unidad 4 procesos de fabricación

24
Corte con chorro de agua El corte por chorro de agua es un proceso de índole mecánica, mediante el cual se consigue cortar cualquier material, haciendo impactar sobre éste un chorro de agua a gran velocidad que produce el acabado deseado. Es un proceso revolucionario que hoy en día es de máxima utilidad y comienza a ser un recurso habitual a la hora de mecanizar piezas, es bastante simple pero a la vez muy complejo. Resulta una herramienta muy versátil y cuya aplicación es extensible a prácticamente todos los trabajos industriales. Al ser un procedimiento de corte en frío resulta especialmente interesante, ya que esta demandado en todas las aplicaciones en las que el material no se pueda ver afectado por el calor. Existen numerosas ventajas que hacen de éste un producto puntero en el mundo industrial, respecto a otros métodos más limitados. Diagrama de una maquina de corte por chorro de agua. 1. Alta presión de agua - 2. Enfoque - 3. Camara de mezcla - 4. Tapa - 5. Salpicaduras - 6. Pieza de trabajo - 7. Pieza de red permanente - 8. Agua - 9. Parte de la pieza de trabajo cortada - 10. Boquilla - 11. Arena abrasiva Proceso de conformado La primera fase del proceso tiene lugar en el momento en que el pedido entra en oficina técnica, se diseña la pieza con el oportuno programa de diseño asistido por ordenador (cad) mediante el cual se asignan las medidas del objeto, el espesor y el tipo de material a cortar.

Upload: angel-rodriguez

Post on 21-Jan-2016

92 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Unidad 4 Procesos de Fabricación

Corte con chorro de agua

El corte por chorro de agua es un proceso de índole mecánica, mediante el cual se consigue cortar cualquier material, haciendo impactar sobre éste un chorro de agua a gran velocidad que produce el acabado deseado.

Es un proceso revolucionario que hoy en día es de máxima utilidad y comienza a ser un recurso habitual a la hora de mecanizar piezas, es bastante simple pero a la vez muy complejo. Resulta una herramienta muy versátil y cuya aplicación es extensible a prácticamente todos los trabajos industriales.

Al ser un procedimiento de corte en frío resulta especialmente interesante, ya que esta demandado en todas las aplicaciones en las que el material no se pueda ver afectado por el calor. Existen numerosas ventajas que hacen de éste un producto puntero en el mundo industrial, respecto a otros métodos más limitados.

Diagrama de una maquina de corte por chorro de agua. 1. Alta presión de agua - 2. Enfoque - 3. Camara de mezcla - 4. Tapa - 5. Salpicaduras - 6. Pieza de trabajo - 7. Pieza de red permanente - 8. Agua - 9. Parte de la pieza de trabajo cortada - 10. Boquilla - 11. Arena abrasiva

Proceso de conformado

La primera fase del proceso tiene lugar en el momento en que el pedido entra en oficina técnica, se diseña la pieza con el oportuno programa de diseño asistido por ordenador (cad) mediante el cual se asignan las medidas del objeto, el espesor y el tipo de material a cortar.

Una vez diseñada la pieza a mecanizar, se referencia, y esta se vincula con el programa particular de la máquina del corte por chorro de agua.

Una vez este ha sido almacenado en la base de datos, el paso siguiente es dirigirse directamente a la máquina, y mediante el ordenador de la propia máquina se busca el archivo guardado, puede ser posible añadirle determinados datos como sean la dureza o características del material, a la vez cabe tener en cuenta el tipo de corte que se desea obtener ya que puede variar desde el más bruto, al más definido, ya que los bordes del corte son limpios y sin imperfecciones. Todo esto dependerá de la utilidad que se le quiera dar a la pieza, la importancia que tenga la misma o el precio que este dispuesto a pagar el cliente.

Page 2: Unidad 4 Procesos de Fabricación

Ya seleccionadas todas estas variables se procede al ajuste y fijación del bruto a cortar. Por una parte hay que tener en cuenta la distribución del material con el fin de optimizar el mismo, y por otra, valorar el material que se dispone en stock, ya sea restos de otros mecanizados o material por utilizar, tratando siempre de aprovechar las existencias con el fin de no acumular restos de unos y otros trabajos, reduciendo de esta manera costes y rentabilizando el material.

