unidad 4 matlab flujo en conductos a presion

19
7/25/2019 Unidad 4 MATLAB Flujo en Conductos a Presion http://slidepdf.com/reader/full/unidad-4-matlab-flujo-en-conductos-a-presion 1/19  Aguilera Atayde Noe Victoria de Durango, Durango. Noviembre 2015 Asignatura: Hidráulica Básica REPORTE MATLAB UNIDAD 4 FLUJO EN CONDUCTOS A PRESION Estudiante: Noe Aguilera Atayde Docente: Dr. Marco Santiago González Instituto Tecnológico de Durango Ingeniería Civil Victoria de Durango, Durango. Noviembre 2015

Upload: noe-aguilera-atayde

Post on 26-Feb-2018

237 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Unidad 4 MATLAB Flujo en Conductos a Presion

7/25/2019 Unidad 4 MATLAB Flujo en Conductos a Presion

http://slidepdf.com/reader/full/unidad-4-matlab-flujo-en-conductos-a-presion 1/19

 

Aguilera Atayde Noe Victoria de Durango, Durango. Noviembre 2015

Asignatura: Hidráulica Básica

REPORTE MATLAB

UNIDAD 4 FLUJO EN CONDUCTOS A PRESION

Estudiante: Noe Aguilera Atayde

Docente: Dr. Marco Santiago González

Instituto Tecnológico de Durango

Ingeniería Civil

Victoria de Durango, Durango.

Noviembre 2015

Page 2: Unidad 4 MATLAB Flujo en Conductos a Presion

7/25/2019 Unidad 4 MATLAB Flujo en Conductos a Presion

http://slidepdf.com/reader/full/unidad-4-matlab-flujo-en-conductos-a-presion 2/19

 

Problema : Sistema de tres tuberías en serie

function tubserie3%Sistemas_Flujo_3_Tuberias_Serie_Q.m 

% INGENIERÍA QUÍMICA, MECÁNICA DE FLUIDOS. Curso Junio de 2009. % Cálculo de tuberías en serie global D1 D2 D3 epsilon1 epsilon2 epsilon3 dh L1 L2 L3 K1 K2 K3 g v rho dp z_ent  … z_sal% Variables de entrada | global dh1 dh2 dh3 V1 f1 V2 f2 V3 f3 Re1 Re2 Re3 % Variables respuesta 

g=9.806; % m/s2 (aceleración gravitacional)v=1.02E-6; % m2/s (viscosidad cinemática del agua)rho=1000; % kg/m3 (densidad del agua) D1=8E-2; % m (Diámetro del tubo 1) D2=6E-2; % m (Diámetro del tubo 2) 

D3=4E-2; % m (Diámetro del tubo 3) L1=100; % m (Longitud del tubo 1) L2=150; % m (Longitud del tubo 2)L3=80; % m (Longitud del tubo 3)K1=0; % Coeficiente de pérdidas menores para el tubo 1 K2=0; % Coeficiente de pérdidas menores para el tubo 2 K3=0; % Coeficiente de pérdidas menores para el tubo 3 epsilon1=0.24E-3; % m (Rugosidad absoluta del tubo 1)epsilon2=0.12E-3; % m (Rugosidad absoluta del tubo 2)epsilon3=0.20E-3; % m (Rugosidad absoluta del tubo 3) dp=150000; % Pa (Presión de entrada - Presión de salida) 

z_ent=5; % m (Altura del ducto de entrada)z_sal=0; % m (Altura del ducto de salida) dh= (dp/(1000*9.807) ) + (z_ent-z_sal); % m (Cambio de carga hidráulica. h_ent - h_sal) 

% Aproximación inicial X0= [dh1,dh2,dh3,V1,f1,V2,f2,V3,f3,Re1,Re2,Re3] X0=[0.33 *dh,0.33 *dh,0.33 *dh, 10,0.002, 10,0.002, 10,0.002,50000,50000, 50000];X=fsolve(@Funcion_3_Tuberias_Serie_Q,(X0));

% Cálculo del caudal:V1,V2,V3Q1=((pi*D1^2)/4)*V1

Q2=((pi*D2^2)/4)*V2Q3=((pi*D3^2)/4)*V3

Page 3: Unidad 4 MATLAB Flujo en Conductos a Presion

7/25/2019 Unidad 4 MATLAB Flujo en Conductos a Presion

http://slidepdf.com/reader/full/unidad-4-matlab-flujo-en-conductos-a-presion 3/19

