ing gas principios y aplicaciones_ocr

355
Ingenieros Consultores, S.R.L. Ingeniería de gas, principios y aplicaciones. Marcías J. Martínez Edificio Residet~cias Las Américas, Torre Norte, Local No. 4. Calle Cecilio Acosta, entre avenidas Bella Vista y Santa Rita. Teléfonos: (061) 928482-92054 1 ; Fax: 928482. Celular: (O 14) 6 1261 3 Apartado Postal 10.0 11. Maracaibo - Venezuela

Upload: jose-luis-diaz-vargas

Post on 27-Oct-2015

592 views

Category:

Documents


17 download

TRANSCRIPT

Page 1: Ing Gas Principios y Aplicaciones_ocr

Ingenieros Consultores, S.R.L.

Ingeniería de gas, principios y aplicaciones.

Marcías J. Martínez

Edificio Residet~cias Las Américas, Torre Norte, Local No. 4. Calle Cecilio Acosta, entre avenidas Bella Vista y Santa Rita.

Teléfonos: (061) 928482-92054 1 ; Fax: 928482. Celular: (O 14) 6 1261 3 Apartado Postal 10.0 11. Maracaibo - Venezuela

Page 2: Ing Gas Principios y Aplicaciones_ocr

Este libro es propiedad exclusiva del profesor Marcías J. Martínez. Los derechos de autor han sido transferidos a la empresa Ingenieros Consultores, S.R.L.

Se prohíbe la reproducción parcial o total o su utilización en cursos dictados por otras instituciones o enmpsesa3, sin la debida autorización por escrito del propietario.

ISBN 980-07-1676-9

Page 3: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas. principios y aplicaciones

Pág . No . NOMENCLATURA, ABREVIATURAS Y SÍMBOLOS ................................... m11 AGRADECIMIENTO .............................................................................................. XXI ~ T R O D U C C I ~ N ......................................................................................................... 1 1 . características de 10s hidrocarburos ................................................................ 3 Composición tipica del gas natural en diferentes áreas de Venezuela ........................... 5 Composición del gas en el norte de Monagas ................................................................ 6 . . Composlclón de gases de Coh-lbia ............................................................................... 7 Composición de gases de Argentina .............................................................................. 8 Componentes típicos del gas en la industria .................................................................. 9 ~ontarninantes del gas natural ....................................................................................... 10 constantes físicas de 10s hidrocarburos .......................................................................... 11 Efectos del H2S .............................................................................................................. 17 . c~IT-~slon ........................................................................................................................ 19 Endulzamiento del gas natural . Efecto del H2S y del C02 ........................................... 20 Acidez ............................................................................................................................. 21 Porcentaje de gas en el aire y límite de inflamabilidad ................................................ 23 Yacimientos de gas condensado . Variaciones estimadas de la

. I composiclon ................................................................................................................... 24 Yacimientos de gas condensado . Clasificación del gas o liquido ................................. 25

111

Page 4: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas. principios y aplicaciones

Pág . No . ........................................................................ Gas ácido: Especificaciones de tuberías 26

Comparación de las escalas de temperatura: Absoluta, Centígrada y

F du-enheit ....................................................................................................................... 27 Estructura molecular de los hidrocarburos parafínicos. cíclicos y ~omáticos ...................................................................................................................... 28 FÓllnulas estructurales ................................................................................................... 29

30 Alcoholes y glicoles ........................................................................................................ Peso molecular vs . número de carbones de los hidrocarburos

Factor de corrección Para gases ácidos: (Fsk 0 E) ........................................................ 40 Composición típica del gas natural en diferentes áreas de Venezuela ......................... 41 Análisis de la muestra de gas de occidente asociado .................................................... 42 Diagrama de fases ~ccidente asociado .......................................................................... 43 Análisis de la nwestra de gas de Guárico libre, No . 1 .................................................. 46 Diagrama de fases ~uáf.ico libre, No . 1 ........................................................................ 47 Análisis de la muestra de gas de ~ ~ á r i c o libre, No . 2 ................................................. 48 Diagrama de fases Guárico libre, No . 2 ........................................................................ 49 Análisis de la muestra de gas de oriente libre ............................................................... 50 Diagrama de fases oriente libre ..................................................................................... 51 Análisis de la muestra de gas de oriente asociado ............. : .......................................... 52 Diagrama de fases oriente a!3ociado .............................................................................. 53 Análisis de la muestra de gas de costa dbera libre ....................................................... 54 Diagrama de fases costa afuera libre ............................................................................. 55 Análisis de la muestra de gas de Anzoátegui, sin agua ................................................ 56 Análisis de la muestra de gas de Anzoátegui, con agua ............................................... 57 Cálculo del contenido líquido en una muestra de gas natural (GPM) .......................... 58

Densidad de líquido de hidrocarburos a 14, 7 lpca y 6O0F. ........................................... 62

Page 5: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas. principios y aplicaciones

Pág . No . Corrección de la densidad del líquido por efectos de la compresibilidad .................... 63 Corrección de la densidad del líquido por expansión térmica ...................................... 64 Presión parcial de mezclas de gases .............................................................................. 65 Presión de vapor vs . temperatura para gasolina típica de motor y gasolina natural .............................................................................................................. 66 Presión de vapor para hidrocarburos livianos a baja temperatura ................................ 67

68 Presión de vapor para hidrocarburos livianos a alta temperatura ..............................S... viscosidad del gas .......................................................................................................... 69 Razón de capacidad calorífica aproximada de los hidrocarburos ................................ 70

Contenido de agua de 10s hidrocarburos ....................................................................... 97 Contenido de agua en el gas natural dulce .................................................................... 98 Correlación de R . Bukacek para calcular el contenido de agua (W) en el gas .......................................................................................................................... 99 Contenido de agua del C02 saturado en mezcla de gas natural ................................. 100

Contenido de agua en el C02 ....................................................................................... 101 Contenido de agua del H2S saturado en mezclas de gas natural ................................ 102 Contenido de agua en el H2S ....................................................................................... 103 Curva de presión . temperatura para predecir la formación de hidratos .................... 104 Temperatura a la cual se forman hidratos .................................................................... 105 Expansión permisible sin formación de hidratos para un gas natural

Page 6: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas. principios y aplicaciones

PBg . No . Expansión permisible sin formación de hidratos para un gas natural

de Y . 0,7 ...................................................................................................................... 107 Expansión permisible sin formación de hidratos para un gas natural A !

de Y = 098 ...................................................................................................................... 108 Expansión permisible sin formación de hidratos para un gas natural

- de Y - 099 ...................................................................................................................... 109 Expansión permisible sin formación de hidratos para un gas natural

- de?- 190 ....................................................................................................................... 110 Descenso de temperatura del gas natural por efectos de la expansión ........................ 111 Equipo para la determinación del punto de rocío tipo Bureau of Mines .................... 112 5 . Compresibilidad del gas natural .................................................................... 115 Leyes de 10s gases ......................................................................................................... 117 Factor de compresibilidad del gas natural .................................................................... 118 Gráfico generalizado del factor de compresibilidad a varias presiones

119 reducidas ........................................................................................................................ Factor de compresibilidad del gas a presión atmosférica ........................................... 120 Propiedades seudocríticas de los hidrocarburos ......................................................... 121 Propiedades seudocriticas de los hidrocarburos líquidos ........................................... 122 Factor de compresibilidad para gases de bajo peso molecular ................................... 124 . . Ejercicio de aplicación ................................................................................................. 130 6 . Comportamiento de los sistemas de hidrocarburos .................................... 133 Procedimiento práctico para investigar el estado de una muestra de gas natural a Ckterminada presión y temperatura ........................................................ 137 Determinación del estado de una mezcla de hidrocarburos ....................................... 138 Ecuaciones para el cálculo de la separación instantánea de los

hidrocarburos ................................................................................................................ 140 Separación instafltánea a 600 lpca y -20°F ................................................................. 143 Cálculo de la presión de convergencia . (Según el GPSA) .................................... 145 Diagrama de presión temperatura para un gas seco .................................................... 146 Diagrama de fases (Soave, Redlich, Kwong) ............................................................. 147 Diagrama de puntos de rocío Carito oeste y Furrial ................................................. 148 Diagrama de P-T para un petróleo relativamente volátil o de alta merma ................. 149

Page 7: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas. principios y aplicaciones

Pág . No . Diagrama de presión . temperatura para un petróleo relativamente pesado (baja merma) .................................................................................................... 150 Diagramas P-T para un sistema de hidrocarburos multicomponente ......................... 151 Diagrama presión-temperatura para un sistema etano-heptano normal ..................... 152 Diagrama presión temperatura para un sistema metano-etano-heptano .................... 154 Presión de convergencia (o lugar geométrico de los puntos críticos) Para skmnas barios .................................................................................................. 156 presión de convergencia para sistemas binarios ......................................................... 157 Diagrama de frises vapor, mezcla y líquido m-% Robinson) .................................... 158 Valor aproximado de la presión de convergencia . Método de Standing ........................................................................................................................ 160 Valor aproximado de la presión de convergencia . Método de Rzasa Y otros ........................................................................................................................... 161 . r

Preslon de convergencia .............................................................................................. 162 Correlación del valor mínimo de la constante de equilibrio Km, con la

presión de convergencia Pk y la presión de vapor del componente Po ...................... 163 Correlación de la presión a la cual ocurre el valor mínimo de constante de equilibrio PrnK. con la presión de convergencia Pk y la presión

7 . Separadores ...................................................................................................... 165 Ejemplo de cálculo de una batería de separadores ...................................................... 167 Balance de materiales en una batería de separadores ................................................. 168 Separador No . 1 ............................................................................................................ 169

r

Com~araclon de 10s valores de "Kit' ............................................................................ 171 Diagrama de fases- Mezcla en el separador No . 1 ...................................................... 172 Diagrama de fases . Vapor del separador No . 1 ........................................................... 173 Diagrama de faes • Líquido del separador No . 1 ........................................................ 174 Diagramas de fases mezcla en el separador No . 1 (Soave, Redlich,

Kwong y el de Peng Robinson) ................................................................................... 175 Diagrama de fases vapor del separador No . 1 (Soave, Redlich, Kwong Y el de Peng Robinson) ................................................................................... 176 Diagramas de fases líquido en el separador No . 1 (Soave, Redlich, Kwong Y el de Peng Robinson) ................................................................................... 177

Page 8: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas. principios y aplicaciones

Pág . No . Diagrama de fases mezcla del yacimiento (Peng Robinson) ...................................... 178 GPM vs . Presión (Vapor que sale del separador No . 1) ............................................. 179 Comportamiento del GPM y "V" vs . presión en el separador No . 1 .......................... 180 GPM-Vapor vs . Presión. Separador No • 1 .................................................................. 181 Separador No . 2 ............................................................................................................ 182 Diagrama de fases. líquido y vapor del separador No . 2 (Soave. Redlich. Kwcng y Peng Robinsofi) ............................................................................. 184 Tanque .......................................................................................................................... 185 Separador No . 2 (Optimado) ....................................................................................... 187

f

Líquido en el tanque vs . preslon .................................................................................. 189 Tanque (Optimado) ...................................................................................................... 190 Composición del gas y del líquido en un proceso de separación en tres etapas ..................................................................................................................... 192 Balance molar y de materiales en una batería de separadores .................................... 193 Cálculo de una batería de dos separadores y un tanque .............................................. 194 Cálculo de una batería de separadores en tres etapas ................................................. 195 8 . Normativa de Petróleos de Venezuela S.A. (PDVSA)

para el diseno de separadores ........................................................................ 197 Parámetros necesarios para disefiar un separador ....................................................... 199 Diseño de un separador vertical según GPSA ............................................................ 200 Diseño de un separador vertical según PDVSA ......................................................... 201 Separador vertical (gas, petróleo) ................................................................................ 202 Cálculo del diámetro de un separador ......................................................................... 203 Presión de trabajo en líneas de transmisión ................................................................ 206 Diseño del espesor de pared de un separador ............................................................. 207 Esfuerzo permisible para algunos materiales .............................................................. 208

. . Separadores verticales . Caracteristicas ........................................................................ 209 Sepadores horizontales . Características ................................................................... 210 Separadores esféricos . Características .......................................................................... 211 Diseño de separadores verticales ................................................................................. 212 Diseño de separadores horizontales (gas-petróleo) .................................................... 218 Separador horizontal (gas-petróleo-agua) ................................................................... 222 Diseño de separadores horizontales (gas-petróleo-agua) ........................................... 223

Page 9: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas. principios y aplicaciones

Pág . No . 9 . Constantes de equilibrio. según J . M . Campbell ......................................... 229

10 . Constantes de equilibrio. según GPSA ......................................................... 245

1 - Fraccionamiento .............................................................................................. 273 Procesos en el tratamiento del gas natural .................................................................. 275 Esquema de una torre de fraccionamiento .................................................................. 276 Burbujeo de 10s fluidos dentro de la torre ................................................................... 277 . . . Destilacion fraccionada ................................................................................................ 278 Esquema de una torre de fraccionamiento .................................................................. 279 Tren de fraccionamiento .............................................................................................. 280 Esquema de una planta de gasolina ............................................................................. 283 Separación de un fluido en una torre de fraccionamiento

(depropanizadora) ........................................................................................................ 284 Diagrama de fases presión-temperatura de los productos de entrada y salida en una columna depropanizadora ..................................................................... 286 Composición de los hidrocarburos en la torre depropanizadora ................................ 287 Composición de los hidrocarburos que llegan y salen de la torre depropanizadora ........................................................................................................... 288 Composición de los hidrocarburos en la torre debutanizadora .................................. 289 Composición de los hidrocarburos que llegan y salen de la torre

debutanizadora ............................................................................................................. 290 Composición de los hidrocarburos en la separadora de butanos ................................ 291 Composición de los hidrocarburos que llegan y salen de la separadora

de butanos ..................................................................................................................... 292 Composición de los hidrocarburos en la fraccionadora de gasolina .......................... 293 Composición de los hidrocarburos que llegan y salen de la fraccionadora de gasolina ............................................................................................ 294 Correlación del factor de absorción "A" y de despojamiento "S" ............................. 295

12 . Sistemas binarios ............................................................................................. 297 Planta de deshidratación con TEG .............................................................................. 299 Diagrama binario agua Tm a 760 mm Hg (absoluta) ............................................... 300 Tamaño de 10s absorbedores ........................................................................................ 303 Capacidad de los absorbedores de glicol, para y = 0, 7 y T = 100°F .......................... 304

Page 10: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas. principios y aplicaciones

Pág . No . Tamaño de las columnas de fraccionamiento para los deshidratadores de glicol ........................................................................................................................ 305 Carga calorífica vs . lbs de agua removida en el regenerador ..................................... 306 % por peso de TEG en una solución rica que deja el absorbedor .............................. 307 Solubilidad del gas nam-al en TEG ............................................................................. 308 Gravedad específica de la solución 95% - 100% TEG .............................................. 309 Número de platos reales de TEG a 98, 7 % plp ........................................................... 310 Número de platos reales de TEG a 99, 1 % p/p ............................................................ 311 Número de platos reales de TEG a 99, 7 % p/p ........................................................... 312 Número de platos reales de TEG a 9944 % plp ......................................................... 313 Número de platos reales de TEG a 99, 9 % plp ........................................................... 314 Número de platos reales de TEG a 99, 95 % p/p ......................................................... 315 . . Ejercicios de aplicaclon ............................................................................................... 316 13 . Ejemplo de un sistema de deshidratación con desecantes

sólidos ................................................................................................................ 319 Ejemplo de un sistema de deshidratación con desecantes sólidos ............................. 321