Una correcta ubicación de las distintas piezas permitirá, en el caso de máquinas con múltiples cabezales de corte, trabajar en paralelo y agilizar de esta forma el proceso de corte pudiendo trabajar con diferentes encargos de forma simultánea. A partir de este momento en el que ya hemos ubicado el bruto a cortar adecuadamente se procede al corte de la pieza, en la que la máquina toma el mando de la operación. Existe la posibilidad de tener que interrumpir el proceso con tal de reajustar la pieza, o de comprobar si todo va correcto, pero si no hay ningún problema, desde que la máquina inicia el corte hasta el final, es un proceso continuo que termina con un acabado excelente de la pieza a mecanizar.

Un cortador abrasivo por chorro de agua acaba una herramienta especial.

Características del proceso

El dispositivo consiste en un chorro de agua a presión, cuyo diámetro de la boquilla oscila entre 0,08 mm a 0,45 mm de diámetro, por el cual, sale una mezcla de agua y abrasivo lanzado a una presión muy elevada, capaz de cortar cualquier tipo de material.

Uno de los elementos más importantes es la boquilla por la que sale el chorro, de ella depende la cohesión del chorro que condiciona en gran medida la viabilidad técnica de la aplicación, pues si el chorro es cónico se pierde poder de corte, precisión, calidad y las características de corte en seco.

Imagen 1.

Page 3: Unidad 4 Procesos de Fabricación

La presión del chorro de agua es otra de las características más importantes del proceso, es aportada por un sistema de una bomba dotada con un intensificador de ultrapresión que hacen que ésta pueda llegar hasta 4000 bares de presión, dependiendo del objeto de trabajo, existe la opción de trabajar a menos presión, sobre unos 2000 bares, o incluso trabajar sin el abrasivo, pero esto se utiliza en materiales de poca dureza que no necesitan del abrasivo para ser cortadas (imagen 1), o con el fin de trabajar piezas que por ejemplo, no quieran ser cortadas, sino únicamente marcadas, por ejemplo, hacer carteles metálicos en los que las letras y figuras plasmadas estén elaboradas por chorro de agua a baja presión, que no llegue a cortar pero marque, obteniendo en este ámbito de trabajo sorprendentes resultados como podemos comprobar en la imagen (imagen 2). Pero por lo general se trabaja en altas presiones como la de 4000 bares, a pesar de que muchas veces no es necesario por el espesor a cortar, ya que con mucha menos presión se realizaría el mismo corte y con las mismas condiciones, pero lo que hace que se trabaje normalmente a máxima presión es el hecho de agilizar el proceso ya que esto le aporta mas rapidez al corte, el corte puede ir desde minutos a horas.

Imagen 2.

La velocidad de corte es de máxima importancia, y esta dependerá de factores como la presión de la bomba y la capacidad del intensificador, diámetro de la tobera, cantidad y calidad de abrasivo y del espesor de la pieza. En referencia a valores de velocidad encontramos que todo este sistema de aporte de presión permite que el líquido salga por el orificio a una velocidad de 1000 metros por segundo.

El motivo de añadirle abrasivo al agua es debido a que un simple chorro de agua no sería capaz de desarrollar cortes como los actuales en los materiales más duros, por ello se le aporta este abrasivo, mezcla de arcillas y vidrios, que dota al sistema de un aumento de posibilidades de corte infinito.

En relación al espesor de la pieza a cortar cabe decir que sirve desde 5 mm, que es cuando empezaría a ser rentable usar este método, hasta espesores de 200 mm en cualquier material, llegando incluso a los 400 mm usando eso si, aplicaciones especiales. Pero como se ha comentado antes, esto va en función del tipo de material, pudiéndose dar el caso que con un chorro a 4000 bares y con abrasivo, se puede cortar fácilmente corcho de dos metros de espesor.

Este chorro de agua puede cortar todo tipo de materiales, desde metálicos hasta blandos como un pastel, incluso se utiliza para preparación de superficies como limpiezas de barcos, pintura automovilística o industria aeroespacial. Es un proceso en el cual la generación de partículas contaminantes es mínima, no aporta oxidación superficial y la generación de viruta no es un problema en este caso.

La máquina esta dotada de una balsa, sobre la que se proyecta el chorro de agua, y la cual sujeta las piezas mediante una reja que mantiene el material en la superficie de trabajo, pero que permite que la mezcla de agua y el material eliminado se deposite dentro de la misma, evitando así que el liquido proyectado caiga fuera de la zona de corte, e incluso que salpique, pudiéndose reciclar el abrasivo para ser reutilizado de nuevo.