 

%Funcion_3_Tuberias_Serie_Q.m 

function X=Funcion_3_Tuberias_Serie_Q(X0);global D1 D2 D3 epsilon1 epsilon2 epsilon3 dh L1 L2 L3 K1 K2 K3 g v rho dp z_ent z_sal% Variables de entrada 

global dh1 dh2 dh3 V1 f1 V2 f2 V3 f3 Re1 Re2 Re3 % Variables respuesta 

dh1=X0 (1);dh2=X0 (2);dh3=X0 (3);V1=X0 (4);f1=X0 (5);V2=X0 (6);f2=X0 (7);V3=X0 (8);f3=X0 (9);

Re1=X0 (10);Re2=X0 (11);Re3=X0 (12);

% Todas las ecuaciones deben ingresarse en la forma f(x1,..,xn)=0 

X=[dh-(dh1+dh2+dh3); % Ecuación 1 dh1-((K1+(f1*L1/D1))*(V1^2)/(2*g)); % Ecuación 2 dh2-((K2+(f2*L2/D2))*(V2^2)/(2*g)); % Ecuación 3 dh3-((K3+(f3*L3/D3))*(V3^2)/(2*g)); % Ecuación 4 (1/sqrt(f1))+2*log10((epsilon1/(D1*3.7))+(2.51/(Re1*sqrt(f1)))); % Ecuación 5 (1/sqrt(f2))+2*log10((epsilon2/(D2*3.7))+(2.51/(Re2*sqrt(f2)))); % Ecuación 6 (1/sqrt(f3))+2*log10((epsilon3/(D3*3.7))+(2.51/(Re3*sqrt(f3)))); % Ecuación 7 Re1-(V1*D1/v); % Ecuación 8 Re2-(V2*D2/v); % Ecuación 9 Re3-(V3*D3/v); % Ecuación 10 (D1^2)*V1-(D2^2)*V2; % Ecuación 11 (D2^2)*V2-(D3^2)*V3]; % Ecuación 12 

Page 4: Unidad 4 MATLAB Flujo en Conductos a Presion

7/25/2019 Unidad 4 MATLAB Flujo en Conductos a Presion

http://slidepdf.com/reader/full/unidad-4-matlab-flujo-en-conductos-a-presion 4/19

 

Resultados

Page 5: Unidad 4 MATLAB Flujo en Conductos a Presion

7/25/2019 Unidad 4 MATLAB Flujo en Conductos a Presion

http://slidepdf.com/reader/full/unidad-4-matlab-flujo-en-conductos-a-presion 5/19

 

Ejemplo 2: Sistema de tres tuberías en serie

(Distintos Datos)

function tubserie3mod

%Sistemas_Flujo_3_Tuberias_Serie_Q.m % INGENIERÍA QUÍMICA, MECÁNICA DE FLUIDOS. Curso Junio de 2009. % Cálculo de tuberías en serie global D1 D2 D3 epsilon1 epsilon2 epsilon3 dh L1 L2 L3 K1 K2 K3 g v rho dp z_ent z_sal% Variables de entrada | global dh1 dh2 dh3 V1 f1 V2 f2 V3 f3 Re1 Re2 Re3 % Variables respuesta 

g=9.806; % m/s2 (aceleración gravitacional)v=1.02E-6; % m2/s (viscosidad cinemática del agua)rho=1000; % kg/m3 (densidad del agua) D1=9E-2; % m (Diámetro del tubo 1) 

D2=6E-2; % m (Diámetro del tubo 2) D3=3E-2; % m (Diámetro del tubo 3) L1=80; % m (Longitud del tubo 1) L2=50; % m (Longitud del tubo 2)L3=30; % m (Longitud del tubo 3)K1=0.14; % Coeficiente de pérdidas menores para el tubo 1 Valvula de compuerta K2=0.14; % Coeficiente de pérdidas menores para el tubo 2 Valvula de compuerta K3=0.14; % Coeficiente de pérdidas menores para el tubo 3 Codo de 45 epsilon1=0.06E-3; % m (Rugosidad absoluta del tubo 1) Hierro forjado epsilon2=0.15E-3; % m (Rugosidad absoluta del tubo 2) Hierro fundido epsilon3=0.15E-3; % m (Rugosidad absoluta del tubo 3) Hierro galvanizado 

dp=150000; % Pa (Presión de entrada - Presión de salida) z_ent=1; % m (Altura del ducto de entrada)z_sal=3; % m (Altura del ducto de salida) dh= (dp/(1000*9.807) ) + (z_ent-z_sal); % m (Cambio de carga hidráulica. h_ent - h_sal) 