. . pro~lema de adsorclon ................................................................................................. 322 14 . Endulzamiento del gas natural ...................................................................... 325 Principales equipos de una planta de amina ................................................................ 327 Planta genérica de endulzamiento ............................................................................... 328 pr~ceso típico de amina ............................................................................................... 329 procesos para el endulzamiento del gas nah.lral .......................................................... 330 Cálculo de la presión parcial en una muestra de hidrocarburos ................................. 333 Procesos de endulzamiento de gas, remoción de C02 y H2S

simultáneamente ........................................................................................................... 335 Procesos de endulzamiento de gas, remoción selectiva de H2S (COZ y

H2S presente) ................................................................................................................ 336 Procesos de endulzamiento de gas. remoción de C02 (H2S no presente) ................. 337 Procesos de endulzamiento de gas. remoción de H2S (Coz no presente) .................. 338 Operaciones de rutinas en la planta ............................................................................. 339 Datos operacionales, balance de materiales y de calor ............................................... 340 Diagrama binario agua-MEA a 760 mm Hg (absoluta) ............................................. 341

Page 11: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas. principios y aplicaciones

Pág . No . Puntos de burbujeo y temperatura de condensación para soluciones de monoetanolamina . agua a varias presiones ........................................................... 345 Puntos de burbujeo y temperatura de condensación para soluciones de monoetanolamina . agua a bajas presiones absolutas ............................................ 346 Diagrama binario MDEA/agua a bajas presiones ....................................................... 347 Diagrama binario COdagua a varias presiones ........................................................... 348

. . S . . I 349 .................................................................................................. E~ercicio de aplicacion Planta típica de endulzamiento: condiciones de operación ........................................ 351 Características del solvente ñ4DEA ............................................................................ 353 Absorbedor de la planta de amina ............................................................................... 354 Regenerador de la planta de amina .............................................................................. 355 Balance de energía entre las torres .............................................................................. 356 Cálculo del diámetro del absorbedor de mina ........................................................... 357 15 . Factores de conversión de unidades ............................................................. 359 16 . Glosario de t4rminos ....................................................................................... 367 REFERENCIAS ......................................................................................................... 383

Page 12: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

NOMENCLATURA, ABREVIATURAS Y SÍMBOLOS

A Abs ABW

Ag a.m. A0 MI As Aw B bls BSB BTUIgal líq. BTUIlbs

área. absoluto. Petroleum Reservoir Engineering, Physical Properties, J. Arnyx, D. Bass y R. Whiting, 1960. área para el gas. antes meridiano. área para el petróleo. Arnerican Petroleum Institute. área del separador. área para el agua fracción de H2S. barril o barriles. Black, Sivalls & Bryson Inc. e

unidades térmicas británicas por galón de líquido. unidades térmicas británicas por libra.

BTU/(lbs."F) unidades térmicas británicas por libra, grado Fahrenheit. BTüIlbs líq. unidades térmicas británicas por libra de líquido. BTUIPC unidades térmicas británicas por pie cúbico. ~ T U l ~ i e ' gas unidades térmicas británicas por pie cúbico de gas. c1 metano.

XIII

Page 13: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Continuación ... C2 etano. C3 propano. c3+ propano y más pesados. c6 hexano. c; hexano y más pesados. c7 heptano. ~ 7 1 heptano y más pesados. C8 octano. C9 nonano. c l o decano. CO monóxido de carbono. C.O. condiciones de operación co2 dióxido de carbono. U pulgada o pulgadas.

COS sulfuro de carbonilo.

CPS centipoise o centipoises. cs2 disulfuro de carbono. cte constante.

A variación. Delta. D diámetro. DEA dietanolamina. DEG dietilénglicol. DGA diglicolamina. día día o días. Dv diámetro del separador. De diámetro externo. Di diámetro interno. Db diámetro de boquilla. ETG etilénglicol. F moles totales. Fe hierro.

Fe203 óxido de hierro. Fe304 óxido de hierro.

XIV

Page 14: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

l Continuación ... \ FeC03 carbonato de hierro.

Fe0 óxido de hierro. FeS sulfbro de hierro.

l

1 Fsk o & factor de corrección por presencia de C02 y H2S.

grado o grados.

grados API.

grados centígrado.

grados Fahrenheit.

I OR grados Rankine.

1 "K grados Kelvin.

t Y gravedad especifica.

Yg gravedad específica del gas.

Y1 gravedad específica del líquido.

Ya gravedad específica del agua. GA gas ácido. gaV1 O00 pie3 galones por mil pies cúbicos. gaVlb.mo1 galones por libra mol.

l i gaVlbs H20 galones por libra de agua.

GPM galones por mil pies cúbicos.

1 gpm galones por minuto. 9 - Gas Processors Suppliers Association. Engineering Data Book.

\

granos granos. gramo o gramos. hidrógeno. ácido carbónico. agua. sulfuro de hidrógeno. altura del casquete del separador. altura entre el casquete y el tope del extractor de niebla. altura del extractor de niebla. altura entre el fondo del extractor de niebla y el tope de la boquilla de entrada.

Page 15: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Continuación ... h4 altura de la boquilla. h5 altura entre el fondo de la boquilla y el tope del nivel de líquido. h6 altura para el líquido. h7 altura adicional para el líquido. hl altura para el líquido. hs altura en el separador. iC4 isobutano. iC5 isopentano. IGT Institute of Gas Technology. IGV Industria del Gas en Venezuela, Corpovén S.A. JMC Gas Conditioning and Processing, Campbell Petroleum Series,

1988. K constante de Scruders-Brown.

K m 3 carbonato de potasio. KCALIMC kilocaloría o kilocalorías por metro cúbico. Ki constante de equilibrio. L longitud costura a costura del separador. 1b.mol libra o libras expresadas en moles. lbs libra o libras. lbslgal libra o libras por galón. lbs/lb.mol libras por libra mol. lbs/MM pcn libras por millón de pies cúbicos a condiciones nomales. 1bslpie3 libra o libras por pie cúbico. La longitud para ei petróleo en separador horizontal. lpc libras por pulgadas cuadradas. lpca libras por pulgada cuadrada absoluta. lpcin libras por pulgada cuadrada manométrica Lw longitud para el agua en separador horizontal. M peso molecular.

metro o metros cúbicos. m3 metro o metros cúbicos. MDEA metildietanolamina. MEA monoetanolamina.

XVI

Page 16: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Continuación ... Mgrs miligramo o miligramos. min minuto o minutos. min mínimo.

P viscosidad. n números de moles. N2 nitrógeno. na número de moles de agua.

nC4 butano normal. ncs pentano normal. ng número de moles de gas.

O2 oxígeno. O factor acéntrico. P presión. P1 presión final. p3 pie o pies cúbicos. P&- 0 PagS- Página o páginas. Pc presión seudocrítica. Pc' presión seudocrítica corregida por acidez. Pci presión crítica del componente i.

Pcn pie o pies cúbicos a condiciones normales. PDVSA Petróleos de Venezuela, S.A.

PH - acidez o basicidad. pie2 pie o pies cuadrado. pie3 pie o pies cúbicos. pie311bs pie o pies cúbicos por libra. pie3 gasllbs pie o pies cúbicos de gas por libia. pie31gal líq. pie o pies cúbicos de gas por galón de líquido. Pk presión de convergencia. Po presión inicial.

POP presión de operación. % plp porcentaje por peso. % vol porcentaje por volumen.

PPm,P partes por millón, por peso. -- -

XVII

Page 17: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Continuación ... P P ~ , P / ~ partes por millón, peso sobre volumen.

PPmv partes por millón, por volumen. PR Peng Robinson. Pr presión reducida. ptc seudotiempo de contacto. P-T presión-temperatura. Pv presión de vapor.

~ u l g pulgada o pulga@. P U ~ S pulgada a pulgadas. Q tasa, flujo o caudal. Qg tasa, flujo o caudal de gas.

Qg(cn) tasa, flujo o caudal de gas a condiciones normales.

Qg(c0) tasa, flujo o caudal de gas a condiciones de operación. Ql tasa, flujo o caudal de líquido. Qo tasa, flujo o caudal de petróleo. Qw tasa, flujo o caudal de agua.

P densidad.

Pm R R. P.P.

RSH

seg sPc SRK sTc E T T1 Tc

densidad del gas.

densidad del líquido.

densidad de la mezcla. constante universal de los gases 10,732 lpca x pie3 l 1b.mol x OR. Ingeniería de gas, propiedades y comportamiento de fases, Ramiro Pérez Palacio. mercaptanos. segundo o segundos. presión seudocritica. Soave, Redlich, Kwong. temperatura seudocritica.

sumatoria. temperatura. temperatura final. temperatura seudocritica.

XVIII

Page 18: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Contin~ación.~. Tc' temperatura seudocrítica corregida por acidez. Tci temperatura crítica del componente i. Tcn temperatura a condiciones normales. TEA trietanolamina. TEG trietilénglicol. To temperatura inicial.

TOP temperatura de operación. Tr temperatura reducida. tr tiempo de retención. U.C. Gas Treating Chemicals, Union Carbide, Petroleum Processing

Chemicals and Additives. V moles de vapor. VI volumen final. Va volumen de agua. Vb velocidad en la boquilla. Vc velocidad crítica del gas. VCB valor calorífico bruto. VCN valor calorífico neto.

v g velocidad del gas en el separador. V1 volumen de líquido. Vliq. volumen de líquido. Vo velocidad del petróleo en el separador. Vo volumen inicial. vol volumen. Vs volumen del separador. Vw velocidad del agua en el separador. W tasa másica. Wa tasa másica del agua.

w g tasa másica del gas. Wl tasa másica del líquido. Ww tasa másica de agua. xi fracción molar del componente líquido.

~i fracción molar del componente vapor.

XIX

Page 19: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Continuación ... Z factor de compresibilidad del gas. Z1 factor de compresibilidad final. Zcn factor de compresibilidad a condiciones normales. zi fracción molar del componente en la mezcla Zo factor de compresibilidad inicial.

ZOP factor de compresibilidad a condiciones de operación.

Page 20: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

AGRADECIMIENTO

Con el fin de facilitar el uso de la información más comiin en el área de la ingeniería de gas, se ha organizado esta serie de tablas y figuras, con la cual los usuarios tendrán, al alcance de la mano, el soporte técnico requerido en los diseños.

En la mayoría de los casos, las gráficas presentan el reconocimiento de la autoría intelectual, lo cual se identifica con los sellos representativos de las publicaciones de donde han sido tomadas. En este sentido, es importante destacar los méritos que le corresponden a la Asociación de Productores y Procesadores de Gas de los E.U.A. (GPSA).

Este material se usa como una guía en algunos cursos básicos de ingeniería de gas en Venezuela y en el resto de Latinoamérica. Ha sido preparado con el fin de facilitar el ingreso a este campo de la ciencia de muchos estudiantes y profesionales jóvenes, que en ocasiones se sienten sin la ayuda bibliográfica necesaria para dar su apoyo, en lo referente a la transferencia de la tecnología.

Cuando algún estudioso tiene la oportunidad de asistir a los seminarios y talleres, esta recopilación informativa le abre las puertas para continuar aprendiendo. Este es un primer peldaiio para hacer más fácil el aprendizaje en los cursos superiores que se ofrecen internacionalmente: Quizás el principal aporte lo sea el hecho de que - presentada en espaíiol y en un lenguaje sencillo, accesible a todos - asegure el interés de los estudiosos en escudriñar esta materia.

XXI

Page 21: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

El profesor Marcías Martínez desea agradecer la colaboración de todas las personas, instituciones y empresas que, de alguna manera, han dado su aporte para que este material sea utilizado, tanto a los que permitieron el uso de la información técnica como a los que -con sus consejos verbales- introdujeron alguna pequefia innovación que nosotros, a su vez, hacemos llegar hasta los lectores.

XXII

Page 22: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Al revisar esta recopilación de figuras y tablas, el lector llegará a la conclusión de que lo que aquí se ofrece es un compendio de uso cotidiano en la industria del gas natural. A menudo, al tratar de transferir la información inherente a esta área, aparecen obstáculos que se derivan de la necesidad de poseer una biblioteca especializada al alcance de la mano, que le permita al estudiante disponer, en forma rápida, de la multitud de parámetros y datos específicos que se requieren en este campo del saber.

Al principio, el dictado de cursos de gas se soportaba en toda la materia entregada por la GPSA en sus manuales, cuyo aporte es de tal valor que no es posible imaginar a un usuario de estos conocimientos que no tenga esos libros para la consulta diaria. Sin embargo, no disponíamos de la composición del gas en cada uno de los yacimientos ni del análisis de la muestra que específicamente se utilizaba ni de muchas otras figuras que, en la medida en que se profundiza en los diversos temas, se convierten en indispensables. Parecía, entonces, necesario mejorar el soporte técnico y complementar las tablas para que los cursos pudieran impartirse sin limitaciones elementales. Así fue apareciendo esta recopilación, todavía incompleta; pero con suficientes datos como para sacar de apuros a los ingenieros y técnicos.

El texto está formado por dos niveles fundamentales de información: uno básico y el otro aplicado. En la parte básica se cubre lo inherente a las características de los hidrocarburos, composición del gas, cálculo de mezclas de hidrocarburos, análisis cromatográfico, contenido de agua en el gas natural, factor de compresibilidad

Page 23: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

y comportamiento de los fluidos. La segunda parte se refiere a las aplicaciones de los fundamentos del gas natural, en lo cual se trabaja con separadores, fraccionamiento, deshidratación y endulzamiento.

El estudiante irá revisando cada una de las páginas y encontrará un conjunto sumamente útil en el ejercicio de la profesión. Al principio tratará de conocer cómo se comporta el gas y, luego, se irá familiarizando con los diseños que suelen emplearse en la industria

A pesar del esfuerzo que se viene haciendo para introducir el sistema internacional de medidas, se utilizan las unidades más comunes en el mundo petrolero. Todavía falta mucho para que el nuevo sistema de medidas se estabilice en el nivel internacional. En todo caso, se agrega al final una tabla para la conversión de unidades.

Page 24: Ing Gas Principios y Aplicaciones_ocr

1 Ingeniería de gas, principios y aplicaciones

Características de los hidrocarburos.

Esta sección empieza con una serie de muestras representativas del gas de

Venezuela. De la misma forma, se incluyen otros gases característicos de Colombia y

Argentina, países en los cuales se ha venido utilizando esta información durante los

últimos años.

Se mencionan los principales elementos indeseables que suelen aparecer

conjuntamente con el gas natural, sus efectos sobre las instalaciones, las personas y el

ambiente en general. Es imprescindible que el estudiante conozca las cantidades de

cada uno de estos contaminantes que pueden ser aceptadas en el gas, así como los

procedimientos usados para detectar su presencia entre los hidrocarburos. El término

ppm debe ser manejado con toda claridad y, en? ese sentido, las conversiones e

interpretaciones simultáneas sobre ppm,v; ppm,p, ppm,p/v, fracción molar y

porcentaje o fracción volumétrica o por peso tienen que ser interpretados con absoluta

seguridad.

Se agregan las tablas sobre las características de los componentes más comunes

en el gas natural, recopilada por la GPSA, que es la información más completa

publicada en la literatura universal.

Page 25: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Es necesario que el lector se familiarice con estas ideas antes de iniciar el

examen de las mezclas.

Luego, se estudian los diversos tipos de hidrocarburos (gas, petróleo y condensado) y se dan lineamientos que permitan clasificar cada una de estas mezclas.

En ocasiones es difícil explicar cuándo un gas natural pasa a ser un condensado y qué

elementos diferencian en la superficie al petróleo del condensado.

Se completa el capítulo con tablas adicionales, tales como las que contienen las

especificaciones del gas que debe ser conducido por tuberías, la estructura molecular

de los hidrocarburos y una ecuación para conocer el peso molecular y la gravedad específica de cualquier integrante de la cadena parafinica, a partir del número de

carbonos. Esta correlación se aplica en mezclas de hidrocarburos.