Page 4: Unidad 4 Procesos de Fabricación

Como característica del proceso cabe destacar además, que el proceso de corte no afecta a los materiales porque no los endurece ni deforma, de esta manera es un método que en diversos casos puede ser mas útil que el láser o el plasma cuando los trabajos sea imprescindible un buen acabado.

Ventajas y desventajas

Ventajas:

Al no haber herramientas de corte, no existe el problema de desgaste de la misma.

Corte de excelente calidad, en la mayoria de casos no se necesita un acabado posterior.

Universal, ya que la misma maquina puede cortar una enorme variedad de materiales.

Proceso sin exfoliación ni desgarros.

Apta para mecanizar perfiles intrincados.

Proceso sin aporte de calor.

Inexistencia de tensiones residuales debido a que el proceso no genera esfuerzos de corte.

No genera contaminación ni gases.

El mecanizado lo puede realizar el mismo ingeniero que ha diseñado la pieza, ya que no requiere de trabajo manual bruto, simplemente programar la maquina, ubicar la pieza y recogerla una vez terminada.

Reutilización de piezas procedentes de otros trabajos, abaratando de esta manera los costes finales.

Si se compara con los sistemas de plasma, oxicorte y láser, al ser estos tres con aporte de calor, y el agua no, el corte por agua permite un trabajo sin afectar a ninguna zona del material sobre el cual trabaja.

Si se compara únicamente con el laser, el chorro por agua permite cortar espesores mucho mayores.

Desventajas:

No existen muchas, pero por destacar alguna se podría decir que el agua en comparación al corte por plasma es más lento. El corte por agua solo puede trabajar en dos dimensiones, impidiendo de esta forma el trabajo en mas ejes.

Equipo necesario

PC, se encuentra en la oficina técnica y es donde se realiza el diseño de la pieza.

PC de taller, centro logístico donde se reciben las ordenes del PC de oficina y aquí es donde se ejecuta la orden de trabajo directamente sobre la máquina de corte por agua.

PC de taller

Page 5: Unidad 4 Procesos de Fabricación

Balsa de agua, lugar donde se realiza el trabajo de mecanizado, generalmente de unas dimensiones aproximadas de cuatro metros de largo por tres metros de ancho.

Balsa de agua

Boquilla por la que sale el chorro de agua.

Boquilla

Detalle de boquilla

Centro de refrigeración, se utiliza para que todo este sistema mecánico utilizado para realizar el mecanizado no sufra de sobrecalentamiento, ya que sin este elemento la máquina se quemaría. La bomba que tiene a la izquierda mueve el refrigerante almacenado en los dos depóstios contiguos.

Centro de refrigeración

Deposito abrasivos, es un deposito exterior desde el cual se añade el abrasivo al agua, ya que sin este no se podría realizar el corte.

Deposito de abrasivos

Page 6: Unidad 4 Procesos de Fabricación

Descalcificador, utilizado para evitar la obstrucción de las tuberías.

Descalcificador

Depuradora de abrasivos, una vez el fluido de corte mecaniza la pieza y se deposita en la balsa, es necesario de una depuradora situada en la base de la balsa que separa el abrasivo del agua, almacenandolo en este gran saco situado al lado de la balsa, para poder ser reutilizado de nuevo y de esta manera reducir los costes.

Depuradora de abrasivos

Materiales a los que se le aplica

Este sistema, sin añadirle abrasivo, permite trabajar sobre:

Caucho

Tapizado de vehículos

Polipropileno

Cartón

Papel

Goma

Espuma

Materiales para empaque

Fibra de vidrio

Cualquier tipo de material que no sea metálico.

Si al chorro de agua se le añade abrasivo es capaz de mecanizar:

Kevlar

Vidrio

Grafito epoxi

Page 7: Unidad 4 Procesos de Fabricación

Cerámica

Mármol

Vigas de hormigón

Titanio

Bronce de aluminio

Granito

Aluminio

Acero

Acero de carbón

Acero inoxidable

Acero templado

Latón

Otros materiales de espesores de un máximo de 200mm.

Aplicaciones

Como se ha podido comprobar en el apartado anterior, la cantidad de aplicaciones es infinita, pero si se analizan las mas destacadas se podrían enumerar:

Industria aerospacial: Mecanizado de chapas de aleaciones de aluminio de alta resistencia y aleaciones de titanio. Suele ser más económico que el fresado por necesitar sistemas de sujeción más sencillos.