% Aproximación inicial X0= [dh1,dh2,dh3,V1,f1,V2,f2,V3,f3,Re1,Re2,Re3] X0=[0.33 *dh,0.33 *dh,0.33 *dh, 10,0.002, 10,0.002, 10,0.002,50000,50000, 50000];X=fsolve(@Funcion_3_Tuberias_Serie_Q,(X0));

% Cálculo del caudal:V1,V2,V3

Q1=((pi*D1^2)/4)*V1Q2=((pi*D2^2)/4)*V2Q3=((pi*D3^2)/4)*V3

Page 6: Unidad 4 MATLAB Flujo en Conductos a Presion

7/25/2019 Unidad 4 MATLAB Flujo en Conductos a Presion

http://slidepdf.com/reader/full/unidad-4-matlab-flujo-en-conductos-a-presion 6/19

 

%Funcion_3_Tuberias_Serie_Q.m 

function X=Funcion_3_Tuberias_Serie_Q(X0);global D1 D2 D3 epsilon1 epsilon2 epsilon3 dh L1 L2 L3 K1 K2 K3 g v rho dp z_ent z_sal% Variables de entrada 

global dh1 dh2 dh3 V1 f1 V2 f2 V3 f3 Re1 Re2 Re3 % Variables respuesta 

dh1=X0 (1);dh2=X0 (2);dh3=X0 (3);V1=X0 (4);f1=X0 (5);V2=X0 (6);f2=X0 (7);V3=X0 (8);f3=X0 (9);

Re1=X0 (10);Re2=X0 (11);Re3=X0 (12);

% Todas las ecuaciones deben ingresarse en la forma f(x1,..,xn)=0 

X=[dh-(dh1+dh2+dh3); % Ecuación 1 dh1-((K1+(f1*L1/D1))*(V1^2)/(2*g)); % Ecuación 2 dh2-((K2+(f2*L2/D2))*(V2^2)/(2*g)); % Ecuación 3 dh3-((K3+(f3*L3/D3))*(V3^2)/(2*g)); % Ecuación 4 (1/sqrt(f1))+2*log10((epsilon1/(D1*3.7))+(2.51/(Re1*sqrt(f1)))); % Ecuación 5 (1/sqrt(f2))+2*log10((epsilon2/(D2*3.7))+(2.51/(Re2*sqrt(f2)))); % Ecuación 6 (1/sqrt(f3))+2*log10((epsilon3/(D3*3.7))+(2.51/(Re3*sqrt(f3)))); % Ecuación 7 Re1-(V1*D1/v); % Ecuación 8 Re2-(V2*D2/v); % Ecuación 9 Re3-(V3*D3/v); % Ecuación 10 (D1^2)*V1-(D2^2)*V2; % Ecuación 11 (D2^2)*V2-(D3^2)*V3]; % Ecuación 12 

Page 7: Unidad 4 MATLAB Flujo en Conductos a Presion

7/25/2019 Unidad 4 MATLAB Flujo en Conductos a Presion

http://slidepdf.com/reader/full/unidad-4-matlab-flujo-en-conductos-a-presion 7/19

 

Resultados

Page 8: Unidad 4 MATLAB Flujo en Conductos a Presion

7/25/2019 Unidad 4 MATLAB Flujo en Conductos a Presion

http://slidepdf.com/reader/full/unidad-4-matlab-flujo-en-conductos-a-presion 8/19

 

Problema 3: Sistema de tres tuberías en paralelo

function tubparalelo3%Sistemas_Flujo_3_Tuberias_Paralelo_Q.m 

% INGENIERÍA QUÍMICA. MECÁNICA DE FLUIDOS. Curso Junio de 2009. % Cálculo de tuberías en paralelo global D1 D2 D3 epsilon1 epsilon2 epsilon3 dh L1 L2 L3 K1 K2 K3 g v rho %Variables de entrada global Q Q1 Q2 Q3 V1 f1 V2 f2 V3 f3 Re1 Re2 Re3 % Variables respuesta 

g=9.807; % m/s2 (aceleración gravitacional)v=1.02E-6; % m2/s (viscosidad cinemática del agua)rho=1000; % kg/m3 (densidad del agua) D1=8E-2; % m (Diámetro del tubo 1)D2=6E-2; % m (Diámetro del tubo 2) 

