN RODETE PELTON” Tesis del Ingeniero Mecánico. Autor HARRY

MURRAY. (Lima – Perú) año 2005.

4.7.1 CALCULO DE LA VELOCIDAD SINCRÓNICA [n].

polosdeNum

fn

)(602×=

a) Para un generador de 14 polos:

rpmn

n

28.51414

)60(602

=

×=

Page 102: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

81

La velocidad específica ns

30.4057.293

907228.514

45

=

=

s

s

n

n

Con el valor ns= 40.30, según la Tabla 4 corresponde a una turbina Pelton de tres

inyectores.

b) Considerando 16 polos:

rpmn

n

45016

)60(602

=

×=

La velocidad específica Ns

27.3557.293

9072450

45

=

=

s

s

n

n

Con el valor ns= 35.27, según la Tabla 4 corresponde a una turbina tipo Pelton de

dos inyectores.

4.7.2 VELOCIDAD DEL CHORRO DE AGUA A LA SALIDA DE LA

TOBERA.

Donde

Kco= coeficiente de la Tobera (0,95-0,98, se adopta el valor medio 0,97)

=

=

=

segmc

c

gHkc

o

o

coo

61.73

57.293*81.9*297.0

2

4.7.3 VELOCIDAD TANGENCIAL [U].

Donde

Ku= velocidad tangencial =Kco/2,= coeficiente de la tobera/2

Page 103: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

82

=

=

=

segmu

u

gHku u

80.36

57.293*81.9*2485.0

2

4.7.4 CÁLCULO DE LOS DIÁMETROS PRINCIPALES.

4.7.4.1 Diámetro del chorro [Dj]

Donde: dj= diámetro del chorro j= numero de inyectores Co = velocidad del chorro

][1739.0

61.73*2

5.3*

4

**

4

2

1

2

1

md

d

cj

Qd

o

=

=

=

π

π

4.7.4.2 Velocidad específica [ns]

27.35=sn

4.7.4.3 Velocidad de embalamiento [nf]

][810

4508.1

8.1

rpmn

n

nn

f

f

f

=

×=

=

4.7.4.4 Forma y dimensiones de las paletas o cucharas del rodete.

El agua que sale por las paletas debe ser desviada al exterior para no tocar la rueda,

los diámetros De y Dp de las ruedas dependen de las proporciones de las paletas;

Page 104: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

83

generalmente cada fabricante dispone de relaciones empíricas y dadas y que se

indican a continuación.

4.7.4.4.1 Diámetro “Pelton”.

Los límites de la razón

ruedaladediametro

chorrodeldiametro

D

d=

se encuentra en el rango de:

6

1

80

1<<

D

d

En los extremos el funcionamiento es defectuoso por las siguientes razones:

1.- (1/80) el agua tiene un camino largo por recorrer antes de entrar en contacto

con las paletas

2.- (1/6) de la experiencia de las fabricaciones demuestra que aumentan las

pérdidas en la paletas; los mejores rendimientos se dan para un diámetro de la rueda

de 8 a 15 veces

Donde: D= Diámetro Pelton d= Diámetro del chorro Kco= coeficiente de tobera=0,97 n= rendimiento o eficiencia de la turbina ns = velocidad especifica de la turbina

][326.1

90,0*97,0288

27.351739.0

*288

mD

D

kD

d

co

s

=

=

η

4.7.4.4.2 Diámetro exterior del rodete [De].

Donde: Dp= Diámetro Puntas

Page 105: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

84

De= Diámetro exterior d= Diámetro chorro D= Diámetro Pelton

][905.1

1739.0731.1

][731.1

1739.06

72326.1

6

72

mD

D

dDD

mD

D

dDD

e

e

pe

P

p

p

=

+=

+=

=

+=

+=

4.7.4.4.3 Número de paletas del rodete.

19

82.181739.0*2

326.115

215

=

=

+=

+=

z

z

z

d

Dz

4.7.4.4.4 Relación de las paletas.

Las dimensiones de las paletas son proporcionales al diámetro del chorro, y se

muestran en la siguiente figura.

Page 106: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

85

Fuente: MURRAY Harry, CONTROLES DE CALIDAD DE LA FABRICACIÓN DE UN RODETE PELTON”, 2005

Figura Nº 32 Relación de las paletas

Profundidad de la cuchara o paleta [A].

1739.01391.0

1739.011739.08.0

0.18.0

)18.0(

<<

×<<×

<<

−=

A

A

dAd

dA

Largo de la paleta [B].

4869.03912.0

1739.08.21739.025.2

80.225.2

)80.225.2(

<<

×<×

<<

−=

B

B

dBd

dB

Ancho del interior de la paleta [C].

2173.0208.0

1739.025.11739.02.1

255.12.1

)25.12.1(

<<

×<<×

<<

−=

C

B

dBd

dC

Page 107: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

86

Ancho del exterior de la paleta [D].

5217.04521.0

1739.00.31739.06.2

0.36.2

)0.36.2(

<<

×<<×

<<

−=

D

B

dDd

dD

4.7.5 CUADRO RESUMEN COMPARATIVO DE LOS PARÁMETROS

CALCULADOS POR LA TURBINA DEL PROYECTO “SIGCHOS”.

CENTRAL HIDROELÉCTRICA “SIGCHOS”

Cálculos según

materia Diseño “X” de la UPS

Cálculos datos Ings “TRIOLO”

S.A.

Cálculos con tesis Perú

ALTERNATIVA 1 ALTERNATIVA 2 ALTERNATIVA 3 Turbina tipo Pelton Pelton Pelton Posición del Eje Horizontal Horizontal Potencia Turbina [kW] 9072 9072 9072 Potencia generador [kW] 8890 8890 Velocidad especifica aprox ns

32.33 34.91 35.27

Velocidad sincrónica aprox rpm

412.42 391.79 450

Velocidad sincrónica adoptado [rpm]

450 450 450

Velocidad de embalamiento 1.8xn

810 rpm 810 810

Altura [Hs] metros 2.11 2.09

DIMENSIONES DEL RODETE Diámetro medio D2 [m] 1.589 1.45 1.326 Diámetro exterior D3 [m] 2.10 2.13 1.910 Diámetro del chorro Dj [m] 0.1733 0.13 0.1739 Relacion Dj/D2 0.11 0.12 0.12 Ancho de la cuchara H1 [m]

0.59 0.583 0.52

Largo de la cuchara H2 [m] 0.54 0.529 0.48 Numero de paletas 20 20/21 19

Cuadro Nº 16 Resumen de características físicas de Turbina “Pelton”

Page 108: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

87

4.7.6 MATERIAL DE LA RUEDA “PELTON”.

Hoy en día los rodetes “Pelton” se los construye con una combinación de acero de

bajo porcentaje de carbón, recubierto con una aleación de cromo níquel de gran

pureza de aleación [Cr 13%-Ni 4%], esta aleación se caracteriza sobre todo a la gran

resistencia a la corrosión y al desgaste, así como por su soldabilidad y grandes

propiedades de imantación necesarias para las pruebas de partículas magnéticas; su

dureza promedio se encuentra entre 270HB y 310HB.

Por fines informativos se muestra un cuadro de las normas de diversos países

aplicables para el acero inoxidable. [Cr-Ni 13-4] utilizado en la fabricación de

turbinas y otros equipos.

PAIS

NORMA DENOMINACIÓN

Republica Federal de Alemania

DIN N° Material 1.4313 X4 Cr Ni 13 4

G-X5 Cr Ni 13 4 Francia AENOR Z4 CND 13 4

Z8 CD 17-01 Gran Bretaña B.S. 425 C11

425 C12 Italia UNI G x 6 Cr Ni 13-4 Japon JIS SCS 5

SCS 6 Suecia S.S 2385

Estados Unidos ANSI/SAE CA 6 – NM

Cuadro Nº 17 Comparación de las normas internacionales para el acero inoxidable [Cr Ni 13 4]

4.8 GENERADOR SINCRÓNICO.

4.8.1 GENERALIDADES.

“En la maquina asíncrona el rotor gira con una velocidad diferente a la del campo

magnético del estator; esta diferencia de velocidades permite que se corten las líneas

de flujo producidas por el campo magnético del estator y se induzca una fuerza

electro motriz (fem).

Page 109: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

88

La fuerza electro motriz (fem) tendrá una polaridad, si la velocidad del motor es

mayor que la del estator, y si la velocidad del rotor es menor la (fem) tendrá una

polaridad inversa, en el primer caso es un generador y en el segundo es un motor”21.

En la figura simplificada, Nº 33, se observa los tres devanados del estator separados

120º eléctricos y el rotor, que será ensamblado al eje de la turbina

Figura Nº 33 Campos magnéticos de un generador sincrónico

4.8.2 DISEÑO DE UN GENERADOR.

El diseño de un generador movido por una turbina hidráulica depende de algunos

factores externos; la mayoría de ellos afectan directamente al diseño mecánico e

indirectamente al diseño eléctrico especial.

Es posible guardar las características eléctricas dentro de límites aceptados sin

embargo algunos de los requerimientos mecánicos pueden necesitar un diseño

eléctrico especial.

La velocidad normal aproximada está determinada por la turbina; la velocidad

sincrónica depende de la frecuencia de generación y el número de polos del

generador.

Los diseñadores o fabricantes tienen preferencias por algunas velocidades

sincrónicas sobre otras, con miras a una mayor flexibilidad en el diseño como por

21 ORTIZ, Ramiro, “Pequeñas Centrales Hidroeléctricas” .p333, Primera Edición

Page 110: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

89

ejemplo el número de circuitos de la armadura, el número de ranuras por polo y por

fase.

La regulación de la velocidad o la necesidad de limitar las presiones en la tubería

forzada durante la condición de embalamiento requiere a veces disponer o no de un

volante, o aumentar el diámetro del rotor.

Se considera también al diseñar los generadores las facilidades de reparar el rodete

de la turbina desarmándolo en partes para poder alzarlas a través del estator del

generador sin afectar a este último, lo que podría implicar un generador de mayor

diámetro.

La exigencia de sobrevelocidad está también fijada por la turbina, que en el caso de

la “Pelton” esta puede llegar a 1.8 veces la velocidad nominal, por lo que el rotor

debe resistir los esfuerzos centrífugos. Algunas veces es necesario ir a un generador

de diámetro menor que el escogido inicialmente.

Otras veces considerar las exigencias de sobre-velocidad y el efecto volante en forma

simultanea. Una condicionante puede deberse al cojinete de empuje para las

máquinas de eje vertical.

En los aspectos eléctricos puede ser influyente tener una reactancia menor del estator

para mejorar la estabilidad del sistema.

Todos estos factores influyen hacia una estandarización para máquinas pequeñas y en

cambio un diseño a la medida o especial, para generadores de potencia mayor a 50

MVA.

4.8.3 SELECCIÓN DE UN GENERADOR SINCRÓNICO.

El diseño del generador está relacionado directamente con el tipo de la turbina

hidráulica puesto que la misma determina tres factores “disposición del eje,

velocidad, y potencia”.

El generador se encarga de convertir la energía mecánica de la turbina en energía

eléctrica, y constituye el equipo más costoso de una central hidroeléctrica.

Page 111: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

90

La potencia y velocidad del generador está en función directa con la potencia y

velocidad fijadas para la turbina que la hace girar por su acoplamiento.

El tamaño del generador para potencias en KVA varia inversamente con la

velocidad, observando siguiente la formula:

polosdepares

f

P

fn

60602=

××=

Donde: n Velocidad Mecánica [RPM] f frecuencia [60Hz] P # de polos del generador

De la fórmula anterior se puede concluir que:

- A mayor número de polos del rotor y a frecuencia industrial (60Hz), en

nuestro medio, se reduce al mínimo las revoluciones pero aumenta el

tamaño, el peso y costo del generador.

- A menor número de polos del rotor y a frecuencia industria (60Hz) se

eleva la velocidad del generador, disminuyen su tamaño y el costo del

generador subirá si aumenta su potencia.

- Constructivamente los generadores a utilizarse de eje vertical cuestan más

que los de configuración horizontal debido que los primeros se debe

adicionar un cojinete de empuje que es más sofisticado y caro.

