rna silencadores

30
UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE CIENCIAS BIOLOGICAS LIC. EN BIOTECNOLOGIA GENOMICA Genómica Funcional PPA2 “RNA silenciadoresEQUIPO: 8 SAN NICOLAS DE LOS GARZA, NUEVO LEON 5 DE ABRIL DEL 2016

Upload: maria-huerta-anguiano

Post on 12-Apr-2017

83 views

Category:

Science


5 download

TRANSCRIPT

Page 1: RNA silencadores

UNIVERSIDAD AUTONOMA DE NUEVO LEON

FACULTAD DE CIENCIAS BIOLOGICAS

LIC. EN BIOTECNOLOGIA GENOMICA

Genómica FuncionalPPA2 

“RNA silenciadores”  

 

EQUIPO: 8 

SAN NICOLAS DE LOS GARZA, NUEVO LEON

5 DE ABRIL DEL 2016

Page 2: RNA silencadores

RNA interferencia La interferencia por ARN, ARN de interferencia o

ARNi, es un proceso de silenciamiento génico mediado por moléculas de ARN. Es característico de células eucariotas y tiene gran importancia en procesos de desarrollo y diferenciación celular.

Es mediado por moléculas de ARN conocidas. Estas moléculas de ARN interferente pueden ser siRNA (Small Interfering RNA) o microRNA según su procedencia.

Page 3: RNA silencadores

Mecanismo• El mecanismo inicia con la incorporación

a la célula de una molécula larga de ARN de cadena doble, conocida como dsRNA (Double-Stranded RNA).

• En el citoplasma la molécula de dsRNA es reconocida por la enzima Dicer que la fragmenta en pequeñas moléculas de cadena doble, llamadas siRNA o miRNA . Cada molécula de es incorporada a un complejo multiproteico conocido como RISC (RNAi Silencing Complex).

• Este complejo separa las dos hebras de la molécula de RNA quedándose una de las hebras incorporada en el complejo.

• La hebra que queda en el complejo es usada como molde para reconocer a la molécula de ARNm

• Si la complementariedad con la molécula de ARNm diana es perfecta el complejo RISC degrada este ARNm.

• Si por el contrario la complementariedad no es perfecta, el complejo RISC no degrada el ARNm pero sí evita la unión del ribosoma.

Page 4: RNA silencadores

Variación entre organismo • Entre plantas y animales se

observa una distinción general amplia en la utilización de los miRNA endógenos; en plantas, los miRNA son normalmente perfectamente (o casi) complementarios a su gen diana, e inducen el corte directo del ARN a través de RISC,

• Mientras que los miRNA de animales tienden a ser más divergentes en la secuencia e inducen represión a nivel de la traducción del ARNm diana.

Page 5: RNA silencadores

ARN interferentes y pseudogenes

• Una de las funciones propuesta para los pseudogenes es la regulación génica, y el mecanismo propuesto para realizar esta función es el RNAi.

• En estudios resientes se han descrito el descubrimiento de pequeñas moléculas de siRNA naturales en moscas y en ratones, algunas de las cuales son potencialmente transcritas a partir de pseudogenes.

Page 6: RNA silencadores

¿ QUÉ ES UN miRNA?• Un RNA de cadena sencilla de 18 a 24 nucleótidos de longitud que

es generado por la enzima Dicer, una RNAsa de tipo III, a partir de un transcrito endógeno que contiene una estructura de horquilla.

• Se cree que tienen un efecto importante en la modulación de la expresión de genes por su regulación negativa por apareamiento de bases a los sitios parcialmente complementarios sobre los ARNm diana, por lo general en la 'UTR parte 3

• La unión de un miARN a su ARNm diana , dentro del complejo RISC , por lo general conduce a la represión de traducción y descomposición de ARNm exonucleolıtica. Algunos estudios revelaron que miRNAs tienen la capacidad de activar la expresión de genes

Varilh J. et al., (2015)

Vázquez-Ortiz, et al. (2006)

Page 7: RNA silencadores

IMPORTANCIA

Más del 3 por ciento de los genes humanos en el genoma humano son sometidos a la regulación de genes miARN mediada en diferentes procesos celulares.