Se utiliza para la preparación de superficies, como por ejemplo la limpieza de cascos de barcos y pintura automotriz.

Industria automovilística: Corte de los paneles interiores de las puertas conformados por fibra de madera, realizados por robots. También se aplica al corte de zapatas de freno con lo que se elimina el problema de las partículas del material de fricción flotando por el aire.

Industria téxtil: Se utiliza para cortar moquetas, obteniéndose mejores resultados que en el corte por calor, y que en el corte por cizalla, sobre todo en series cortas.

Industria cerámica: Para el corte de materiales cerámicos donde el uso de herramientas de metal sufre un gran desgaste y el empleo de discos de diamante no permiten la obtención de contorneados complicados.

Industria de mecanizado: Se utilizar para el mecanizado de piezas de todo tipo, desde arandelas, a laminas.

Industria del calzado: Se comienza a emplear para recortar tejidos, cueros y pieles, y materiales sintéticos como los cauchos empleados en las suelas y en otras partes.

Page 8: Unidad 4 Procesos de Fabricación

El corte con agua: Consiste en un delgado pero potente chorro de agua que en algunos casos puede estar combinado con un material abrasivo, el cual impacta el elemento a cortar a altísima velocidad, provocando un fenómeno de micro-erosión, logrando de esta forma el corte.

Orígenes

En la primera etapa del desarrollo de esta tecnología, la función del agua fue meramente limpiadora. En torno a 1920, la principal aplicación del agua a presión fue en la limpieza de fundiciones así como una alternativa nueva y más productiva en el lavado de almacenes de carbón y acero inoxidable. En aquel entonces se trabajaba a una presión de unos 100 bar.

En 1968 el Dr. Norman Franz, Profesor en la Universidad de Columbia, patentó lo que sería el primer intensificador para corte por chorro de agua. La presión de agua que alcanzaba este primer intensificador era de 700 bar. La subsidiaria de KMT perteneciente a la Mc. Cartney Manufacturing Company desarrolló sobre esta patente el primer intensificador que alcanzaba ya los 4.000 bar.

En 1971 se instaló este intensificador en la empresa Alton Box Board Co. En la divisón de papel. Sin embargo y debido a la falta de poder de corte, los metales no podían aún ser incluidos entre los materiales susceptibles de ser cortados con agua.

En los inicios de los años 80 se resolvió este problema con el aditivo de partículas de abrasivo al chorro de agua.

Las bombas intensificadoras de ultra alta presión elevan la presión del agua hasta valores superiores a los 4.100 bares (o 60,000 psi) y la conducen a través de un orificio de 0,08 mm (0,003") a 0,45 mm (0,018") de diámetro, generando así, un chorro de agua a una velocidad de casi 1.000 metros por segundo.

Descripción del proceso

En general, este método trabaja forzando un cierto caudal de agua altamente presurizado a través de un orificio de un diámetro muy pequeño (tobera), formando de esta forma un delgado chorro de altísima velocidad. Este chorro impacta el material con una gran fuerza en un área muy reducida, lo que provoca pequeñas grietas que con la persistencia del impacto del chorro “erosiona” el material, por lo que se habla de “micro-erosión”.

Existen dos sistemas que emplean el principio antes descrito, el que emplea sólo agua y que es empleado para cortar todo tipo de materiales blandos, como por ejemplo: madera, alimentos, plásticos, etc. Y el otro sistema de similares características pero que sólo difiere en el ingreso de un abrasivo al chorro, para permitir el corte de materiales duros como: aceros, titanio, aleaciones, etc.

Para obtener un chorro fino de agua se utiliza una pequeña abertura de boquilla con diámetro de 0.1 a 0.4 mm. Para proporcionar al chorro una energía suficiente para poder cortar, se usan presiones hasta de 400 MPa y el chorro alcanza velocidades hasta de 900 m/s. Una bomba hidráulica presuriza el fluído al nivel deseado. La unidad de boquilla consiste en un soporte hecho de acero inoxidable y una boquilla de zafiro, rubí o diamante. El diamante dura más, pero es el más costoso.

La distancia de separación es la distancia entre la boquilla y la superficie de trabajo. En general, se prefiere que esta distancia sea mínima para reducir la dispersión de la corriente del fluido antes de que golpee la superficie. Una distancia de separación normal es de 1/8 de In. (3.2 mm). El tamaño del orificio de la boquilla afecta la precisión del corte; las aberturas más pequeñas se usan para cortes más finos sobre materiales más delgados. Para cortar materia prima más gruesa se requieren corrientes de chorro más densas y mayores presiones.