D3=4E-2; % m (Diámetro del tubo 3) L1=100; % m (Longitud del tubo 1) L2=150; % m (Longitud del tubo 2) L3 = 80; % m (Longitud del tubo 3) K1=0; % Coeficiente de pérdidas menores para el tubo 1 K2=0; % Coeficiente de pérdidas menores para el tubo 2 K3=0; % Coeficiente de pérdidas menores para el tubo 3 epsilon1=0.24E-3; % m (Rugosidad absoluta del tubo 1)epsilon2=0.12E-3; % m (Rugosidad absoluta del tubo 2)epsilon3=0.20E-3; % m (Rugosidad; absoluta del tubo 3)dh=20.3; % m (Cambio de carga hidráulica. h_ent – h_sal) 

% Aproximación inicial X0=[Q, Q1, Q2, Q3, V1, f1, V2 , f2, V3, f3, Re1, Re2, Re3]X0=[3,1,1, 1, 1,0.002,1,0.002, 1,0.002, 100000,100000, 100000];X=fsolve (@Funcion_3_Tuberias_Paralelo_Q,X0);Q=Q1+Q2+Q3Q1Q2Q3

Page 9: Unidad 4 MATLAB Flujo en Conductos a Presion

7/25/2019 Unidad 4 MATLAB Flujo en Conductos a Presion

http://slidepdf.com/reader/full/unidad-4-matlab-flujo-en-conductos-a-presion 9/19

 

%Funcion__3__Tuberias_Paralelo_Q.m 

function X=Funcion_3_Tuberias_Paralelo_Q(X0)global D1 D2 D3 epsilon1 epsilon2 epsilon3 dh L1 L2 L3 K1 K2 K3 g v ... rho % Variables de entrada 

global Q Q1 Q2 Q3 V1 f1 V2 f2 V3 f3 Re1 Re2 Re3 % Variables respuestaQ=X0 (1);Q1=X0(2);Q2=X0(3);Q3=X0(4);f1=X0(5);V1=X0(6);f2=X0(7);V2=X0(8);f3=X0(9);V3=X0(10);

Re1=X0(11);Re2=X0(12);Re3=X0(13);

% Todas las ecuaciones deben igresarse en la forma f (x1,…, xn)=0 

X=[dh-((K1+(f1*L1/D1))*(V1^2)/(2*g)); % Ecuación 1 dh-((K2+(f2*L2/D2))*(V2^2)/(2*g)); % Ecuación 2 dh-((K3+(f3*L3/D3))*(V3^2)/(2*g)); % Ecuación 3 Q-(Q1+Q2+Q3); % Ecuación 4 (1/sqrt(f1))+2*log10((epsilon1/(D1*3.7))+(2.51/(Re1*sqrt(f1)))); % Ecuación 5 (1/sqrt(f2))+2*log10((epsilon2/(D2*3.7))+(2.51/(Re2*sqrt(f2)))); % Ecuación 6 (1/sqrt(f3))+2*log10((epsilon3/(D3*3.7))+(2.51/(Re3*sqrt(f3)))); % Ecuación 7 Re1-(V1*D1/v); % Ecuación 8 Re2-(V2*D2/v); % Ecuación 9 Re3-(V3*D3/v); % Ecuación 10 Q1-(pi/4)*(D1^2)*V1; % Ecuación 11 Q2-(pi/4)*(D2^2)*V2; % Ecuación 12 

Q3-(pi/4)*(D3^2)*V3]; % Ecuación 13 

Page 10: Unidad 4 MATLAB Flujo en Conductos a Presion

7/25/2019 Unidad 4 MATLAB Flujo en Conductos a Presion

http://slidepdf.com/reader/full/unidad-4-matlab-flujo-en-conductos-a-presion 10/19

 

Resultados

Page 11: Unidad 4 MATLAB Flujo en Conductos a Presion

7/25/2019 Unidad 4 MATLAB Flujo en Conductos a Presion

http://slidepdf.com/reader/full/unidad-4-matlab-flujo-en-conductos-a-presion 11/19

 

Problema 4: Sistema de tres tuberías en paralelo

(Datos Modificados)

function tubparalelo3mod

%Sistemas_Flujo_3_Tuberias_Paralelo_Q.m 

% INGENIERÍA QUÍMICA. MECÁNICA DE FLUIDOS. Curso Junio de 2009. % Cálculo de tuberías en paralelo global D1 D2 D3 epsilon1 epsilon2 epsilon3 dh L1 L2 L3 K1 K2 K3 g v rho %Variables de entrada global Q Q1 Q2 Q3 V1 f1 V2 f2 V3 f3 Re1 Re2 Re3 % Variables respuesta 

g=9.806; % m/s2 (aceleración gravitacional)v=1.02E-6; % m2/s (viscosidad cinemática del agua)rho=1000; % kg/m3 (densidad del agua) 

D1=6E-2; % m (Diámetro del tubo 1)D2=5E-2; % m (Diámetro del tubo 2) D3=4E-2; % m (Diámetro del tubo 3) L1=100; % m (Longitud del tubo 1) L2=90; % m (Longitud del tubo 2) L3 = 60; % m (Longitud del tubo 3) K1=0.05; % Coeficiente de pérdidas menores para el tubo 1 Valvula de bola K2=0.05; % Coeficiente de pérdidas menores para el tubo 2 Valvula de bola K3=0.13; % Coeficiente de pérdidas menores para el tubo 3 Codo de 45 epsilon1=0.15E-3; % m (Rugosidad absoluta del tubo 1) Acero bridado epsilon2=0.25E-3; % m (Rugosidad absoluta del tubo 2) Hierro ductil 

epsilon3=0.15E-3; % m (Rugosidad; absoluta del tubo 3) Acero galvanizado dh=17.5; % m (Cambio de carga hidráulica. h_ent – h_sal) 

% Aproximación inicial X0=[Q, Q1, Q2, Q3, V1, f1, V2 , f2, V3, f3, Re1, Re2, Re3]X0=[3,1,1, 1, 1,0.002,1,0.002, 1,0.002, 100000,100000, 100000];X=fsolve (@Funcion_3_Tuberias_Paralelo_Q,X0);Q=Q1+Q2+Q3Q1Q2Q3

Page 12: Unidad 4 MATLAB Flujo en Conductos a Presion

7/25/2019 Unidad 4 MATLAB Flujo en Conductos a Presion

http://slidepdf.com/reader/full/unidad-4-matlab-flujo-en-conductos-a-presion 12/19

 

%Funcion__3__Tuberias_Paralelo_Q.m 

function X=Funcion_3_Tuberias_Paralelo_Q(X0)global D1 D2 D3 epsilon1 epsilon2 epsilon3 dh L1 L2 L3 K1 K2 K3 g v rho % Variables deentrada 

global Q Q1 Q2 Q3 V1 f1 V2 f2 V3 f3 Re1 Re2 Re3 % Variables respuestaQ=X0 (1);Q1=X0(2);Q2=X0(3);Q3=X0(4);f1=X0(5);V1=X0(6);f2=X0(7);V2=X0(8);f3=X0(9);V3=X0(10);

Re1=X0(11);Re2=X0(12);Re3=X0(13);

% Todas las ecuaciones deben igresarse en la forma f (x1,…, xn)=0 

X=[dh-((K1+(f1*L1/D1))*(V1^2)/(2*g)); % Ecuación 1 dh-((K2+(f2*L2/D2))*(V2^2)/(2*g)); % Ecuación 2 dh-((K3+(f3*L3/D3))*(V3^2)/(2*g)); % Ecuación 3 Q-(Q1+Q2+Q3); % Ecuación 4 (1/sqrt(f1))+2*log10((epsilon1/(D1*3.7))+(2.51/(Re1*sqrt(f1)))); % Ecuación 5 (1/sqrt(f2))+2*log10((epsilon2/(D2*3.7))+(2.51/(Re2*sqrt(f2)))); % Ecuación 6 (1/sqrt(f3))+2*log10((epsilon3/(D3*3.7))+(2.51/(Re3*sqrt(f3)))); % Ecuación 7 Re1-(V1*D1/v); % Ecuación 8 Re2-(V2*D2/v); % Ecuación 9 Re3-(V3*D3/v); % Ecuación 10 Q1-(pi/4)*(D1^2)*V1; % Ecuación 11 Q2-(pi/4)*(D2^2)*V2; % Ecuación 12 

Q3-(pi/4)*(D3^2)*V3]; % Ecuación 13 

Page 13: Unidad 4 MATLAB Flujo en Conductos a Presion

7/25/2019 Unidad 4 MATLAB Flujo en Conductos a Presion

http://slidepdf.com/reader/full/unidad-4-matlab-flujo-en-conductos-a-presion 13/19

 

Resultados

Page 14: Unidad 4 MATLAB Flujo en Conductos a Presion

7/25/2019 Unidad 4 MATLAB Flujo en Conductos a Presion

http://slidepdf.com/reader/full/unidad-4-matlab-flujo-en-conductos-a-presion 14/19

 

Problema 5: Sistema de cuatro tuberías en serie

function tubserie4

%Sistemas_Flujo_3_Tuberias_Serie_Q.m % INGENIERÍA QUÍMICA, MECÁNICA DE FLUIDOS. Curso Junio de 2009. % Cálculo de tuberías en serie global D1 D2 D3 D4 epsilon1 epsilon2 epsilon3 epsilon4 dh L1 L2 L3 L4 K1 K2 K3 K4g v rho dp z_ent z_sal % Variables de entrada | global dh1 dh2 dh3 dh4 V1 f1 V2 f2 V3 f3 V4 f4 Re1 Re2 Re3 Re4 % Variablesrespuesta 

g=9.806; % m/s2 (aceleración gravitacional)v=1.02E-6; % m2/s (viscosidad cinemática del agua)rho=1000; % kg/m3 (densidad del agua) D1=9E-2; % m (Diámetro del tubo 1) 

D2=6E-2; % m (Diámetro del tubo 2) D3=4E-2; % m (Diámetro del tubo 3) D4=3E-2; % m (Diametro del tubo 4) L1=80; % m (Longitud del tubo 1) L2=50; % m (Longitud del tubo 2)L3=30; % m (Longitud del tubo 3) L4=25; % m (Longitud del tubo 4) K1=0.14; % Coeficiente de pérdidas menores para el tubo 1 Valvula de compuerta K2=0.14; % Coeficiente de pérdidas menores para el tubo 2 Valvula de compuerta K3=0.14; % Coeficiente de pérdidas menores para el tubo 3 Codo de 45 K4=0.14; % Coeficiente de perdidas menores para el tubo 4 Codo de 45 epsilon1=0.06E-3; % m (Rugosidad absoluta del tubo 1) Hierro forjado 

epsilon2=0.15E-3; % m (Rugosidad absoluta del tubo 2) Hierro fundido epsilon3=0.15E-3; % m (Rugosidad absoluta del tubo 3) Hierro galvanizado epsilon4=0.12E-3; % m (Rugosidad absoluta del tubo 4) Hierro dulce asfaltado dp=150000; % Pa (Presión de entrada - Presión de salida) z_ent=1; % m (Altura del ducto de entrada)z_sal=3; % m (Altura del ducto de salida) dh= (dp/(1000*9.807) ) + (z_ent-z_sal); % m (Cambio de carga hidráulica. h_ent -h_sal) 

% Aproximación inicial X0=[dh1,dh2,dh3,dh4,V1,f1,V2,f2,V3,f3,V4,f4,Re1,Re2,Re3,Re4] X0=[0.33 *dh,0.33 *dh,0.33 *dh,0.33*dh, 10,0.002, 10,0.002,10,0.002,10,0.002,50000,50000, 50000,50000];X=fsolve(@Funcion_4_Tuberias_Serie_Q,(X0));

% Cálculo del caudal:V1,V2,V3,V4Q1=((pi*D1^2)/4)*V1Q2=((pi*D2^2)/4)*V2Q3=((pi*D3^2)/4)*V3Q4=((pi*D4^2)/4)*V4

Page 15: Unidad 4 MATLAB Flujo en Conductos a Presion

7/25/2019 Unidad 4 MATLAB Flujo en Conductos a Presion

http://slidepdf.com/reader/full/unidad-4-matlab-flujo-en-conductos-a-presion 15/19

 