A mediados de 2013, se supo que el genoma humano codifica más de 2000 diferentes miRNAs que dispersos en todos los cromosomas humanos, excepto el cromosoma Y

Relacionados adistintas patologías: cánceres, de enfermedades cardíacas y neurológicas.

Ayla Valinezhad O. et al. (2014) http://naturemiri.com/

Page 8: RNA silencadores

Localización• En exones e intrones de RNA no codificante• La mayoría, en intrones de mRNA

codificante en la misma orientación que los mRNA

• La mayoría de los miRNA están aislados a lo largo del genoma, algunos se encuentran formando clusters

• La mayoría de los genes que codifican miRNA en nemátodos y en humanos están aislados, mientras que en Drosophila son secuenciales

Varilh J. et al. (2015)

Luares genómicos miRNAs. los genes miARN , aislados o en grupos , están ubicados en regiones intergénicas (miR -494 ) o intragenicas del genoma , incluyendo exones no codificantes (miR -155) o de codificación(miR-985) e intrones de no codificación(clúster miR-15a ~ 16-1 ) o de codificación (miR - 126 ).

Ayla Valinezhad O. et al. (2014)

Page 9: RNA silencadores

1. Los transcritos primarios de miRNAs, se transcriben como genes individuales.

2. La Rnasa Drosha procesa aún más el pri-miARN en 70 a 100 nt, llamado pre-miARN.

3. Es exportado desde el núcleo por exportin 5.

4. En el citoplasma, la pre-miARN es escindido por Dicer en un miARN: los genes miARN *dúplex.

5. Ensamblado dentro de RISC, miARN regula negativamente expresión por medio de represión de traducción o la degradación del ARNm, que depende de la secuencia de complementariedad entre el miARN y el mRNA objetivo.

Page 10: RNA silencadores

Las enzimas RNAsa de tipo III son una familia de ribonucleasas que reconocen específicamente al RNAdc y que se cree que están presentes en todas las células vivas. • Las RNAsas de tipo III es que al digerir el RNAdc introducen dos nucleótidos en el sitio de digestión

• Drosha: participa en el procesamiento de los RNA humanos en el núcleo.• Dicer: genera casi exclusivamente miRNA y siRNA.

Vázquez-Ortiz, et al. (2006)

Page 11: RNA silencadores

Si-RNASiRNA miRNA

Comparten algunas funciones, su composición química y mecanismos de acción.

Los siRNA provienen generalmente de grandes moléculas de RNA dúplex.

Los miRNA son procesados principalmente a partir de transcritos en horquillas

Cada siRNA precursor genera varios siRNA dúplex diferentes

Cada molécula precursora de horquilla genera un solo RNA dúplex

No están conservadas entre organismos relacionados las secuencias endógenas de siRNA.

Las secuencias de miRNA están relativamente conservadas en organismos relacionados

Es posible que los siRNA endógenos realicen un "autosilenciamiento", ya que silencian el mismo locus, o uno muy similar al que les dio origen

Los miRNA llevan a cabo un "heterosilenciamiento", ya que algunos se producen a partir de genes que pueden silenciar a varios genes blanco.

Vázquez-Ortiz, et al. (2006)

Page 12: RNA silencadores

siRNA

• Denominado como ARN pequeño de interferencia (ARNip) o ARN de silenciamiento es una clase de RNA bicatenario interferente con una longitud de 20 a 25 nucleótidos que es altamente específico para la secuencia de nucleótidos de su RNA mensajero diana, interfiriendo por ello con la expresión del gen respectivo.