Page 9: Unidad 4 Procesos de Fabricación

La velocidad de avance del corte se refiere a la velocidad a la que se mueve la boquilla a lo largo de la trayectoria de corte. La velocidad de avance típica varía desde 12 in/min (5mm/seg) hasta 1200 in/min (500mm/seg), dependiendo del material de trabajo y su grosor. Por lo general, el WJC se hace en forma automática usando un control numérico computarizado o robots industriales para manipulación de la unidad de boquilla a lo largo de la trayectoria deseada.

Cuando se para el corte de metales deben agregarse partículas abrasivas a la corriente a chorro para facilitar el corte. Por tanto este proceso se denomina corte con chorro de agua abrasiva. Entre los materiales abrasivos comunes están el óxido de aluminio, el dióxido de silicio y el granate (un mineral de silicato); los tamaños del esmeril varían entre 60 y 120. Las partículas abrasivas se agregan a la corriente de agua a aproximadamente 0.5 lb/min (.23 Kg/min) después de que salen de la boquilla.

Aplicaciones

Como se ha podido comprobar en el apartado anterior, la cantidad de aplicaciones es infinita, pero si se analizan las mas destacadas se podrían enumerar:

Industria aerospacial: Mecanizado de chapas de aleaciones de aluminio de alta resistencia y aleaciones de titanio. Suele ser más económico que el fresado por necesitar sistemas de sujeción más sencillos.

Se utiliza para la preparación de superficies, como por ejemplo la limpieza de cascos de barcos y pintura automotriz.

Industria automovilística: Corte de los paneles interiores de las puertas conformados por fibra de madera, realizados por robots. También se aplica al corte de zapatas de freno con lo que se elimina el problema de las partículas del material de fricción flotando por el aire.

Industria téxtil: Se utiliza para cortar moquetas, obteniéndose mejores resultados que en el corte por calor, y que en el corte por cizalla, sobre todo en series cortas.

Industria cerámica: Para el corte de materiales cerámicos donde el uso de herramientas de metal sufre un gran desgaste y el empleo de discos de diamante no permiten la obtención de contorneados complicados.

Industria de mecanizado: Se utilizar para el mecanizado de piezas de todo tipo, desde arandelas, a laminas.

Industria del calzado: Se comienza a emplear para recortar tejidos, cueros y pieles, y materiales sintéticos como los cauchos empleados en las suelas y en otras partes.

Ventajas y desventajas

Ventajas

Algunas de las principales ventajas de este método por sobre los métodos convencionales son:

Corte frío (no existe calor que pueda afectar al material).

Es multi-direccional (puede cortar en cualquier dirección).

Perfora la mayoría de los materiales en el corte (sin necesidad de hacerlo previamente).

No existe agrietamiento, ambientalmente amistosos.

No existen: gases peligrosos, humos, radiaciones UV.

Ahorro de material por ancho de corte reducido.

Desventajas

Page 10: Unidad 4 Procesos de Fabricación

Las principales desventajas de este método, radican en que en algunos casos de materiales de grandes espesores y de gran dureza, el tiempo requerido para ser cortado puede ser muy largo y elevar en gran medida sus costos. Además en grandes espesores la forma vertical “ideal” del corte tiende a distorsionarse, incrementado en ocasiones por una incorrecta velocidad de corte.

Equipamiento

Máquinas de corte

Máquinas de corte

Existe actualmente una gran variedad de equipos en el mercado, que permiten realizar gran cantidad de trabajos. Equipos de tamaños pequeños para realizar trabajos muy precisos y delicados, equipos de tamaños medios para pequeñas industrias y grandes equipos para satisfacer grandes demandas de trabajo.

En lo que respecta a los costos, el valor comercial aproximado varía normalmente entre US$90.000 a US$200.000 (según el tamaño y capacidades) y unas cuantas veces más si se trata de equipos robotizados.

El futuro de este método se espera bastante auspicioso, ya que existen a nivel mundial una gran y creciente cantidad de centros de investigación y desarrollo de esta tecnología, los que han alcanzado logros importantes sólo en las últimas décadas, provocando que cada vez más compañías la integren dentro de sus procesos.