Una vez definida la turbina y tomando en cuenta que el acoplamiento directo flexible

es el más eficiente, la velocidad sincrónica queda definida por la turbina seleccionada

del proyecto “Sigchos” correspondiente a un generador sincrónico de (8) pares de

polos con una velocidad de 450 rpm y una eficiencia acorde con los estándares

constructivos actuales de: ηG= 0,98 y factor de potencia generalizado de 0,80.

4.8.4 CALCULO DE LA POTENCIA DEL GENERADOR.

Si la potencia de la turbina es de 9072 kW; la potencia de salida de los bornes del

generador queda definida por:

Page 112: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

91

kWP

kWP

P

PP

G

G

G

GTG

9000

8881

98.05.9062

=

×=

×= η

Respecto al factor de potencia se utiliza un valor estandarizado de 0.80

[ ]

[ ]kVAP

kWP

kVACos

PP

kVA

kVA

GkVA

250,1180.0

9000

=

=

4.8.5 DIMENSIONAMIENTO Y PESO DEL GENERADOR

Para obtener las dimensiones y peso del generador, no existen fórmulas definidas,

pues estos parámetros dependen de la tecnología del fabricante. Los datos que se

muestran a continuación fueron obtenidos de máquinas similares de varios

fabricantes:

Dr Diámetro del rotor del generador: 2.1 m

Dest Diámetro del estator del generador: 3.0 m

L Longitud rotor 1.30

Wr Peso del rotor 38 T

4.8.6 SELECCIÓN DEL VOLTAJE NOMINAL DE GENERACIÓN.

Una vez definido el tamaño de generador se selecciona el voltaje nominal, que podría

ser 13200 V, 6600 V, 4160 V. Siendo un generador trifásico, las corrientes

nominales para los voltajes anteriores, son:

a) Para un voltaje de 13200 V.

[ ]

[ ]AIn

kWIn

AVn

PIn

G

G

KWG

55.485

8.0132003

8881

cos3

=

××=

××=

φ

In = 485.55 A

Page 113: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

92

b) Para un voltaje de 6600 V.

[ ]

[ ]AIn

kWIn

AVn

PIn

G

G

KWG

10.971

8.066003

8881

cos3

=

××=

××=

φ

In = 971.10 A

c) Para un voltaje de 4160 V.

[ ]

[ ]AIn

kWIn

AVn

PIn

G

G

KWG

69.1540

8.041603

8890

cos3

=

××=

××=

φ

In = 1544.69 A

A menor voltaje de generación corresponde una mayor corriente, por ende la sección

del conductor será mayor, por tal motivo conviene adoptar el voltaje de 13200V el

mismo que es muy generalizado en máquinas del Ecuador, teniendo en cuenta que

con este voltaje de generación se podrá eventualmente abastecer cargas rurales

dispersas a la central “Sigchos”, en especial a los servicios auxiliares de la Boca

Toma y Tanque de Carga de la central.

4.9 SERVICIOS AUXILIARES.

Dentro de los elementos importantes de una central de generación se encuentra el

equipamiento de los servicios auxiliares indispensables para la operación y

mantenimiento de la central.

La confiabilidad de una central está basada en la correcta y segura operación de los

servicios auxiliares; para el caso de la central “Sigchos” los servicios auxiliares están

Page 114: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

93

servidos por dos transformadores de 75kVA (uno de ellos de reserva), incluyendo

una segunda fuente de alimentación de emergencia consistente en un grupo diesel.

4.9.1 CARACTERÍSTICAS DEL ESQUEMA DE SERVICIOS

AUXILIARES.

En general el esquema deberá cumplir con las siguientes características ó

condicionantes:

- En su operación, sencillo flexible y confiable.

- Maniobras de transferencia seguras

- No deberán ponerse en paralelo las fuentes de alimentación a través de los

servicios auxiliares.

- No deberá existir riesgo de alimentar por error a una unidad a través de

los servicios auxiliares de otra máquina.

- Cualquier falla de barras que no sea de los servicios propios de cada

unidad no debe ocasionar la salida del sistema de ninguna otra unidad.

- Cualquier falla de barras deberá ser despejada en el menor tiempo posible

por acción de las protecciones respectivas.

4.9.2 ESTIMACIÓN DE CARGAS Y DEMANDA PARA SERVICIOS

AUXILIARES.

A continuación se desarrolla una tabla donde consta todo el equipo auxiliar con sus

cargas para desempeñar su función, el factor de demanda estimado, el factor de

potencia 0.8, una eficiencia de cada motor de 0.9; adicionalmente se prevé una

reserva total del 30%, por incrementos de futuras cargas.

Los requerimientos de carga están divididos en dos sectores: Casa de Máquinas,

incluida la Subestación y la Bocatoma.

Los servicios auxiliares correspondientes a la Casa de Máquinas y Subestación serán

servidos por uno de los dos transformadores de 75 kVA, (pues el segundo es de

reserva).

Page 115: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

94

La bocatoma estará abastecida mediante una línea de media tensión trifásica a

13.2KV y un transformador trifásico de 30 kVA, proveniente desde la Subestación

elevadora junto a la central.

(A) CASA DE MÁQUINAS EQUIPO AUX MECANICO (1) (2) (3) (4) (1x2)/(3x4)

1 Bomba 1A del Regulador 2.0 0.7 0.8 0.9 1.94

2 Bomba 1B del Regulador 2.0 0.7 0.8 0.9 1.94

3 Bomba 2A del Regulador 2.0 0.7 0.8 0.9 1.94

4 Bomba 2B del Regulador 2.0 0.7 0.8 0.9 1.94

5 Bomba 1 de Válvula Esférica 2.0 0.3 0.8 0.9 0.83

6 Bomba 2 de Válvula Esférica 2.0 0.3 0.8 0.9 0.83

7 Puente Grúa 15.0 0.3 0.8 0.9 6.25

8 Troley 3.7 0.3 0.8 0.9 1.54

9 Gancho 22.0 0.3 0.8 0.9 9.17

10 Monorriel 2.5 0.3 0.8 0.9 1.04

11 Monorriel Válvula Esférica 2.5 0.3 0.8 0.9 1.04

12 Torno Taller Mecánico 3.7 0.3 0.8 0.9 1.54

13 Taladro Taller Mecánico 1.2 0.3 0.8 0.9 0.50

14 Sierra Taller Mecánico 1.2 0.3 0.8 0.9 0.50

15 Compresor 7.5 0.3 0.8 0.9 3.13

16 Aire acondicionado Sala de Mando 5.0 0.7 0.8 0.9 4.86

17 Potabilizador de Agua 3.0 0.7 0.8 0.9 2.92

18 Iluminacion Casa de Maquinas y C Control 6.0 0.8 1 0.9 5.33

19 Toma Corrientes C de Maquinas y C Control 4.0 0.6 1 1 2.40

20 Banco de baterias 5.0 0.5 1 1 2.50

21 Banco de baterias 5.0 0.5 1 1 2.50

22 Subestacion de elevacion Ilum, TC(calen) 6.0 0.8 1 1 4.80

Sub-Total 59.46

Reserva 30% 17.84

TOTAL 1 77.30

(B) CAPTACIÓN

23 Compuerta Radial 7.5 0.3 0.8 0.9 3.13

24 Carro limpiarejas 2.5 0.3 0.8 0.9 1.04

25 Rastrillo 2.5 0.3 0.8 0.9 1.04

26 Válvula Mariposa de Cabezal 3.7 0.3 0.8 0.9 1.54

27 Compuertas Deslizantes Regulación (2), 15.0 0.3 0.8 0.9 6.25

28 Desarenador(2) 10.0 0.3 0.8 0.9 4.17

29 Desripiador(1) 10.0 0.3 0.8 0.9 4.17

Sub-Total 21.33

Reserva 30% 6.40

TOTAL 2 27.73

TOTAL 1 + TOTAL 2 105.04

ITEM

ESTIMACIÓN DE LA DEMANDA DE LOS SISTEMAS MECÁNICOS AUXILIARES

PROYECTO "SIGCHOS"

CARGA [KW]

FACTOR DE DEMANDA

FACTOR DE POTENCIA

EFICIENCIADEMANDA

[KW]DESCRIPCIÓN

Tabla Nº 5 Equipo mínimo a utilizar en los servicios auxiliares.

Como complemento justificativo de los 100 kVA totales definidos para los servicios

auxiliares, es conocido que en las centrales Hidroeléctricas, esta potencia está

alrededor del 5% de la capacidad de la planta. Para el presente caso sería:

KVA

Page 116: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

95

[ ]

[ ]kVATransfdePotencia

TransfdePotencia

kVAPTransfdePotencia

SSAA

SSAA

TOTALSSAA

55.112

2250005.0

%5

=

×=

×=

Dada la ubicación de la bocatoma a 6 Km. de la casa de máquinas es conveniente que

los servicios auxiliares instalados en este sitio se sirvan mediante un transformador,

el mismo que estará alimentado por una línea de distribución a 13.2kV proveniente

de la central, pues no convendría técnicamente que tales servicios operen mediante

un circuito de baja tensión desde la casa de maquinas.

4.10 DIMENSIONES DE LA CASA DE MÁQUINAS.

El área principal de la casa de máquinas en donde se ubican las unidades hidro-

generadoras tiene 10,5 m de ancho, 32 m de largo dando un área total de 336 m2 y

un alto de 8,50 m hasta el nivel de la viga de asiento del puente grúa.

Esta área principal provee espacio para:

o Las unidades hidro generadoras

o Válvulas esféricas

o Reguladores de velocidad

o Entrada y bifurcación de la tubería de presión.

o Sala de control

o Sala de baterías

o Oficina técnica

o Área de montaje

o Taller electromecánico

o Bodega

o Baño

Por el tipo de unidades de eje horizontal en este caso, la separación entre los ejes de

las mismas se estima de 9.80mts.

El puente grúa se desplazará a lo largo del área de unidades y de montaje.

El nivel de la viga de asiento del puente estará aproximado a 8.50mts de altura sobre

el piso de la casa de máquinas.

Page 117: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

96

El área correspondiente a la sala de control, oficina y baterías puede disponer de un

tumbado o cubierta a una altura aproximada de 5 mts.

Se considera también el área exterior para facilidades de aparcamiento de vehículos

contiguo al extremo sur de la casa de máquinas.

Los valores de dimensiones estimadas de la casa de máquinas son obtenidos en

ábacos en función de la potencia de las unidades, así como también del tipo de

disposición de los ejes, en este caso horizontal.

La casa de máquinas en general será de hormigón armado y ladrillo, antisísmica con

cubierta de fibro-cemento liviano similar a “Eternit” con facilidades para ventilación

en el nivel más alto de la misma.

Page 118: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

97

CAPITULO V

PROYECTO “SIGCHOS”

5 ESPECIFICACIONES DE LOS EQUIPOS DE LA CENTRAL Y

SUBESTACIÓN ELEVADORA.

5.1 CASA DE MÁQUINAS.

5.1.1 TURBINAS.

Las turbinas de la central hidroeléctrica “Sigchos” son tipo Pelton de dos inyectores,

con eje horizontal de una capacidad 8.890 kW de potencia cada una acoplado

mediante brida a un generador sincrónico de eje horizontal de 11250 kVA.

DATOS TÉCNICOS DE LA TURBINA

Número de unidades: 2

Tipo: Pelton

Numero de inyectores: 2

Eje: Horizontal

Potencia a caída neta: 9000 kW

Eficiencia ponderada: 90 %

Velocidad sincrónica: 450 rpm

Velocidad de embalamiento (1.8 nsinc) 810 rpm

Caída neta: 293.57 m

Caudal de diseño: 3.50 m3/s

Tabla Nº 6 Datos técnicos de la Turbina.

Page 119: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

98

5.1.1.1 Válvulas esféricas.

La válvula esférica es operada hidráulicamente; se cierra por acción de su contrapeso

solidario al muñón y abre por mando de servomotor.

La válvula esférica se cierra al recibir una señal desde el tablero de turbina o de los

dispositivos de protección, así como cuando actúa la protección de sobrevelocidad.