Page 26: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 27: Ing Gas Principios y Aplicaciones_ocr

Composición del gas del norte de Monagas

(% molar)

Ubicación Musipán Carito Carito Norte Carito Oeste El Tejero Furrial

GPM C$ 2,88 2,75 2,79 2,43 2,50 4,25

Page 28: Ing Gas Principios y Aplicaciones_ocr

Composición de gases de Colombia (% molar)

Zona

C3 iC4 nC4 iC5 nC5 C6 C7+ Total GPM M

Cusiana Lisama 5,OO 0,42 0,65 0,61 0,03 - - -

78,32 90,09 9,40 7,20 3,89 1 ,O3 0,81 0,15 0,99 0,50 0,34 - 0,24 0,19 - 0,14 -

100,oo 100,oo 2,OO 0,49

21 -27 17.81

Provincia 0,75 0,35

G uaij ra Huila 0,48 1,35

Page 29: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 30: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 31: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 32: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Constantes fisicas de los hidrocarburos

Referencia: GPSA-87

11

e .B ,z 1 2 3 4 5

6 7 8

9 10 11 12 13

14 15 16 17 18 19

21

22 23 24 25 26 27

29 30

31

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49

50 51 52

54 55

56 57 58 59 60 61 62 63 64

Componentes

Meíano Etnno Propano Isobutano n-Butano

Iso entano n-Atano Neopentaiio

n-Hexano 2-Metüpcntano 3-Metilpentano Neohexano 23-Mmeüibutano

n-Ileptano 2-MeWiexano 3-Meülhexano 3-Eüi ntano 2,2-&eapentano 2,4-meapentnno

203.3-Dimetüpentano Triptano

n-Octano Dbbut l l Isooetano n-Nonnno n-Decano Clclopentano

28Metilciclopentano Ckiohexano MeHldclohexano

Eteno (Effleno) 32Propeno@opUeno)

1-Buteno(Butilen0) Cis-2-Buteno Trans-l-Buteno Isobuteno 1-Penteno 1.2-Butadleno 1.3-Butadieno lsopreno

Acetüeno Benceno Tolueno Eülbenceno o-XUeno m-Xileno pXileno &tlreno Isopropllbenceno

Alcohol metiiíco Alcohol etilico Mon6rido de carbono

53Dlóxododecarbono Sulfuro de hidrógeno Di6xido de azufre

Amoníaco Aire Hidrógeno Oxígeno Nltrógeno cloro Agua McUo Clmniro de htdr6geno

A. B. C. D.

a EL O Y

L

Constantes críticas Cr Ov -

h

h

CH4 CzHs C3Hn C4Hio C4Hlo

C5Hi2 CsHiz CsHiZ

CsHi4 C6Hi4 C6Hi4 CsHi4 CsHi4

C7Hl6 C7Hib C7Hi6 C7Hi6 C7Hi6 C7Hic C7Hi6 CiHi6

CnHin CsHin CBHIM C9Hzo C I O H ~ CSHIO CcHiz CsHi2 CíHir

CZHI CsHb C4Hn C4Hn C4Hw C4Ha CSHIO C4Hs C4Hh CsHs

CzHz CsHb C7Hn CsHin CsHin CaHin CiHin CnHn CgHiz

CHIO CZHIO CO COZ HZ S COZ

NH3 Nz+Oz Hz 02 N z Ctz HzO He HC I

16.043 30.070 44.097 58.123 58.123

72.150 72.150 72.150

88.177 86.177 86.177 86.177 86.177

100.204 100.204 100.204 100.204 100.204 100.204 10.204 100.204

114.231 114.231 114.231 128.258 142.285 70.134 84.161 84.161 98.188

28.054 42.081 56.108 56.108 56.108 56.108 70.134 54.092 54.092 68.119

26.058 78.114 92.141

106.167 106.167 106.167 106.167 104.152 120.194

32.042 46.069 28.010 44.010 34.08 64.06

17.0305 28.9625-317.8 2.0159

31 -9988 28.0134 70.906 18.0153 4.0026

36.461

-258.73 -127.49 -43.75

10.78 31.08

82.12 96.92 49.10

155.72 140.47 145.89 121.52 136.36

209.16 194.09 197.33 200.25 174.54 176.89 186.91 177.58

258.21 228.39 210.63 303.47 345.48 120.65 161.25 177.29 213.68

-154.73 -53.64 20.79 38.69 33.58 19.59 85.93 51.53 24.06 93.31

-120.49. 176.18 231.13 277.16 291.97 282.41 281.07 293.25 SO6.M

148.44 172.90

-312.68 -109.257. -76.497

14.11

-27.99

-422.955. -297.332+ -320.451 -29.13 212.000.

-452.09 -121 .27

(5000 • (m]*

1$8.64 72.581 51.706

20.445 15.574 36.69

4.9597 6.769 6.103 9.859 7.406

1.620 2.272 2.131 2.013 3.494 3.293 2.774 3.375

0.53694 1.102 1.709 0.17953 O.ObM18 9.915 4.503 3.266 1.609

%!?)* 62.10 45.95 49.87 63.02 19.12 36.53 59.46 16.68

- 3.225 1.035 0.3716 0.2643 0.3265 0.3424 0.2582 0.1884

4.629 2.312 - -

394.59 85.46

211.9 - - - -

157.3 0.9501 -

906.71

-296.441 -297.04. -505.73, -255.28 -217.05

-255.82 -201.51

2.17

-139.58 -244.62 - -147.72 -199.58

-131.05 -180.89 - -181.48 -190.W -182.63 -210.01 -12.81

-70.18 -132.11 -161.27 -64.28 -21.36

-136.91 -224.4

43.77 -195.87

-272.47, -501.451 -301.63. -218.06 -157.86 -220.65 -265.39 ~213.16 -164..02 -230.73

-114.5. 41.95

-139.00 -138.966 -13.59 -54.18 55.83

-23!10 -140.814

-143.79 -173.4 -537.001 -69.83.

-121 .88* -103.66.

-107.88. - -435.26- -361.820* -348.001 -149.73.

32.00 - -173.52.

1.00042+ 1.20971. 1.29480. 1.3245. 1.33588i

1.35851 1.35992 1.542,

1.37708 1.37587 1.37888 1.37126 1.37750

1.38989 1.38714 1.39091 1.39566 1.58446 1 .M379 1.58564 1.39168

1.39956 1.39461 1.38624 1.40746 1.41385 1.40896 1.41218 1.42862 1.42558

(1.228 1.31Jb. 1 .S4941 1.36651 1.356Ss 1.3512. 1.37426 - 1.3975. 1.42488

- 1.50396 1.49942 1.49826 1.50767 1.49951 1.49810 1.54937 1.49372

1.33034 1.36346 1.00036b 1.00040+ 1 .00060* 1.00062.

1.00036r 1.00028+ 1.00013+ 1.OW27r 1.00028r 1.3878. 1.35335 1.00003+ 1.000421

666.4 706.5 616.D 527.9 550.6

480.4 488.6 464.0

436.9 436.6 453.1 446.8 453.5

396.8 396.5 408.1 419.3 402.2 386.0 427.2 428.4

360.7 360.6 372.4 331.8 305.2 653.8 548.9 590.8 503.5

731.0 668.6 583.5 612.1 587.4 580.2 511.8

(%;3 (558.).

890.4 710.4 595.5 523.0 541.6 512.9 509.2 587.6 465.4

1174. 890.1 507.5

1071. 1300. 1143.

1646. 546.9 188.1 731.4 493.1

1157. 3188.8

32.99 1205.

-116.67 8 9 . 2

206.06 274.46 505.62

385.8 321.13

453.6 435.83 448.4 420.13 440.29

512.7 495.00 503.80 513.39 477.23 475.95 505.87 496.44

564.22

519.46 610.68 852.0 461.2

5J6.6 570.27

40.54 197.11 295.48

311.86 292.55

(M.)* 305.

(412.).

95.54

505.57 651.29 674.92 651.02 649.54

(703 l 676:1

463.08 405.39

-220.43 87.91

21 2.45 315.8

270.2 -221.31 -399.9 -181.43 -232.51

705.16 -450.31

124.77

0.0988 0 . 0 7 0.0727 0.0714 0.0703

369.100.0679 0.0675 0.0673

0.0688 0.0682 0.0682 0.0667 0.0665

0.0691 0.0673 0.0646 0.0665 0.0665 0.0668 0.0662 0.0636

0.0680 530.440.0676

0 . W 0.068) 0.0679 0.0594

489.350.0607 0.0586 0.0800

0.0746 0.0689 0.0885

324.370.0668 0.0679 0.0682

376.930.0676 0.085).

(0.0654 (0.065).

0.0695 552.220.0531

0.0550 0.0565 0.0557 0.0567 0.0570 0.0534 0.0572

0.0590 0.0581 0.0532 0.0544 0.0461 0.0505

0.0881 0.0517 0.5165 0.0367 0.0510

290.750.0280 0.0497q 0.2300 0.0356

1 2 3 4 5

6 7 ti

9 10 11 12 13

14 15 16 17 18 19 20 21

22 23 24 25 26 27 28 29 JO

31 32 33 S4 35 36 37 30 39 40

41 42 43 44 45 46 47 48 49

50 51 52 53 54 55

56 57 58 59 60 61 62 63 M

Page 33: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Constantes físicas de los hidrocarburos

Page 34: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Constantes físicas de los hidrocarburos

Referencia: GPSA-87

-9 Z 1 2 3 4 5

6 7 8

9 10 11 12

14 15 16 17 18

21

22 23 24 25 26 27

29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49

50 51 52 53

55

56 57 58

61

K L M , LMte de infla- NUmei.o de Valor calonfíco, 60°F mabllidad, octanos

Neto Bmto %vol ASTM

Componentes 8

Metano Etano Propano Isobutano n-fkitano

Isopentano n-Pentano Neopentano

n-Heuno 2-MetU entano ~ - ~ e d ~ t a n o Neohesano

1323-Dimetllbutano

n-Hrptano 2-Metilhexano 3-Metilhexano 3-EtU ntano 2.2-&etllpentano

192,4-Dimeapmtano 203.3-Dimetupentano

Triptano

n-Octano Diisobuül Isooetano n-Nonano n-Decano Ciclopentano

28MetUclclopnitano Clclohesano MetUeiclohexano

Eteno (Etlleno) Propeno(Pr0pUeno) 1-Buteno(Bu(i*no) Cia-2-Buteno Tnns-2-Buteno Isobuteno 1-Penteno 1.2-Butadieno 1.3-Butadieno Isopreno

Acetileno Benceno Tolueno Etilbenceno o-XUeno m-Xileno pXUeno Estireno IsopropUbenceno

Aicoho~ meüiico Alcohol eWco Mon6rido de carbono Di6xodo de carbono

54Sulfmdehidrógeno Di6rido de azufre

Amoníaco Alre IIidrógeno

Cloro 62 Agua 63 HeUo 64 Clromro de hidrógeno

909.4 1618.7 2314.9 30W.4 3010.8

3699.0 3706.9 3682.9

4403.819232. 4395.2 4398.2 4384.0 4392.919195

5100.0 5092.2 5096.0 5098.3 5079.6 5084.2 5086.4 5081.2

5796.1 5780.5 5770.0 6493.2 7189.6 3517.1 4199.418771 4179.7 4863.618640.

1499.1 2181.8 2878.7 2871.0 2866.8 2859.9 3575.0 2789.0 2729.0 3410.8

1423.2 3500.9 4213.6 4970.5 4958.2 4956.317541 4957.1 4829.8

766.1 1448.1 320.5

0.0 586.8

0.0

559.0 0.0

273.8 0 .0 a o

n o 0.0 --

- 20277.1 19757.r 19437.. 19494.03262.3

19303. 19335. 19235..

19202. 19213. 19163.

19155. 19133. 19146 19154. 19095. 19111. 19119. 19103.

19096. 19047. 19063. 19054. 19018. 18825.

18675.

(19858.

19241.~ 19221.. 19182.. 19184. 19378.1 18967.. 18832.

(20887. 11256 ) 17421 17593. 17544

17545. 17414.

5660.917709.

W59. 11530.

6337.e ---

-- ---- --

-- --- o

---. -- - -

1010.0 1769.6 2516.1 3251.9

4000.9 4008.9 3984.7

4755.920783. 4747.3 4750.3 4736.2 4745.0

5502.5 5494.6 5498.6 5500.7 5481.9 5486.7 5488.8 5483.5

6248.9 6233.5 6231.7 6996.5 7742.9 3763.7 4501.2 4481.7 5215.9

1599.8 2332.7

3072.2 3068.0 3061.1 3826.5 2939.9 2879.9 3612.1

1473.5 3741 .8 4475.0 5222.2 5209.9 $207.9 5208.8 5031.1 5962.8

866.7 1599.1 320.5

0.0 637.1

0.0

434.4 0.0

324.2 0.0 0.0

a 0.0 -

- 22181.. 21489.0 21079..

20891. 20923. 20822.r

20753. 20764. 20714. 20746.

20679. 20657. 20671. 20679. 20620. 20635. 20643. 20628.

20601. 20552. 20568. 20543. 20494. 20186. 20132. 20036. 20002.

- 21208.

19309.~3079.96670.3 \03582. * 20802.. 20582.r 20543.e 20545. 20437.0 2M125.r 1995.3.

21613. (17989. 18250. 18492. 18444. 18440. 18444. 18147. 18662.

9751. 12770. - - 6897.0 - -- - - - - -

O .O

--

- 65869.r 90830.r 98917.0

21136.+102911.*

108805. 110091. 103577.*

115021. 113822. 115811. 112916. 115246.

118648. 117644. 119197. 121158. 116606. 116526. 120080. 119451.

121422. 119586. 119389. 123634. 125448. 126304. 126467. 130873. 129071.

- 92113.)

107724.e 104666.. 102850.* 110602. 112111.* 104717.* 114141.

75204.) '(32651.

132661. 134387. 156036. 13.3559. 133131. 137841. 134792.

64731. 84539. - - 46086.r235.63 -- - - -- --- - - -- -

219.45 211.14 183.01 157.23 165.93

147.12 153.57 135.58

143.94 138.45 140.05 131.23 136.07

136.00 131.58 132.10 132.82 125.12 126.57 127.20 124.21

129.52 122.83 112.94 124.36 119.65 167.33 148.54 153.03 136.30

207.41 188.19 167.98 178.89 174.37 169.47 154.48 191.88 185.29 163.48

151.90 169.24 154.83 144.02 149.10 147.24 145.71 152.85 134.24

462.58 359.07 92.77

246.47,

167.22

589.48 88-20

192.74 91.59 85.59

123.75 0.0970.18 --

190.43

9.548 16.710 23.871 31.032 31.032

30.193 38.193 30.193

45.355 45.355 45.355 4 5 . W 45.355

52.516 52.516 52.516 52.516 52.516 52.516 52.516 52.516

59.677 59.677 59.677 66.839 74.000 35.808 42.9ü8 42.988 50.129

14.323 2 1 . W 28.645 28.645 28.645 28.645 35.806' 26.258 26.258 33.419

11.935 35.806 42.968 50.129 50.129 50.129 50.129 47.742 57.290

7.161 14.323 2.387 - 7.161 - 3.581 -- 2.387 - - - - - -

5.0 2.9 2.0 1.8 1.5

1.3 1.4 1.3

1.1 1.18 1.2 1.2 1.2

1.0

- - -

15.0 13.0 9.5 8.5 9.0

8.0 8.3 7.5

7.7 7.0 7.7 7 .0 7.0

7.0

- - -

69.3 65.0 17 95.6 92.8 18 85.8 83.1 19

- M.O5 97.1 97.6 80.6,

90.3 62.6, 80.2

26.0 73.5 74.3 93.4 94.3

0.0

0.8 (0.92) 0.95 0.7 0.7

(1.48) 1.0 1.2 1.1

2.7 2.0 1.6 1.6 1.6 1.6 1.3

(1.62) 2.0

(1.12)

1.5 1.2 1.2 1.0 1.0 1.0 1.0 1.1 0.8

5.5 3.28

12.50 - 4.30 -

15.M)

4.00 - - - - - -

- +1.6* +l.& +0.1..4 93.-

92.3 61.7. 5

24.8 73.4 74.5 91.8 M . 3

0.0

6.5 (6.3) 6.0 5.6 5.4

(8 3 8:33 8.35 6.7

36.0 11.7 10. 10. 10. 10. 10.

(10.3) 12.5 (8.5)

100. 8.0 7.1 8.0 7.6 7.0 7.0 8.0 6.5

44.0 19.0 74.20 - 45.50 - 27.00 - 74.20 - - - - - -

1 2 3

5

6 7 8

9 10 11 12 13

14

62 63 64

- 55.7

100.0 - - 84.9. 8 . 0 77.2 71.1

75.6 84.9 ü0.80 83.5 - - 77.1 - - 81.0

- t2.8 M . 3 97.9

100.0 +2.8 +1.2 +0.2 99.3

- - - - - - - - - - - -

- 55.2

100.0 - - M.l 9 1 . 3 2 . 63.0 7 4 . 8 3 0

M.O3 M.:! 97.4

100.0 - - 90.9 - - 99.1

- - +5.8 M . 8 - 4 . 0 4 6 +3.4

n 3 . r +2.1

- - - - - - - - - - - -

22 23 24 W 26 27

29

31 32 33 34 35 36 37 38 39 40

41 42 43 U 45

47 48 49

50 5 1 52 53 54 55

56 57 58 59 80 61

Page 35: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Constantes físicas de los hidrocarburos

Referencias: GPSA-80

No.

1 2 3 4 6

6 7 8

9 10 1 1 12 13

14 15 16 17 18 19 20

C7H16 100.205 80.88 25.40 -24.91 2954. 531.1 1 0.003 97

Metano Etano Propano n-Butano Isobutano n-Pentano Isopentano Neopentano n-Haano 2-Metilpentano 3-Meuilp.:nlano Nc!iht.~ai;o 2,3-Dirnetilbutano n-Ileptano 2-&I~ti~bexaiiu 3-Metilhexano 3-Etilpentano 2,2-Dimetilpentano 29-Dimetilpentano 3,3-Din~etilpentario

d

i2 CH4 6 H 6 CaHo C4Hio C4H10 CsHla C s H i 2 L s H l l C6H14 C6H14 C6H14 C6H14 C6H14 C1H16 C7H16 C7H16 C7H16 C,ii16 C7H1 C.rH16

1.

ta

2.

U L- d-3 .- v 2 d

3.

h

5 % O

16.043 30.070 44.097 58.124 58.124 72.151 72.151 72.151 86.178 86.178 86.178 86.178 86.178 100. 06 100.205 100.205 100.205 100.206 100.205

h

4 w

-161.52(281 -88.58 -42.07 -0.49 -11.81

36.06 27.84 9.50 88.74 60.26 63.27 48.73 57.98

91.85 93.48 79.19 80.49

135000.) ~ 0 0 . 9 1341. 377. 528. 115.88 151.3 2u8. 37.28 50.88 45.73 73.41 55.34 12.34 17.22 16.16 15.27 26.32 24.84

8 .F.

4 m. 4 880. 4249. 3797. 3848. 3388. 3381. 3199. 3 012. 3010. 3 124. 3 081. 3 127. 2 736. 2 734. 2 814. 2891. 2 773. 2737.

100.205 88.06

-182.4 -182.8d -1~7.68~ -138.36 -159.00 -129.73 -159.90 -16.55 -95.32 -153.68 - -99.870 -128.54 -80.582 -11827 - -118.60 -123.61 -1 19.24

Constantes

i+

20.93 -134.46 2 945. 538.34 0.004 13

críticas . d

b

190.55 305.43 3861.82 425.16 408.13

489.6 460.30 433.75 507.4 497.45 504.4 488.73 499.93 640.2 530.31 535.19 540.57 520.44 519.73

P m E

S 0.008 17 0.004 92 0.004 00 0.004 39 0.004 52 0.004 21 OM)4 24 0.004 20 0.004 29 0.004 26 0.004 26 0.004 17 0.004 15 0.004 31 0.004 20 0.004 03 0.004 15 0.004 15 0.004 17

Page 36: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Constantes físicas de los hidrocarburos

Referencias: GPSA- 80

4. 5. 6. 7. 9. Densidad de liquido u U t 9 Gaf ideal 101,3250 kPa (abs), 15°C Calor especifico 4 5 2 101,3250 kPa (abs), 15°C 101,325 kr>a(abs),

m h

U 15°C

+. No.

(0.3)1 0.3581h 0.5089 0.6847~ 0.6837~ 0.6316 0.6250 0.5972~ 0.6644 0.6583 0.6694 0.6545 0 . W 0.6886 0.6835 0.6921 0.7032 0.6787 0.6777 0.6980 0.6950 0.7073 0.6984 0.6968 0.7224 0.7346 0.7508 0.7541 0.7838 0.7744 -

0.5231h 0.6019~ 0.6277~ 0.6105~ 0.601oh 0.6462 0.6576~ 0.6280~ 0.6866

0.61 5k 0.8850 0.8723 0.8721 0.8850 0.8691 0.8661 0.9115 0.8667

0.7967 0.7922 0.7893'" 0.8226~ 0.789ih

, 1.397

0.6189 0.8Mlm(?'

!~f4'~&Y1141.'"(381

.'y:%=@ 1 .O00 0.1251'" 0.8538

(300.11 357.ehvX 5 0 7 . 8 ~ . ~ 5 ~ 4 . 2 ~ 563.2" 631.0 624.4 5 ~ 6 . 7 ~ 663.8 657.7 668.8 653.9 666.2

888.0 682.8 691.5 702.8 678.0 677.1 697.4 694.4 706.7 697.7 696.0 721.7 733.9 750.2 753.4 783.1 773.7 -

5 2 2 . 8 ~ ~ 601.4; 627.1 610.d' ~00.5'' 6453 657. 6 ~ 7 . 4 ~ 666.0 -

884.2 871.6 871.3 884.2 868.3 865.3 910.6 866.0

796.0 791.5 788.6m134) 821.9hl35) 789.px(36

1396. ~ ~ ( 3 6 ) ) 61 7.7hnx(30 855.'"

71.00'"(371

1:W&"(311 999.1 125.0m132) 853.0'

~3n0 1' 356:Gh 506.7~ 583.1h 5 6 2 . 1 ~ 629.9 623.3 ~ 5 . 6 ~ 662.7 656.6 667.7 652.8 665.1 686.9 881.7 690.4 701.5 676.9 676.0 696.3 693.3 705.6 696.6 694.9 720.6 732.8 749.1 752.3 782.0 772.6 - 521.5~ 600.9 626.0~ 608 gh 599:4h 644.1 656 626:9 684.9 - 883.1 870.5 870.5 883.1 867.2 864.2 909.5 864.9 794.9 790.4 - 820.8~ 787.gh

1395.

616.8 - - - -

1423.5 998.0 - 851.9

(0.051' 0 084 mh 0108684~ 0.089 4 0.103 sh 0.114 3 0.1 15 6 0.120 9h 0.129 8 0.131 O 0.128 9 0.131 8 0.129 4 0.145 6 0.1468 0.144 9 0.142 6 0.147 8 0.1480 0.143 7 0.144 3 0.161 6 0.163 7 0.164 1 0.177 7 0.1939 0.093 49 0.1 11 7 0.107 5 0.126 9 -

0.08069~ 0.093 3oh 0.089 47h 0.091 9ah 0.093 44h 0.108 6 0.082.39 0.086 2zh 0.099 30

0.088 34 0.105 7 0.121 9 0.120 1 0.122 3 0.122 7 0.114 4 0.139 O

0.040 26 0.058 20 0.035 52'" 0 053 55h 0:043 lgh 0.045 wh 0.027 57" 0.033 9" 0.028 39" 0.028 04" 0.034Wm 0.049 78 0.018 03 0.03202'" 0.042 74

- 0.002 7dh 0.002 llh 0.002 14*

0.001 57 0.001 62 0.001 87" 0.001 35 0.001 40 0.001 35 0.001 40 0.001 35 0.001 24 0.001 22 0.001 24 0.001 26 0.001 30 0.00130 0.001 17 0.001 24 0.001 12 0.001 17 0.001 17 0.001 13 0.000 99 0.001 26 0.001 28 0.001 22 0.001 13

0.00340~ 0.002 Ogh 0.001 7Gh 0.001 93h 0.002 loh 0.001 60 0.001 7eh 0.002 0.001 55 -

0.001 19 0.001 08 0.00097 0.00069 0.000 97 0.00097 0.001 03 0.000 97 0.001 17 0.001 07 - - - - - - - - - -

0.000 14 - 0.006 03

0.0126 0.0978 0.1541 0.2015 0.1840 0.2524 0.2286 0.1967 0.2998 0.2784 0.2741 0.2333 0.2475

0.3494 0.3303 0.3239 0.3107 0.2876 0.3031 0.2681 0.2509 0.3981 0.3564 0.3041 0.4462 0.4904 0.1945 0.2308 0.2098 0.2364

00869 011443 0.1949 0.2033 0.2126 0.2026 0.2334 (0.2540) 0.1971 (0.1567)

0.1893 0.2095 0.2033 0.3031 0.3113 0.3257 0.3214 0.1997 0.3260 0.5648 0.6608 0.0442 0.2667 0.0920 0.2548 0.2576 -

-0.2lgw 3.0200 0.0372 0.0737 0.3434 O 0.1232

0.9981 0.9915 0.9810 0.9641 0.9665 0.942t 0.948t 0.9538

0.9lOt - - - -

0.852t - - - - - - - 0.783t - - - -

0.949t - - - 0.6938 0.9844 0.9703 0.9660 0.9661 0.9688 0.948t (0.969) 10.9651 0.949t

0.9925 0.929t 0 . 9 ~ '

- - - - - - -

0.9995 0.6943 0.9903 0.9801'

0.9899í30) 0.9996 l.OCHJ6 0.9993(391 0.9997

(0.9875)~(36)

1 .O00 5(401 -

0.5539 1.0382 1.5225 2.0068 2.- 2.4911 2.4911 2.4911 2.9753 2.9753 2.9753 2.9753 29753 3.4596 3.4596 3.4596 3.4596 3.4596 3.4596 3.4596 3.4596 3.9439 3.9439 3.9439 4.4282 4.9125 2.4215 2.9057 2.9057 3.3900 0.9686 1.4529 1.9372 1.9372 1.9372 1.9372 2.4215 1.8676 1.8676 2.3519 0.8990 2.6969 3.1812 3.6655 3.6655 3.6655 3.6655 3.5959 4.1498

'1.1063 1.5906 0.9671 1.5195 1.1765 2.21 17 0.5880 1.0000

1.474 0.7863 0.5362 0.4068 0.4068 0.3277 0.3277 0.3277 0.2744 0.2744 0.2744 0.2744 0.2744

0.2360 0.2360 0.2360 0.2360 0.2360 0.2360 02360 0.2360 0.2070 0.2070 0.2070 0.1843 0.1662 0.3371 0.2809 0.2809 03408

0.8428 0.5619 0.4214 0.4214 0.4214 0.4214 0.3371 0.4371 0.4371 0.3471

0.9081 0.3027 02566 0.2227 0.2227 0.2227 0.2227 0.2270 0.1967

0.7378 0.5132 0.8441 0.5373 0.6939 0.3691

1.388 0.8163

0.0696 1 11.73 1 1 14.24 1 - 1 !l 1.1048

(442.11 281.9 272.9 237.6; 229.1 206.8 204.6 lg5.Sh 182.1 180.5 183.5 179.4 182.8

162.4 161.1 163.2 165.8 180.0 159.8 164.6 103.9 146.3 144.4 144.1 133.0 122.0 252.9 211.7 220.0 186.3 -

~ 9 3 . 6 ~ ~ 5 3 . 4 ~ 264.9 257.1h 253.1h 217.7 2 ~ 7 . 2 ~ 274.2" 238.1 - 267.6 223.7 194.0 196.9 193.4 192.7 206.7 170.4 587.4 408.2 - 441.6~ ~ 7 . 5 ~ 515 .3~ 857.4

0.7389 0.9166 - 3.9672 0.8441 1.040 - 2.4481 0.3335 475.0 0.4760 - 0.6220 1.312 1311. 1.862 4.191 62 0.1382 5.807 - 5.192 -- 63 1.258fj 0.6485 553.2 0.7991 -

2.204 1.706 1.625 1.652 1.616

1.622 1.600 1.624 1.613 1.602 1.578 1.593 1.566

1.606 1.595 1.584 1.613 1.613 1.651 1.603 1.578 1.601 1.573 1.599 1.598 1.595 1.133 1.258 1.211 1.324 1.514 1.480 1.483 1.366 1.528 1.547 1.519 1.446 1.426 1.492

1.659 1.014 1.085 1.188 1.218 1.163 1.157 1.133 1.219

1.352 1.389 1.040 0.8330 0.9980 0.6062 2.079 1.005

- 3.807 2.476 2.366(411 2.5861411

2.292(411 2.239 2.317 2.231 2.205 2.170 2.148 2.146

2.209 2.183 2.137 2.150 2.161 2.193 2.099 2.088 2.191 2.138 2.049 2.184 2.179 1.763 1.843 1.81 1 1.839 -

2.443 2.237 2.241 (421 2.238 2.296 2.241(431 2.262 2.124 2.171 - 1.715 1.677 1.721 1.741 1.696 1.708 1.724 1.732

2.484 2.348 - - 2.08(361 1.359í36) 4.693í301 -

1 2 3 4 5

6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40 4 1 42 43 44 45 46 47 48 49 50 51 52

53 54 55

56

Page 37: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Constantes físicas de los hidrocarburos

Referencias: GPSA-80

Page 38: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

a cl, E 3 m :S m- t: 2 *

Page 39: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 40: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 41: Ing Gas Principios y Aplicaciones_ocr

Endulzamiento del gas natural

Efectos del H2S y del C02

1. Fe + H2S - FeS + H 2 f

Fe0 + H2S - FeS + H20

El Fe0 es inestable y sigue reaccionando:

Fe203 + Fe0 - Fe304

Y 3 % 3

E

m "8 3. R 6' O' Vi Y Fo 'P. O' P7 g . 3 2

Page 42: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Ii- O

m 7

b a a W Q z

I a Ii- O

b b

Page 43: Ing Gas Principios y Aplicaciones_ocr

Ingenieria de gas, principios y aplicaciones

Page 44: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 45: Ing Gas Principios y Aplicaciones_ocr

l

Yacimientos de gas condensado @ - - --

Variaciones estimadas de la composición

Componentes - % molar

GAS SECO 90-98 2-3 O,9-1,2 0,4-1 ,O

GAS NATURAL 70-89 2-20 3,O-15,O 0,O-6,0

GAS CONDENSADO 80-89 3-5 3,0-5,O 1 ,O-6,O

PETRÓLEO e 80 > 5 > 5,O > 6,O

Page 46: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 47: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

3 EZ) S 3 O E O O a, C Y- a, u Ti- 00 T-

c\i 8 z E o c a - c a,

a V> O a 1

Page 48: Ing Gas Principios y Aplicaciones_ocr

Comparación de las escalas de temperatura: Absoluta, Centígrada y Fahrenheit.

-- -- - - --

Centígrado Kelvin Rankine "C "K (Abs.) "R (Abs.)

Fahrenheit "F

El agua hierve

Temperatura normal

El agua se congela

Cero absoluto

Page 49: Ing Gas Principios y Aplicaciones_ocr

H I

H H I I

H H H 1 1 1

H-C-H H-C-C-H H-C-C-C-H I I I 1 1 1

METANO ET'ANO PROPANO

H H H H 1 1 1 1

H H H 1 1

H - Y - P F Y - H H-Y-c-F-H H H H H

N - BUTANO H I ~ H-7-H

H I - BUTANO

Estrsrctcira mulecular de los hidrocarburos parafínicos

H H \ / C / \

H-C-C-H I I H H

CICLOPROPANO

BENCENO

Estructura molecular de los compuestos cíclicos y

aromáticos

3 % 3 5. C. w a CD m "e: 5. 3 c. 'a g* 'C w a E'

5. 3 Cr:

Page 50: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 51: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 52: Ing Gas Principios y Aplicaciones_ocr

Peso molecular vs. número de carbonos de los hidrocarburos parafínicos

Número de carbonos Y = (1 4,027) X + (2,016)

Page 53: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Ejercicios de aplicación

Convertir "C a "F Convertir "F a "C

Calcular el peso molecular Jel C40

M = (14,027) . N + 2,016

M = (14,027) (14) + 2,O 16 = 563,09

Calcular el peso molecular del Cio

M = (1 4,027) ( i)) + 2,O 16 = 142,286

Page 54: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Composición del gas.

Se comienza con el diagrama de fases de un monocomponente, de cuya

observación se deducen las aplicaciones. Esto se compara con el dibujo pre-

sión-temperatura de un policomponente, en el cual se apoyan todas las considera-

ciones que puedan hacerse alrededor del uso que quiera dársele a un gas determinado.

A partir de las reglas de Kay, se examinan y determinan las características de

una muestra tipo, complementándolas más tarde con el cálculo del contenido de

líquidos condensables del gas (GPM), así como con el efecto de los ingredientes

ácidos sobre las propiedades seudocríticas y el factor de compresibilidad.

El uso de las hojas de cálculo les facilita a los estudiantes que se inician en esta

materia, la interpretación y la deteminación de los parámetros más comunes. Por eso

se decidió incluirlas en el libro. A su vez, son muy útiles en laboratorios y lugares

similares, donde sean los operarios los responsables de recopilar la información de

rutina.

Se exhibe una serie de gases de diversas procedencias y se agrega el diagrama

de fases correspondiente. Al interpretarla se tienen las ventajas y desventajas de cada

muestra de gas, con respecto al uso que se le quiera dar.

Page 55: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones -. Con los simuladores apropiados, el ingeniero podrá tener los diagrama del

producto que alimenta su respectiva planta, un aspecto que contribuirá notablemente a

predecir el comportamiento del fluido frente a las variaciones de presión y

temperatura que se puedan producir en las instalaciones a su cargo. b

Aparece luego lo inherente a la determinación de la densidad de los

hidrocarburos en estado líquido. Esta se calcula siguiendo en la hoja de cómputo con

la correspondiente fórmula, y se corrige por los efectos de la presión y temperatura

sobre la densidad, inicialmente calculada en condiciones atmosféricas.

La última parte de este capítulo se dedica al análisis de la presión de vapor, un

parámetro que va a afectar la calidad del producto que se oferta en el mercado, las

condiciones que se exigen en el fracc.ionamiento de los hidrocarburos y el lógico

diseño de la planta, la escogencia de un determinado sistema para la eliminación de

los componentes ácidos y muchos disefiss más. Se parte del concepto de presión de vapor y sus respectivas aplicaciones.

Todo esto está íntimamente ligado a la composición del gas natural. Por ello es

necesario que el lector se familiarice muy bien con los análisis, el modo de hacerlos y

el resultado que, finalmente, llega hasta los escritorios.

Page 56: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

D FLUIDO DENSO

m

VAPOR O GAS SOBRECALENTADO

TEMPERATURA -+

VAPOR

Diagrama de fases para un componente puro

Page 57: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 58: Ing Gas Principios y Aplicaciones_ocr

Ecuaciones de estado

Método de Standing y Katz. Se aplican las reglas de Kay.

sPc = Presión seudocrítica.

sTc = Temperatura seudocrítica.

Pc i = Presión crítica del componente i.

Tc i = Temperatura crítica del componente i.

y i = Fracción molar del componente i.

n = Número de componentes.

5 % 3 E- e;. a 0 C19 "e 2 2' w

'9. 8 w 07 'd. O* 8 E;'

Vi

Page 59: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 60: Ing Gas Principios y Aplicaciones_ocr

Hoja de cálculo de características del gas natural (Continuación) pág. 2 ~ 2

Page 61: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Factor de corrección para gases ácidos

(Fsk o E)

O 10 20 30 40 50 60 70 80

Porcentaje de H2S

Fsk = 120 (A"~ - A'76) + 15 (p- B ~ )

Pc' = m') - -

Te .+- (N) (1 - B) (Fsk)

Donde: Tc = Temperatura seudocritica ('8) Pc = Presión seudocritica (Ipca) Tc' = Temperatura seudocritica corregida (OR) Pc' = Presión seudocritica corregida (Ipca) A = Fracción molar del H2S y el C02 B = Fracción mol;iii- 112s

Page 62: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 63: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Análisis de la muestra de gas natural No.:90-08-10-01

Fecha: 10-08-90 Muestra: G. N. Occid. Aso. Temperatura: 90 "F Tomada con fecha: 10-08-90

Estado: Occidente Asociado Empresa: ING. CONS. Presión: 100 lpc Profundidad: O

Componentes Porcentaje Molar Contenido Líquido

Características del gas natural

Gravedad Específica O. 79848 Peso Molecular 23.12650 Presión Pseudocrítica 676.82837 Temperatura Pseudocrítica 416.63272 Pre. Pseudocrítica Corregida 666.42255 Temp. Pseudocrítica Corregida 410.22726 Factor de Corrección por Acidez 6.40546 Contenido Líquido (GPM) (Cl+) 18.69185 Contenido Líquido (GPM) (C2+) 6.33039 Contenido Líquido (GPM) (C3+) 3.39519 Valor Calorífico Bruto 1271.52600 Valor Calorífico Neto 1155.07959 Contenido de H2S 20000.00000 Contenido de H20 O. O0000

lbs/lbmol lpca "R lpca OR "R ga1/1000 pie3 ga1/1000 pie3 ga1/1000 pie3 BTU/pie3 BTU/pie3 PPm 9 " lbs/MM pcn

Las constantes para los ciilculos fueron tomadas del G.P.S.A. 87: P = 14.696, T = 60 'F y Vol. molar = 379.4836 pie3/lbmol.

Page 64: Ing Gas Principios y Aplicaciones_ocr

Diagrama de fases de occidente asociado Temperatura ("C)

-157 -137 -1 17 -96.7 -76.7 -56.7 -36.7 -16.7 3.33 23.33 43.33 63.33

1400 -ti - Puntos de burbuja 1 7 - 100 - Puntos de rocío

-250 -200 -1 50 -1 O0 -50 O 50 1 O0 150

Temperatura ("F)

1200 a O

0 1 O00 w

1 A Punto crítico I

n .

1 /

-- 60

/ \ -- 80

Page 65: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Análisis de la muestra de gas natural No.:90-08-10-01

Fecha: 10-08-90 Muestra: G. N. Occid. Aso. Temperatura: 90 "F Tomada con fecha: 10-08-90

Estado: Occidente Asociado Empresa: ING. CONSUL. Presión: 100 lpc Profundidad: O

Componentes Porcentaje Molar Contenido LZquido

Características del gas natural

Gravedad Específica O. 80605 Peso Molecular 23.34557 Presión Pseudocrítica 689.29181 Temperatura Pseudocrítica 421.74249 Pre. Pseudocritica Corregi.da 671.53265 Temp. Pseudocrítica Corregida 411 .O8017 Factor de Corrección por Acidez 10.66233 Contenido Líquido (GPM) (C1+) 18.31802 Contenido Liquido (GPM) (@S+) 6.20378 Contenido Líquido (GPM) (C3c) 3.32728 Valor Calorífico Bruto 1246.09558 Valor Calorífico Neto 1131.97791 Contenido de H2S 20000.00000 Contenido de H20 O. O0000

lbs/lbmol lpca "R lpca "R "R ga1/1000 pie3 ga1/1000 pie3 ga11/1000 gire3 BTU/pie3 BTlí/pie3 PPm 9

lbs/MM pcn

Las constantes para los cálculos fueron tomadas del G.P.S.A. 87: P = 14.696, T = 60 'F y Vol. molar = 379.4836 pie3/lbmol.

Page 66: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Análisis de la muestra de gas natural No.:90-08-10-01

Fecha: 10-08-90 Estado: Occidente Asociado Muestra: G. N. Occid. Aso. Empresa: ING. CONSUL. Temperatura: 90 "F Presión: 100 lpc Tomada con fecha: 10-08-90 Profundidad: O

Componentes Porcentaje Molar Contenido Liquido

Características del gas natural

Gravedad Específica Peso Molecular Presión Pseudocrítica Temperatura Pseudocrítica Pre. Pseudocrítica Corregida Temp. Pseudocrítica Corregida Factor de Corrección por Acidez Contenido Líquido (GPM) (C1+) Contenido Líquido (GPM) (C2+) Contenido Líquido (GPM) (C3+) Valor Calorífico Bruto Valor Calorífico Neto Contenido de H2S Contenido de H20

lbs/lbmol lpca 'R lpca "R "R ga1/1000 pie3 ga1/1000 pie3 ga1/1000 pie3 BTU/pie3 BTU/pie3 PPm9v lbs/MM pcn

Las constantes para los cálculos fueron tomadas del G.P.S.A. 87: P = 14.696, T = 60 'F y Vol. molar = 379.4836 pie3/lbmol.

Page 67: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Análisis de la muestra de gas natural No.:90-08-10-02

Fecha: 10-08-90 Muestra: G.N. Guarico L. Temperatura: 90 'F Tomada con fecha: 10-08-90

Estado: Guarico L. #l. Empresa: ING. CONSUL. Presión: 100 lpc Profundidad: O

Componentes Porcentaje Molar Contenido L5quido

Características del gas natural

Gravedad Específica Peso Molecular Presión Pseudocrítica Temperatura Pseudocrítica Pre. Pseudocrítica Corregida Temp. Pseudocrítica Corregida Factor de Corrección por Acidez Contenido Líquido (GPM) (Cl+) Contenido Líquido (GPM) (C2+) Contenido Líquido (GPM) (C3+) Valor Calorífico Bruto Valor Calorífico Neto Contenido de H2S Contenido de H20

lbs/lbmol lpca "R lpca " R "R ga1/1000 pie3 ga1/1000 pie3 ga1/1000 pie3 BTU/pie3 BTU/pie3 PPm 9 v lbs/MM pcri

Las constantes para los cáPcuPos fueron tomadas del G . P . S . L 3 . 8 7 : P = 14.696, T = 60 'F y Vol. molar = 379.4836 pie3/lbmol,

Page 68: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Presión (kg/cm2)

U")

I

U") N i

O w

m L-

O 13 r n - 5 7 ' - P

E U") F b

U") (V

I

O U")

Page 69: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Análisis de la muestra de gas natural No.:90-08-10-03

Fecha: 10-08-90 Muestra: G.N. Guarico L. Temperatura: 80 'F Tomada con fecha: 10-08-90

Estado: ~uárico L. #2. Empresa: ING. CONSUL. Presión: 100 lpc Profundidad: O

Componentes Porcentaje Molar Contenido Liquido

Características del gas natural

Gravedad Específica Peso Molecular Presi6n Pseudocrítica Temperatura Pseudocrítica Pre. Pseudocrítica Corregida Temp. Pseudocrítica Corregida Factor de Corrección por Acidez Contenido Líquido (GPM) (C1+) Contenido Líquido (GPM) (C2+) Contenido Líquido (GPM) (C3+) Valor Calorífico Bruto Valor Calorífico Neto Contenido de H2S Contenido de H20

lbs/lbmol lpca 'R lpca "R "R ga1/1000 pie3 ga1/1000 pie3 ga1/1000 pie3 BTUJpie3 BTU/pie3 PPm .v lbs/MM pcn

Las constantes para los cálculos fueron tomadas del G.P.S.A. 87: P = 14.696, T = 60 "F y Vol. molar = 379.4836 pie3/lbmol.

Page 70: Ing Gas Principios y Aplicaciones_ocr

Diagrama de fases de Guárico libre No. 2 Temperatura ("C)

-1 56.67 -1 31.67 -1 06.67 -81.67 -56.67 -31.67 -6.67 18.33 1800 1

I I 1

1 I

I I

I I

I I

I I

1 - Puntos de burbujeo , l

l -Puntos de rocío ) x Punto critico I

/

/

Temperatura ("F)

Page 71: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Análisis de la muestra de gas natural No.:90-08-10-04

Fecha: 10-08-90 Muestra: G.N. Oriente L. Temperatura: 90 "F Tomada con fecha: 10-08-90

Estado: Oriente Libre Empresa: ING. CONSUL. Presión: 100 lpc Profundidad: O

Componentes Porcentaje Molar Contenido L5quido

Características del gas natural

Gravedad Específica Peso Molecular Presión Pseudocrítica Temperatura Pseudocrítica Pre. Pseudocrítica Corregida Temp. Pseudocrítica Corregida Factor de Corrección por Acidez Contenido Líquido (GPM) (C1+) Contenido Líquido (GPM) (CZ*) Contenido Líquido (GPM) (C3+) Valor Calorífico Bruto Valor Calorífico Neto Contenido de H2S Contenido de H20

lbs/lbmol lpca "R lpca "R "R ga1/1000 pie3 ga1/1000 pie3 ga1/1000 p i ~ 3 BTU/pie3 R'rU/pie3 PPm 9 v lbs/MM pcn

Las constantes para los cálculos fueron tomadas del G.P.S.A. 87: P = 14.696, T = 60 "F y Vol. molar = 379.4836 pie3/lbmol.

Page 72: Ing Gas Principios y Aplicaciones_ocr

Diagrama de fases de oriente libre Temperatura ("C)

-1 56.67 -1 31.67 -1 06.67 -81.67 -56.67 -31.67 -6.67 18.33 43.33 1800

O -250 -200 -1 50 -1 O0 -50 O

Temperatura ("F)

--

-

--

-

-

-

I I

-

-

-

-

I I

I I

I 1

I I

I I

I I

/ - Puntos de burbuja - --- I

1 -Puntos de rocío I l / A Punto critico i l \

I

Page 73: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Análisis de la muestra de gas natural No.:90-08-10-05

Fecha: 10-08-90 Muestra: G.N. Oriente A. Temperatura: 90 'F Tomada con fecha: 10-08-90

Estado: Oriente Asociado Empresa: ING. CONSUL. Presión: 100 lpc Profundidad: O

Componentes Porcentaje Molar Contenido Liquido

Caracteristicas del gas natural

Gravedad Especifica Peso Molecular Presión Pseudocritica Temperatura Pseudocritica Pre. Pseudocritica Corregida Temp. Pseudocritica Corregida Factor de Corrección por Acidez Contenido Liquido (GPM) (Cl+) Contenido Líquido (GPM) (C2+) Contenido Liquido (GPM) (C3+) Valor Calorifico Bruto Valor Calorifico Neto Contenido de H2S Contenido de H20

lbs/lbmol lpca "R lpca "R "R ga1/1000 pie3 ga1/1000 pie3 ga1/1000 pie3 BTU/pie3 BTU/pie? PPm," lbs/MM pcn

Las constantes para los cálculos fueron tomadas del G.P.S.A. 87: P = 14.696, T = 60 "F y Vol. molar = 379.4836 pie3/lbmol.

Page 74: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Presión (kglcm2)

O O O 00 co v

Page 75: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Análisis de la muestra de gas natural No.:90-08-10-06

Fecha: 10-08-90 Muestra: G.N. Costa A. L. Temperatura: 80 "F Tomada con fecha: 10-08-90

Estado: Costa Afuera Libre Empresa: ING. CONSUL. Presión: 100 lpc Profundidad: O

Componentes Porcentaje Molar Contenido Liquido

Características del gas natural

Gravedad Específica Peso Molecular Presión Pseudocrítica Temperatura Pseudocrítica Pre. Pseudocrítica Corregida Temp. Pseudocrítica Corregida Factor de Corrección por Acidez Contenido Líquido (GPM) (Cl+) Contenido Liquido (GPM) (C2+) Contenido Líquido (GPM) (C3+) Valor Calorífico Bruto Valor Calorífico Neto Contenido de H2S Contenido de H20

lbs/lbmol lpca "R lpca "R "R ga1/1000 pie3 ga1/1000 pie3 gal./1000 i r i t 3 BT1J/pi e3 BTU/p ie3 PPm, 0. lbs/MM pcar

Las constantes para los cálculos fueron tomadas del G.P.S.A. 87: P = 14.696, T = 60 "F y Vol. molar = 379.4836 pie3/lbmol.

Page 76: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Presión (kg/cm2)

Page 77: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Análisis de lamuestra de gas natural No.:89-04-001

Fecha: 02-04-89 Muestra: G.N. sin agua Temperatura: 90 "F Tomada con fecha: 28-03-89

Estado: ~nzohtegui Empresa: CORPOVEN Presión: 60 lpc Profundidad: superficie

Componentes Pbrcentaje Molar Contenido Líquido

Características del gas natural

Gravedad Específica Peso Molecular Presión Pseudocrítica Temperatura Pseudocrítica P r e , Pseudocrítica Corregida T Pseudocrítica Corregida F-ptor de Corrección por Acidez dryryki~nido Líquido (GPM) (Cl+) Cuntinido Líquido (GPM) (C2+) Contenido Líquido (GPM) (C3+) Valor Calorífico Bruto Valor Calorífico Neto Corxi~nido de H2S Contenido de H20

lbs/] bmol lpca "R lpca "R "R ga1/1000 pie3 ga1/1000 pie3 ga1/1000 p l ~ T BTU/pie3 BTU/pie3 PPm*v lbs/MM pcn

Las constantes para los cálculos fueron tomadas del G.P.S.A. 87: P = 14.696, T = 60 "F y Vol. molar = 379.4836 pie3/lbmol.

Page 78: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Análisis de la muestra de gas natural No.:89-04-002

Fecha: 02-04-89 Muestra: G.N. con agua Temperatura: 90 "F Tomada con fecha: 28-03-89

Estado : ~nzoate~ui Empresa: CORPOVEN Presibn: 60 lpc Profundidad: superficie

Componentes Porcentaje Molar Contenido Líquido

1 Características del gas natural

Gravedad Especifica Peso Molecular Presión Pseudocrítica Temperatura Pseudocrítica Pre. Pseudocrítica Corregida Temp. Pseudocrítica Corregida Factor de Corrección por Acidez Contenido Líquido (GPM) (Cl+) Contenido Líquido (GPM) (C2+) Contenido Líquido (GPM) (C3+) Valor Calorífico Bruto Valor Calorífico Neto Contenido de H2S Contenido de H20

lbs/lbmol lpca "R lpca 'R "R ga1/1000 pie3 ga1/1000 pie3 ga1/1000 pie3 BTU/pie3 BTU/pie3 PPm,v lbs/MM pcn

Las constantes para los c&lculos fueron tomadas del G.P.S.A. 87: P = 14.696, T = 60 "F y Vol. molar = 379.4836 pie3/lbmol.

Page 79: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Cálculo del contenido líquido en una muestra de gas (GPM)

Nota: tonlarnos el 2 metilpentano como e9 í'C6.

Page 80: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Cálculo del contenido líquido en una muestra de gas (GPM)

Nota: tomamos el 2 metilpentano como el i-Cs.

Page 81: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Cálculo del contenido líquido en una muestra de gas (GPM)

Nota: tomamos el 2 metilpentano corrio el i-C6.

Page 82: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Cálculo del contenido de líquidos en una

muestra de gas natural

Componentes

H20

H2S

N2

c1

co2 c2

c3

i-C4

n-C4

i-C5

n-C5

is-Có

c6

c7

c8

c9

cio C =

iL

Fracción molar

Factor de conversión

27,48 16

32,6260

3 1,4433

36,4903

36,1189

41,3897

41,0157

46,0020

5 1;05 16

56,1354

6 1,2298

C =

GPM

Page 83: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Densidad de hidrocarburos líquidos a 14,7 lpca Y 60°F.

Page 84: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Densidad a 14,7 lpca y 60" (Ibs/pie3)

Corrección de la densidad del líquido por efectos de la compresibilidad

Page 85: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Densidad a 60°F y presióli P (lbs/pie3)

Corrección de la densidad del líquido por expansión térmica

Page 86: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

x x x x o E E E E Z O O O O ~ O a a a m - r ,

Page 87: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

O 10 20 30 40 50 60 70 80 90 100'110120130140150160 180 200

Temperatura ( O F )

Page 88: Ing Gas Principios y Aplicaciones_ocr

Temperatura ("F)

Presión de vapor para hidrocarburos livianos a baja temperatura

Page 89: Ing Gas Principios y Aplicaciones_ocr

Temperatura ( O F )

Presión de vapor para hidrocarburos livianos a alta temperatura

Page 90: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Viscosidad del gas

Page 91: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Razón de capacidad calorífica aproximada de los hidrocarburos

1.04 1.08 1.12 1.16 1.20 1.24 1.28 1.3

Razón de capacidad calorífica, k = Cp/Cv

Page 92: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Cromatografía de fase gaseosa.

El estudio de la cromatografla de fase gaseosa es objeto de uno o de varios

cursos, en los cuales se revisa todo lo inherente a esta técnica. A pesar de esto, es

necesario que el ingeniero que se dedica al gas natural cuente con las herramientas

mínimas para entender el proceso seguido en el laboratorio con el fin de encontrar la

composición, de tal manera que el uso de esta información sea absolutamente

confiable.

Muchas plantas no trabajan como debe ser, debido a que la muestra que se

utilizó como punto de partida no era representativa. En ocasiones se compran

instalaciones costosas que luego no funcionan, gracias a que el gas natural se aleja

mucho de los límites máximos y mínimos requeridos para adaptarse al diseño.

La primera figura que se presenta en esta sección corresponde a un

cromatograrna de LPG o GPL ( ~ ~ 9 . Obsérvese el predominio del propano y la

cantidad mínima de metano existente en el gas. El contenido de aire es únicamente

indicativo del lugar donde aparecería si estuviera presente, por eso no está

representado numéricamente ni se da el tiempo de respuesta correspondiente.

Se llama la atención sobre la separación de los isómeros del C6 y la no

existencia del isohexano, que suelen incluir los analistas en los reportes sobre la

Page 93: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

composición del gas natural. En la parte inferior de la figura de la pág. No. 73 aparece

el número del pico que corresponde a cada componente detectado, el tiempo de

retención (en minutos), el área del pico, la cual sirve de apoyo para calcular la

fracción molar de cada uno de los integrantes y, al final, la composición o porcentaje

molar.

En la página siguiente se agrega una hoja para realizar los cómputos en forma

rutinaria, la cual se utiliza para el ejemplo del cromatograina. Al revisar este

procedimiento, el interesado notará que los resultados no se corresponden totalmente.

Eso ocurre cuando el equipo no trabaja en forma óptima y se utiliza un gas patrón para

garantizar la respuesta.

Se analiza después el concepto de ppm y se dejan en el libro una serie de

muestras verídicas, que fueron aceptadas sin darse cuenta de que contenían errores o

información que pudieran llevar a falsas interpretaciones.

Al voltear la página, el lector encontrará el análisis realizado con el auxilio de

un computador, que permitirá verificar cuáles fueron los errores o, en su defecto, la

interpretación que se le deba dar a cada uno de los parámetros. Por ejemplo, el usuario

podrá saber si el GPM, que se indica en la lámina, incluye o no el etano, como parte

de los hidrocarburos que se pueden extraer en forma líquida.

Para concluir, se presenta un encabezamiento tipo, para mejorar la información

que acompaña los resultados cromatográficos. Si se mantiene la rigidez científica,

tanto en la recolección de los datos como en el desarrollo del análisis, el reporte será

perfectamente confiable.

Page 94: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Análisis cromatográfico de una muestra de GPL

Pico No. Tiempo de retención

1.944 3.625 4.280 5.620 6.461 9.01 2 9.942

1 1.595 12.852 13.51 5 14.080

Área Porcentaje molar

Page 95: Ing Gas Principios y Aplicaciones_ocr

Muestra de Gas Natural Muestra: . Presión: lpcm. Temperatura: "F. "C FechaJHora: . Tomada: . Analizada:

1

Comp

HzO H2S 1: N2 c i COZ c2

c3

iC4 nC4 iC5 nC

iC6 nc6 c7

cs c9

cio

2

Área

3

Fact FC.

33,O 3 8,O 42,O 357 48,O 51,2 64,5 82,O 85,O

102,O 105,O 116,O 123,O 143,O 160,O

177,O 199,O

4

Áred FC

5

% Mol

6

PMi

18,015 34,080 28,013 16,043 44,O 1 O

30,070 44,097 58,123 58,123 72,150 72,150 86,177 86,177

100,204 1 14,23 1 128,258 142,285

9

GPM

7

Peso

1 O

@TU/ p3) B

- 637,l

- 1010,O

- 1769,6 2516,9 3251,9 3262,3 4000,9 4008,9 4743,3 4755,9 5502,5 6248,9

6996,5 7742,9

8

FIGPMDi

27,493 32,639 3 1,456 36,505 36,133 41,390 41,032 46,020 5 1,072 56,158 61,254

11

BTU Bruto

Page 96: Ing Gas Principios y Aplicaciones_ocr

Muestra de L.P.G. Muestra: . Presión: lpcm. Temperatura: "F. "C FechaIHora: . Tomada: . Analizada:

Page 97: Ing Gas Principios y Aplicaciones_ocr

- --

l o ~ \I%

S

=M O62'ZP 1

092'821

OEZbP1 1

SOZ'001

8L1'98

8L 1'98

IST'ZL

ISI'ZL

P27'8C

PZ1'8S

L60'e

OLO'OE

O IO'PP

EP0'9 T

£10'82

!M

9

ZPEL'O

6 1 ZL'O

OLOL'O

€889'0

OS9'0

6LS9'0

1 1 £9'0

PPZ9'0

ZP8S'O

0£9Cb0

CLOC'O

59CE'O

9L 18'0

00OE'O

~608'0

7 A

ZT

- --

----

wa.i.

P

= M 6090'0

96~1'0

OLEC'O

10~9'1

0096'P

0 6 9 ~ ~ 9

OCLC'S 1

OPPP'OZ

OOPC'TS

OO~E'ZL

0000'88 1

0000'008

0000'000C

LIoOOT aadl ' ~ d

01

!d. !A

1 T

0'66 1

O'LL 1 -

0'09 1

O'EPT

O'EZI

0'911

O‘CO 1

0'20 1

o's8

0'28

S'P9

Z'TS

0'8P

L'CE

0'ZP -3.i.io3 *pa&

E

!M !x - - - - L

=-u

8208'£61

L899'LL 1

OOLCb191

EE8S'SPT

198L66Z1

5686'0s 1

LSZE'PT 1

SZSS'S1 1

EE6P'66

86EZ'E01

9068'98

ZC6E6P8

7 E8Z8'ES

-

a a ~ v

Z

lo^

6

013

'3

93u

937

$3'

"3U

"3F

E3

z3 ~p

z03

'3

zN

dmo3

T

L9LP'ES

9609'PE

?A / !m 8

Page 98: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 99: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 100: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 101: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

C D O O O O O O O o O o o o 0 0 0 0 0

Page 102: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

CORE LABORATORIES INTERNATIONAL S. A. P.(nl.um Roairvrk Eng&oerinw

WARTAOO tra M*CUCU.O - vmau.u

ANAllSlS D E COHPOSlClON D E LA HUESTRA D E GAS D E L SEPARAOOR

Componentes t H o l a r G .P .H .

S u l f u r o de Hldr6gano OI6xldo da Carbono NI tr6geno Netano Etano tropano I s o Butano Normal Butano I r o Pentrno Normal Pentrno Hexa no S

Hep t i n o s +

Gravedad d e l gas c a l c u l a d o (a 1 r e - 1.000) = 0.738

V a l o r C a l o r f f l c o Bruto Calculado - 1157 BTU. por p i e cüblco de gas seco a 14.7 Lpca y 60.F.

fumadoa 800 lpsn y 96 ' f .

Page 103: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Análisis de la muestra de gas natural No.:CORELAB-17

Fecha: ??-09-84 Muestra: GAS NATURAL Temperatura: ?? "F Tomada con fecha: ??-09-84

Estado: ?? Empresa: MENEVEN S.A. Presión: ?? lpc Profundidad: SEPARADOR

Componentes Porcentaje Molar Contenido Líquido

Características del gas natural

Gravedad Específica Peso Molecular Presión Pseudocrítica Temperatura Pseudocrítica Pre. Pseudocrítica Corregida Temp. Pseudocrítica Corregida Factor de Corrección por Acidez Contenido Líquido (GPM) (Cl+) Contenido Líquido (GPM) (C2+) Contenido Líquido (GPM) (C3+) Valor Calorífico Bruto. Valor Calorífico Neto Contenido de H2S Contenido de H20

lbs/lbmol lpca "R lpca "R "R ga1/1000 pie3 ga1/1000 pie3 ga1/1000 pie3 BTU/pie3 BTU/pie3 PPm 9 v lbs/MM pcn

Las constantes para los cálculos fueron tomadas del G.P.S.A. 87: P = 14.696, T = 60 "F y Vol. molar = 379.4836 pie3/lbmol.

Page 104: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

CORE LABORATORIES INT ERNATlONAL S. A. hb&m Roru*.ir Eykieorknw

U A ~ T * o o U. - v8Nuu.u

&CN¿ : 0 9 / 8 ~ P j g l n a 37 da 42 Arch l v o R F l 270142

Conpaiita MENEV1N. S. A. Formac l b n &f+' POZO AG12. Me C Estado - Campo Pafs VENEZUELA

ANALlSlS O € COHPOS IClON DE L A HUESTRA DE GAS DEL SEPARAOOR P.

Componentes 8 Molar G.P.H.

Su l fu ro da Hidrógeno blóxfdo de Carbono N f t rógeno Netano Etano Rropano I so Butano Normal Butano I s o Pentano Normal Pen tano Hexano S Hsptanos + I

Gravedad de l g a s ca lcu lado ( a i r e - 1.000) -0.810

Valor C a l o r t f l c o Bru to C ~ l c u l a d o m . 1163 BTU. por p i e cOblco ,de gas seco a 14.7 Lpca y 60.F.

Page 105: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Análisis de la muestra de gas natural No.:CORELAB-37

Fecha: ??-09-84 Muestra: GAS NATURAL Temperatura: ?? "F Tomada con fecha: ??-09-84

Estado: ?? Empresa: MENEVEN S.A. Presión: ?? lpc Profundidad: SEPARADOR

Componentes Porcentaje Molar Contenido Liquido

Características del gas natural

Gravedad Específica Peso Molecular Presión Pseudocrítica Temperatura Pseudocrítica Pre. Pseudocrítica Corregida Temp. Pseudocrítica Corregida Factor de Corrección por Acidez Contenido Líquido (GPM) (Cl+) Contenido Líquido (GPM) (C2+) Contenido Líquido (GPM) (C3+) Valor Calorífico Bruto Valor Calorífico Neto Contenido de H2S Contenido de H20

lbs/lbmol lpca "R lpca "R "R ga1/1000 pie3 ga1/1000 pie3 ga1/1000 pie3 BTU/pie3 BTU/pie3 PPm 9 v lbs/MM pcn

Las constantes para los cálculos fueron tomadas del G.P.S.A. 87: P = 14.696, T = 60 "F y Vol. molar = 379.4836 pie3/lbmol.

Page 106: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Caboratorio Industrial C. A.

IBINCA 9 AVENIDA 35 NO. 94-9s (LOS POSTES N E G ~ O S ) APDO. lose ?ELEfONO: 516460 - MARACA180

Phgina No. 3

Estadon: S a n t i Rosa Arma: rLPTt Toamda con fecha1 04-10-81 TacFniaato: ~G.106

Pecha Anilisisi 08-10-84 Estado1 Ñ i o ~ t e y i

Muestra 1 RG-188

Temperatura i 105 F

Comoonentes Comoosición (Porcentaje !colar)

1. Agua 2. NitiOgono 3. We tan0 4. COZ 5. Etano 6. Propano 7 . 1 80-Butano 8. N-Butano 9. 1 so-Pentano

10. N-Pentano 11. Iso-Htxano 12. N-Hexano 13. Heptanor

m ev en C ornpañ l a I I.le..

Presión: 1200 PsI

Contenido Liquido

CARACTERISTI CAS DEL GAS NATURAL

Gravedad Esoccif ica O. 9082

Pemo lo lecu lar 26.30 LB/MOL

Presidn Seudocrítica 7id 65 PSI A Temp. Seudocrltica 4.38. 29 GRADOS R-HE

Cont. Líquido (GP:rl) 4.1865 CAL/IOOO pc

V a i o r Calorifico (BRUTO) 1163.20 BTtJRC Valor CalorSf i co (h'ETO) 1057.30 BTU/PC

Page 107: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Análisis de la muestra de gas natural No.:LABINCA-03

Fecha: 08-10-84 Muestra: GAS NATURAL Temperatura: 105 "F Tomada con fecha: 04-10-84

Estado: ANZOÁTEGUI Empresa: MENEVEN Presión: 1200 lpc Profundidad: SUPERFICIE

Componentes Porcentaje Molar Contenido ~íquido

Características del gas natural

Gravedad Específica Peso Molecular Presión Pseudocrítica Temperatura Pseudocrítica Pre. Pseudocrítica Corregida Temp. Pseudocrítica Corregida Factor de Corrección por Acidez Contenido Líquido (GPM) (Cl+) Contenido Líquido (GPM) (C2+) Contenido Líquido (GPM) (C3+) Valor Calorífico Bruto Valor Calorífico Neto Contenido de H2S Contenido de H20

lbs/lbmol lpca "R lpca "R "R ga1/1000 pie3 ga1/1000 pie3 ga1/1000 pie3 BTU/pie3 BTU/pie3 PPm 9 v lbs/MM pcn

Las constantes para los cálculos fueron tomadas del G.P.S.A. 87: P = 14.696, T = 60 " F y Vol. molar = 379.4836 pie3/lbmol.

Page 108: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

taboratotio Industrial C. A. AVENIDA 35 No. 94-95 (LOS POSTES NEGROS) APDO. 1058

TLLtfONO: S16460 MARACAlBO

Psskur No- 5

vW8don: Smta Roaa Arw 1Z-G Tonuda con fechar 05-1- ~adn iea to : ~ 0 1 8 6 Pecha Andli si8 I 09-1044 Es-dot &mate@

Muertrr 8 RG186 C o m p a ñ í a : ~mwan Tempimturñ I 110 F Presión: 1200 psf

Coauonentes Com~osició (Porcenía j a &lar)

l. Agua 2. Nitrógeno 3. Metano 4. COZ 5 , Etano 6. Propano 7. f so-Butano 8, N - E u t m o 9, 1 so-Pentano 10. LPentano 11 1so-nexano 12. N-Htxano 13. Hepknos

CARACTERI STI CAS DEL GhS NATURAL

Gravedad E s ~ t c l f i c & O. 7830

Peao Molecular 22.85 IIB/MOL Pnciibn SeudocrStica. 414.16 PSI A

Temp. ~ e u d o c r i t i u 697.85 GRA30S RAMtIñE

Cont, Lfquido (Cm) 27@3 elrz/iooo PC Valor CtlorSf~co (BRUTO) 11 69,0 SlrrifPC Valor Caiorff i co ( N E T O ) 106Q.90 BTUOC

Page 109: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Análisis de la muestra de gas natural No.:LABINCA-05

Fecha: 09-10-84 Muestra: GAS NATURAL Temperatura: 110 "F Tomada con fecha: 05-10-84

Estado : ANZOÁTEGUI Empresa: MENEVEN Presión: 1200 lpc Profundidad: SUPERFICIE

Componentes Porcentaje Molar Contenido Liquido

Características del gas natural

Gravedad Específica Peso Molecular Presión Pseudocrítica Temperatura Pseudocrítica Pre. Pseudocrítica Corregida Temp. Pseudocrítica Corregida Factor de Corrección por Acidez Contenido Líquido (GPM) (Cl+) Contenido Líquido (GPM) (C2+) Contenido Líquido (GPM) (C3+) Valor Calorífico Bruto Valor Calorífico Neto Contenido de H2S Contenido de H20

lbs/lbmol lpca 'R lpca "R "R ga1/1000 pie3 ga1/1000 pie3 ga1/1000 pie3 BTU/pie3 BTU/pie3 PPm,v lbs/MM pcn

Las constantes para los cálculos fueron tomadas del G.P.S.A. 87: P = 14.696, T = 60 "F y Vol. molar = 379.4836 pie3/lbmol.

Page 110: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Laboratorio Industrial C. A. AVáNIOA 3s N*. 94.95 (LOS POSTES NEGROS) APDO. 1058

TILEFONO: 5164óO MARACA100

N? 1' - Esracibn: Santa Rosa Arena: bIEJ 1U Tomada con fechal 02-11-84 Yacimcnto: RG-154 Pechi AnAliois, 0 6 - 1 1 - 8 4 Estrdoc ,l,,:oategui Yuírtra RG-154 Com~afiíal Ncneven Tempenitura 1 1 1 0 'F Preaibnc 600 p t l

s. m a 2. Nitr6geno 3. Metano 4, CO, - 5. Etano 6. Propaca 7. 160-Butano 8. N-Butano 9 , 1 60-Pantano

10. N-Pantano

Contenido Liquido

1). Heptanom

Gravedad Esoeeifica 0.79Q

pelo Molecular 22.95 LB/MOL Pnridn SeudocrLtica 704.90 PSI A Teap. SeudocrLtica 408.70 GRX30S RANUNE

Cont. LLquido (GPrl) 2.b578 CU/1 O00 PC

Valor Calorffico (BRUTO) 1124.0 BTU/PC

Valor CalorSffco (NETO) 1018.O BTU/PC

Contcnido da l l2S cn P.lb.M*S . O

Page 111: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Análisis de la muestra de gas natural No.:LABINCA-12

Fecha: 06-11-84 Muestra: GAS NATURAL Temperatura: 110 "F Tomada con fecha: 02-11-84

Es t ado : ANZOÁTEGUI Empresa: MENEVEN Presión: 600 lpc Profundidad: SUPERFICIE

Componentes Pbrcentaje Molar Contenido ~íquido

Características del gas natural

Gravedad Específica Peso Molecular Presión Pseudocrítica Temperatura Pseudocrítica Pre. Pseudocrítica Corregida Temp. Pseudocrítica Corregida Factor de Corrección por Acidez Contenido Líquido (GPM) (Cl+) Contenido Líquido (GPM) (C2+) Contenido Líquido (GPM) (C3+) Valor Calorífico Bruto Valor Calorífico Neto Contenido de H2S Contenido de H20

lbs/lbmol lpca "R lpca "R "R ga1/1000 pie3 ga1/1000 pie3 ga1/1000 pie3 BTU/pie3 BTU/pie3 PPm .v lbs/MM pcn

Las constantes para los cálculos fueron tomadas del G.P.S.A. 87: P = 14.696, T = 60 "F y Vol. molar = 379.4836 pie3/lbmol.

Page 112: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Caboratorio Industrial C. A. AVENIDA 35 No. 94.95 (LOS POSTES NEGROS) APDO. 10511

TELEFONO: 5 16460 - MARACA100

Pnrriru lo- 25

T o u d r con fecha, ?echa Adl la ia i 08-93-84 Muratn JHJb Compaiiíai ~ma*m tamperrrtura I ge P J L Z ~ Irelidni 60 ~ i i

1. Ay. 2. Nitr6geno ). Mr tano 4. CO* 5. Etano 6. Propana 7. 180-Butano 8 . N-Butano 9. I 80-Pentano

10. N-Pantano $1. 180-Uexsno 12. N-Xexano 1). Heptanoa

C O ~ D O S ~ C ~ ~ ~ \ (Porcentaje Moiar)

CARACTERSSTICAS DEL G A S NATURAL

Gravedad E s ~ a c l f ica

PIIQ Molecul8r 21.51 ' 007w LBl)(OL Pnribn Seudocrftica S@ PSI A Tamp, SeudocrStica me29 GRADOS R-NE

Cont. LSquido (GR) 3.9169 ~hL/1000 PC Ymior Caiorl f lco (BRUTO) iolli.15 BTU/PC Valor Calorff Lco (NETO) 951 49 m/Pc Wtd& da H$ fS PaP.H* 6.0

Page 113: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Análisis de la muestra de gas natural No.:LABINCA-25

Fecha: 08-09-84 Muestra: GAS NATURAL Temperatura: 98 " F Tomada con fecha: 06-09-84

6

Estado: ANZOATEGUI Empresa: MENEVEN Presión: 60 lpc Profundidad: SUPERFICIE

Componentes Porcentaje Molar . Contenido Líquido

Características del gas natural

Gravedad Específica Peso Molecular Presión Pseudocrítica Temperatura Pseudocrítica Pre. Pseudocrítica Corregida Temp. Pseudocrítica Corregida Factor de Corrección por Acidez Contenido Líquido (GPM) (Cl+) Contenido Líquido (GPM) (C2+) Contenido Líquido (GPM) (C3+) Valor Calorífico Bruto Valor Calorífico Neto Contenido de H2S Contenido de H 2 0

lbs/lbmol lpca "R lpca "R "R ga1/1000 pie3 ga1/1000 pie3 ga1/1000 pie3 BTU/pie3 BTU/pie3 PPm,v lbs/MM pcn

Las constantes para los cálculos fueron tomadas del G.P.S.A. 87: P = 14.696, T = 60 "F y Vol. molar = 379.4836 pie3/lbmol.

Page 114: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Análisis de una muestra de gas. Encabezamiento

NO.: CORP-04-00 1 EMPRESA: CORPOVEN

Tipo: Gas Natural ESTADO: Anzoátegui Sitio: Criogénico de Jose ¿ Requiere H2S ? Sí No

Fecha: 10107189 ¿ Requiere H20 ? Sí No

CONDICIONES EN LAS CUALES FUE TOMADA LA MUESTRA: Sitio: Separador de entrada, No. S-324 Fecha: 10/07189

Hora: 10,30 a.m.

Presión: 835 lpcm

Temperatura: 85°F

H2S: 40 ppm,v. Por el método Dragger

CONDICIONES EN LAS CUALES FUE REALIZADO EL ANÁLISIS: Laboratorio: Fundación Laboratorio de Servicios Técnicos Petroleros.

Fecha: 15107189

Hora: 8,30 a.m.

Equipo: HP-7620-A

Detector: Conductividad térmica (CT o TC) .

Ionización a la llama (I.Ll o FI)

Ambos (CT y I.Ll)

Cálculos: Manuales Computarizados

Componente más pesado que se detectó: Decano, Clo

Temperatura del laboratorio: 76 "F

Contenido de H2S, por cromatografia: 40 PPm,v

Page 115: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Contenido de agu-a en el gas natural.

El contenido de agua en el gas es una de las características que debe conocer el

ingeniero con la mayor seguridad. De ello depende la garantía de que los procesos se

realicen sin mayores problemas. Los depósitos de agua en la tubería, la formación de

hidratos, la corrosión del tubo y demás instalaciones se minimizan cuando se

deshidrata el gas hasta los niveles necesarios para evitar los problemas.

Las figuras que aquí se entregan contribuyen a impedir que aparezcan tales

inconvenientes.

La cantidad de agua en los hidrocarburos se determina utilizando la figura del

Dr. J. Mc Ketta o la del Dr. J. Campbell. La primera de las cuales agrega la predicción

del punto probable de formación de hidratos. Se incluye, además, la tabla de R.

Bukacek, con la cual se hacen los mismos cálculos para gases dulces y en forma

nuinérica. Las tres alternativas correlacionan bien.

En ocasiones, el contenido de gases ácidos introduce errores que

porcentualmente pudieran ser apreciables. Esa desviación puede ser significativa

cuando se trabaja en el diseño de plantas de deshidratación o endulzamiento. Por eso

se agregan al libro las figuras para medir el contenido de agua en el dióxido de

carbono y en el sulfuro de hidrógeno. En ambos casos se han extrapolado, para

Page 116: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

permitirle al ingeniero trabajar por debajo los límites de las figuras originales.

También ayudan a obtener una lectura mejor.

La posibilidad de conocer, con seguridad, la formación de hidratos en

determinadas condiciones de presión y temperatura se logra utilizando las gráficas que

aparecen en este capítulo, que son las más comunes y recomendables y han sido

tomadas del GPSA.

Con la primera figura se predice la temperatura, por debajo de la cual podrían

formarse hidratos, tomando en cienta la gravedad específica del gas natural (pág. No.

104). Adicionalmente, el lector encontrará una ecuación para prever, con base en la

presión, la temperatura más probable de formación de sólidos (pág. No. 105). Esto

ayuda a organizar los programas que se preparen al efecto.

Se introduce, además, una secuencia de gráficos (págs. Nos. 106 a 1 lo), con los

cuales se determina la expansión permisible, sin que aparezcan obstrucciones en las

tuberías. El estudioso podrá comprobar y entender mejor el uso de estas figuras

empleando, de manera combinada, otra que se incluye en la pág. No. 111, lo cual

equivale a formarse una idea del descenso de temperatura producido por efecto de la

expansión y la posibilidad de que en esa nueva condición se formen hidratos.

Por último, se agregan los diagrama del aparato más comúnmente utilizado

para predecir el punto de rocío (con respecto al agua y a los hidrocarburos) en

corrientes de gas natural: el equipo del Bureau of Mines.