Generadores de presión

Existen dos sistemas principales para generar la presión necesaria, las bombas de émbolos y el llamado intensificador de presión. Las primeras poseen generalmente tres émbolos conectados a un cigüeñal e impulsado por un motor eléctrico. Pueden llegar a generar presiones bajas y medias (hasta 344 Mpa en últimos diseños) sin problemas. La principal ventaja de estas bombas es que es muy eficiente en las presiones mencionadas y su principal desventaja es que sobre estas presiones se torna insegura y produce importante variabilidad en el caudal de entrega.

El “intensificador de presión” consiste principalmente en un cilindro con diferencia de diámetros y un pistón con igual diferencia. La sección del pistón con mayor diámetro es impulsado por un fluido hidráulico, produciendo una presión mucho mayor sobre el agua debido a la diferencia de diámetros (en una relación sección pistón-aumento de presión de 1:10 a 1:25). Las presiones normales que pueden generar son por sobre los 400Mpa y se a llegado a los 690Mpa en algunos equipos modernos.

Su principal ventaja radica en la alta presión que puede generar y que puede alimentar a varios inyectores simultáneamente, y en contra, su baja eficiencia debido al sistema hidráulico que posee, ya que pierde potencia por el calor que necesita disipar mediante un sistema intercambiador, además de necesitar un acumulador de presión debido a su gran variabilidad de entrega.

Page 11: Unidad 4 Procesos de Fabricación

Abrasivos

En general los abrasivos que se emplean o que dan buenos resultados en el corte deben poseer las siguientes características:

Buena estructura.

Dureza adecuada.

Buen comportamiento mecánico.

Grano de forma y distribución adecuadas.

Para cortar materiales, como acero por ejemplo, son adecuados abrasivos con granos duros y de formas afiladas y para materiales como aluminio son preferibles los de granos más blandos y no de gran calidad, lo que lo hace más económico.

Tipos de abrasivos

Granate.

Oxido de Aluminio.

Olivino.

Arena Silica.

El Granate tipo “Almandino” el que presenta características más estables y que permite ser empleado sobre gran cantidad de materiales, por lo que es el más popular a nivel mundial.

Introducción del Abrasivo

Inyección del abrasivo

Una vez que el chorro de agua pasa por la tobera, su velocidad se incrementa de gran manera, entrando luego a una zona de un diámetro bastante mayor o zona de mezcla. Debido a la altísima velocidad con que ingresa a esta zona, se produce un fenómeno llamado “depresión” o “efecto Venturi”, el que es aprovechado para succionar las partículas de abrasivo y agregarlas al chorro.

Normalmente la alimentación del abrasivo hacia el inyector se realiza por medio de un pequeño recipiente cercano a este y que a su vez es surtido neumáticamente desde un recipiente de mayor tamaño. También existen otros sistemas, como por ejemplo: el que parte del agua de alta presión es desviada hacia un estanque donde se mezcla con el abrasivo y es conducida al inyector, o bien otro sistema el cual el agua y el abrasivo, previamente mezclados, son impulsados al inyector por una membrana accionada por parte del fluido hidráulico que impulsa al intensificador de presión y conducido al inyector para la descarga.

Page 12: Unidad 4 Procesos de Fabricación

Tecnología mecánica: procesos de conformado por arranque de viruta y soldadura de metales. Julio Serrano, Fernando Romero, Gracia Bruscas, Carlos Vila.

Page 13: Unidad 4 Procesos de Fabricación

Corte por plasma

Antorcha para el corte por plasma.

Proceso de corte por plasma.

La tecnología de uniones de piezas metálicas por arco eléctrico vio sus éxitos en 1930 al construir un barco totalmente soldado en Carolina del Sur en Estados Unidos, años después se introdujo mejoras en el proceso como corriente alterna, y se utilizó protección como fundente granulado.

En los años 40 se introdujo el primer proceso con protección gaseosa empleando un electrodo no consumible de wolframio y helio como gas protector, recibió el nombre de TIG (Tungsten Inert Gas).

En 1954, científicos descubren que al aumentar el flujo del gas y reducir la abertura de la boquilla utilizada en la soldadura TIG, se obtiene un chorro de plasma. Este chorro es capaz de cortar metales, lo que dio lugar al proceso de corte por plasma conocido hoy en día.

Fundamentos físico-químicos

En la naturaleza podemos encontrar materia en forma sólida, líquida o vapor, el plasma es el cuarto estado de la materia.

A muy elevadas temperaturas, los electrones tienen suficiente energía como para escapar de su órbita alrededor del núcleo del átomo, generando iones de carga positiva.

Page 14: Unidad 4 Procesos de Fabricación

El plasma es el estado en el que se encuentran las estrellas por su elevada temperatura. En la atmósfera terrestre solo podemos conseguir el plasma por medios artificiales.

Al calentar un gas a temperaturas del orden de 50.000 ºC los átomos pierden electrones. Estos electrones libres se colocan en los núcleos que han perdido sus propios electrones, convirtiéndose así en iones. De esta forma el gas se convierte en plasma y por consecuencia tendremos un conductor eléctrico gaseoso con alta densidad de energía.

Proceso de mecanizado con plasma

boquilla para la formación de gas ionizado.

El fundamento del corte por plasma se basa en elevar la temperatura del material a cortar de una forma muy localizada y por encima de los 30.000 °C, llevando el gas utilizado hasta el cuarto estado de la materia, el plasma, estado en el que los electrones se disocian del átomo y el gas se ioniza (se vuelve conductor).

El procedimiento consiste en provocar un arco eléctrico estrangulado a través de la sección de la boquilla del soplete, sumamente pequeña, lo que concentra extraordinariamente la energía cinética del gas empleado, ionizándolo, y por polaridad adquiere la propiedad de cortar.

Resumiendo, el corte por plasma se basa en la acción térmica y mecánica de un chorro de gas calentado por un arco eléctrico de corriente continua establecido entre un electrodo ubicado en la antorcha y la pieza a mecanizar. El chorro de plasma lanzado contra la pieza penetra la totalidad del espesor a cortar, fundiendo y expulsando el material.

La ventaja principal de este sistema radica en su reducido riesgo de deformaciones debido a la compactación calorífica de la zona de corte. También es valorable la economía de los gases aplicables, ya que a priori es viable cualquiera, si bien es cierto que no debe de atacar al electrodo ni a la pieza.

No es recomendable el uso de la cortadora de plasma en piezas pequeñas debido a que la temperatura es tan elevada que la pieza llega a deformarse.

Page 15: Unidad 4 Procesos de Fabricación

Características del proceso

Esta moderna tecnología es usable para el corte de cualquier material metálico conductor, y mas especialmente en acero estructural, inoxidables y metales no férricos.

El corte por plasma puede ser un proceso complementario para trabajos especiales, como pueden ser la producción de pequeñas series, la consecución de tolerancias muy ajustadas o la mejora de acabados.

También se produce una baja afectación térmica del material gracias a la alta concentración energética del arco-plasma. El comienzo del corte es prácticamente intantáneo y produce una deformación mínima de la pieza.

Este proceso permite mecanizar a altas velocidades de corte y produce menos tiempos muertos, (no se necesita precalentamiento para la perforación).

Permite espesores de corte de 0.5 a 160 milímetros, con unidades de plasma de hasta 1000 amperios.

El corte por plasma también posibilita mecanizados en acero estructural con posibilidad de biselados hasta en 30 milímetros.

Una de las características más reseñables es que se consiguen cortes de alta calidad y muy buen acabado.

Equipo necesario

Corte por plasma mediante centro de mecanizado CNC.

El equipo necesario para aportar esta energía consiste en un generador de alta frecuencia alimentado por energía eléctrica, gas para generar la llama de calentamiento, y que más tarde se ionizará (argón, hidrógeno, nitrógeno), un electrodo y portaelectrodo que dependiendo del gas puede ser de tungsteno, hafnio o circonio, y por supuesto la pieza a mecanizar.

Variables del proceso

Las variables del proceso son:

Gases empleados.

El caudal y la presión de los mismos.

Distancia boquilla pieza.

Page 16: Unidad 4 Procesos de Fabricación

Velocidad del corte.

Energía empleada o intensidad del arco.

Las variables como el caudal, la presión del gas-plasma, la distancia boquilla-pieza y la velocidad del corte se pueden ajustar en las maquinas de corte por plasma existentes en el mercado según cada pieza a cortar. Su calidad varia en función del control de esos parámetros para conseguir mejor acabado de las piezas y mayor productividad.