CARACTERÍSTICAS TÉCNICAS DE LAS VÁLVULAS

ESFÉRICAS

Número de unidades: 2

Tipo Esférica

Diámetro (plg): 32

Clase: 300

Tipo de Apertura Hidráulica-Manual-Automática

Tipo de Cierre Por gravedad-Contrapeso

Fuente: Ing. Guido LLaguno (Santos CMI) Tabla Nº 7 Características técnicas de las válvulas esféricas

5.1.1.2 Reguladores de velocidad.

El regulador opera las agujas y deflectores de la turbina a manera de un acelerador de

motor a combustión controlando su estabilidad, entre 0.85 y 1.05 veces la velocidad

sincrónica cuando opera aislada del sistema y limita la sobrepresión al 10 % y la

sobrevelocidad al 25 %. Su característica será PID (Proporcional, Integral,

Derivativo) de última generación.

El regulador de velocidad incluye como mínimo al cubículo electrónico, gabinete de

control de turbina, actuador electrohidráulico, bombas y tanque de recolección de

aceite; generador de señal de velocidad, tanque de aceite a presión y el sistema de

tuberías y conexiones.

5.1.2 GENERADORES.

Dos (2) generadores trifásicos, sincrónicos, de eje horizontal para ser acoplados a

turbinas hidráulicas Pelton, con las siguientes características técnicas.

Page 120: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

99

DATOS TÉCNICOS DEL GENERADOR

Numero de unidades 2

Tensión nominal (kV) 13.2

Frecuencia nominal (Hz) 60

Potencia nominal continua en el emplazamiento (MVA) 11,250

Factor de potencia a que se refiere la potencia nominal

contínua: Inductivo

Capacitivo

0.8

0.85

Velocidad nominal (rpm) 450

Velocidad de embalamiento (rpm) 810

Aislamiento de los bobinados

Clase IEC-85

“F”

Conexión de los devanados del estator Estrella,

Cantidad de bornes

Fases

Neutro

6

1

Tipo de conexión a tierra Transformador

monofásico

Reactancia sincrónica saturada Xd (%) <120

Reactancia subtransitoria saturada X"d (%) >20

Relación de cortocircuito >0.83

Relación (X"q/X"d) <1.15

Constante de inercia del conjunto generador-turbina

H(kWs/kVA)

>3.25

Fuente: Grupo Turbina - Generador WKV22 Tabla Nº 8 Datos técnicos de los generadores.

5.1.2.1 Interruptor de máquina.

Los interruptores tendrán las siguientes posibilidades de comando:

- Comando eléctrico local.

22 WKV Vasserkraft Volk AG (Fabricación Alemana)

Page 121: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

100

- Comando eléctrico a distancia.

- Comando mecánico local (manual) para casos de emergencia o

mantenimiento.

- Cada interruptor contará con un gabinete de comando.

CARACTERÍSTICAS

Cantidad 2

Aislamiento SF6

Tensión Nominal (KV) 13.2

Corriente Nominal (Amp) 500

Potencia (MVA) 25

Transformadores de Corriente Tipo

Bushing

Fuente: www.abb.com Tabla Nº 9 Características del interruptor de máquina

5.1.2.2 Excitatriz.

Para cada generador se proveerá de un sistema de excitación estático sin escobillas.

El sistema estará compuesto por las partes principales que se listan a continuación.

1. Puentes de convertidores estáticos tipo tiristores.

2. Regulador Automático de Voltaje (R.A.V.)

El regulador automático de voltaje será del tipo estático, modular y diseñado para

cumplir con las condiciones de operación.

CARACTERÍSTICAS DEL R.A.V.

Cantidad 2

Tipo Estático

Tensión Nominal (KV) 13.2

Rango de Operación (%) 85 a 110

Fuente www.wkv.com Tabla Nº 10 Características del Regulador.

La unidad de ajuste de tensión deseada será prevista de modo que pueda ser ajustada

Page 122: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

101

automáticamente mediante el equipo de sincronización automática de la unidad y

mediante valores de consigna transmitidos por telecontrol.

Deberá además incluir los módulos necesarios para:

o Dispositivo de seguimiento de control manual con indicador de balanceo.

o Detector de pérdida de la señal de tensión para funcionamiento en

paralelo.

o Limitador de compensación.

o Limitador de Interruptor de campo.

o Resistor supresor de campo.

3. Equipo de desexcitación rápida.

4. Equipo de excitación auxiliar.

5. Sistema de control.

6. Protecciones, señalizaciones y alarmas.

5.1.2.3 Transformador de puesta a tierra.

Sirve para limitar los valores de corriente en el neutro que oscilan entre 5 y 15 Amp,

conectando el primario del transformador al neutro de cada generador y el secundario

a una resistencia.

CARACTERÍSTICAS

Cantidad 2

Potencia (KVA) 10

Tensión Primario (V) 13200

Tensión Secundario (V) 240/120

Corriente de Neutro (Amp) 5 – 10

Fuente: Ecuatran Tabla Nº 11 Características del Transformador de puesta a Tierra.

5.1.3 CABLES AISLADOS PRINCIPALES DE 13.2kV.

A continuación se detalla el tipo de conductores a utilizar en la interconexión entre

los dos generadores con los transformadores principales instalados en el exterior de

la casa de maquinas

Page 123: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

102

Los cables y sus terminaciones serán diseñados según los siguientes criterios:

CARACTERÍSTICAS DE LOS CONDUCTORES AISLADOS

Tensión nominal del sistema (kV) 13.2

Tensión máxima de servicio (kV) 13.8

Frecuencia nominal (Hz) 60

Material Conductor Cobre

Material Aislante Poliuretano

Instalación Canaletas y Enterrado

Factor de Carga 100%

Temperatura máxima del conductor en

servicio

50ºC

Corriente nominal por fase (Amp) 486

CONDUCTOR SELECCIONADO

Unipolar Aislado (kV) 15

Calibre (AWG), 2 x fase 2/0

Capacidad de conducción (Amp) 300

Cantidad necesaria (mts) 570

Fuente: Phelps Dodge Internacional Corporation (www.pdic.com) Tabla Nº 12 Características de los conductores aislados

5.1.4 BANCO DE BATERÍAS Y CARGADOR.

Banco de baterías con 64 unidades de Ni-Cd de 2.2 Vcc, cada una que suministrará

corriente continua de mínimo 125 Vcc, 200Amp-h, 5Horas de capacidad a los

circuitos de control.

Page 124: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

103

BANCO DE BATERÍAS

Cantidad 1 Baterías Tipo Alcalina Autonomía plena carga: 200Ah 5h Norma VDE 0510 o equivalente Voltaje Nominal (Vcc) 125

CARGADOR DE BATERÍA

Capacidad c/u (Amp) 100 Alimentación Trifásica 208 Frecuencia (Hz) 60 Rectificadores trifásicos, Puente de diodos

2

Tensión de Flote ±2%

Tabla Nº 13 Características del Cargador y Banco de baterías.

Por la importancia de los servicios de corriente continua se especifican dos (2)

cargadores de 100 Amp cada uno para mantener el banco de baterías de 125 Vcc.

La corriente continua está generada por los rectificadores de cada cargador de

baterías CB1 y CB2 que son redundantes el uno del otro.

Se ha definido un solo banco que satisfaga la demanda de los servicios auxiliares de

la casa de máquinas y de la subestación, completo con los tableros de distribución,

protecciones para cada circuito, además contará con un voltímetro, amperímetro,

reles, fusibles de alta capacidad, señalización óptica de funcionamiento

5.1.5 TABLERO DE MEDICIÓN, CONTROL Y PROTECCIÓN.

Todos los instrumentos de medición serán del tipo empotrado, a prueba de polvo y

agua, clase IP54 según norma IEC.

Todos los instrumentos estarán provistos para una alimentación de 5A, 220V, 50/60

Hz.

La señalización de las posiciones de los aparatos se hará mediante indicadores

luminosos, encendiéndose cada vez que exista discordancia entre la posición del

conmutador de mando y la posición del equipo que comanda.

Las señalizaciones de falla se harán también mediante indicadores luminosos,

encendiéndose cada vez que ocurra una falla en el sistema.

Page 125: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

104

Existirá un dispositivo emisor de una señal acústica montado en el techo de uno de

los paneles, la alarma sonora operará en concordancia con las señalizaciones.

Los paneles dispondrán de placas de aluminio en fondo negro y letras blancas, para

identificación tanto del panel como de cada instrumento o aparato.

Será previsto para un aislamiento de 600 Voltios de tensión nominal y para resistir a

una prueba de 1500 Voltios, durante 1 minuto.

Cada unidad contará de un panel, en el que se alojarán los equipos e instrumentos

que cumplirán con las siguientes funciones:

5.1.5.1 MEDICIÓN.

Se realizarán mediante el instrumento de medición integral digital, que proporciona

las siguientes mediciones y protecciones:

EQUIPOS DE MEDIDA

Indicación de tensión en las tres fases (V)

Indicación de corriente en las tres fases

(A)

Indicación de potencia activa (MW)

Indicación de potencia reactiva (Mvar)

Indicación de energía activa (kWh)

Indicación de energía reactiva (Kva.-h)

Indicación de factor de potencia cos ∅

Indicación de frecuencia (Hz)

Tabla Nº 14 Equipos de Medida.

5.1.5.2 CONTROL.

Las funciones de control se realizarán mediante los siguientes elementos:

o Reóstato de ajuste de tensión del alternador.

Page 126: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

105

o Dos botoneras de arrancadores, para operar la fuente de poder y el

regulador de velocidad.

o Un regulador electrónico de tensión Bassler modelo Decs 125-15 con caída

de tensión de +/- 1% entre vacío y plena carga, y equipo de cuadratura para

operación en paralelo.

o Un PLC con operación en 24V DC, 12 entradas y 14 salidas, que integrará

la lógica de operación y protección del equipamiento electromecánico de la

central hidroeléctrica y constituyen la base del sistema “Scada” de

monitoreo y operación a distancia.

5.1.5.3 PROTECCIÓN.

La protección se llevará a cabo mediante Relés de Protección Digitales, tipo

multifunción, que proveen las siguientes funciones de protección:

PROTECCIONES

MÍNIMAS A UTILIZAR

PROTECCIONES

Mínima tensión 27

Sobre tensión 59

Sobre tensión a tierra 59N

Desbalance de fases 60

Máxima intensidad con restricción de tensión

51V

Falla a tierra 51N

Secuencia negativa de fases 46

Sincronismo. 25

Falla de campo principal 40

Protección diferencial 87G

Sub-frecuencia 81U

Sobre-frecuencia 81 O

Sobre temperatura de cojinetes y estator del alternador

39

Potencia inversa 32

Fuente: Protection, Control & Comunications Solutions GENERAL ELECTRIC Tabla Nº 15 Protecciones mínimas a utilizar.

Page 127: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

106

Todos los relés se ubicarán en la pared posterior del tablero, dispondrán de

terminales de prueba.

5.1.6 TRANSFORMADORES DE SERVICIOS AUXILIARES.

Dos transformadores trifásicos de 75 kVA, tipo convencional para servicios

auxiliares de la central, en operación normal funciona uno de ellos, manteniéndose el

otro de reserva.

DATOS TÉCNICOS DE LAS TRANSFORMADORES DE

SERVICIOS AUXILIARES

Numero de unidades 2

Transformador: TR1 y TR2

Trifásico, exterior, aislamiento tipo convencional

Potencia nominal continua a 2000 msnm (kVA)

75

Tipo de enfriamiento AN

Frecuencia Industrial (Hz) 60

Tensiones nominales en vacío (V) 13.200/208-120

Niveles de aislamiento (BIL)

Primario (kVcr)

Secundario (kVcr)

75

75

Grupo de conexión Dyn 11

Regulación a transf. Desconectado + 2 x 2.5% Un

Fuente: Ecuatran Tabla Nº 16 Datos técnicos de los transformadores de servicios auxiliares Casa de

Maquinas.

El transformador será diseñado para funcionamiento continuo a 2000 m sobre el

nivel del mar y temperatura ambiente máxima de 40 °C.

El primario será conectado al sistema de 13.2 kV y tensión máxima de servicio 13.8

kV. El neutro del secundario será conectado sólidamente a tierra.

Page 128: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

107

5.1.7 PUENTE GRÚA.

El puente grúa estará constituido de dos vigas principales soldadas tipo cajón

conectadas entre si por medio de una viga porta ruedas, y tendrá las características

que se detalla a continuación.

CARACTERÍSTICAS DEL PUENTE GRÚA

Gancho Principal (Ton) 40

Monorriel Auxiliar (Ton) 5

Recorrido (mts) 25

Ancho de Luz (mts) 10

Fuente: Ing. Guido LLaguno (Santos CMI) Tabla Nº 17 Características del puente grúa.

El tablero eléctrico estará ubicado en el puente grúa conteniendo todas las

protecciones y distribuciones de los distintos movimientos del puente, del carro y del

monorriel auxiliar.

El puente grúa adicionalmente tendrá dos botoneras colgantes, del mando del puente

y del monorriel.

Los mandos ejecutables desde la cabina igualmente serán ejecutables desde las

botoneras del puente y del monorriel.

5.1.8 EQUIPO CONTRA INCENDIOS.

El sistema contra incendios de la casa de máquinas, destinado a sofocar incendios de

origen eléctrico o por la presencia de combustibles, consiste en un lote de extintores

portátiles, de polvo químico seco, ubicados en puntos estratégicos de la casa de

máquinas y de la subestación.

Se estima 20 extintores con 5 kg de carga cada uno con un soporte adecuado para ser

colgados en la pared y 3 móviles con 34 kg de carga, montados sobre carreta.

Page 129: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

108

5.2 EQUIPAMIENTO DE LA SUBESTACIÓN.

5.2.1 GENERALIDADES.

La subestación estará ubicado en el exterior de la casa de máquinas, desde donde

arranca una línea trifásica a 69 kV, simple circuito de aproximadamente 12Km de

longitud, que se conectará con la subestación “Sigchos” perteneciente a ELEPCO23.

El nivel de voltaje escogido se debe a dos razones importantes como son:

o El nivel de voltaje de la subestación más cercana para su interconexión es de

69KV, llamada “Sigchos” perteneciente a ELEPCO.

o De a cuerdo a la potencia de generación, y la distancia se pude calcular el

nivel de voltaje recomendado para la transmisión con la siguiente expresión..

)(100

*3

609,15,53 kV

fpPLU +=

Donde:

U= Voltaje simple en KV

L= Longitud en Km.

3P= Potencia a trasmitir por circuito en KW

fp= Factor de Planta

KVU

KVU

U

kVx

U

693

603

6,11145.75,53

)(100

62.018000

609,1

125,53

=

+=

+=

La subestación en general como parte importante de un sistema de potencia funciona

a manera de barra de conexión para enlazar la generación con la línea de

subtransmisión, y de reducción de voltaje en el lado de distribución.

Una subestación debe proporcionar la máxima confiabilidad, flexibilidad, y

continuidad de servicio a costos de inversión los más bajos que satisfagan las

23 ELEPCO Empresa Eléctrica Provincial del Cotopaxi.

Page 130: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

109

necesidades del sistema, esto quiere decir la selección de niveles óptimos de voltaje

que dependen de las necesidades de la carga y su ubicación.

La mayoría de plantas generadoras hidroeléctricas de gran potencia están ubicadas a

distancias considerables de los centros de carga lo que implica subestaciones de

elevación de voltajes mayores que 69kV.

Los factores que influyen para la correcta selección del tipo de subestación para una

aplicación dada, son entre otros;

• Niveles de voltaje.

• Tamaño de la carga.

• De la línea de transmisión, (ruta, longitud, capacidad, derechos de paso,

número de líneas).

• Limitaciones en el área de terreno (topografía, posibilidades de deslave

inundaciones etc).

• Situaciones climáticas extremas.

• altitud sobre el nivel del mar.

• Posibilidad de ampliaciones futuras.

En consideración del tipo y tamaño de la central hidroeléctrica “Sigchos” se propone

para la subestación la disposición de una barra simple, analizándose la posibilidad de

la instalación de 1 ó 2 transformadores de elevación.

5.2.1.1 Primera alternativa.

Barra simple no seccionada con un transformador y otro de reserva.

Figura Nº 34 Subestación con un solo transformador y barra no seccionada.

Page 131: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

110

Un sólo transformador de 20 MVA más un transformador de emergencia de igual

capacidad; si el transformador principal tiene un valor relativo de 100, al considerar

otro para emergencia se invertiría 200 en transformación.

Durante el mantenimiento, la central dejaría de generar hasta realizar el cambio, de

conexiones con una pérdida total de la generación durante el tiempo que demore tal

operación.

5.2.1.2 Segunda alternativa.

Barra simple seccionada con dos transformadores.

Figura Nº 35 Subestación con dos transformadores y barra seccionada.

Dos transformadores de 10/13/16MVA, uno para cada generador.

El costo relativo de cada transformador es 70, comparando con el transformador de

la primera alternativa, por lo tanto, la inversión total es de 140.

Cada transformador sería de 10/13/16 MVA; con enfriamiento natural y doble etapa

de enfriamiento en base a aire forzado, logrando un incremento de potencia al final

del 60%, para que en caso de mantenimiento, de uno de los dos, la generación se

pueda evacuar por uno solo de los transformadores.

Los generadores son de 8.89 MW cada uno, 17.7 MW en total y los 13 MVA de un

transformador significan el 73 % de la capacidad total de la planta con la ventaja de

que no se dejaría de generar durante el tiempo de reparación del transformador

afectado.

Page 132: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

111

La capacidad de evacuación mejora aún más con la segunda etapa de aire forzado

porque se eleva la capacidad del transformador un 20% más (16 MVA), lo que

significa el 93% del total de la capacidad de la planta evacuada por un solo

transformador, mejorando su eficiencia de trabajo que inicialmente con los 13MVA

de la primera etapa de aire forzado

La subestación contará en forma resumida de:

a) Dos (2) salidas a transformadores principales equipada con:

- Dos interruptores de 69 kV - 1250 A - 5000 MVA

- Dos seccionadores trifásico de 69 kV, motorizado con cuchillas de puesta a tierra

b) Una (1) salida de línea equipada con:

- Un interruptor 69 kV - 1250 A - 5000 MVA

- Un seccionador de 69 kV, motorizado con cuchillas de puesta a tierra.

- Tres transformadores de corriente 69 kV, doble relación, triple núcleo 600-300/1-1-

1 A.

- Tres transformadores de tensión 69/√3-0.11/√3 kV.

- Tres descargadores de sobretensión.

c) Una (1) llegada de línea para la S/E “Sigchos” en ésta subestación

equipada con:

- Un interruptor de 69 kV - 1250 A - 5000 MVA

- Un seccionador de 69 kV, motorizado con cuchillas de puesta a tierra.

- Tres transformadores de corriente 69 kV, doble relación, triple núcleo 600-300/1-1-

1 A.

- Tres transformadores de tensión 69/√3-0.11/√3 kV.

- Tres descargadores de sobretensión.

5.2.1.3 EVALUACIÓN ECONÓMICA DE LOS TRANSFORMADORES

Los porcentajes arriba detallados se pueden mostrar en la siguiente tabla resumen de

precios referenciales en el Ecuador..

Page 133: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

112

PRECIO DE LOS TRANSFORMADORES DE POTENCIA

(13.2/69kV)

TRANSFORMADORES CANTIDAD POTENCIA V/UNIDAD

OPCIÓN 1 2 20 MVA 712.500.00

OPCIÓN 2 2 10/13/16 MVA 525.600.00

Fuente: Ing. Iván Freire (ABB-Ecuador) Tabla Nº 18 Precios de los transformadores de potencia.

5.2.2 TRANSFORMADORES ELEVADORES.

Dos (2) transformadores trifásicos para montaje a la intemperie, operación en

paralelo completos, con todos los accesorios.

DATOS TÉCNICOS DE LOS TRANSFORMADORES ELEVADORES

Numero de Unidades 2

Tipo trifásico, intemperie,

dos arrollamientos

Fases 3

Potencia nominal contínua en el sitio de

emplazamiento (MVA)

10/13/16

Tipo de enfriamiento y refrigeración. OA/FA/FA

Porcentaje de potencia nominal

100%

80%

60%

OA/FA/FA

OA/FA

OA

Tensiones nominales en vacio (KV) 13.2/69

Frecuencia Industrial (Hz) 60

Niveles de aislamiento (BIL)

primario (KVcr)

secundarios (KVcr)

450

75

Grupo de conexión Dyn 11

Page 134: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

113

Conexión del neutro del Primario Sólido a tierra

Cambiador de derivación en el lado del

secundario

Operable sin Carga

69kV ± 2 x 2.5%

Numero de Taps 4

Fuente: www.abb.com Tabla Nº 19 Datos técnicos de los Transformadores de Potencia.

o El primario será conectado a 13.2 kV con neutro efectivamente puesto a tierra

y tensión máxima de servicio 13.8 kV.

o El secundario será conectado a 69 kV y tensión máxima de servicio 72.5 kV.

o El tipo de enfriamiento será (OA/FA/FA) con los siguientes alcances:

5.2.2.1 Lado de media tensión 13.2kv.

El lado de media tensión del transformador de potencia está conectado mediante

cables unipolares aislados para 15 kV, los mismos que salen desde los bornes del

generador y llegan a la estructura metálica de la subestación, pasando por ductos y

canales.

Sobre una estructura reticulada de hierro galvanizada se dispondrá de tres

seccionadores tripolares aislados para 13.2 kV; el seccionador central hace la

transferencia hacia los transformadores elevadores en caso de mantenimiento de uno

de ellos y los dos seccionadores laterales que conectan al bobinado de 13.2kV/69kV

los transformadores de potencia.

La interconexión entre transformadores y seccionadores puede hacerse mediante

barras de cobre, aluminio, o con cable desnudo con tipo aisladores tipo soporte.

5.2.3 INTERRUPTORES 69 KV.

Los interruptores son para montaje e instalación a la intemperie, de exafluoruro de

azufre SF6 y de presión única.

Diseñados para asegurar que las pérdidas de gas sean mínimas y que el contenido de

humedad del mismo se mantenga suficientemente bajo como para evitar la

condensación en las superficies internas aislantes del interruptor.

Page 135: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

114

Todos los interruptores podrán efectuar reenganches automáticos, ultrarrápidos

unipolares y/o tripulares, también recuperar su capacidad nominal de ruptura después

de una operación de reenganche.

Los interruptores tendrán las siguientes posibilidades de comando:

o Comando eléctrico local, desde el gabinete situado al pie del aparato.

o Comando eléctrico a distancia.

o Comando mecánico local (manual) o por lo menos desconexión, para casos

de emergencia, operable con éste bajo tensión.

DATOS TÉCNICOS DE LOS INTERRUPTORES 69KV

Número de Unidades 3

Instalación Intemperie

Tipo Columna

Aislamiento SF6

Voltaje Nominal (KV) 69

Corriente nominal normal (Amp) 134

Trasformador de corriente tipo

Bushing,

150/5

BURDEN (VA) 60

Fuente: www.abb.com Tabla Nº 20 Datos técnicos de los interruptores.

5.2.4 SECCIONADORES 69 KV.

Los seccionadores serán aptos para montaje a la intemperie, y del tipo:

Motorizados, Tripolar con cuchillas de puesta a tierra para operación, independiente

para montaje vertical y apertura lateral y del Tripolar montaje y apertura vertical

Los seccionadores con accionamiento de cuchillas principales en un plano horizontal

deberán contar con 3 columnas de aisladores, siendo móvil la central.

Los seccionadores deberán ser adecuados para llevar en forma permanente la

corriente nominal para la que han sido diseñados y podrán ser operados bajo tensión.

Las cuchillas principales poseerán las siguientes posibilidades de comando:

Page 136: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

115

o Comando eléctrico local

o Comando eléctrico a distancia

o Comando manual local

Las cuchillas de puesta a tierra poseerán sólo comando manual local, con

enclavamientos mecánico y eléctrico. El comando eléctrico local será tripolar.

DATOS TÉCNICOS DE LOS SECCIONADORES 69KV

Número de Unidades 3

Con cuchillas de puesta a tierra 2

Sin cuchillas de puesta a tierra 1

Mecanismo de operación cuchillas

principales

Motor

Numero de polos 3

Voltaje nominal 72.5

Rigidez dieléctrica

A tierra entre polos A través de la distancia de seccionamiento

450

520

Instalación Intemperie

Tipo Columna

Voltaje Nominal (KV) 69

Capacidad de Interrupción. 2000

Capacidad nominal de cierra de

corto circuito (KV)

40

Fuente: www.lagoelectromecanica.com Tabla Nº 21 Datos técnicos de los seccionadores.

5.2.5 PARARRAYOS 69 KV.

Los descargadores o pararrayos tienen que ser del tipo autovalvular de soplado

magnético, brindar una protección eficaz, sin sufrir daños, frente a sobretensiones

debidas a descargas atmosféricas y maniobras de apertura o cierre de interruptores.

Estos equipos tienen que ser instalados a la intemperie, su montaje será vertical y

deberán soportar sin inconvenientes el peso de los conductores de conexión.

Page 137: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

116

Como detalle constructivo se pude detallar que el cuerpo de cada uno de los polos

tiene que ser del tipo columna autoportante, de porcelana marrón aletada, contendrá

los bloques porosos a resistencia no lineal y los conjuntos espinterométricos en serie,

tener una perfecta impermeabilidad a la humedad y a los agentes atmosféricos del

descargador.

DATOS TÉCNICOS DE LOS PARARRAYOS

Voltaje de Nominal de Operación (KV) 69 13.2

Voltaje Máximo de sistema 72.5 13.8

Cantidad requerida 9 6

Frecuencia industrial (Hz) 60

Máxima duración de falla a tierra 1000 1000

Fuente: www.abb.com Tabla Nº 22 Datos técnicos de los pararrayos.

5.2.6 TRANSFORMADORES DE CORRIENTE 69 kV.

Los transformadores de corriente tienen que ser monofásicos aptos para montaje al

exterior en posición vertical.

Los transformadores tienen que ser en baño de aceite, herméticamente sellados, con

aislador de porcelana.

El núcleo tienes que ser del tipo toroidal y estará formado por láminas magnéticas de

acero de muy bajas pérdidas específicas.

Page 138: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

117

DATOS TÉCNICOS DE LOS DE LOS TRANSFORMADORES

DE CORRIENTE 69KV

Cantidad requerida 6

Voltaje de Nominal Primario Fase-Fase (KV) 69

Uso de cada núcleo Protección y medición 5P20/5P20/5P20/0.2

Corriente nominal primaria (Amp) 150/150/150/150

Corriente nominal secundaria (Amp) 5/5/5/5

Corriente máxima permanente (%) 120

Corriente nominal de corta duración(1seg,

kAmp-rms)

40

Voltaje Máximo de sistema 72.5

Fuente: www.abb.com Tabla Nº 23 Características de los Transformadores de Corriente.

5.2.7 TRANSFORMADORES DE TENSIÓN 69 kV.

Los transformadores de tensión tienen que ser monofásicos, aptos para instalación a

la intemperie y montaje vertical.

Todos los transformadores serán del tipo inductivo.

Hay que tener en cuenta que los transformadores alimentarán simultáneamente a

circuitos de medición y protección, además de la clase de precisión tendrá que ser

menor o igual 0.2

En caso de cortocircuito secundario, la corriente de falla deberá ser suficiente para

operar protecciones termomagnéticas con corrientes nominales del orden de 10-15

(Amp), en tiempo mínimo.

Page 139: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

118

DATOS TÉCNICOS DE LOS DE LOS

TRANSFORMADORES DE POTENCIAL.

Cantidad requerida 3

Tipo Intemperie

Voltaje de Nominal Primario Fase-Tierra (KV) 69/√3

Voltaje de Nominal secundario (V) 115/√3

Rigidez dieléctrica 1min kV-rms 185

Rigidez dieléctrica onda de impulso. kV-pico 450

Devanado del secundario BURDEN (VA) 60

Precisión 0.2

Fuente: www.abb.com Tabla Nº 24 datos técnicos de los Transformadores de Potencial

5.2.8 GRUPO DIESEL DE EMERGENCIA.

El grupo Diesel poseerá las siguientes características:

o Un (1) grupo electrógeno de emergencia, 208/120 Vca, potencia aproximada

100 kVA, Factor de Potencia 0.8 con sus respectivos accesorios.

o Un (1) tanque principal de almacenamiento de combustible.

o Un (1) tanque diario de combustible

o Un (1) tablero de control del grupo

5.2.8.1 CONDICIONES DE DISEÑO Y FUNCIONAMIENTO.

El grupo será diseñado para generar su potencia nominal continua garantizada a 40°C

y altitud 3000 m sobre el nivel del mar.

El grupo electrógeno estará capacitado para operar:

o Automáticamente al recibir una señal externa de arranque. Una vez arrancado

el grupo, logradas sus condiciones de velocidad y tensión, desconectará las

alimentaciones del tablero de Servicios Esenciales TSE y producirá el cierre

de su propio interruptor luego de una mora regulable entre O y 15 segundos,

señalizándose el arranque en la Sala de Comando. Al restablecerse la

Page 140: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

119

alimentación normal se realizará la secuencia inversa parándose el grupo.

o En forma manual operado directamente desde el lugar de su instalación.

o En forma manual a distancia operado directamente desde la sala de Comando.

No se prevé el funcionamiento en paralelo con la red.

5.2.9 CONDUCTORES.

5.2.9.1 Conductores de media tensión.

Para el dimensionado de los cables para todos los circuitos de potencia de media

tensión será necesario tener en cuenta lo siguiente:

o La corriente de servicio en juego en cada circuito, incrementada en un 10%.

o La caída de tensión en el cable, que no deberá exceder al 3% de la tensión

nominal.

o Las corrientes de sobrecarga o cortocircuito en juego en cada circuito, con un

tiempo de actuación compatible con el elemento de protección del circuito

considerado (relé, fusible, etc.).

o Cada cable deberá ser calculado para las tres condiciones citadas adoptándose

la sección que resulte mayor en cada caso, teniendo en cuenta los coeficientes

de corrección que correspondan (agrupamiento, tendido en bandejas al aire,

etc.).

o No se podrán realizar empalmes en los cables.

o Las pantallas metálicas serán puestas a tierra en sus extremos.

5.2.9.2 Conductores desnudos.

Se utilizarán cables desnudos para el conexionado del patio de 69 kV, incluyendo las

conexiones entre equipos de maniobra y protección.

Montaje de cables tendidos

Los cables tendidos del patio de 69 kV serán calculados teniendo en cuenta los pesos

de las cadenas de aisladores y derivaciones.

Page 141: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

120

5.2.10 MISCELÁNEOS.

5.2.10.1 Iluminación interior.

Se han considerado los niveles de iluminación de 500 lux para el tipo de servicio que

se realizará en la casa de máquinas, en la nave Central Hidroeléctrica SIGCHOS y

300 lux para la sala de control, cuarto de baterías, tableros, etc.

La nave central contiene luminarias tipo industrial de 400 W, 220 V. en los recintos

de la sala de control, tableros de control, cuarto de baterías y taller están iluminados

con luminarias fluorescentes de varias capacidades.

Las tomas de corriente son tomas dobles de 1.5 Amp, para todos los ambientes y una

toma especial para el taller de mantenimiento de 10 Amp.

5.2.10.2 Iluminación exterior.

Se considera muy importante iluminar el patio de transformadores y la circulación

exterior por seguridad y para facilitar el mantenimiento.

La iluminación consiste de luminarias tipo vial de 125 W de vapor de mercurio

montadas con un brazo de 1.5 m sobre la estructura metálica de 69 kV, con lo cual se

tendrá suficiente iluminación en el patio.

5.2.10.3 Malla de puesta a tierra.

En el terreno destinado a la casa de máquinas y subestación, por ser una área muy

pequeña tenemos que se tiene que considerar una sola malla de tierra.

CARACTERÍSTICAS DE LA MALLA DE PUESTA A TIERRA

Area: 3.200 m2 (40x80)

Longitud de la malla: 3.320 m

Longitud de las varillas de cobre: 900 m

Corriente de corto circuito: 14 kAmp

Page 142: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

121

Calibre del conductor de cobre: 250 kcmil

Espaciamiento entre conductores: 2 m

Profundidad de instalación: 0.6 m

Resistividad del suelo: 306 Ω-m

Resistividad de la grava: 3.000 Ω-m

Tiempo de falla: 1 s

Tiempo de shock: 0.5 s

Fuente: CAMERI C.A. Tabla Nº 25 Características de la malla de puesta a tierra.

Se realizan varias corridas de cálculo y se ha modificado calibre de conductor,

espaciamiento entre los conductores y longitudes, llegando a definir que los datos

arriba descritos son los más razonables, pero sin embargo, el resultado del cálculo

arroja valores cuyo voltaje de paso Vp es mayor que el voltaje de toque Vt.

Se considera que para mejorar estas condiciones se debe prolongar la malla de tierra

con conductores del mismo calibre hasta el mismo río por el sitio de la descarga.

5.3 BOCATOMA.

5.3.1 TRANSFORMADOR DE SERVICIOS AUXILIARES “BOCATOMA”.

Un transformador trifásico de 30 kVA, tipo convencional para servicios auxiliares

de la bocatoma.

Page 143: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

122

DATOS TÉCNICOS DE LAS TRANSFORMADOR DE

SERVICIOS AUXILIARES PARA LA BOCATOMA

Numero de unidades 1

Transformador: Tr-1

Trifásico, exterior, aislamiento tipo convencional

Potencia nominal continua a 2000 msnm (kVA)

30

Tipo de enfriamiento AN

Frecuencia Industrial (Hz) 60

Tensiones nominales en vacío (V) 13.200/220-127

Niveles de aislación (BIL)

Primario (kVcr)

Secundario (kVcr)

75

75

Grupo de conexión DYn 11

Regulación a transf. Desconectado + 2 x 2.5% Un

Fuente: Ecuatran Tabla Nº 26 Datos técnicos de los Transformador de SS.AA. de la Bocatoma.

Page 144: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

123

CAPITULO VI PROYECTO “SIGCHOS”

6 PRODUCCIÓN DE ENERGÍA Y ESTUDIOS FINANCIEROS DEL

PROYECTO HIDROELÉCTRICO “SIGCHOS”

La producción de energía de una central hidroeléctrica se ve afectada por varias

condiciones como son entre otras:

• El mercado del sistema en el cual opera.

• Las características del sistema hidrológico en el que se ubica el proyecto.

• Las posibilidades de falla de los equipos electromecánicos e

hidromecánicos de la propia central.

Por lo mismo no puede tener igual valor económico el kWh que la central es capaz

de vender a la hora de máxima demanda, en un período hidrológico critico (seco),

con un kWh en horas de baja demanda y suficiente caudal (período de lluvias).

Considerando lo anterior se han definido los siguientes parámetros respecto a la

producción de una central hidroeléctrica en el tiempo.

o Energía Firme.

o Energía Media

o Energía Secundaria

o Potencia Remunerable y Puesta a Disposición

6.1 ENERGÍA FIRME

Es la producción efectiva de la central en un período dado que en función de los

caudales mensuales aportados y la capacidad del reservorio asegura una probabilidad

de ocurrencia del 90% anual.

Se define como Energía Firme del proyecto “Sigchos” a aquella que se produce con

el caudal presente el 90 % del tiempo de cada uno de los meses; a éste se le

disminuye el 10 % de caudal ecológico en los meses en los cuales el volumen de

Page 145: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

124

agua o del río es menor a 7 m3/s, para obtener el caudal disponible para la

producción de la Energía Firme.

Se calculan las pérdidas hidráulicas en la conducción del caudal, asociadas a cada

diario y con ellas, se determina la altura de caída neta, que se multiplica por la

eficiencia del grupo turbina- generador, de (0.88=0.90Turbina x 0.98Generador) y la

constante (9.81), lo que da como resultado el valor de la potencia firme que

diariamente la central puede suministrar al sistema eléctrico al cual va a conectarse.

La potencia firme diaria multiplicada por el tiempo representa el valor de la energía

firme de la central, como se indica en la siguiente tabla.

MesQ

minimosQ 90% * disponible

Tiempo Potencia Energía

(m³/s) (m³/s) dias (horas) (kW) (kWh)Enero 4.30 3.87 31 744 9,830.15 7,313,633.04 Febrero 7.40 7.00 28 672 17,780.64 11,948,587.78 Marzo 9.40 7.00 31 744 17,780.64 13,228,793.61 Abril 10.40 7.00 30 720 17,780.64 12,802,058.33 Mayo 8.20 7.00 31 744 17,780.64 13,228,793.61 Junio 5.40 4.86 30 720 12,344.84 8,888,286.22 Julio 4.40 3.96 31 744 10,058.76 7,483,717.53 Agosto 3.40 3.06 31 744 7,772.68 5,782,872.64 Septiembre 3.00 2.70 30 720 6,858.25 4,937,936.79 Octubre 3.00 2.70 31 744 6,858.25 5,102,534.68 Noviembre 3.10 2.79 30 720 7,086.85 5,102,534.68 Diciembre 3.20 2.88 31 744 7,315.46 5,442,703.66

Total 101,262,452.56 Energia Indisponible por Mantenimiento 4% 4,050,498.10 Energía Firme Anual 97,211,954.46

Fuente: Resumen Ejecutivo “Hidrológica Sedimentologia, Sismología y Geología. Tabla Nº 27 Producción de energía firme anual

* Restado el 10% de caudal ecológico (Q mínimo - 10% Caudal Ecológico).

6.2 ENERGÍA MEDIA

La Energía Media es la que se produce con menor garantía, o sea con menor

seguridad. Su probabilidad de ocurrencia para este tipo de proyectos es menor, y está

en el orden del 20% y por ello, su precio de venta es proporcional al precio de la

energía primaria.

Page 146: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

125

Esta energía se cuantifica por diferencia entre la producida con el caudal máximo

turbinable (energía media para cada mes) y aquella producida para el mismo mes con

el caudal de probabilidad de ocurrencia del 90%, (Q 90).

Con igual metodología aplicada para el cálculo de la energía firme, se ha

determinado la Energía Media de la central “Sigchos”.

Mes Q medioQ 90% * disponible Tiempo Potencia Energía

(m³/s) (m³/s) dias (horas) (kW) (kWh)Enero 13.17 7.00 31 744 17,780.64 13,228,793.61 Febrero 20.00 7.00 28 672 17,780.64 11,948,587.78 Marzo 20.53 7.00 31 744 17,780.64 13,228,793.61 Abril 21.38 7.00 30 720 17,780.64 12,802,058.33 Mayo 17.21 7.00 31 744 17,780.64 13,228,793.61 Junio 10.59 7.00 30 720 17,780.64 12,802,058.33 Julio 6.82 6.14 31 744 15,591.08 11,599,762.17 Agosto 5.18 4.66 31 744 11,841.90 8,810,376.55 Septiembre 5.04 4.54 30 720 11,521.85 8,295,733.80 Octubre 5.81 5.23 31 744 13,282.14 9,881,908.83 Noviembre 5.79 5.21 30 720 13,236.41 9,530,218.00 Diciembre 6.95 6.26 31 744 15,888.27 11,820,872.01

Total 137,177,956.63 Energia Indisponible por Mantenimiento 4% 5,487,118.27 Energía Media Anual 131,690,838.37

Fuente: Resumen Ejecutivo “Hidrológica Sedimentologia, Sismología y Geología. Tabla Nº 28 Producción de energía media anual

* Restado el 10% de caudal ecológico. (Para caudales menores a 7m3/seg.)

6.3 ENERGÍA SECUNDARIA

Por definición la Energía Secundaria se determina como la diferencia entre la

Energía Media (131.69GW-h) y la Energía Firme (97.22GW-h) del aprovechamiento

hidroeléctrico respectivo.

En caso de “Sigchos” es de 34.47 GW-h/año.

6.4 POTENCIA GARANTIZADA.

Por ser un proyecto a filo de agua que no dispone de reservorio de regulación, la

potencia garantizada en una central de generación corresponde a la potencia firme o

continua, Para el proyecto “Sigchos” la potencia garantizada es de 11.139 kW

Page 147: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

126

6.5 POTENCIA REMUNERABLE Y PUESTA A DISPOSICIÓN.

Según el ART 16 (Ley de régimen de Sector Eléctrico) que dice:

“Es la cantidad de potencia activa que será remunerada a cada generador, el Centro

de Control de Energía CENACE, calculará estas potencias hasta el 30 de septiembre

de cada año y será aplicable para cada uno de los trimestres de los siguientes doce

(12) meses.

El calculo de para las plantas hidroeléctricas se tendrá mediante la utilización de las

energías firmes; y para las unidades térmicas, tomando en cuenta sus potencias

efectivas, períodos de mantenimiento y costos variables de producción”.

Según el reglamento el cálculo de potencia remunerable y puesta a disposición para

nuevas plantas hidroeléctricas como es el caso de “Sigchos”, se tomará encuentra la

estadística hidrológica; basándose en ella, se determinará mediante simulación

operativa del sistema las correspondientes producciones de energía media mensuales.

En el presente caso, este proyecto no tiene embalse, por lo mismo la energía media

total del año es el valor indicado en la Tabla Nº 28, que es de 131’690.830.37 kWh,

que dividiendo para las 8760 Horas del año da una Potencia Remunerable y Puesta a

Disposición de 15.660 kW, por que se considera todas las horas del año y no las 15

horas que son entre las [07-22horas] de los días laborables y de [17-22 horas ] de los

días no laborables y feriados.

6.6 PRODUCCIÓN DE ENERGÍA DEL PROYECTO.

El cálculo de la producción de energía del proyecto “Sigchos” se basa en las

características del equipo eléctrico y mecánico y en los caudales disponibles en el

sitio de captación. Según se puede ver en el resumen del Estudio de Hidrología y

Sedimentológia, realizado por la consultora “Hidroplan” Cia Ltda.

Se ha considerado una disponibilidad de la central igual al 96 % del tiempo, pues el

4 % restante es el tiempo que la central estará sin operar para efectuar el

mantenimiento de las obras civiles y de los equipos electro e hidromecánicos.

Page 148: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

127

En resumen, la Energía Media producida en el proyecto “Sigchos” es de 131.69

Gwh/año y una Energía Firme es 97.21 Gwh/año.

6.7 ESTUDIO FINANCIERO

Para llevar a cabo el proyecto, Central Hidroeléctrica “Sigchos” se cuenta como

patrimonio inicial, el aporte realizado por los inversionistas nacionales y extranjeros,

que representa 6’050.000.00 USD (seis millones cincuenta mil dólares americanos),

además existe el préstamo hipotecario de $17.000.000 USD, el mismo que será

otorgado por el Banco Mundial.

Se estima que el período de construcción del proyecto “Sigchos” tendrá un tiempo

aproximado de tres años, consecuentemente a partir del tercer año, de finalizada la

construcción y puesta a punto de la central, se proyecta brindar los servicios de

potencia- energía al SNI y bonos de carbono a países europeos.

6.8 INVERSIONES.

El costo de los principales elementos que conforman el proyecto, esto es:

captación, túnel de conducción, tanque de carga, tubería de presión, casa de

máquinas, subestación, vías de acceso, equipo hidromecánico, y equipo eléctrico,

incluidos los rubros de transporte, diseños, manejo ambiental, gerencia del proyecto

y comisionamiento en cada uno de los ítems representa una cifra total de

23’032.811.62 USD, como se puede ver en la siguiente tabla.

Page 149: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

128

PROYECTO HIDROELÉCTRICO “SIGCHOS”

COSTOS DE CONSTRUCCIÓN

ITEM DESCRIPCIÓN COSTO USD. 1 Captación 1’849.392,00 2 Túnel de conducción 5’974.376,00 3 Tanque de carga 856.165,00 4 Tubería de presión 367.200,00 5 Casa de máquinas y

subestación (obra civil) 554.000,00 6 Vías de acceso 4’500.000,00 7 Imprevistos 5% 705.56,65 8

Equipo hidromecánico y Electromecánico **

8,226,621,97

TOTAL 23’032.811,62 Fuente: CAMERI C.A. (ITEMS 1 a 7)

Tabla Nº 29 Costo Total de la construcción del proyecto hidroeléctrico

** Ver anexo Nº 12 Descripción de costos de los equipos hidromecánicos y

electromecánicos.

6.8.1 PERÍODO DE ANÁLISIS:

Se considera un período de construcción, montaje (preoperativo) de tres años. La

operación comercial se iniciaría comienza en el año 2011 y se extiende por 50 años

de vida util.

6.8.2 COSTOS DE OPERACIÓN Y MANTENIMIENTO.

Los costos de operación y mantenimiento se dividen en costos fijos y costos

variables

6.8.2.1 Costos Fijos Anuales.

“Son los costos necesarios para la instalación y operación de un determinado equipo

(inversión, seguros, personal, depreciación, rentabilidad, etc.), sea que este funcione

o no.”24, se desglosan en:

24 Procedimiento del Mercado Eléctrico Mayorista Glosario de términos p5

Page 150: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

129

a) inversión, depreciación y seguros.

b) Costos fijos de operación.

Es la mano de obra básica de operación más administración. En una Central

Hidroeléctrica representa entre el 1.5 y el 2.0% de la inversión total

c) Costos fijos de mantenimiento.

Los componentes (b y c) no son dependientes del número de horas de operación de la

central.

6.8.2.2 Costos Variables Anuales.

“Son aquellos costos en los que se incurre para operar y mantener los equipos y que

cambian en función de la magnitud de la producción”25 y son los siguientes:

d) Costos variables de combustibles, lubricantes con transporte y

tratamiento.

e) Costos variables de captación y de agua de refrigeración.

f) Costos de Energía eléctrica auxiliar.

En una central hidroeléctrica es aproximadamente el 0,5% de la potencia de la

central la que se utiliza en servicios auxiliares.

g) Costos variables de mano de obra, repuestos, partes, piezas y

herramientas

Utilizados durante un ciclo operativo entre dos mantenimientos mayores.

h) Costos variables de mano de obra, equipos de Operación y

Mantenimiento para mitigación ambiental.

6.8.2.3 Criterio para la Evaluación de los Costos de Operación y Mantenimiento.

Criterio 126

El mantenimiento de la planta, su operación y gastos administrativos constituyen los

egresos del proyecto:

25 Procedimiento del Mercado Eléctrico Mayorista Glosario de términos p5 26 ORTIZ, Ramiro. Pequeñas Centrales Hidroeléctricas. McGraw-Hill Internacional S.A. Colombia 2001 p50

Page 151: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

130

o Costos de operación, anual= (2.0% del costo del KW

instalado)

o Reparación y mantenimiento anual de la planta= (1% del costo del KW

instalado)

o Insumos para administración anual= (0.5 % del costo del kW

instalado)

o Total de los egresos anuales del proyecto: (3.5% del costo del KW

instalado)

Cabe recalcar que el autor no considera un porcentaje por los seguros de la planta,

este valor por comparaciones de otros proyectos similares varia entre el 1.8 y el 2.0%

del costo total de la inversión.

Con este criterio se obtiene un total de egresos por Operación y Mantenimiento del

5.50% del costo total de la inversión, incluyendo operario, mantenimiento,

administración y seguros.

Criterio 227

Respecto a los costos de operación y mantenimiento: “Estos valores se obtienen

como un porcentaje del costo de obra fundamentado en la experiencia de los

profesionales del área. De acuerdo a ésto los costos fijos de operación y

mantenimiento contemplan:

a) 1% del costo total de las obras civiles que corresponde al mantenimiento de

las mismas

b) 1.5% del costo total de las obras electromecánicas.

c) Los costos variables por operación y mantenimiento se estiman en la mitad de

los costos fijos.”,

d) los costos del seguro y una cobertura contra todo riesgo se estima en un valor

porcentual de las amortizaciones que no seria mayor al 2% de las inversiones.

Cabe recalcar que los autores, no consideran:

27 SANDOVAL Nestor, ERAZO Bayron, Análisis técnico económico del proyecto hidroeléctrico Coca – Codo Sinclair. Tesis Escuela Politécnica del Litoral Guayaquil Ecuador Año 2003 p200

Page 152: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

131

e) los sueldos del personal administrativo por ser un valor pequeño, pero en la

Tabla Nº 30 se le considera un valor similar al calculado en la Tabla Nº 31

ITEM TOTAL DE LA INVERSIÓN 23,032,811.62

a 1% de las Obras Civiles 148,061.90 b 1.5% del Eq. Electromec 123,399.33

a+b SUB TOTAL COSTOS FIJO 271,461.23 c COSTOS VARIABLES 135,730.61 d SEGUROS 460,656.23 e SUELDOS ADMINISTRATIVOS 58,566.00

COSTO TOTAL OP Y MTO 926,414.07

4.022 % DE OPERACIÓN Y MANTENIMIENTO

RESPECTO A LA INVERSIÓN

Fuente: Análisis técnico económico del proyecto hidroeléctrico Coca – Codo Sinclair

Tabla Nº 30 Costo Total de Op y Mto Según Coca Codo Sinclair.

El total de los costos Fijos y Variables, Seguros y Gastos Administrativos

representan en el caso de “Sigchos” un 4.022% del costo total de la inversión.

Criterio 328

Al recopilar la información de los costos de proyectos hidroeléctricos pequeños del

Ecuador tales como:

o “La Esperanza” provincia. de Manabí con una potencia instalada de 6MW

ejecutado en el año de 1990:

o “Río Blanco”, provincia del Chimborazo con una potencia instalada de 3

MW, año de entrada en servicio 1993

o “ San Miguel”, provincia del Carchi con una potencia Instalada de 2.95 MW

año de puesta en servicio 1993

o “Perlabi”, provincia de Pichincha, con una potencia de 2.36 MW, año de

entrada en servicio 2004.

Para estas centrales, los valores de operación y mantenimiento varían entre 2% y el

4%. del costo total de la inversión, incluido el pago de seguros

28 Recopilación de información de proyectos de pequeña escala realizados en el Ecuador.

Page 153: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

132

Para los costos variables se utiliza el criterio de Perlabi que dice:

“Los costos variables de producción son inferiores a 1 milesimo de dólar por

Kilovatio – hora, normalmente se desprecian o son incorporados a los costos fijos de

producción.”29

En la Tabla Nº 30 se pude ver en detalle todos los costos de operación y

mantenimiento que ascendería para la central “Sigchos”.

VALOR VALOR

MENSUAL ANUAL

1 PERSONAL ADMINISTRATIVO

1.1 Jefe despacho de carga (1/4 de tiempo) 1 600 7,200.00

1.2 Administrador y ventas ( tiempo completo) 1 700 8,400.00

1.3 Contador (1/4 de tiempo) 1 350 4,200.00

1.4 Secretaria 1 300 3,600.00

1.5 Mensajero 1 200 2,400.00

SUBTOTAL "A" 25,800.00

1.6 CARGAS SOCIALES (promedio) 27.00% 6,966.00

SUBTOTAL 1 58,566.00 0.254%

PERSONAL OPERATIVO2 SUELDOS PERSONAL EN LA PLANTA

2.1 Jefe de la Planta (tiempo completo) 1 900 10,800.00

2.2 Operadores 4 600 28,800.00

2.3 Ayudantes Operadores 4 400 19,200.00

2.4 Mantenimiento (Tec. Electromecánicos) 3 500 18,000.00

2.5 Chofer 1 300 3,600.00

2.6 Rejilleros 3 250 9,000.00

SUBTOTAL "B" 89,400.00

2.7 CARGAS SOCIALES (promedio) 27.00% 24,138.00

SUBTOTAL 2 113,538.00 0.493%

OPERACIÓN Y MANTENIMIENTO DE LA PLANTACostos de Operación y Mantenimiento

3 COSTOS FIJOS 1.8-2.0%

3.1 SEGUROS 23032811.6 1.80% 414,590.61

3.2 SUELDOS PERSONAL DE LA PLANTA (SUBTOTAL 2) 113,538.00

3.3 DEPRECIACIONES 281,931.71

3.4 AMORTIZACIONES 3,000.00

SUB TOTAL 3 813,060.32 3.530%

4 VARIABLES VARIABLES. ########

4.1 COMBUSTIBLE

4.2 REPARACIONES

4.3 MANTENIMIENTO

4.4 MITIGACION AMBIENTAL

4.5 ENERGIA ELECTRICA AUXILIAR

SUB TOTAL 4 130,000.00 ######## 0.564%

1,001,626.32

4.349%% COSTO DE OPERACION Y MANTENIMIENTO

CENTRAL HIDROELECTRICA "SIGCHOS"

CANTIDADN°

TOTAL3 =SUBTOTAL1+ SUBTOTAL3 +SUBTOTAL4

DESCRIPCIÓN

COSTO DE OPERACIÓN Y MANTENIMIENTO ANUALES USD

Tabla Nº 31 Costo Total de Operación y Mantenimiento

29 CAMINOS Y CANALES C. LTD Proyecto Hidroeléctrico Perlabi p12 Junio 2001

Page 154: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

133

De los resultados obtenidos los criterios Nº 2 y Nº 3 son similares pues ascienden

alrededor del 4.18% promedio del valor total de la inversión.

6.9 ÍNDICES DE FACTIBILIDAD DEL PROYECTO

Una vez encontrado los siguientes parámetros como son:

o Costo total de la inversión. Tabla Nº 29

o Costos totales durante la operación Tabla Nº 31

o Ingresos durante la operación. Anexo Nº13

Se procede a determinar la factibilidad y la rentabilidad del proyecto.

6.9.1 COSTO TOTAL DE LA INVERSIÓN.

El costo total de la inversión asciende a la cantidad de 23’032.811.62 USD. (Veinte y

tres millones treinta y dos mil ochocientos once con 62/100 Dólares de Estados

Unidos Norte América).

6.9.2 COSTO DEL KILOVATIO INSTALADO,

El costo referencial de construcción es de 23’032.811.62 USD, la capacidad de la

planta es de 18.000 KW, por lo mismo el costo del KW instalado es de:

kWUSD

kW

USD

InstaldaPotencia

Costo60.279.1

000.18

.6223'032.811==

Valor adecuado y de acuerdo con el precio internacional para este tipo de proyectos.

6.9.3 COSTO DEL KILOVATIO – HORA. (kWh)

En función de los costos de operación y mantenimiento, y la energía generada

durante el año se puede calcular el costo del kilovatio – hora anual.

Page 155: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

134

Para este proyecto la producción de energía generada durante un año es de:

131’690.838.37 kWh; de igual forma los costos de operación y mantenimiento

durante este período es de: 1’001.626.32 USD.

El cálculo del costo del KWh es de:

.761.0Costos

00761.0KWh 8.37l131'690.83

USD321'001.626.Costos

anual Generacion

Mtoy Op de CostosCostos

kWh

ctvUSDkWh

kWh

USDkWh

kWh

=

==

=

El costo del Kilovatio –Hora es de 0,761 ctvUSD, valor muy competitivo para el

mercado.

6.9.4 VENTA DE ENERGÍA.

Según Regulación del CONELEC 007/02 del, en la cual contempla un mercado de

contratos entre los Agentes Distribuidores y Grandes Consumidores, pactan el

suministro de una determinada cantidad de energía producida por la empresa

generadora; los precios a pagar por dicha energía son de libre acuerdo entre las

partes.

Los montos de energía también son de libre acuerdo pero bajo restricciones sobre las

cantidades máximas establecidas en el Reglamento para el funcionamiento del

Mercado Eléctrico Mayorista.

De acuerdo al reglamento, los generadores hidroeléctricos no podrán comprometer

en contratos una cantidad superior a aquella proveniente de su energía firme

mensual, pudiendo excederse en un 2% máximo del total de la generación primaria,

por lo tanto Central Hidroeléctrica “Sigchos” no podrá entregara mas de 99.15 GWh

anuales en la venta por contratos a Empresas Distribuidoras o Grandes Consumidores

a un valor Precio Referencial de Generación (PRG) máximo de 4.16ctv USD,

Page 156: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

135

La cantidad restante de energía producida o sea la Energía Secundaria, 34,78 GW-H

sería comercializada en el mercado “spot”, pero descontando los 0,65GW-H anuales

por autoconsumo de servicios auxiliares, lo que da una cantidad de 31,87GW-H,

energía que esta sería comercializada en un valor no menor al precio referencial de

generación.

Como ingreso adicional se tendría la Venta de Bonos del Carbono a los países

europeos, puestos en la bolsa de valores o se realizarían negociaciones directamente

con los interesados. Dichos bonos tendrían un valor conservador de 10 USD por

cada tonelada, ya que en la semana 46 del presente año 2007 los bonos del carbono

se cotizaron en un valor de 18 USD por cada tonelada. Este ingreso representaría

anualmente una cantidad aproximada de 850.000 dólares, cantidad importante que

influirá positivamente para la cancelación de la deuda y la recuperación de capital.

6.10 EVALUACIÓN FINANCIERA

6.10.1 TASA INTERNA DE RETORNO. (TIR)

“Es aquella tasa que iguala el valor presente de los ingresos con el valor presente de

los egresos, representa la tasa de interés más alta que el inversionista podría pagar sin

perder dinero”30.

Se presenta los cálculos respectivos:

30 CALDAS, Marco, “Planificación Financiera” p175, Primera Ed

Page 157: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

136

Tiempo (t) AÑOS FFP FFP(15%) FFP(53%)01 2,629,339.37 2,286,382.06 1,718,522.462 5,241,489.74 3,963,319.27 2,239,091.693 7,853,640.11 5,163,895.86 2,192,788.294 10,465,790.48 5,983,849.68 1,909,881.025 13,077,941.86 6,502,048.44 1,559,847.886 15,687,093.23 6,781,963.30 1,222,908.307 18,293,316.30 6,877,135.18 932,078.378 20,899,539.37 6,832,096.49 695,993.639 23,505,762.44 6,681,804.73 511,624.6610 26,111,985.51 6,454,483.47 371,471.5811 28,718,208.58 6,172,784.30 267,024.8012 31,321,806.94 5,854,269.67 190,348.5813 33,924,854.30 5,513,737.25 134,750.1914 36,528,001.65 5,162,453.45 94,830.0315 39,131,150.01 4,809,002.54 66,397.4116 41,734,298.37 4,459,926.19 46,283.9317 44,337,446.72 4,120,096.55 32,137.8218 46,940,594.08 3,793,040.29 22,238.3619 49,544,011.44 3,481,225.86 15,341.0120 49,917,810.82 3,049,992.17 10,102.45

SUMATORIA 103,943,506.73 14,233,662.47INVERSION 23,032,811.62 23,032,811.62

VAN: 80,910,695.11 -8,799,149.15

TASA INTERNA DE RETORNO (TIR)

Fuente: Proyección de ingresos y gastos operacionales. Tabla Nº 32 Tasa interna de retorno

Donde:

FFP = Flujo de fondos proyectados

VAN = Valor Actual Neto.

TM = Tasa Mayor

tm = tasa menor

( ) ( )

%272,49TIR

9019.03815TIR

9.15)(-8'799.14-.1180'910.695

.1180'910.69515)(5315TIR

VANTM-VANtm

VANtmtm)-(TMtmTIR

=

×+=

−+=

+=

Como se puede apreciar la tasa interna de retorno para el presente proyecto es de

49,272%, lo que hace factible e interesante este proyecto.

Page 158: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

137

6.10.2 VALOR ACTUAL NETO, (VAN)

El método del Valor Actual Neto es muy utilizado debido a su fácil aplicación y

porque todos los ingresos y egresos futuros se transforman a dinero de hoy (dólares)

y así puede verse, fácilmente, si los ingresos son mayores que los egresos.

Cuando el VAN es menor que cero implica que hay una perdida a una cierta tasa de

interés o por el contrario si el VAN es mayor que cero se presenta una ganancia.

Cuando el VAN es igual a cero se dice que el proyecto es indiferente.

En la aceptación o rechazo de un proyecto depende directamente de la tasa de interés

que se utilice.

Formula a utilizarse:

( )∑= +

−−=n

tti

FFPIo

1 1VAN

En donde:

FFP= Flujo de fondos proyectados.

i= Tasa de rendimiento mínimo aceptable.

t= Período de tiempo

Io=Inversión.

Page 159: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

138

Tiempo (t) años FFP (1+ I ) (1+ I )`-ţ BNt/(1+i )´-ţ01 2,629,339.37 1.1082 0.902364194 2,372,621.702 5,241,489.74 1.1082 0.814261139 4,267,941.413 7,853,640.11 1.1082 0.734760097 5,770,541.374 10,465,790.48 1.1082 0.663021202 6,939,040.995 13,077,941.86 1.1082 0.598286593 7,824,357.286 15,687,093.23 1.1082 0.539872399 8,469,028.667 18,293,316.30 1.1082 0.487161523 8,911,799.828 20,899,539.37 1.1082 0.439597115 9,187,377.219 23,505,762.44 1.1082 0.396676696 9,324,188.1910 26,111,985.51 1.1082 0.357946847 9,346,702.8911 28,718,208.58 1.1082 0.322998419 9,275,935.9612 31,321,806.94 1.1082 0.291462208 9,129,123.0013 33,924,854.30 1.1082 0.26300506 8,922,408.3514 36,528,001.65 1.1082 0.237326349 8,669,057.2715 39,131,150.01 1.1082 0.2141548 8,380,123.6016 41,734,298.37 1.1082 0.193245623 8,064,970.5017 44,337,446.72 1.1082 0.174377931 7,731,472.2418 46,940,594.08 1.1082 0.157352401 7,386,215.2019 49,544,011.44 1.1082 0.141989173 7,034,713.2120 49,917,810.82 1.1082 0.128125946 6,395,766.71

TOTAL VAN ACTUALIZADO 153,403,385.55INVERSION 23,032,811.62

TOTAL VAN 130,370,573.92

VALOR ACTUAL NETO (VAN)

Fuente: Proyección de ingresos y gastos operacionales. Tabla Nº 33 Valor Actual Neto.

Se realiza con una tasa de costo de capital 2.42% y una tasa de riesgo país del 8.40%,

es decir con una tasa de descuento del 10.82%.

6.10.3 PERÍODO DE RECUPERACIÓN DE CAPITAL. (PRC)

“Se defina como el espacio de tiempo (años meses y días), necesarios para que el

flujo de recibidos en efectivo como producidos en una inversión iguale al

desembolso de efectivo originalmente requerido para la misma inversión”31

Se presenta el cálculo del PRC.

31 CALDAS, Marco. “Planificación Financiera” p164, Primera Ed.

Page 160: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

139

Años Inversiones en $ Utilidad Utilidad Acumulada0 23,032,811.621 2,321,663.56 2,321,663.562 2,347,985.86 4,669,649.423 2,377,156.66 7,046,806.074 2,409,483.76 9,456,289.835 2,445,309.16 11,901,598.996 2,445,309.16 14,346,908.157 2,485,009.96 16,831,918.108 2,526,370.99 19,358,289.099 2,575,128.49 21,933,417.58

10 2,629,160.89 24,562,578.4711 2,689,039.69 27,251,618.1512 2,755,397.59 30,007,015.7413 2,826,573.44 32,833,589.1914 2,907,572.54 35,741,161.7315 2,997,974.84 38,739,136.5716 3,098,059.34 41,837,195.9217 3,208,972.64 45,046,168.5618 3,331,886.54 48,378,055.1119 3,468,099.74 51,846,154.8520 3,619,051.34 55,465,206.1921 3,786,336.14 59,251,542.34

PERIODO DE RECUPERACION DE CAPITAL

Fuente: Proyección de ingresos y gastos operacionales. Tabla Nº 34 Período de recuperación de capital.

La recuperación de capital del presente proyecto es en el tiempo de 9 años 3 meses y

6 días

6.10.4 RELACIÓN BENEFICIO/COSTO. (R B/C)

Este método de evaluación financiera define cual es el beneficio sobre el costo de la

inversión.

La relación Beneficio / Costo (R B/C) se obtiene dividiendo el valor actualizado del

flujo de ingresos, por el valor actualizado del flujo de costos.

“El coeficiente obtenido de la relación costo/beneficio puede tener los siguientes

valores:

R B/C>1 significa que el VAN de los ingresos es superior al VAN de los

egresos, por lo tanto el proyecto es atractivo.

Page 161: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

140

R B/C=1 significa que el VAN de los ingresos es igual VAN de los egresos,

por lo tanto el proyecto seria indiferente, quiere decir que la tasa de de interés de

oportunidad utilizada será igual a la tasa interna de rentabilidad del proyecto.

R B/C<1 significa que el VAN de los ingresos es inferior al VAN de los

egresos, por lo que significa que el VAN de todo proyecto sería negativo, por lo tanto

el proyecto no es atractivo.

La relación costo beneficio se lo utiliza especialmente en proyectos que son

financiados con organismos internacionales como el Banco Mundial, Banco

Interamericano de Desarrollo BID etc., pero utilizado precios sociales o parámetros

nacionales de cuenta para su cálculo.”32

La formula para el cálculo seria la siguiente:

18,2/

41.716.801'19

85.921.271'43/

/

=

=

=∑∑

CBR

CBR

osActualizadCostos

osActualizadBeneficiosCBR

La relación costo beneficio para el Proyecto Hidroeléctrico “Sigchos” es de 2,18 este

resultado nos permite interpretar que el proyecto es rentable por que su coeficiente es

mayor que 1, lo que significa que su rentabilidad estará situada por arriba de Tasa

Mercado Anual

32 CALDAS, Marco. “Planificación Financiera”, p180; Primera Ed.

Page 162: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

141

CONCLUSIONES -

• El proyecto representa una interesante fuente de trabajo el Ecuador.

• La inclusión de “Sigchos” al parque energético nacional es muy importante

ya que en él se inscribe un concepto de desarrollo económico sustentable

basado en el uso de energía limpia y amigable con el ambiente.

• “Sigchos” es un proyecto interesante por sus características y con un

adecuado plan de operación y mantenimiento puede tener una vida útil de 50

años ó más sin mayores problemas.

• Dentro de las bondades que brinda la central hidroeléctrica “Sigchos” están

las de poder generar energía limpia, económica y de calidad

• Este proyecto puede ayudar a reducir el costo de energía mejorando la

competitividad del sector industrial, aumentando las oportunidades de

comercio en el ámbito nacional.

• Es muy económico la implementación de generación hidroeléctrica cuya

materia prima es el agua, mientras que el costo de generación de energía

térmica es muy elevado, debido al combustible en el caso mas critico si se

quema diesel.

• “Sigchos” con la posibilidad de generar anualmente 131.69GWh, si se la

compara con una central de generación térmica, el Ecuador dejaría de

importar 8.23 millones de galones de diesel, a un costo de 1.00 USD, se

puede apreciar que en el lapso de tres años el Ecuador tendría la cantidad de

dinero suficiente para realizar la construcción de un proyecto similar

Page 163: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

142

• Fomentar el uso de recursos naturales propios del sector y propiciar la menor

dependencia de los derivados del petróleo mediante el aprovechamiento de

pequeñas y medianas centrales hidroeléctricas, de las cuales el Ecuador tiene

un alto potencial en recursos hídricos.

• Aprovechar como política nacional aplicable al sector publico y privado la

ejecución de proyectos de este tipo, como fuentes de energía renovables.

• El capital de inversión se recupera en alrededor de 10 años de iniciada la

operación de la central

Page 164: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

143

RECOMENDACIONES

• Los equipos y accesorios a ser instalados en esta planta de generación deben

ser de marcas reconocidas y respaldadas con referencias comprobadas, por

suministros de otras instalaciones

• El contrato de concesión debe contener todas las cláusulas de garantía de

cumplimiento de la potencia y energía prescritas en las regulaciones del

CONELEC.

• “Sigchos” es un proyecto de generación eléctrica producida con recursos

energéticos renovables no convencionales, por tal motivo este proyecto

debería ser incluidos dentro de los beneficios económicos de la Regulación

CONELEC. 009/06

• Calificado al proyecto como obra de desarrollo limpio para poder vender

Créditos de Reducción de Emisiones de Carbono, puede ayudar

económicamente al financiar una parte importante de la inversión, pues el

tiempo de recuperación del capital podría reducirse si se toma el ingreso de

por la venta de los bonos de carbono.

• La experiencia recomienda que la responsabilidad en el suministro y montaje

del grupo turbina generador se encuentra centralizada o unificada en una sola

compañía o contratista.

Page 165: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

144

REFERENCIAS BIBLIOGRÁFICAS. [1] FINK, Donald y BEATY, Wayne. Manual de Ingeniería Eléctrica.

Decimotercera Edición, McGraw-Hill Internacional S.A. Mexico 1995. [2] GOMEZ, José y ARACIL, Juan. Saltos de Agua y Presas de Embalse Madrid

1958. [3] GRANIER, John y STEVENSON, William Jr. Análisis de sistemas de

potencia. Primera Edición, McGraw-Hill Internacional S.A. 1998. [4] ORTIZ FLORES, Ramiro Pequeñas Centrales Hidroeléctricas. McGraw-Hill

Internacional S.A. Colombia 2001

[5 ] SIEMENS, Corrientes de corto circuitos trifásicas, 2da Edición, Marcombo Boixareu Editores. España 1985.

[6] WARNICK, CC. Hydropower Engineering. Prentice Hall. Estados Unidos de

Norteamérica. 1984. FOLLETOS. [7] CALVO, Gonzalo Ing. “Segundo seminario ecuatoriano de planificación de

ingeniería de sistemas eléctricos Servicios Auxiliares de C.A”. en centrales Hidroeléctricas INECEL 1987.

[8] CAMINOS Y CANALES C. LTD, Proyecto Hidroeléctrico Perlabi., Junio

2001 [9] CONELEC, Catalogo resumen de generación eléctrica en el Ecuador, Octubre

2003. [10] HIDROPLAN CIA LTD, Investigación del Resumen Ejecutivo “Hidrológica

Sedimentologia, Sismología y Geología de la cuenca del Rio “Toachi –Blanco

[11] OLADE – BID “Manual de Diseño de Pequeñas centrales Hidroeléctricas”,

Equipos Volumen IV, 1985 [12] PHELPS DODGE INTERNACIONAL CORP, Catalogo de conductores,

2007 [13] SIERVO and A. LUGARESI. “Modern trends in selecting and designing

Pelton turbines” Water Power & Dam Construction, referencia al articulo” Diciembre 1978

Page 166: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

145

TESIS DE GRADO. [14] JIMÉNEZ, Jhon, LÓPEZ, Guillermo, Sistematizacion de diseño de pequeña

central hidroeléctrica, Tesis Universidad del Valle, Santiago de Cali 1997. [15] MURRAY, Harry Ernesto., Controles de calidad de fabricación de un rodete

pelton, Tesis Universidad Nacional Mayor San Marcos, Lima – Perú, Año 2005.

[16] SANDOVAL, Néstor y ERAZO, Bayron. , Análisis técnico económico del

proyecto hidroeléctrico “Coca Codo-Sinclair”, Tesis Escuela Politécnica del Litoral “ESPOL”, Guayaquil-Ecuador, Año 2003

PAGINAS ELECTRÓNICAS [17] www.abb.com

[18] www.cenace.org.ec

Informe interconexión Ecuador – Perú – Colombia [19] www.conelec.org.ec

Plan de electrificación 2006-2015 [20] www.compact-hidro.com

VA TECH HYDRO, Comisión Nacional Para el ahorro de la energía. [21] www.hispagua.cedex.es

Centrales Hidroeléctricas

[22] www.Hidrostal-peru.com productos

[23] www.pdic.com

Phelps Dodge International Corporation [24] www.es.wikipedia.org

Turbinas Pelton [25] www.inspt.utn.edu.ar

Turbinas Pelton [26] www.personales.ya.com

Turbinas Hidráulicas

[27] www.GEindustrial.com

Page 167: UNIVERSIDAD POLITÉCNICA SALESIANA-SEDE QUITO FACULTAD DE ...dspace.ups.edu.ec/bitstream/123456789/6732/1/UPS-KT00503.pdf · 4.5.3 VELOCIDAD ESPECIFICA DE LA TURBINA, POR CHORRO

146

ANEXOS.

Anexo 01 Diagrama eléctrico unifilar básico

Anexo 02 Diagrama unifilar básico de protecciones

Anexo 03 Diagrama unifilar Servicios Auxiliares sistema de corriente

alterna.208/120v

Anexo 04 Diagrama bifilar y disposición Servicios Auxiliares Sistema de

Corriente Continua 125 Vcc

Anexo 05 Casa de Maquinas Planta

Anexo 06 Detalle de tableros Casa de Máquinas

Anexo 07 Subestación 13.2/69 KV, Planta

Anexo 08 Subestación 13.2/69 KV, Cortes

Anexo 09 Subestación Cerramiento y Puertas.

Anexo 10 Implantación de la casa de maquinas y Subestación 13.2/69 KV,

Anexo 11 Diagrama Unifilar del Sistema Cotopaxi

Anexo 12 Presupuesto de Equipo Hidromecánicos y Electromecánicos

Anexo 13 Flujo de caja

Anexo 14 Cuadro de Perdidas y Ganancias.