%Funcion_4_Tuberias_Serie_Q.m 

function X=Funcion_4_Tuberias_Serie_Q(X0);global D1 D2 D3 D4 epsilon1 epsilon2 epsilon3 epsilon4 dh L1 L2 L3 L4 K1 K2 K3 K4g v rho dp z_ent z_sal % Variables de entrada global dh1 dh2 dh3 dh4 V1 f1 V2 f2 V3 f3 V4 f4 Re1 Re2 Re3 Re4 % Variablesrespuesta 

dh1=X0 (1);dh2=X0 (2);dh3=X0 (3);dh4=X0 (4);V1=X0 (5);f1=X0 (6);V2=X0 (7);f2=X0 (8);V3=X0 (9);

f3=X0 (10);V4=X0 (11);f4=X0 (12);Re1=X0 (13);Re2=X0 (14);Re3=X0 (15);Re4=X0 (16);

% Todas las ecuaciones deben igresarse en la forma f(x1,..,xn)=0 

X=[dh-(dh1+dh2+dh3); % Ecuación 1 dh1-((K1+(f1*L1/D1))*(V1^2)/(2*g)); % Ecuación 2 

dh2-((K2+(f2*L2/D2))*(V2^2)/(2*g)); % Ecuación 3 dh3-((K3+(f3*L3/D3))*(V3^2)/(2*g)); % Ecuación 4 dh4-((K4+(f4*L4/D4))*(V4^2)/(2*g)); % Ecuacion 5 (1/sqrt(f1))+2*log10((epsilon1/(D1*3.7))+(2.51/(Re1*sqrt(f1)))); % Ecuación 6 (1/sqrt(f2))+2*log10((epsilon2/(D2*3.7))+(2.51/(Re2*sqrt(f2)))); % Ecuación 7 (1/sqrt(f3))+2*log10((epsilon3/(D3*3.7))+(2.51/(Re3*sqrt(f3)))); % Ecuación 8 (1/sqrt(f4))+2*log10((epsilon4/(D4*3.7))+(2.51/(Re4*sqrt(f4)))); % Ecuacion 9 Re1-(V1*D1/v); % Ecuación 10 Re2-(V2*D2/v); % Ecuación 11 Re3-(V3*D3/v); % Ecuación 12 Re4-(V4*D4/v); % Ecuacion 13 (D1^2)*V1-(D2^2)*V2; % Ecuación 14 

(D2^2)*V2-(D3^2)*V3; % Ecuación 15 (D3^2)*V3-(D4^2)*V4]; % Ecuacion 16 

Page 16: Unidad 4 MATLAB Flujo en Conductos a Presion

7/25/2019 Unidad 4 MATLAB Flujo en Conductos a Presion

http://slidepdf.com/reader/full/unidad-4-matlab-flujo-en-conductos-a-presion 16/19

 

Resultados

Page 17: Unidad 4 MATLAB Flujo en Conductos a Presion

7/25/2019 Unidad 4 MATLAB Flujo en Conductos a Presion

http://slidepdf.com/reader/full/unidad-4-matlab-flujo-en-conductos-a-presion 17/19

 

Problema 6: Sistema de cuatro tuberías en paralelo

function tubparalelo4

%Sistemas_Flujo_4_Tuberias_Paralelo_Q.m 

% INGENIERÍA QUÍMICA. MECÁNICA DE FLUIDOS. Curso Junio de 2009. % Cálculo de tuberías en paralelo global D1 D2 D3 D4 epsilon1 epsilon2 epsilon3 epsilon4 dh L1 L2 L3 L4 K1 K2 K3 K4g v rho % Variables de entrada global Q Q1 Q2 Q3 Q4 V1 f1 V2 f2 V3 f3 V4 f4 Re1 Re2 Re3 Re4 % Variablesrespuesta 

g=9.806; % m/s2 (aceleración gravitacional)v=1.02E-6; % m2/s (viscosidad cinemática del agua)rho=1000; % kg/m3 (densidad del agua) 

D1=6E-2; % m (Diámetro del tubo 1)D2=5E-2; % m (Diámetro del tubo 2) D3=4E-2; % m (Diámetro del tubo 3) D4=5E-2; % m (Diametro del tubo 4) L1=100; % m (Longitud del tubo 1) L2=90; % m (Longitud del tubo 2) L3 = 60; % m (Longitud del tubo 3) L4=1; % m (Longitud del tubo 4) K1=0.05; % Coeficiente de pérdidas menores para el tubo 1 Valvula de bola K2=0.05; % Coeficiente de pérdidas menores para el tubo 2 Valvula de bola K3=0.13; % Coeficiente de pérdidas menores para el tubo 3 Codo de 45 K4=0; % Coeficiente de pérdidas menores para el tubo 4

epsilon1=0.15E-3; % m (Rugosidad absoluta del tubo 1) Acero bridado epsilon2=0.25E-3; % m (Rugosidad absoluta del tubo 2) Hierro ductil epsilon3=0.15E-3; % m (Rugosidad; absoluta del tubo 3) Acero galvanizado epsilon4=0.12E-3; % m (Rugosidad absoluta del tubo 4) Hierro dulce asfaltado dh=10; % m (Cambio de carga hidráulica. h_ent – h_sal) 

% Aproximación inicial X0=[Q, Q1, Q2, Q3, Q4, V1, f1, V2 , f2, V3, f3, V4, f4, Re1,Re2, Re3, Re4]X0=[4,1,1, 1,1, 1,0.002,1,0.002, 1,0.002,1,0.002, 100000,100000, 100000,100000];X=fsolve (@Funcion_4_Tuberias_Paralelo_Q,X0);Q=Q1+Q2+Q3+Q4Q1Q2Q3Q4

Page 18: Unidad 4 MATLAB Flujo en Conductos a Presion

7/25/2019 Unidad 4 MATLAB Flujo en Conductos a Presion

http://slidepdf.com/reader/full/unidad-4-matlab-flujo-en-conductos-a-presion 18/19

 

%Funcion__4__Tuberias_Paralelo_Q.m  

function  X=Funcion_4_Tuberias_Paralelo_Q(X0)global D1 D2 D3 D4 epsilon1 epsilon2 epsilon3 epsilon4 dh L1 L2 L3 L4 K1 K2 K3 K4g v ... rho % Variables de entrada global Q Q1 Q2 Q3 Q4 V1 f1 V2 f2 V3 f3 V4 f4 Re1 Re2 Re3 Re4 % VariablesrespuestaQ=X0 (1);Q1=X0(2);Q2=X0(3);Q3=X0(4);Q4=X0(5);f1=X0(6);V1=X0(7);f2=X0(8);V2=X0(9);

f3=X0(10);V3=X0(11);f4=X0(12);V4=X0(13);Re1=X0(14);Re2=X0(15);Re3=X0(16);Re4=X0(17);

% Todas las ecuaciones deben igresarse en la forma f (x1,…, xn)=0 

X=[dh-((K1+(f1*L1/D1))*(V1^2)/(2*g)); % Ecuación 1 

dh-((K2+(f2*L2/D2))*(V2^2)/(2*g)); % Ecuación 2 dh-((K3+(f3*L3/D3))*(V3^2)/(2*g)); % Ecuación 3 dh-((K4+(f4*L4/D4))*(V4^2)/(2*g)); % Ecuacion 4 Q-(Q1+Q2+Q3+Q4); % Ecuación 5 (1/sqrt(f1))+2*log10((epsilon1/(D1*3.7))+(2.51/(Re1*sqrt(f1)))); % Ecuación 6 (1/sqrt(f2))+2*log10((epsilon2/(D2*3.7))+(2.51/(Re2*sqrt(f2)))); % Ecuación 7 (1/sqrt(f3))+2*log10((epsilon3/(D3*3.7))+(2.51/(Re3*sqrt(f3)))); % Ecuación 8 (1/sqrt(f4))+2*log10((epsilon4/(D4*3.7))+(2.51/(Re4*sqrt(f4)))); % Ecuacion 9 Re1-(V1*D1/v); % Ecuación 10 Re2-(V2*D2/v); % Ecuación 11 Re3-(V3*D3/v); % Ecuación 12 Re4-(V4*D4/v); % Ecuacion 13 

Q1-(pi/4)*(D1^2)*V1; % Ecuación 14 Q2-(pi/4)*(D2^2)*V2; % Ecuación 15 

Q3-(pi/4)*(D3^2)*V3; % Ecuación 16 Q4-(pi/4)*(D4^2)*V4]; % Ecuacion 17 

Page 19: Unidad 4 MATLAB Flujo en Conductos a Presion

7/25/2019 Unidad 4 MATLAB Flujo en Conductos a Presion

http://slidepdf.com/reader/full/unidad-4-matlab-flujo-en-conductos-a-presion 19/19

 

Resultados