Gas-plasma

Los principales gases que se utilizan como gases plasmágenos son, argón, nitrógeno y aire, o mezcla de estos gases, en general se utiliza el nitrógeno por su mejor comportamiento respecto a la calidad del corte y garantiza una durabilidad de la boquilla. El chorro del gas–plasma utilizado en el proceso se compone de dos zonas:

Zona envolvente, que es una capa anular fría sin ionizar que envuelve la zona central. Al ser fría conseguimos refrigerar la boquilla, aislarla eléctricamente y confinar el arco de la región de la columna-plasma.

La zona central, que se compone por dos capas, una periférica constituida por un anillo de gas caliente no suficientemente conductor y la columna de plasma o el núcleo donde el gas-plasma presenta su más alta conductividad térmica, la mayor densidad de partículas ionizadas y las más altas temperaturas, entre 10.000 y 30.000 ºC.

Arco eléctrico

El arco generado en el proceso de corte por plasma se denomina arco transferido. Como su propio nombre lo indica, el arco se genera en una zona y es transferido a otra.

¿Cómo?

Por medio de un generador de alta frecuencia conseguimos generar un arco entre el electrodo y la boquilla, este arco calienta el gas plasmágeno que hay en su alrededor y lo ioniza estableciendo un arco-plasma.

Gracias a la conductividad eléctrica es transferido hasta la zona de corte, mientras que el arco generado inicialmente, denominado arco piloto, se apaga automáticamente.

Una vez el arco-plasma está establecido, la pieza se carga positivamente mientras el electrodo se carga negativamente, lo que hace mantener el arco-plasma y cortar la pieza.

En ocasiones podemos generar el arco-plasma acercando la boquilla a la pieza. Este arco se denomina 'arco no transferido' y se genera entre el electrodo y la boquilla que esta conectada al lado positivo de la fuente de corriente a través de una resistencia.

Este tipo de arco se emplea más en procesos de soldadura.

Page 17: Unidad 4 Procesos de Fabricación

Dinámica de partículas en el gas y en el plasma. Átomos neutros en verde, iones positivos en azul y electrones en rojo.

Tipos de corte por plasma

Corte por plasma por aire

En el año 1963 se introduce el corte por plasma por aire. El oxígeno del aire aumenta las velocidades de corte en un 25 por ciento en relación con el corte tradicional por plasma seco, sin embargo, también conlleva una superficie de corte muy oxidada y una rápida erosión del electrodo que está dentro de la boquilla de corte.

Corte con inyección de agua

En 1968, Dick Couch, presidente de Hypertherm, inventa el corte con inyección de agua, un proceso que implicaba inyectar radialmente agua en la boquilla. El resultado final fue corte mejor y más rápido, así como con menos escoria. Este proceso también utiliza como gas nitrógeno pero como protector utiliza una capa de agua.

Corte con inyección de oxigeno

En 1983 se desarrolla una nueva técnica que implica la utilización de oxígeno como gas de corte y la introducción de agua por la punta de la boquilla. Este proceso denominado “corte por plasma con inyección de oxígeno” ayuda a solucionar los problemas del rápido deterioro de los electrodos y la oxidación del metal.

Corte con doble flujo

Este es el sistema convencional o stándard, de alta velocidad que utiliza como gas-plasma nitrógeno y como gas protector puede emplearse dióxido de carbono o bien oxígeno.

Page 18: Unidad 4 Procesos de Fabricación

Ventajas respecto al proceso de oxicorte

Robot realizando una aplicación de corte por plasma.

El corte con plasma a diferencia del oxicorte, tiene un espectro de aplicación sobre materiales más amplio.

Su costo operativo es sensiblemente inferior al oxicorte y la facilidad de su operación hace posible trabajar en corte manual con plantillas de chapa con un acabado de la pieza prácticamente definitivo.

Especialmente se puede destacar la versatilidad para cortar metales de espesores delgados, lo cual con oxicorte no sería posible.

Otras desventajas del oxicorte son la baja calidad de corte y el efecto negativo sobre la estructura molecular, al verse afectada por las altas temperaturas y metales ferrosos al cromo-niquel (aceros inoxidables), además del aluminio y el cobre.

Adicionalmente, el corte con plasma es un proceso que brinda mayor productividad toda vez que la velocidad de corte es mayor, dependiendo del espesor del material hasta 6 veces mayor, lo cual entrega una razón de coste-beneficio mejor que el oxicorte.

Además, con el corte por plasma conseguimos una mayor precisión y limpieza en la zona de corte que con el oxicorte convencional.

Rosado Castellano, Pedro (1993). Procesos de mecanizado. Valencia: Universidad Politécnica de Valencia.