introducciÓn a las ecuaciones …tauja.ujaen.es/bitstream/.../clara_lpez_calvo_intr… · web...

53
INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS. Facultad de Ciencias Sociales y Jurídicas Alumno: Clara López Calvo

Upload: lyhanh

Post on 08-Oct-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES

DIFERENCIALES ORDINARIAS.

APLICACIONES ECONÓMICAS.

Fac

ulta

d de

Cie

ncia

s Soc

iale

s y J

uríd

icas

Grad

o en

Adm

inis

traci

ón y

Dire

cció

n de

Em

pres

as

Alumno: Clara López Calvo

Page 2: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS.

APLICACIONES ECONÓMICAS.

1. RESUMEN

El ámbito matemático y el económico están íntimamente ligados, dependiendo la

economía en multitud de ocasiones de métodos matemáticos para comprender el sistema

de bienes, de capitales, de tipos de interés y otros conceptos que constituyen nuestro día

a día. La importancia de este trabajo radica en esta misma cuestión, ofrecer un estudio

de las ecuaciones diferenciales partiendo del nivel más básico, para resolver cuestiones

económicas, tales como la comprensión de situaciones económicas relevantes

actualmente, como la oferta y demanda de viviendas en los últimos años.

Procederemos a trabajar con los métodos numéricos de resolución de ecuaciones

diferenciales más relevantes, como son los de Euler, Taylor y Runge-Kutta. Así,

entenderemos a la perfección el funcionamiento de este tipo de ecuaciones y les

encontraremos utilidades prácticas que hacen que las matemáticas sean una ciencia

dinámica, característica que comparte con la economía y con el mundo empresarial.

2. ABSTRACT

The mathematician and economical fields are bound; depend on the economy in several

times of mathematician methods in order to understand the system of assets, capitals,

interest rates and others concepts which form our day to day life. The importance of this

work settles down in this same question, offers and study of differential equations

depart from the most basic level, in order to solve economical questions, such as, the

understanding of current relevant economical situations, as a supply and demand.

We are going to work with numerical methods of resolution of the most relevant

differential equations, such as, Euler, Taylor and Runge-Kutta. On this way, we will

understand the completely working of this type of equations and we will find practical

operations that make mathematics would be a dynamic science, that kind of

characteristic is shared with the economy and with the business world.

Clara López Calvo Página 2

Fac

ulta

d de

Cie

ncia

s Soc

iale

s y J

uríd

icas

Grad

o en

Adm

inis

traci

ón y

Dire

cció

n de

Em

pres

as

Alumno: Clara López Calvo

Page 3: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

ÍNDICE

1. RESUMEN....................................................................................................................4

2. ABSTRACT..................................................................................................................4

3. ANÁLISIS TEÓRICO...................................................................................................5

3.1 CONCEPTO DE ECUACIÓN DIFERENCIAL.....................................................5

3.2 ECUACIONES DIFERENCIALES ORDINARIAS. TERMINOLOGÍA Y

SOLUCIONES...............................................................................................................5

3.3 ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN..........7

3.3.1 Teorema de existencia de Cauchy-Peano..........................................................7

3.3.2 Teorema de existencia y unicidad de Picard.....................................................8

3.3.3. Observaciones..................................................................................................9

3.4. ¿CÓMO PROCEDEMOS SI NO PODEMOS ENCONTRAR UNA SOLUCIÓN

EXACTA?.....................................................................................................................9

4. MÉTODOS NUMÉRICOS DE RESOLUCIÓN.........................................................12

4.1. TEORÍA ELEMENTAL DE LOS PROBLEMAS DE VALORES INICIALES.12

4.2. MÉTODO DE EULER.........................................................................................13

4.3. MÉTODO DE TAYLOR......................................................................................16

4.4. MÉTODO DE RUNGE-KUTTA.........................................................................19

5 SISTEMAS DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN Y

APLICACIÓN ECONÓMICA........................................................................................22

5.1. SISTEMAS DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN.....22

5.2. APLICACIÓN ECONÓMICA.............................................................................25

5.2.1 INTRODUCCIÓN DEL PROBLEMA...........................................................25

5.2.2. ANÁLISIS NUMÉRICO DEL SECTOR VIVIENDA EN LOS ÚLTIMOS

AÑOS SIGUIENDO EL MODELO DE LOTKA-VOLTERRA.............................28

6. CONCLUSIONES.......................................................................................................40

Clara López Calvo Página 3

Page 4: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

7. BIBLIOGRAFÍA.........................................................................................................41

Clara López Calvo Página 4

Page 5: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

3. ANÁLISIS TEÓRICO

3.1 CONCEPTO DE ECUACIÓN DIFERENCIAL

Una ecuación diferencial es aquella en la que intervienen una función desconocida y sus

derivadas. Dependiendo del número de variables independientes implicadas, las

ecuaciones diferenciales pueden ser ordinarias o parciales. Para el análisis teórico

seguiremos [1], [2] y [6].

Si la función desconocida depende de dos o más variables, trataremos una ecuación en

derivadas parciales, debido a que las derivadas implicadas en la función, lo son respecto

a más de una variable independiente. La variable independiente de tal función sería

vectorial. Un ejemplo de estas ecuaciones sería el siguiente:

dzdx

+ dzdy

=x

Sin embargo, si la función en cuestión depende de una variable independiente,

estaremos ante el caso de una ecuación diferencial ordinaria, las cuales van a ser objeto

de estudio en este trabajo. Un ejemplo sería el siguiente:

dydx

+ y=0

3.2 ECUACIONES DIFERENCIALES ORDINARIAS. TERMINOLOGÍA Y

SOLUCIONES.

Las ecuaciones diferenciales ordinarias (E.D.O.) son ecuaciones funcionales de la

forma:

F (x , y , y ’ , y ' ' , ... , yn)=0

Así, se relacionan la función real de variable real y= f(x) con la variable independiente x

y con sus derivadas, que representan las razones de cambio de tal función.

Para seguir conociendo este tipo de ecuaciones, definiremos el término orden:

Clara López Calvo Página 5

Page 6: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

“Llamamos orden de una ecuación diferencial al orden de la derivada más alta de la

variable dependiente de esta ecuación.”

Una solución de la ecuación diferencial será una función y= y (x)definida en un cierto

intervalo I , con derivada de orden n en el mismo, y tal que al sustituirla en la ecuación

se obtiene una identidad.

Una solución general de las ecuaciones diferenciales tiene un carácter genérico por

contener una o varias constantes que son desconocidas, existiendo tantas constantes

como el orden de la ecuación diferencial. Como ejemplo, probaremos que la función

y '=Kx+K 2 es la solución general, siendo K un número real cualquiera, en R de la

siguiente ecuación diferencial ordinaria:

x y '+( y ' )2− y=0

En primer lugar, procedemos a derivar yrespecto de x , , con lo que obtenemos que

y '=K . Pasamos a sustituir y e y ’ en la ecuación y verificamos que ∀x ϵ R; la ecuación

es cierta.

Para conocer más de este tipo de ecuaciones aclaremos que existen soluciones

particulares, que son aquellas que, se obtienen al fijar un punto de la solución general

por el que pase la solución de la ecuación. Por tanto, se le asignará a la constante de la

solución general un valor. Las soluciones particulares se deben diferenciar de las

soluciones singulares y es que estas últimas no se obtienen de la ecuación general, pero

similarmente, verifican la igualdad.

Una ecuación diferencial puede tener infinitas soluciones, que estarán determinadas por

una serie de curvas y soluciones singulares, dependiendo del orden de la ecuación. A

pesar de ello, al estudiar una ecuación diferencial nos interesará conocer una solución

particular que cumpla una serie de condiciones.

Probaremos a encontrar una solución particular de la siguiente ecuación diferencial:

x y '+( y ')2− y=0 con la condición de que debe pasar la misma por el punto (0,1).

Como acabamos de comprobar, y=Kx+K2 es la solución general de la ecuación

diferencial x y '+( y ')2− y=0. Por tanto, simplemente debemos sustituir x por 0 e y por 1

Clara López Calvo Página 6

Page 7: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

en la solución general y concluiremos con los valores de la constante K que nos dan la

solución particular al problema.

De esta manera, para completar la ecuación diferencial y así detallar la misma, se debe

perfeccionar la descripción con ciertas condiciones sobre la solución. Para ello, el

Problema de Valores Iniciales (P.V.I.), también llamado Problema de Cauchy, añade

condiciones complementarias a la solución.

Un problema de Cauchy para una ecuación diferencial de orden n sería el siguiente:

y(n )= f ( x , y , y ’ , . . ., y(n−1 ))

y (x0)= y0

y ’(x0)= y1

.

.

.

y(n−1) ( x0 )= yn−1

En este estudio nos centraremos en las ecuaciones diferenciales ordinarias de primer

orden, para concretar la materia y poder realizar más delimitado el estudio de la misma.

3.3 ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN

Las ecuaciones diferenciales de primer orden siguen la siguiente forma:

dydx

=f (x , y )

Para resolverla, tendremos que encontrar las funciones y (x ) que satisfacen esta

ecuación. Para estudiar su existencia, contamos con importantes resultados como son

los teoremas de Peano y de Picard.

Clara López Calvo Página 7

Page 8: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

3.3.1 Teorema de existencia de Cauchy-Peano.

Sea el problema de valores iniciales

y '=H ( x , y )

y (x0)= y0

Si la función escalar H es continua en una región rectangular que contenga

interiormente al punto (x0, y0) ∈ R2, entonces existe al menos una solución del problema

de valores iniciales considerado.

Este teorema permite estudiar la existencia de una solución del problema en cuestión.

Sin embargo, no podemos determinar cuántas soluciones tiene el problema. El teorema

de Peano, a pesar de garantizar la existencia de una solución, puede no resolver la

ecuación diferencial, ya que no permite obtener soluciones de forma explícita.

3.3.2 Teorema de existencia y unicidad de Picard

Sea S un subconjunto de R2, una región rectangular que contiene al punto (x0, y0) en su

interior. Si la función H: S→R, satisface:

a) H es continua en S

b) La derivada de H respecto a la variable dependiente existe y es continua en S

Entonces, existe un intervalo I que contiene al punto x0 y una única función y=f(x) que

satisface el problema de valores iniciales

y ’=H (x , y )

y (x0)= y0

Si la función es continua en R2, y la derivada es también continua en R2, el teorema de

Picard muestra que el problema de valores iniciales considerado tiene solución única. El

siguiente paso es calcular la solución integrando la ecuación diferencial.

Clara López Calvo Página 8

Page 9: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

En el caso de que no se cumplan las hipótesis del teorema de Picard, esto es, que la

función no sea continua en S o que su derivada no exista o no sea continua, entonces, no

podremos asegurar la unicidad de la solución.

3.3.3. Observaciones

Estos teoremas nos dan condiciones suficientes pero no necesarias para asegurar la

existencia de soluciones, y en su caso la unicidad de la solución de la ecuación

diferencial.

Otra anotación importante en este punto, es aclarar que la solución del problema no

tiene por qué restringirse al intervalo de las condiciones iniciales, sino que puede existir

en un intervalo mayor.

3.4. ¿CÓMO PROCEDEMOS SI NO PODEMOS ENCONTRAR UNA

SOLUCIÓN EXACTA?

Una gran cantidad de ecuaciones diferenciales ordinarias de primer orden, en la

práctica, no pueden resolverse explícitamente. En el caso de no poder encontrar una

solución exacta, podemos proceder de dos maneras:

Determinando direcciones en un plano estableciendo un campo direccional.

Operando para una resolución numérica aproximada.

En el primer punto nos vamos a centrar en los campos direccionales. Un campo de

direcciones es la representación gráfica de la dirección asociada a cada punto de un

plano establecido.

Partiendo de una ecuación diferencial

y ’=f ( x , y)

Podemos afirmar que y '=dy /dx es la pendiente de la recta tangente a la curva y¿ y (x )

en el punto (x , y ) . Por tanto, en cada punto del plano en cuestión donde la función esté

definida, obtendremos el valor de una pendiente.

Clara López Calvo Página 9

Page 10: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

Si representamos gráficamente esta situación, obtenemos el llamado campo de

direcciones de la ecuación diferencial. Si lo analizamos, podemos observar para qué

valores la función crece o decrece y para cuáles es mayor o menor que 0, lo que nos

facilita el estudio del comportamiento de la ecuación diferencial que pretendíamos

resolver.

Como ejemplo, y realizando dicha operación con Wolfram Mathematica®, obtenemos

el siguiente campo vectorial asociado a la ecuación

y ’= y

CampoVectorial=VectorPlot [ {1, y } , {x ,−1,1 }, { y ,−1,1 } ]

Figura 3.4.1. Ejemplo de campo vectorial (Elaboración propia).

En este ejemplo, la solución exacta de la ecuación diferencial es fácil de obtener, siendo

la misma:

y=C∗exp[ x]

Representaremos la solución particular correspondiente a C=1 conjuntamente con el

campo de direcciones anterior, todo ello utilizando el programa Wolfram

Mathematica®:

Clara López Calvo Página 10

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Page 11: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

Figura 3.4.2. Solución particular y campo de direcciones (Elaboración propia).

Otra de las alternativas al problema de no tener una solución exacta, es buscar

soluciones numéricas aproximadas. Aplicando los métodos numéricos de resolución que

veremos a continuación, obtendremos valores aproximados de la solución en diferentes

puntos y los compararemos con los valores exactos en los casos en los que sea posible.

Así, comprobaremos el margen de error que resulta de dicha operación, siendo el mismo

la diferencia entre valor exacto y valor aproximado. Todo ello, lo vamos a ampliar en el

apartado siguiente para facilitar su comprensión.

Clara López Calvo Página 11

Page 12: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

4. MÉTODOS NUMÉRICOS DE RESOLUCIÓN

4.1. TEORÍA ELEMENTAL DE LOS PROBLEMAS DE VALORES INICIALES

En este apartado estudiaremos los métodos numéricos de resolución siguiendo las

referencias [1], [2] y [6], al igual que en el punto anterior.

En realidad, las ecuaciones diferenciales que se plantean en problemas reales son

complicadas de resolver exactamente, por lo que, para aproximar tal solución,

utilizaremos uno o dos procedimientos.

El primer procedimiento es conseguir la simplificación de la ecuación a otra

ecuación diferencial que pueda resolverse exactamente. A continuación, utilizaríamos la

solución simplificada para aproximar la solución de la primera ecuación. Este

procedimiento es el menos usado en la práctica, ya que puede inducir a un error mayor

que el segundo procedimiento.

El objeto de este estudio lo centraremos en el segundo procedimiento, que

consiste en obtener ciertos métodos de resolución numérica de ecuaciones diferenciales.

Lo que realizaremos en estos casos serán aproximaciones numéricas a los valores reales,

ya que dichos valores no podremos obtenerlos explícitamente.

Por tanto, seguiremos el segundo procedimiento para hallar soluciones de ecuaciones

diferenciales. Procederemos a resolver el siguiente problema de valores iniciales

y '=f (x , y ) , y ( x0 )= y0 ,

Suponiendo que la función satisface las condiciones de existencia y unicidad de

solución, realizaremos un estudio de algunos métodos de resolución.

Los métodos numéricos para hallar soluciones de problemas de valores iniciales como

el presentado, son los llamados métodos de discretización. Estos métodos consisten en

encontrar valores aproximados de una solución en diferentes puntos de la función,

Clara López Calvo Página 12

Page 13: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

habitualmente equidistantes de [ x¿¿0 , x0+a]¿. Tendremos en cuenta los siguientes

puntos:

La notación h hará referencia al llamado paso de discretización, siendo h=an ,

siendo n el número de subdivisiones del intervalo [x0 , x0+a¿ .

Llamaremos y jal valor de la solución numérica que obtendremos en el punto x j.

Denominaremos y ( x j ) a la solución exacta en tal punto.

El llamado error de truncatura en xj define la diferencia ¿. Este error debería

tender a 0 cuando h tiende a 0, de manera que:

lim ¿h →0 ¿¿

Si se cumple esta condición, el método será convergente.

Clara López Calvo Página 13

Page 14: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

4.2. MÉTODO DE EULER

Vamos a suponer el problema de valores iniciales ya expuesto:

y '=f (x , y ) , y ( x0 )= y0 ,

Considerando que el problema tiene una solución única, procederemos a aplicar el

método de Euler, siendo este el procedimiento más clásico y sencillo en cuanto a

métodos de resolución. El objetivo en cuestión es encontrar una aproximación al

problema planteado.

Siendo y= y (x) la solución de la función expuesta en el intervalo [ x0 , x0+a ], dividimos

este intervalo en n partes iguales, tomando las consideraciones anteriormente expuestas

h=an y xk=x0+k∗h , k=0,1 ,…, n .

Procedemos al paso de discretización h=an , resultando así:

y1− y0

x1−x0=

y1− y0

x0+h−x0= y '0

Resolviendo, obtenemos:

y1= y0+h f (x0 , y0)

yk +1= yk+h f ( xk , yk )

Así, podremos utilizar esta fórmula general para calcular cualquier valor de yk.

Siendo el error de truncatura en xj, ej = y j− y (x¿¿ j)¿, podemos observar que el mismo

crece a medida que aumenta la variable h, por lo que es recomendable trabajar con una

h lo más pequeña posible para disminuir la magnitud del mismo.

Vamos a comprobar el método de Euler con un ejemplo en el que es fácil encontrar la

solución exacta de la ecuación. De esta manera, mediremos el error cometido al utilizar

el método de aproximación.

Clara López Calvo Página 14

Page 15: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

Procederemos a resolver el siguiente problema, en el que calcularemos el valor

aproximado de y (1) con h =0.1:

y '=−2 xy ; y (0 )=1

Es sencillo ver en este ejemplo, por integración de y ’, que la solución exacta sería

y=e−x2

. Entonces, y0= y (0 )=1

Tomaremos el intervalo [0,1] para dividirlo en 10 partes, y procedemos a utilizar el

método de Euler. La partición origina los puntos xk=k10

, k=0,1,2 , …,10

Utilizando la fórmula anterior:

yk +1= yk+h f ( xk , yk )

Obtenemos la siguiente tabla.

k xk yk y(xk) ek =|y(xk)-yk|0 0 1 1 01 0,1 1 0,9900498 0,0099501662 0,2 0,980000 0,9607894 0,0192105613 0,3 0,940800 0,9139312 0,0268688154 0,4 0,884352 0,8521438 0,0322082115 0,5 0,813604 0,7788008 0,0348030576 0,6 0,732243 0,6976763 0,034567137 0,7 0,644374 0,6126264 0,0317478478 0,8 0,554162 0,5272924 0,0268694239 0,9 0,465496 0,4448581 0,020637886

10 1 0,381707 0,3678794 0,013827239

Figura 4.2.1. Cálculo numérico del ejemplo con el método de Euler (Elaboración

propia).

El error cometido para un h=0,1 es 0,034803057, que corresponde a una k=5.

Operando con Wolfram Mathematica® obtenemos la siguiente gráfica:

Clara López Calvo Página 15

Page 16: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

Figura 4.2.2. Resolución del método de Euler con Wolfram Mathematica® para h=0.1

(Elaboración propia).

Esta gráfica muestra la dispersión entre la solución exacta y la aproximada. Para

comprobar que el error es menor cuanto menor es el valor de h, operaremos con h=0.05

y h=0.01, y obtendremos las gráficas correspondientes, observando que error es cada

vez menor (distancia entre la línea de puntos y la línea continua).

Gráfica de la función en cuestión para h = 0.05

Figura 4.2.3. Resolución del método de Euler con Wolfram Mathematica® para h=0.05

(Elaboración propia).

Clara López Calvo Página 16

Page 17: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

Gráfica de la función en cuestión para h=0.01

Figura 4.2.4. Resolución del método de Euler con Wolfram Mathematica® para h=0.01

(Elaboración propia).

Clara López Calvo Página 17

Page 18: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

4.3. MÉTODO DE TAYLOR

El método de Taylor es un método complejo en cuanto a resolución de ecuaciones

diferenciales, pero está provisto de una ventaja fundamental: soluciona el problema de

lenta convergencia del método de Euler, como vamos a comprobar. Para el método de

Taylor, el orden de convergencia es mayor.

Partiendo de la función

y '=f (x , y ) , y ( x0 )= y0 ,

Procedemos a calcular las derivadas de y en función de f, suponiendo siempre que esta

función es suficientemente diferenciable. Operando de la siguiente manera:

y ' ( x )= f ( x , y ( x ) )

y ' ' ( x )=dy 'dx

= δfδx

+

δfδy

∗dy

dx= δf

δx+ δf

δyf =f (1)

y ' ' ' ( x )=dy ' 'dx

= δ f (1)

δx+

δ f (1)

δy∗dy

dx= δ f (1)

δx+ δ f (1)

δyf =f (2)

y(r ) ( x )=dy(r−1)

dx= δ f (r−2 )

δx+ δ f (r−2 )

δyf =f (r−1)

Calcularíamos de esta manera las siguientes derivadas, y siempre teniendo en cuenta

que f (0)=f . Así, calculamos yk +1 , partiendo de y0= y (x¿¿ 0) ,¿mediante la fórmula

general expresada a continuación:

yk +1= yk+h f (0 ) ( xk , y k)+ h2

2 !f (1 ) ( xk , yk )+…+ hr

r !f (r−1)(xk , y k)

Podemos observar que el método de Euler es una variante del método de Taylor siempre

que r=1. Debemos destacar que el método de Taylor más cómodo para resolver es aquel

que se obtiene con r=2, y se da por la siguiente función:

Clara López Calvo Página 18

Page 19: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

yk +1= yk+h f ( xk , yk )+ h2

2! ( ∂ f ( xk , yk )∂ x

+∂ f ( xk , yk )

∂ yf ( xk , yk ))

Para ilustrarlo, utilizaremos el mismo ejemplo del apartado anterior, usando el método

de Taylor de orden 2, y calculamos el valor aproximado de y (1) con h=0.1

y '=−2 xy ; y (0 )=1

f (0 ) ( x , y )=−2 xy

f (1) ( x , y )= δfδx

+ f

δfδy

∗df

dx=−2 y+4 x2 y

yk +1= yk+h f (0 ) ( xk , y k)+ h2

2 !f (1 ) ( xk , yk )= y k−2h xk yk+

h2

2 (−2 yk+4 xk2 yk )

Operando así, obtenemos la siguiente tabla;

Figura 4.3.1. Cálculo numérico con Matemática del ejemplo del método de Taylor,

para h=0.1 (Elaboración propia).

El error para un h=0,1 sería de 0,0027608 (considerablemente menor que el obtenido

con el método de Euler) correspondiente a una xk de 0,9. Podemos comprobar el error en

diferentes valores de h menores.

Utilizando el programa Wolfram Mathematica®, obtenemos la siguiente gráfica que

muestra la y aproximada y la y real apreciando el error cometido utilizando el método.

Clara López Calvo Página 19

xk yk y(xk) ek =|y(xk)-yk|0 1 1 0

0,1 0,99 0,9900498 0,00004980,2 0,960498 0,9607894 0,00029140,3 0,9132415 0,9139312 0,00068970,4 0,8509584 0,8521438 0,00118540,5 0,7770952 0,7788008 0,00170550,6 0,6955002 0,6976763 0,00217610,7 0,6100928 0,6126264 0,00253360,8 0,5245578 0,5272924 0,00273460,9 0,4420973 0,4448581 0,0027608

1 0,3652608 0,3678794 0,0026186

Page 20: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

Figura 4.3.2. Resolución del método de Taylor con Wolfram Mathematica® para h=0.1

(Elaboración propia).

Para un h=0.05 debemos obtener según la teoría un error menor entre los valores

exactos y los aproximados, como comprobamos a continuación. Así, el error será aún

menor para un h=0.01.

Gráfica de la función en cuestión para h=0.05

Figura 4.3.3. Resolución del método de Taylor con Wolfram Mathematica® para

h=0.05 (Elaboración propia).

Clara López Calvo Página 20

Page 21: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

Gráfica de la función en cuestión para h=0.01

Figura 4.3.4. Resolución del método de Taylor con Wolfram Mathematica® para

h=0.01 (Elaboración propia).

Clara López Calvo Página 21

Page 22: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

4.4. MÉTODO DE RUNGE-KUTTA

Los métodos de Runge-Kutta sirven, al igual que los de Euler y Taylor, para encontrar

soluciones numéricas aproximadas de ecuaciones diferenciales, no siendo preciso sin

embargo, calcular derivadas superiores como sí ocurre en el procedimiento de Taylor.

Este método logra una exactitud mayor que los anteriores, presentando un error de

truncatura menor. El método de Euler, estudiado anteriormente, se obtiene con el

método de Runge-Kutta de orden 1, al igual que ocurre con el método del punto medio,

el cual es el resultado del método de Runge-Kutta de orden 2.

En este apartado, estudiaremos el método de Runge-Kutta estándar, que es aquel que

tiene orden 4.

Si partimos de y0= y (x0), generamos los sucesivos yk con la siguiente fórmula

estándar:

yk +1= yk+h6(K1+2 K2+2 K3+K4)

Siendo K:

K1=f (xk , y k¿

K2=f (xk+12

h , yk+12

h K1)

K 3=f (xk+12

h , yk+12

h K2)K 4= f ( xk+h , yk+h K 3 )

Siguiendo el ejemplo anterior, creamos la tabla correspondiente para la resolución con

el método de Runge-Kutta y obtenemos:

Clara López Calvo Página 22

Page 23: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

xk yk y(xk) ek =|y(xk)-yk| -2XY0 1 1 0 K1 0

0,1 0,99019833 0,99004983 0,00014850 K2 -0,10000000,2 0,96299065 0,96078944 0,00220121 K3 -0,09950,3 0,92164625 0,91393119 0,00771507 K4 -0,18010,4 0,86950074 0,85214379 0,017356950,5 0,80967474 0,77880078 0,030873960,6 0,74491021 0,69767633 0,047233880,7 0,67750428 0,61262639 0,064877880,8 0,60931347 0,52729242 0,082021050,9 0,54180133 0,44485807 0,09694327

1 0,47610702 0,36787944 0,10822758

Figura 4.4.1. Cálculo numérico del ejemplo del método de Runge-Kutta con Wolfram

Mathematica® (Elaboración propia).

El error en este caso sería de 0.10822758 dado por una xk=1 todo ello, para una h=0.1.

Detalladamente, Wolfram Mathematica® nos da la gráfica en la que aparecen las yk e

y(xk)correspondientes a los diferentes valores de x para un h =0.1.

Figura 4.3.2. Resolución del método de Runge-Kutta con Wolfram Mathematica® para

h=0.1 (Elaboración propia).

Clara López Calvo Página 23

Page 24: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

Para h=0.01 el error es menor, a pesar de que gráficamente no se aprecia, adjunto el

gráfico correspondiente al estudio realizado para la función f (x , y )=−2 xy con valores

h=0.01.

Figura 4.3.1. Resolución del método de Runge-Kutta con Wolfram Mathematica® para

h=0.01 (Elaboración propia).

Clara López Calvo Página 24

Page 25: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

5 SISTEMAS DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN Y

APLICACIÓN ECONÓMICA

5.1. SISTEMAS DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN

Vamos a analizar los sistemas de ecuaciones diferenciales ordinarios, en concreto los de

ecuaciones diferenciales de primer orden. Como es sabido, los sistemas de ecuaciones

pueden formarse con dos o más ecuaciones, pero vamos a introducir los sistemas de dos

ecuaciones para simplificar.

Siguiendo [3], consideramos el problema de valores inciales

x ’=f ( t , x , y ) x (t¿¿0)=x0 ¿

y '=g (t , x , y ) y (t ¿¿0)= y0 ¿

con variables dependientes x e y, así como con variable dependiente t, siendo

x '=∂ f∂ x e y '= ∂ f

∂ y

Si las funciones f y g son continuas en un abierto que contenga al punto ( t 0 , x0 , y 0¿ ,

entonces existe al menos una solución definida en el intervalo (t 0−ϵ , t0+ϵ ¿para algún ϵ

>0.

Si existen las siguientes derivadas parciales:

∂ f∂ x ,

∂ f∂ y

, ∂ g∂ x ,

∂ g∂ y

y son continuas, entonces la solución del problema de valores iniciales es única.

SISTEMA DE ECUACIONES DIFERENCIALES UTILIZANDO EL MÉTODO

DE RUNGE-KUTTA

Clara López Calvo Página 25

Page 26: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

Como hemos comprobado, el método de resolución más utilizado en la práctica y con

menos error de truncatura que hemos estudiado es el método de Runge-Kutta. En este

caso, vamos a aplicarlo a los sistemas de ecuaciones diferenciales de primer orden.

Tenemos el siguiente sistema de ecuaciones diferenciales

dxdt

=f ( x , y , t ) dydt

=g(x , y , t)

Siendo las condiciones iniciales del problema las siguientes

x (t¿¿0)=x0 y (t ¿¿0)= y0 ¿¿

Para operar con las ecuaciones diferenciales ordinarias utilizábamos los términos

k1 , k2 , k3 yk 4 . En este caso, al operar con un sistema de ecuaciones diferenciales,

necesitamos otros términos para la segunda ecuación, que llamaremosl1 ,l2 ,l3 y l 4.

Así, los valores de los términos k1 , k2 , k3 yk 4 y l1 ,l2 , l3 y l4serán los siguientes:

Para dxdt

=f ( x , y , t ):

k1=hf ( x , y ,t )

k 2=hf (x+k1

2, y+

l1

2,t + h

2 )

k3=hf (x+k2

2, y+

l2

2,t + h

2 )k 4=hf ( x+k3 , y+l3 ,t +h )

Para dydt

=g (x , y ,t ):

l1=hg ( x , y , t )

l2=hg (x+k1

2, y+

l1

2, t+ h

2 )

Clara López Calvo Página 26

Page 27: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

l3=hg (x+k2

2, y+

l2

2, t+ h

2 )l4=hg ( x+k3 , y+ l3 , t+h )

Para aproximar los valores de x e y en cualquier momento t utilizaremos las siguientes

funciones:

x (t +h )=x ( t )+ 16(k1+2 k2+2k3+k4)

y (t+h )= y (t )+ 16(l1+2l2+2 l3+l 4)

5.2. APLICACIÓN ECONÓMICA

5.2.1 INTRODUCCIÓN DEL PROBLEMA

Las ecuaciones diferenciales tienen una amplia utilidad en ámbitos cotidianos, como

pueden ser estudios técnicos en cualquier materia: mecánica, electricidad, física,

química, biología e incluso en ciencias económicas.

Una cuestión económica realmente relevante en los últimos años es el crecimiento y

decrecimiento que han experimentado las compraventas en el sector vivienda.

Realmente, es un sector que ha sufrido muchos giros en los últimos años, cambiando el

panorama inmobiliario con el boom de la vivienda y con la posterior crisis.

Es una situación que normalmente se repite a lo largo del tiempo, tal y como

conocemos, con los cracks que ha sufrido el sector vivienda ocasionando diferentes

crisis desde la revolución industrial.

El sector vivienda sufre giros constantes con el paso del tiempo. Estos giros se

ocasionan con motivo del aumento del poder adquisitivo de los ciudadanos y la

consecuente compra de viviendas (a más poder adquisitivo, mayor gasto inmobiliario)

que se produce.

Clara López Calvo Página 27

Page 28: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

Centrándonos en los últimos años, teníamos un panorama de elevado gasto en compra

de viviendas, por lo que los constructores terminaron ofreciendo viviendas a un ritmo

más elevado del que se compraban. Cambió la situación y finalmente, existía un elevado

número de viviendas construidas y pocos compradores. Actualmente, el panorama

empieza a volver a ser el de antes de la crisis.

No podemos decir que lo que ocurre en la actualidad sea exactamente igual que lo

ocurrido antes del boom, puesto que ya contamos con los antecedentes de esos años y

los constructores son algo más cautelosos, pero sí que aumentan las compras de

viviendas a un ritmo más elevado del que ofrecen las constructoras. Por lo que podemos

afirmar que es un ciclo constante, compra de viviendas masiva, seguida por

construcciones muy elevadas de inmovilizado y posterior decadencia de compras.

Así, podemos estudiar este ciclo que se repite a lo largo de los años con el modelo que

nos ofrece Lotka-Volterra y que se resuelve utilizando ecuaciones diferenciales

ordinarias, en este caso utilizaremos un sistema compuesto de la ecuación de las

compras de las viviendas y otra de las ventas de las mismas. Para resolver

numéricamente, utilizaremos el método de Runge-Kutta en el ámbito del programa

Wolfram Mathematica®.

MODELO DE LOTKA-VOLTERRA

Estudiaremos el modelo de Lotka-Volterra para analizar sistemas de ecuaciones

diferenciales no lineales. En el caso que acabo de redactar, no podemos ofrecer

soluciones exactas, pero sí estudiar cualitativamente ciclos que se repiten a lo largo del

tiempo.

Así, siendo x (t) la oferta de viviendas y siendo y (t )la demanda de las mismas, será la

razón de cambio de la oferta la función x ’ (t), que según el modelo presa depredador,

adaptándolo al estudio realizado en [5], será proporcional en cada momento al número

de ofertas (construcciones de viviendas) que vendrá dado por a1 x (t ), menos la

interacción de oferta y demanda de viviendas que sería a2 x (t) y (t), para unas

constantes positivas a1, a2 .Esto es:

dx (t)dt

=a1 x ( t )−a2 x (t ) y (t)

Clara López Calvo Página 28

Page 29: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

Si sacamos factor común tenemos que

dx (t)dt

=−a2 x (t )( y (t )−a1

a2)

Igualmente, la razón de cambio de las compras disminuirá proporcionalmente al número

de compras, −b1 y (t ), pero, al mismo tiempo, conforme aumenta la oferta, también

aumentará la demanda a una razón b2 x ( t ) y (t), que es proporcional a su número en ese

momento y (t ) y a la oferta x (t ), para unas constantes positivas b1, b2 .Así resulta lo

siguiente:

dy (t )dt

=−b1 y (t )+b2 x ( t ) y (t )

Si sacamos factor común tenemos que

dy (t)dt

=b2 y (t )( x ( t )−b1

b2)

Expondremos un ejemplo para comprender, estudiar así ilustrar gráficamente el

funcionamiento del modelo presa depredador.

Así, suponemos el ejemplo del sector vivienda, y analizando la oferta y la demanda del

mismo siempre un movimiento cíclico. Proporcionamos los siguientes datos, que no son

reales, pero perfectamente lógicos para componer un ejemplo en el que podamos

estudiar el modelo pretendido.

0

100

200

300

400

500

600

1980

1982

1984

1986

1988

1990

1992

1994

1996

1998

2000

2002

2004

2006

2008

2010

2012

2014

2016

DEMANDA

OFERTA

Clara López Calvo Página 29

Page 30: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

Figura 5.1.1. Representación de datos de la oferta y la demanda de viviendas nuevas en

miles de unidades de los años 1980 a 2016

Podemos apreciar el ciclo que hemos tratado antes, el aumento de las construcciones,

seguido de una parada de las mismas y un posterior incremento de la oferta de viviendas

posteriormente, todo ello un movimiento cíclico conforme transcurren los años.

5.2.2. ANÁLISIS NUMÉRICO DEL SECTOR VIVIENDA EN LOS ÚLTIMOS

AÑOS SIGUIENDO EL MODELO DE LOTKA-VOLTERRA

Tendremos los siguientes datos de la oferta y la demanda de viviendas nuevas desde el

año 1980 hasta el año 2016. Trabajamos en miles de unidades físicas.

AÑO OFERTA DEMANDA1980 129,6 20,41982 201,84 29,221984 298,44 44,761986 328,68 151,441988 156,06 253,081990 90,12 178,741992 79,62 83,41994 93,48 58,21996 96,5 38,461998 110,28 41,822000 117,42 34,682002 172,86 37,22004 243,1 55,262006 325,32 85,52008 223,26 195,542010 85,5 218,222012 50,64 128,342014 35,52 69,962016 64,92 44,34

Figura 5.1.2. Datos numéricos de la compraventa de viviendas nuevas en los años

1980-2016. (Elaboración propia).

Clara López Calvo Página 30

Page 31: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

Necesitamos conocer a1, a2, b1, b2, x(0), y(0) para proceder a aplicar el modelo presa

depredador. Tenemos los valores iniciales x(0)=129,6 e y(0)=20,4. Ahora hallamos a1,

a2, b1, b2. Siguiendo [4], tenemos que los puntos de equilibrio siempre serán:

x (t)media=b1

b2

y (t )media=a1

a2

Podemos calcular la x(t) media así como la y(t) media si calculamos la media aritmética

entre dos máximos. De esta manera, la media se calcula para la oferta entre 1986 y 2006

y para la demanda entre 1988 y 2010. Así resultan los siguientes datos:

x (t ) media=b1

b2=164,858

y (t ) media=a1

a2=106,675

Podemos obtener los valores de b1 y de a1 de la siguiente forma. Estudiamos los

momentos en los que la demanda es muy baja y por consiguiente, la oferta crece

rápidamente. Los datos de este periodo serán los del año 2000 y son x(t)=117,42 e

x(t+1)=172,86.

Utilizando la fórmula del crecimiento exponencial x (t)=x (0)ea1 t y sustituyendo

obtenemos la siguiente expresión

172,86=117,42ea1

Operamos

172,86117,42

=ea1

a1=ln 172,86117,42

a1=0,3867

Clara López Calvo Página 31

Page 32: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

Así, podemos obtener el valor de a2 de la siguiente manera

y (t )media=a1

a2

106,675=0,03867a2

a2=0,0036

Igualmente, calculamos b1 de forma similar. Cuando los valores de la oferta son bajos,

la cifra de la demanda desciende considerablemente. El año donde mejor se aprecia esta

situación es en 1990, siendo los valores numéricos en 1990 y 1992 y(t)=178,74 e

y(t+1)=83,4 respectivamente. Utilizando la fórmula del crecimiento exponencial,

operamos:

83,4=178,74 e−b1

83,4178,74

=e−b1

b1=−ln | 83,4178,74|

b1=0,7623

Para obtener el valor de b2 concluimos que

x (t)media=b1

b2

106,675=0,7623b2

b2=0,0046

Ya tenemos todos los valores para construir el modelo presa depredador:

x (0 )=129,6 ; y (0 )=20,4 ;a1=0,3867 ; a2=0,0036 ;b1=0,7623 ;b2=0,0046

Por tanto, obtenemos el siguiente punto de equilibrio si consideramos x’(t)=0 e y’(t) =0:

Clara López Calvo Página 32

Page 33: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

P2=(129,6 , 20,4 )

P1=(0,0 )

Estos puntos son las soluciones constantes, las obtenidas al resolver el sistema inicial

a1 x ( t )−a2 x ( t ) y ( t )=0

−b1 y (t )+b2 x (t ) y (t )=0

Podemos escribir nuestra ecuación del modelo presa depredador en el sector vivienda de

la siguiente forma:

{x ' (t)=0,3867 (t)−0,0036 x (t ) y (t ); x (0)=129,6y ' (t )=−0.7623 y ( t )+0,0046 x ( t ) y ( t ); y (0 )=20,4

Así, introducimos las funciones en Wolfram Mathematica® y aplicamos el método ya

estudiado de Runge-Kutta con los valores k1 , k2 , k3 yk 4 y l1 ,l2 , l3 y l4que hemos expuesto

con anterioridad:

In[3] := f x , y , z : 0.3867 y 0.0036 y z

In[4] := g x , y , z : 0.7623 z 0.0046 y z

In[5] := a 0;

In[6] := b 19;

In[7] := valor 129.6 ;

In[8] := cola 20.4 ;

In[9] := n 200;

In[10] := h b a n;

In[11] := nodotablaTable a i h, i, 0, n ;

In[12] :=

para cadaFor i 2, i n 2, i , K1 f nodo i 1 , valor i 1 , cola i 1 ;

L1 g nodo i 1 , valor i 1 , cola i 1 ;K2 f nodo i 1 h 2, valor i 1 h K1 2,

cola i 1 h L1 2 ;L2 g nodo i 1 h 2, valor i 1 h K1 2,

cola i 1 h L1 2 ;K3 f nodo i 1 h 2, valor i 1 h K2 2,

cola i 1 h L2 2 ;L3 g nodo i 1 h 2, valor i 1 h K2 2,

cola i 1 h L2 2 ;K4 f nodo i 1 h, valor i 1 h K3, cola i 1 h L3 ;L4 g nodo i 1 h, valor i 1 h K3, cola i 1 h L3 ;

añade al f inalAppendTo valor , valor i 1 1 6 h K1 2 K2 2 K3 K4 ;

añade al f inalAppendTo cola , cola i 1 1 6 h L1 2 L2 2 L3 L4 ;

Clara López Calvo Página 33

Page 34: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

In[3] := f x , y , z : 0.3867 y 0.0036 y z

In[4] := g x , y , z : 0.7623 z 0.0046 y z

In[5] := a 0;

In[6] := b 19;

In[7] := valor 129.6 ;

In[8] := cola 20.4 ;

In[9] := n 200;

In[10] := h b a n;

In[11] := nodotablaTable a i h, i, 0, n ;

In[12] :=

para cadaFor i 2, i n 2, i , K1 f nodo i 1 , valor i 1 , cola i 1 ;

L1 g nodo i 1 , valor i 1 , cola i 1 ;K2 f nodo i 1 h 2, valor i 1 h K1 2,

cola i 1 h L1 2 ;L2 g nodo i 1 h 2, valor i 1 h K1 2,

cola i 1 h L1 2 ;K3 f nodo i 1 h 2, valor i 1 h K2 2,

cola i 1 h L2 2 ;L3 g nodo i 1 h 2, valor i 1 h K2 2,

cola i 1 h L2 2 ;K4 f nodo i 1 h, valor i 1 h K3, cola i 1 h L3 ;L4 g nodo i 1 h, valor i 1 h K3, cola i 1 h L3 ;

añade al f inalAppendTo valor , valor i 1 1 6 h K1 2 K2 2 K3 K4 ;

añade al f inalAppendTo cola , cola i 1 1 6 h L1 2 L2 2 L3 L4 ;

Figura 5.2.1. Programación del problema en cuestión con Wolfram Mathematica®

(Elaboración propia).

Procedemos a construir la gráfica que representa la evolución de las construcciones de

viviendas (oferta de viviendas) y de igual manera construimos la gráfica que representa

la evolución de las compras de viviendas (demanda de viviendas).

In[27]:= grafica1representacListPlot

tablaTable nodo i , valor i , i, 1, 201 ,

estilo de reprePlotStyle

color RGBRGBColor 1, 0, 0 ,

puntos unidos?PlotJoined

verdaderoTrue ;

In[26]:= grafica2representacListPlot

tablaTable nodo i , cola i , i, 1, 201 ,

estilo de reprePlotStyle

color RGBRGBColor 0, 0, 1 ,

puntos unidos?PlotJoined

verdaderoTrue ;

In[25]:=

muestraShow grafica1 , grafica2

Out[25]=

5 1 0 1 5

1 0 0

2 0 0

3 0 0

4 0 0

Clara López Calvo Página 34

Page 35: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

In[27]:= grafica1representacListPlot

tablaTable nodo i , valor i , i, 1, 201 ,

estilo de reprePlotStyle

color RGBRGBColor 1, 0, 0 ,

puntos unidos?PlotJoined

verdaderoTrue ;

In[26]:= grafica2representacListPlot

tablaTable nodo i , cola i , i, 1, 201 ,

estilo de reprePlotStyle

color RGBRGBColor 0, 0, 1 ,

puntos unidos?PlotJoined

verdaderoTrue ;

In[25]:=

muestraShow grafica1 , grafica2

Out[25]=

5 1 0 1 5

1 0 0

2 0 0

3 0 0

4 0 0

Figura 5.2.2. Gráfica que muestra la oferta y la demanda empleando el método de

Runge-Kutta para el modelo de Lotka-Volterra (rojo: oferta; azul: demanda).

(Elaboración propia).

Es el momento de introducir los datos de la tabla creada, referida a construcciones y

compras de viviendas con los que obtenemos los gráficos de la situación:

In[34]:= ofertarepresentación de listaListPlot 1, 129.6 , 2, 201.84 , 3, 298.44 , 4, 328.68 ,

5, 156.06 , 6, 90.12 , 7, 79.62 , 8, 93.48 , 9, 96.5 ,10, 110.28 , 11, 117.42 , 12, 172.86 , 13, 243.1 ,14, 325.32 , 15, 223.26 , 16, 85.5 , 17, 50.64 , 18, 35.52 ,19, 64.92 ,

estilo de reprePlotStyle

color RGBRGBColor 1, 0, 0 ;

In[35]:= demandarepresentación de listaListPlot 1, 20.4 , 2, 29.22 , 3, 44.76 , 4, 151.44 ,

5, 253.08 , 6, 178.74 , 7, 83.4 , 8, 58.2 , 9, 38.46 ,10, 41.82 , 11, 34.68 , 12, 37.2 , 13, 55.26 , 14, 85.5 ,15, 195.54 , 16, 218.22 , 17, 128.34 , 18, 69.96 , 19, 44.34 ,

estilo de reprePlotStyle

color RGBRGBColor 0, 0, 1 ;

In[36]:=

muestraShow oferta , demanda

Out[36]=

5 1 0 1 5

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

Clara López Calvo Página 35

Page 36: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

In[34]:= ofertarepresentación de listaListPlot 1, 129.6 , 2, 201.84 , 3, 298.44 , 4, 328.68 ,

5, 156.06 , 6, 90.12 , 7, 79.62 , 8, 93.48 , 9, 96.5 ,10, 110.28 , 11, 117.42 , 12, 172.86 , 13, 243.1 ,14, 325.32 , 15, 223.26 , 16, 85.5 , 17, 50.64 , 18, 35.52 ,19, 64.92 ,

estilo de reprePlotStyle

color RGBRGBColor 1, 0, 0 ;

In[35]:= demandarepresentación de lis taListPlot 1, 20.4 , 2, 29.22 , 3, 44.76 , 4, 151.44 ,

5, 253.08 , 6, 178.74 , 7, 83.4 , 8, 58.2 , 9, 38.46 ,10, 41.82 , 11, 34.68 , 12, 37.2 , 13, 55.26 , 14, 85.5 ,15, 195.54 , 16, 218.22 , 17, 128.34 , 18, 69.96 , 19, 44.34 ,

estilo de reprePlotStyle

color RGBRGBColor 0, 0, 1 ;

In[36]:=

muestraShow oferta , demanda

Out[36]=

5 1 0 1 5

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

Figura 5.2.3. Gráfica que muestra los valores estimados de la oferta y la demanda

(rojo: oferta; azul: demanda). (Elaboración propia).

El siguiente gráfico muestra los datos estimados y los datos obtenidos utilizando el

método de Runge-Kutta. Podemos comprobar que los datos estimados superan a los

datos en los primeros años. Ello es debido a que no ha existido otro momento en esos

años en los que hayan bajado tanto el número de oferta y de demanda de inmuebles. El

modelo nos da una visión puramente matemática, pero se compagina con la situación

económica real. Igualmente, no es descabellado esperar una futura elevación de las

compras y viviendas de inmuebles, ya que nos encontramos en un momento de

recuperación económica, por lo que los datos estimados seguirán el ciclo marcado.

In[37]:=

muestraShow grafica1 , grafica2 , oferta , demanda

Out[37]=

5 1 0 1 5

1 0 0

2 0 0

3 0 0

4 0 0

Figura 5.2.4. Gráfica conjunta de la Figura 5.2.2 y la Figura 5.2.3.(rojo: oferta; azul:

demanda). (Elaboración propia).

Clara López Calvo Página 36

Page 37: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

Expresaremos la órbita que representa la oferta y la demanda de viviendas, la

mostramos a continuación. El eje x muestra las construcciones y el eje y las compras de

viviendas (recordamos que expresamos las cantidades en miles de viviendas) y

punteamos los datos de nuestro estudio.

In[31]:= grafica3representacListPlot

tablaTable valor i , cola i , i, 1, 201 ,

estilo de reprePlotStyle

color RGBRGBColor 0, 1, 0 ,

puntos unidos?PlotJoined

verdaderoTrue ;

In[30]:= grafica4

representación de lis taListPlot 129.6 , 20.4 , 201.84 , 29.22 , 298.44 , 44.76 ,

328.68 , 151.44 , 156.06 , 253.08 , 90.12 , 178.74 , 79.62 , 83.4 ,93.48 , 58.2 , 96.5 , 38.46 , 110.28 , 41.82 , 117.42 , 34.68 ,172.86 , 37.2 , 243.1 , 55.26 , 325.32 , 85.5 , 223.26 , 195.54 ,85.5 , 218.22 , 50.64 , 128.34 , 35.52 , 69.96 , 64.92 , 44.34 ;

In[22]:=

muestraShow grafica3 , grafica4

Out[22]=

5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

Figura 5.2.5. Plano fase y punteo de los datos estimados de oferta y demanda. (Eje X:

oferta, eje Y: demanda). (Elaboración propia).

Podemos comprobar que se trata de una órbita que gira en torno al centro que se sitúa en

el punto de equilibrio indicado anteriormente donde la oferta y la demanda se

mantendrían indefinidamente si los valores iniciales correspondiesen al punto de

equilibrio.

Clara López Calvo Página 37

Page 38: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

Situándose cada punto en las construcciones y compras que representan los datos de la

tabla conforme cambia t. Así, cada punto está representado por las construcciones (eje

x) y las compras (eje y) estando dentro de la órbita calculada por el modelo de Lotka

Volterra y resuelto por el método de Runge-Kutta. Podemos observar que permanecen

todos los datos dentro de la estimación proporcionada por este estudio matemático.

Clara López Calvo Página 38

Page 39: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

6. CONCLUSIONES

Como hemos podido comprobar, el estudio de ecuaciones diferenciales ordinarias nos

permite conocer ciertos escenarios económicos que serían difíciles de representar sin las

debidas explicaciones matemáticas.

Las ecuaciones diferenciales están presentes en muchos aspectos de la vida cotidiana,

no siendo útiles en el campo de la física o la ingeniería únicamente. Podemos obtener

tipos de intereses, movimientos estacionales de compras de productos que se repitan con

el tiempo e incluso, como hemos comprobado con el modelo de Lotka-Volterra, analizar

el comportamiento del sector vivienda. Los diferentes métodos de resolución de

ecuaciones diferenciales ordinarias que hemos analizado, pueden ser utilizados para

analizar estos comportamientos.

En este trabajo, hemos utilizado el método de Runge-Kutta para analizar el movimiento

cíclico de la oferta y demanda de viviendas en los últimos años, ya que es el más usado

en la práctica en los sistemas de ecuaciones diferenciales de primer orden. Además, tal y

como hemos expuesto, es el método que menos error de truncatura tiene de los que

hemos elegido para operar, y por consiguiente, es el que nos ofrece resultados más

precisos realmente.

Finalmente, hemos tratado el método de Lotka-Volterra, por su gran utilidad en el

modelo presa-depredador, habitualmente utilizado para analizar poblaciones en el

ámbito de la biología y para el que hemos estudiado su posible aplicación económica,

tratando comportamientos que se repiten a lo largo del tiempo. Otras de sus aplicaciones

en el ámbito económico, podrían ser estudios de productos temporales que se adquieran

únicamente en cierto momento.

Como conclusión, este estudio ha sido de utilidad para demostrar la aplicación de las

ciencias matemáticas y experimentales en el ámbito económico, ofreciendo soluciones

aproximadas a situaciones reales y cotidianas.

Clara López Calvo Página 39

Page 40: INTRODUCCIÓN A LAS ECUACIONES …tauja.ujaen.es/bitstream/.../CLARA_LPEZ_CALVO_INTR… · Web viewFacultad de Ciencias Sociales y JurídicasGrado en Administración y Dirección

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS. APLICACIONES ECONÓMICAS.

7. BIBLIOGRAFÍA

[1] DOUGLAS FAIRES, J., BURDEN, R. Métodos numéricos. Ediciones Paraninfo

(2004) 3ª Edición. pp. 189-246

[2] DOUGLAS FAIRES, J., BURDEN, R Análisis numérico. México: International

Thomson Editores (2011) 9ª Edición. pp. 249-282

[3] NAVAS, J. Teoría de modelos continuos. Disponible en:

http://matema.ujaen.es/jnavas/web_modelos_empresa/archivos/archivos

%20pdf/teoria/teoria%20continuo/teoriacontinuo_mme_2017.pdf. pp.83-102

(Abril 2018).

[4] NAVAS, J. Laboratorio matemático. Disponible en:

http://matema.ujaen.es/jnavas/web_modelos_empresa/archivos/archivos

%20pdf/laboratorio/laboratorio%20mme_2017.pdf pp. 47-63(Abril 2018).

[5] NAVAS, J. Práctica 5 Modelo Lotka-Volterra. Laboratorio. Disponible en:

http://matema.ujaen.es/jnavas/web_modelos_empresa/archivos/archivos

%20pdf/laboratorio/practica5.pdf (Abril 2018).

[6] QUESADA, JM; SÁNCHEZ, C; JÓDAR, J; MARTÍNEZ, J. Análisis y métodos

numéricos. Universidad de Jaén (2004) 1ª Edición. pp. 483-509.

Clara López Calvo Página 40