• siRNA interfiere con la expresión de un gen específico, reduciéndola. Además, los siRNAs también actúan en otras rutas relacionadas con el RNAi, como en la defensa antiviral o en la organización de la estructura de la cromatina en un genoma. La complejidad de estas rutas es el objeto de intensos estudios

Page 13: RNA silencadores

Importancia• El complejo RISC tiene que ser activado

(RISC*) a partir de una forma latente, mediante el desapareamiento de las dos hebras de los siRNAs. RISC* utiliza la hebra antisentido del siRNA como guía para seleccionar su substrato: el ARNm complementario de la hebra de siRNA presente en el complejo.

• Por otro lado, los siRNAs promueven la modificación del ADN, facilitando el silenciamiento de la cromatina, puesto que favorecen la expansión de los segmentos de heterocromatina, a través del complejo RITS

Page 14: RNA silencadores

Identificación de Dicer

Para poder unirse a las moléculas de dsRNA, Dicer necesita formar un complejo con otras proteínas que la asisten en sus funciones, como la proteína R2D2 en Drosophila o RDE-4 y RDE-1 en C.elegans.

Se conocían tres tipos de ARNasa III:• ARNasa III canónica (E. coli): 1 motivo ARNasaIII y 1

dsRBD (en inglés, double strand RNA binding domain)• Drosha: 2 motivos ARNasa III y 1 dsRBD• Dicer: 2 motivos ARNAsa III, 1 dominio helicasa y 1 dsRBD

Page 15: RNA silencadores

El complejo RISC• El componente activo del complejo RISC es una proteína de la familia de

las endonucleasas denominadas Argonautas, que cortan la hebra de ARNm diana complementaria al siRNA que está asociado a RISC.

• Como los fragmentos producidos por Dicer son de doble hebra, en teoría ambas hebras podrían producir un siRNA funcional.

• Aunque existen diferentes proteínas de la familia Argonauta (Ago1, Ago2, Ago3 en mamíferos), sólo Ago2 puede formar complejos RISC capaces de fragmentar el ARNm diana.

Page 16: RNA silencadores

rasiRNAsTrypanosoma brucei •Especie de parásito•Causante de trypanosomiasis africana

2002

Abundantes RNAs de 24-26nt de longitud 24-26 parecidos a siRNA representaban 2 retrotransposons en el genoma. De polaridad antisentido y sentido

En 2003 en un estudio llevado por por Aravin et al., sobre el perfil de expresión den RNAi, en Drosophila

se acuña el término “rasiRNA”

2003

2006

RNAs de 24-26nt de longitud pero de origen diferente a TE y secuencias repetitivas Piwi RNAs

Page 17: RNA silencadores

rasiRNA

Presente en:• Drosophila Melanogaster• Plantas • Zebra fish• T. brucei• Levaduras

ARN interferentes pequeños asociados a repeticiones

Derivan de RNA Antisentido y con sentido de cadena simple

Tienen un tamaño: 24-27 nt

Elementos repetitivos y Retrotransposones

Page 18: RNA silencadores

rasiRNA biogenesisTranscrito Sentido

Transcrito Antisentido

5’3’

AGO35’ 3’A

PIWI/ AUB

3’ 5’U

Adenine en nucleotido 10

Uridina en extremo 5’ terminal

UA

PIWI/ AUB

5’3’ U

5’ 3’

PIWI/ AUB

5’3’ U

Complementaridad de 10 nucleótidos

5’ 3’A

AGO3

5’ 3’A

AGO3

5’3’ U

? PIWI/ AUB

A5’ 3’

?AGO3

Zucchini/ squash

Zucchini/ squash

2’-O-MePimet

Pimet

2’-O-Me

Helicasa (Spn-E y armi) Se unen a RasiRNA y RNA blanco.Pimet metiltransferasa 2’ O- metilación en extremo 3’

• Zucchini (zuc)• Squash (squ) Interactúan con Aub y realizan corte 3’ de RasiRNA maduro

Proteínas involucradas

Proteínas Piwi

Moscas

• Piwi y Aubergine (Aub)• Ago3

Page 19: RNA silencadores

PiwiRNA

Otros piRNAs rasiRNAs

Tamaño 24-32 nucleótidos

RNAs asociados a proteínas PiwiRNAs pequeños no codificantes

• RNAs Reguladores• Descubiertos en 2005• Se unen a complejo de silenciamiento inducido por

RNA (RISC)• Expresados principalmente en gónadas

• piRNA se asocian a la familia de proteínas argonautas

subfamilia Piwi= RISC

Precursor; RNAs de cadena simpleIndependientes de RNAasa III (Dicer)

Page 20: RNA silencadores

FunciónEn Drosophila melanogaster Influencian modificaciones epigenéticas Polaridad de ejes en células embrionarias. Maduración de oocyto Mantenimiento de telómeros

Silenciamiento de TE y secuencias repetitivas. Formación de heterocromatina

Herramienta potencial La vía de RNA de interferencia puede ser usada para el silenciamiento retrovirus VIH para frenar su propagación.

Page 21: RNA silencadores

Hirotsugu Ishizu et al. Genes Dev. 2012;26:2361-2373

Page 22: RNA silencadores

FunciónSilenciamiento de genes y secuencias repetitivas

Heterocromatina

Silenciamiento de elementos transponibles (TE):• TGS: H3K9m3• PTGS: corte de TE por complementariedad (ping-pong)

Protegen el genoma de TE

Mutaciones en los piRNA• Inserción de TE• Defectos en gametogénesis• Activación puntos de control Chk2 daño de DNA;• Defectos en la organización de microtúbulos y ejes

de desarrollo gonadal Infertilidad

Derivan de: piRNA clusters (elementos intergénicos

repetitivos) >100 kb, comprenden en su mayoría de TE

RNAm codificantes de proteínas

PiwiRNA

Biogénesis

Vía de procesamiento primaria

Amplificación de loop (ciclo ping pong)

Page 23: RNA silencadores

Proteínas Piwi

Proteínas TDRD

Otras proteínas

Factores involucrados en la biogénesis de piRNAs

Hirotsugu Ishizu et al. Genes Dev. 2012;26:2361-2373

Page 24: RNA silencadores

RiboswitchElementos de ARNm que se unen metabolitos o iones metálicos como ligandos y regulan la expresión de ARNm mediante la formación de estructuras alternativas en respuesta a esta unión.

1. El dominio de aptámero actúa como un receptor que se une específicamente a un ligando.

2. La plataforma de expresión actúa directamente sobre la expresión génica a través de su capacidad para cambiar entre dos estructuras secundarias diferentes.

Edwards, A. L. & Batey, R. T. (2010)

Page 25: RNA silencadores

• Región no tradcida 5' UTR del ARNm bacteriano.• En algunos ARNm eucariotas el pirofosfato de tiamina (TPP)

riboswitch regula empalme en el extremo 3 .

¿Dónde se encuentran riboswitches?

Edwards, A. L. & Batey, R. T. (2010)

Page 26: RNA silencadores

Ligandos detectadas por riboswitchesLa función de riboswitches está ligado a la capacidad de ARN para formar una diversidad de estructuras.

Edwards, A. L. & Batey, R. T. (2010)

Page 27: RNA silencadores

Estructuras

• La más básica de ellas es la hélice de doble cadena, similar a la encontrada en el ADN.

• Estructuras secundarias, plegándose sobre sí misma.

• En ARN de mayor tamaño estructuras terciarias.

Edwards, A. L. & Batey, R. T. (2010)

Page 28: RNA silencadores

INTERÉS EN FÁRMACOS diseñados para inhibir riboswitches

Los riboswitches controlan los genes esenciales para la supervivencia bacteriana, o genes que controlan la capacidad de las bacterias para tener éxito en la infección.• Los riboswitches no se han identificado en los mamíferos, no afectarían a éstos.• No interferirán en la uniones de ligandos de las proteínas de mamíferos ya que su unión

es muy diferente

Efectos secundarios mínimos en los seres humanos. Edwards, A. L. & Batey, R. T. (2010)

Page 29: RNA silencadores

Conclusiones• Los miRNAs (18 a 24 n) generalmente regulan negativamente

expresión por medio de represión de traducción o la degradación del ARNm y están involucrados en distintas patologías: cánceres, de enfermedades cardíacas y neurológicas.

• Los riboswitch regulan la expresión de ARNm mediante la formación de estructuras alternativas en respuesta a la union de ligandos.

• Las interacciones de los RNAs distintos con otros elementos ya sean ligandos o proteínas permiten que una regulación ya sea transcripcional o traduccional, pueden actuar en cis o en trans.

Page 30: RNA silencadores

REFERENCIAS Hirostsugu I., Haruhiko S., Mikiko C. (2016). Biology of PIWI-interacting RNAs: new insights into biogénesis and function inside and outside of

germlines. Genes & Development. Vol. 26, pág. 2361-2373 Mikiko C. S., Kaoru S., Pezic D. (2011). Reviews: PIWI-interacting RNAs: the vanguard of genome defence. Molecular cell Biology. Vol. 12, pág. 247. Theurkauf W. E., Klattenhoff C. (2016). RasiRNAs, DNA damage, and Embryonic Axis Specification. Cold Spring Harbor Symposia on Quantitative

Biology. pp.171-179 Sergey S., Dmitry K., Rozovsky Y. (2009). RasiRNA pathway controls antisense expression of Drosophila telomeric retrotransposons in the nucleus.

Nucleic acids research. Vol. 37, pp. 268-278 Thalia. Farazi, Stefan A., Juranek.(2008). The growing catalog of smallRNAs and their association with distinct Argonaute/Piwi family members.

Development.Vol.135, pp. 1201-1214.• Scott, M. S., & Ono, M. (2011). From snoRNA to miRNA: Dual function regulatory non-coding RNAs. Biochimie, 93(11), 1987–1992. Disponible en:

http://doi.org/10.1016/j.biochi.2011.05.026• Gwyn T. Williams & Farzin Farzaneh (2012) Are snoRNAs and snoRNA host genes new players in cancer? Nature Reviews Cancer 12, 84-

88 | doi:10.1038/nrc3195 • Ishizu, H., Siomi, H., & Siomi, M. C. (2012). Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of

germlines.Genes & Development, 26(21), 2361–2373. http://doi.org/10.1101/gad.203786.112• Varilh J., Bonini J. and Taulan-Cadars M. (2015). Role of Non-coding RNAs in Cystic Fibrosis, Cystic Fibrosis in the Light of New Research, Dr. Dennis Wat (Ed.), InTech,

DOI: 10.5772/60449. Available from: http://www.intechopen.com/books/cystic-fibrosis-in-the-light-of-new-research/role-of-non-coding-rnas-in-cystic-fibrosis

• Vázquez-Ortiz, Guelaguetza, Piña-Sánchez, Patricia, & Salcedo, Mauricio. (2006). Grandes alcances de los RNAs pequeños RNA de interferencia y microRNA. Revista de investigación clínica, 58(4), 335-349. Recuperado en 04 de abril de 2016, de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0034-83762006000400009&lng=es&tlng=es.

• Ayla Valinezhad Orang, Reza Safaralizadeh, and Mina Kazemzadeh-Bavili, “Mechanisms of miRNA-Mediated Gene Regulation from Common Downregulation to mRNA-Specific Upregulation,” International Journal of Genomics, vol. 2014, Article ID 970607, 15 pages, 2014. doi:10.1155/2014/970607

• Edwards, A. L. & Batey, R. T. (2010) Riboswitches: A Common RNA Regulatory Element. Nature. Disponible en http://www.nature.com/scitable/topicpage/riboswitches-a-common-rna-regulatory-element-14262702#