Page 117: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Temperatura (OF)

Page 118: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

-40 O 40 80 120 160 200 240 Punto de rocío al agua ("F)

Contenido de agua en el gas naturzl dulce

Page 119: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Correlación de R. Bukacek para calcular el contenido de agua (W) en el gas

TEMPERATURA

("F)

- 40 -38 -38 -34 -32 -M -28 -28 -24 -22

- 20 -1 8 -1 8 -14 -12 -10 - 8 - 8 - 4 - 2

O 2 4 8 8

10 12 14 18 18

20 2 2 24 28 28 30 32 34 36 38

40 42 44 48 4 8 50 52 54 58 58

60 82 84 88 88

1

A

131 147 165 184 208 2 1 258 285 31 1 352

390 434 4 13 530 588 848 7 14 188 688 950

1 050 I 150 1 280 I 380 I 510 I 850 1 810 1 010 2 150 2 350

2 580 2 180 3 030 3 280 3 510 3 880 4 210 4 580 4 940 5 3SO

S 180 8 240 8 140 1 280 7 850 8 480 8 110 9 800

LO 500 II 300

12 200 13 100 14 000 15 O00 18 100

TtMnnliTuM

180 182 184 188 118 180 182 184 188 188

200 202 204 208 208 210 212 2 14 21 6 21 8

220 222 224 228 228 230 232 234 238 238

240 242 244 248 248 250 252 284 288 288

280 280 300 320 340 380 380 400 420 440

488

1

8

0.22 0.24 0. 28 0.28 O. 30 0.33 0.38 0.39 0 .42 O. 45

0.48 0.52 0.58 0.80 0.64 0.89 O. 14 0.18 0.85 0.81

0.97 I .O4 1.11 1 .19 1. 21 I .35 I .44 1.54 I .84 I .14

1.85 1.87 2.80 2.22 2.58 2.50 2.85 2.81 2 88 3.18

3.34 3.54 3.14 3.98 4118 4.42 4.88 4.82 5.18 5 .48

5.11 8.08 8.41 a.14 1.10

A

1 7 0 0 0 372000 390 009 401 004 425 000 443 000 483 000 483 009 504 000 525000

547 000 510000 594010 818 000 844000 871000 684000 128000 154000 185000

818 000 848000 84i 000 915 000 950000 887 O00

I OZb 000 1 080000 1100000 1 140 O00

1100 000 1230000 1 210 000 1320 O00 1 310 900 1420 000 1410 000 I520000 1510 000 1 630 000

1880 (00 2 340 000 3 180 000 4 280 OW 5 610 000 t 2 7 0 0 W S300000 I I no wo 14 100 009 18100000

22200 000

B

74.8 11.2 19.9 82.1 85.8 88.4 81.4 84.8 87.7

101

104 108 111 118 119 122 128 130 134 139

143 148 152 151 182 188 171 177 182 187

192 108 204 210 218 222 229 238 242 248

255 333 430 548 892 880

lo90 1380 lT00 2130

2550

TEHP~RATVIIA

(Op?

70

I2 1 4 18 78 80 82 84 88 88

90 82 94 98 08

100 10 2 104 108 10 8

110 112 114 118 118 IZO 122 124 128 128

130 132 134 138 138 110 142 144 4 4

150 182 154 8 158 180 182 184 188 188

110 112 174 118 178

A

11 204 18500 1 8 1 W 21 190 22 500 24 100 25100 27 400 29200 31 100

33 200 35300 31500 38 800 42 (00 48 100 4 7 8 0 0 50 800 83800 5 1 100

80500 84 108 81 800 11800 18000 80 400 84 800 88 100 84 100

100 000

108 O00 1 1 1 000 117 008 124000 130 000 131000 144 O00 152 000 180 000 188 000

117 000 188 000 185 O00 205 O00 218000 225 000 238 800 248 000 258 000 272 000

285 000 288000 312 000 328 O00 341 000

8

7.11 1 . 8 5 8.25 8.81 0.11 O. 57

10.0 10.5 I I . 1 11.8

12.2 12.1 13.3 14.0 14.8 15.3 18.0 18.1 11.5 18.3

19.1 20.0 20.8 21.8 22.1 23.1 24.1 25.8 28.8 28.0

29.1 30.3 31 .8 32.8 34.2 35.8 31.0 38.6 40.0 41.8

43.2 44.8 48.8 48.4 50.2 52.1 54.1 S . 1 68.2 80.3

82.5 84.8 87.1 88.5 12.0

Page 120: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Contenido de agua del CO, saturado en mezclas de gas natural

500 1,000

PRESIÓN (Ipca)

Page 121: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 122: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Contenido de agua del H,S saturado en mezclas de gas natural

500 1,000

P R E S ~ ~ N (Ipca)

Page 123: Ing Gas Principios y Aplicaciones_ocr

Ingenieria de gas, principios y aplicaciones

Page 124: Ing Gas Principios y Aplicaciones_ocr

Ingenieria de gas, principios y aplicaciones

Page 125: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Curvas de presión-temperatura para predecir la formación de hidratos

Page 126: Ing Gas Principios y Aplicaciones_ocr

Temperatura a la cual se forman hidratos

Temperatura (OF) 1 O0

500 1 O00 2000 3000

Presión (Ipca)

Page 127: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Expansión permisible sin formación de hidratos para un gas natural de y = 0,6

100 150 200 300 400 6008QO1000 1500200030004000

Presión final (lpca)

Precaución: ver figura de predicción de hidratos.

Page 128: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Expansión permisible sin formación de hidratos para un gas natural de y = 0,7

Presión final (lpca)

Precaución: ver figura de predicción de hidratos.

Page 129: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Expansión permisible sin formación de hidratos para un gas natural de y = 0,8

100 150 200 300 400 600 8001000 15002000 30004000

Presión final (lpca)

Precaución: ver figura de predicción de hidratos.

Page 130: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Expansión permisible sin formación de hidratos para un gas natural de y = 0,9

60 80 100 150 200 300 400 600 800 1000 1500 2000 3000

Presión final (Ipca)

Precaución: ver figura de predicción de hidratos.

Page 131: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Expansión permisible sin formación de hidratos para un gas natural de y = 1 ,O

Presión final (lpca)

Precaución: ver figura de predicción de hidratos.

Page 132: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Descenso de temperatura del gas natural por efecto de la expansión

INICIAL 2.800 lpcm

l IZONTAL HASTA INTER-

ECTAR LA CURVA DE P = 2.000 lpcm BUJAR UNA L/NEA VERTICAL HASTA LEER

L DESCENSO DE TEMPERATURA = 78 'F SOBRE

O 20 40 60 80 100 120 140 160 180 200

Descenso de temperatura ("F)

Page 133: Ing Gas Principios y Aplicaciones_ocr

Espejo

Manómetro

Enfriador

Equipo para la determinación del punto de rocío tipo Bureau of Mines

Page 134: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Válvula de inyección

Entrada de - C

Vista frontal de la cámara

Salida de refrigerante

7 Entrada de Superficie muestra7 \Pulida /

Salida

muestra % Entrada de t 7 refrigerante

Vista lateral de la cámara

Page 135: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Compresibilidad del gas natural.

El factor de compresibilidad en el gas natural es la clave para conocer el

comportamiento real de los hidrocarburos en estado gaseoso, por lo tanto, todos los

cálculos están afectados por este parámetro. Se incluye, en esta recopilación de tablas

y figuras, la predicción preparada por el Dr. D. Katz y que, a nuestros efectos, fue

tomada del Engineering Data Book, de la GPSA, en el cual los valores de Z se

obtienen a partir de las presiones y temperaturas seudorreducidas. Las ampliaciones

de estos gráficos se exhiben en las págs. Nos. 119 y 120.

La figura que se encuentra en la pág. No. 117 es un esquema del uso de la

ecuación general de los gases. Para calcular los valores seudocríticos de la presión y la

temperatura se proporciona la figura de la pág. No. 12.1, también del Dr. Katz, con la

advertencia de que sirve únicamente para hidrocarburos parafinicos en estado puro.

En el caso de Venezuela, donde el gas procede básicamente de asociaciones con el

petróleo, la pureza es escasa. Si se conoce la composición del gas, es factible estimar

las propiedades directamente. Si no se dispone de la composición, esta tabla

representa un riesgo grande. En las páginas siguientes se leen los valores seudocríticos

para compuestos pesados (~~3. El valor de Z se puede obtener de las figuras

Page 136: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

presentadas en las págs. Nos. 124 a 129, las cuales fueron construidas para valores

fijos de gravedad o peso molecular y condiciones seudocríticas.

Al final del capítulo se presentan varios ejercicios que facilitan la comprensión

de algunas de las figuras del texto.

Page 137: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 138: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Factor de compresibilidad del gas natural

Presión seudorreducida, sPr

Page 139: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Presión reducida Pr

Gráfico generalizado del factor de compresibilidad a bajas presiones reducidas

Page 140: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

0.02 0.03 0.04 0.05

Presión reducida Pr

Factor de compresibilidad del gas a presiones atmosféricas

120

Page 141: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Propiedades seudocríticas de los hidrocarburos

Limitaciones:

0.6 0.7 0.8 0.9 1 .O 1 .l Gravedad especifica del gas (aire = 1 ,O)

Page 142: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Propiedades seudocríticas de los hidrocarburos

140 160 180 200

Peso molecular

Page 143: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Propiedades seudocríticas de los hidrocarburos líquidos

Peso molecular

Page 144: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 145: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 146: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 147: Ing Gas Principios y Aplicaciones_ocr

Factor de compresibilidad para gases de bajo peso molecular

O 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Presión, (lpca)

Page 148: Ing Gas Principios y Aplicaciones_ocr

000s OOSP OOOP OOSE 0006 OOSZ 0001 00s C O00 C 00s O

1~1n3a1otu osad oreq ap sase8 e ~ e d pepr1rqrsa~du103 . . . ap JoTDed

Page 149: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Ejercicios de aplicación

1. Determine los ppm,v de agua en un gas, a 1000 lpca y 90°F, que

contiene 7 lbs por MM pcn de agua.

- 7 Moles de agua - 18,015 = 0,38856

- i o6 Moles de gas n g - 379,63 = 2634,14

Volumen del agua en estado de vapor en condiciones norrnales:

en condiciones normales en un millón de pies cúbicos de gas.

11. Calcule el contenido de agua de una muestra de .gas natural que

contiene 2% H2S y 10% de C02 P = 1000 lpca y T = 100 OF.

Contenido de agua en el gas ácido:

1. En el gas dulce 60,4 lbs / MM pcn.

2. EnelCO2 68 lbs / MM pcn.

3. EnelH2S 150 lbs / MM pcn.

Wc = (0,88) (60,4) + (O, 10) (68) + (0,02)(150)

Wc = 62,952 1bsIMM pcn

Page 150: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Utilizando la siguiente ecuación calcule la temperatura probable a la

cual se formarían hidratos en un gas a 1000 lpca.

111. Calcular la velocidad del gas en una tubería de 12" estándar que

conduce 100 MM pcdn a 90°F, y = 0,6 y P = 1000 lpca.

Diámetro interno de la tubería; pies DI = 12,O"

Área de la sección transversal A = 0,7854

Caudal: Q = 100 MM pcn.

Factor de compresibilidad Z = 0,87

(14,7) (1 0~)(0,87)(550) el = = 1.352.682,7 MM pcnd

(1,O) (520) (1 000)

Q, = 15,66 pie3 / seg

Q v = - - 15,66 = 19,93 pies/ seg

A 0,7854

IV. Calcule la velocidad de erosión del gas en una boquilla.

1 O0 100 pies v e = - - seg

Page 151: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

V. Verifique la temperatura a la cual se podrían formar hidratos en un

gas a P = 1000 lpca, y = 0,6.

Fig. 20-3 (Pág. 20-4) GPSA 87 = 62 OF

Curva de Hamrnerschmidt = 64 "F

Fig. 20-13 del G.P.S.A. 87: entre 48 "F y 67 "F

Usando la ecuación de la página anterior, T = 62,5 1 "F

VI. Suponga que el gas, de y = 0,6 y T = 90 "F, se expande de 1000 lpca

a 400 lpca. ¿Se formarían hidratos? Temperatura = 90 "F.

R. a T = 90 "F no se forman hidratos.

De la figura: descenso de temperatura por efecto de expansión:

A P = 30 para 1000 1 400

Ti-AT=Tf

90°F - 30°F = 60°F

Del GPSA 87, Fig. 20-3 a 400 lpca, T = 48 "F.

i No se forman hidratos !

¿A qué temperatura inicial se formarían hidratos?

T = 48+30= 78 "F

Verificar en la Fig. 20-14, del G.P.S.A. 87. T = 78 "F.

VII. Utilizando el diagrama binario TEG-Agua (pág. 14. Ref. U.C.),

verifique la composición del vapor en el tope de la torre de

regeneración, a P = 14,7 lpca y T = 2 18 "F.

R: TEG = 0,3 % plp; H20 = 99,7 % plp.

Page 152: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Comportamiento de sistemas de hidrocarburos.

Por lo general, cuando uno se refiere al gas natural habla de una mezcla de

hidrocarburos que, en principio, se supone en estado gaseoso. Sin embargo, la

posibilidad de que el llamado gas natural esté realmente en estado gaseoso depende de

su composición y de la presión y temperatura a las cuales está sometido. Dicho en

otras palabras, cualquier gas se puede licuar o ser mantenido en forma gaseosa

mediante la correcta utilización de la presión y la temperatura.

La primera figura (pág. No. 137) esquematiza la manera de predecir en qué

estado se encuentra un fluido (gas, líquido o bifásico), cuyas condiciones de presión y

temperatura son conocidas. Se parte de la composición (valores de Zi) y de las

constantes de equilibrio (Ki).

A los fines de este compendio, se incluyen dos.juegos de figuras: las constantes

de equilibrio obtenidas del GPSA, para valores de presión de convergencia de 2000 y

3000 lpca, y las gráficas publicadas en el libro de Dr. J Campbell.

Cuando las sumatorias de (Zi) / (Ki) y (Zi) * (Ki) son ambas mayores que la

unidad, el sistema está en dos fases, en esa presión y temperatura. Seguidamente se

hallan las hojas para hacer los cálculos respectivos y un ejemplo de aplicación. (Págs.

Nos. 138 y 139).

Page 153: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Las ecuaciones para describir el comportamiento de fases son objeto de estudio

en muchas publicaciones. A pesar de ello, aquí se de-ja una copia de la derivación más

común. El lector podrá hacerle el seguimiento, con el fin de apoyarse en estas

nociones y entender el desarrollo de los e-jercicios que siguen (págs. Nos. 140 a 142).

La separación instantánea de un hidrocarburo se presenta en la pág. No. 143,

con el ejemplo clásico que utiliza un gas seco, a 600 lpca y -20 "F (GPSA, 1987, pág.

25-4).

Nótese que, en este ejercicio, se selecciona un valor de Pk, de 2000 lpca,

porque se supone que la fracción de heptano y compuestos más pesados está formada

por C7 y C8 en partes iguales, lo cual no es cierto en la mayoría de los casos. Tómese

su uso únicamente como un ejercicio de clase. La cantidad de líquido que se deposita

en esta unidad es del 2,7%.

Los valores de la presión de convergencia, a partir de los residuos pesados, se

leen directamente de las figuras de las págs. Nos. 160 y 161. No obstante, la misina

GPSA emplea un método que se ha hecho de rutina entre los procesadores del gas.

Este procedimiento se apoya en el diagrama de Hadden (págs. Nos. 156 y 157) y

agrupa todos los hidrocarburos diferentes del metano como una sola masa pesada, a la

cual se le determinan la presión y la temperatura seudocríticas.

Estas cifras se representan gráficamente en el diagrama de Hadden y, a partir de

este punto, se traza una curva interpolada entre los valores más cercanos de los lugares

geométricos de los puntos críticos de sistemas binarios, la cual se empalma con las

condiciones críticas del metano. El valor de Pk se logra al intersectar la curva dibujada

con una línea vertical, que se apoya en la temperatura del fluido en el recipiente y

cuyo comportamiento bifásico se desea conocer. (Pág. No. 159).

Los resultados obtenidos con esta técnica se aproximan mucho al valor de la

presión de convergencia que se lee, fácilmente, usando los gráficos de Standing y10

Rzasa, modificados por Martínez y Lorenzo (págs. