trabajo de torsion

17
INSTITUTO UNIVERSITARIO POLITÉCNICO “SANTIAGO MARIÑO” EXTENSIÓN: PORLAMAR MATERIA: ELEMENTOS DE MAQUINAS SECCIÓN: S1 TORSIÓN LUIS MANUEL FRANCO RODRIGUEZ

Upload: manuelluis

Post on 26-Jul-2015

688 views

Category:

Engineering


4 download

TRANSCRIPT

Page 1: Trabajo de torsion

INSTITUTO UNIVERSITARIO POLITÉCNICO “SANTIAGO MARIÑO”

EXTENSIÓN: PORLAMARMATERIA: ELEMENTOS DE MAQUINAS

SECCIÓN: S1    

TORSIÓN       

LUIS MANUEL FRANCO RODRIGUEZ 

Page 2: Trabajo de torsion

INTRODUCCIÓN El estudio general de la torsión es complicado porque bajo ese tipo de solicitación la sección transversal de una pieza en general se caracteriza por dos fenómenos:1-Aparecen tensiones tangenciales paralelas a la sección transversal.2-Cuando las tensiones anteriores no están distribuidas adecuadamente, cosa que sucede siempre a menos que la sección tenga simetría circular, aparecen alabeos seccionales que hacen que las secciones transversales deformadas no sean planas.

Page 3: Trabajo de torsion

DIAGRAMA MOMENTOS TORSORES

Al aplicar las ecuaciones de la estática, en el empotramiento se producirá un momento torsor igual y de sentido contrario a T.Si cortamos el eje por 1-1 y nos quedamos con la parte de abajo, para que este trozo de eje este en equilibrio, en la sección 1-1 debe existir un momento torsor igual y de sentido contrario. Por tanto en cualquier sección de este eje existe un momento torsor T. El diagrama de momentos torsores será:

Page 4: Trabajo de torsion

ÁNGULO GIRADO POR UN EJEPara el estudio de la torsión de un eje cilíndrico vamos a suponer las siguientes hipótesis:a) Hipótesis de secciones planas.b) Los diámetros se conservan así como la distancia entre ellos.c) Las secciones van a girar como si se tratara de cuerpos rígidos.Planteadas estas hipótesis vamos a considerar un elemento diferencial de eje en el que estudiaremos su deformación y después las tensiones a las que esta sometido.vamos a aislar el trozo dx de eje.

Page 5: Trabajo de torsion

CÁLCULO DE LAS TENSIONES A LAS QUE ESTÁ SOMETIDO EL ELEMENTO ABCD.El  lado cd desliza hacia la derecha respecto al lado ab; por tanto

existe  una t.Este elemento trabaja a tensión cortante pura. El valor de t será:r = G . y = G . e . D/2           El circulo de Morh de este elemento es el circulo de la tensión cortante pura.

Page 6: Trabajo de torsion

Las tensiones principales de este elemento serán:

Las direcciones principales del elemento estarán a 45º. σ1 = τ    y    σ2 = -τ

Si en vez de considerar al elemento la superficial abcd, hubiera considerado otro elemento a la distancia r del centro, la t a la que

estaría sometido este elemento será:

Page 7: Trabajo de torsion

CÁLCULO DE TMÁX Y DEL ÁNGULO GIRADO POR EL EJE EN FUNCIÓN DEL MOMENTO TORSOR.Supongamos que la figura representa la sección del eje y el

momento torsor T que actúa

La tensión t en el punto B vale:      Si tomamos un diferencial de are dA alrededor del punto B las t de ese dA dan una resultante dF.

Page 8: Trabajo de torsion

MÓDULO RESISTENTE A LA TORSIÓNHemos visto que :

Esta expresión se puede poner en la forma:

Para la sección circular:  

Page 9: Trabajo de torsion

DIFERENCIAS Y EQUIVALENCIAS ENTRE TORSIÓN Y FLEXIÓN.

Page 10: Trabajo de torsion

CASOS HIPERESTÁTICOS EN TORSIÓN1º CASO:Supongamos un eje cilíndrico empotrado en los dos extremos sometido a los momentos torsores de la figura.

Page 11: Trabajo de torsion

Supongamos que hemos calculado T1 y T2. Ahora vamos a calcular el giro y la tmax en C.El giro de C será lo que gire la sección C respecto del empotramiento derecho o izquierdo ya que los empotramientos no giran.Trazando por C una vertical, y como los momentos torsores son mas fáciles a la izquierda que a ala derecha en el diagrama de momentos torsores calculamos el giro de C respecto del empotramiento izquierdo.

Page 12: Trabajo de torsion

2ºCASOSupongamos un eje cilíndrico empotrado en los 2 extremos sometido a los momentos torsores de la figura.

Page 13: Trabajo de torsion

FLEXIÓN ACOMPAÑADA CON TORSIÓN.El efecto que produce la carga P es equivalente a un par y a una fuerza actuando en O.

Los puntos más peligrosos de la sección de empotramiento son el a y el b.

Los diagramas se representan así:

Page 14: Trabajo de torsion

 ESTUDIO DEL PUNTO A.

Page 15: Trabajo de torsion

ESTUDIO DEL PUNTO B.

Page 16: Trabajo de torsion

Por estar el punto b en la LN:

Page 17: Trabajo de torsion

CONCLUSIÓNLa torsión se caracteriza geométricamente porque cualquier curva paralela al eje de la pieza deja de estar contenida en el plano formado inicialmente por la dos curvas. En lugar de eso una curva paralela al eje se retuerce alrededor de él. Un momento de torsión resultante aplicado a un cuerpo rígido siempre causará una aceleración angular que es directamente proporcional al momento de torsión aplicado e inversamente proporcional al momento de inercia del cuerpo.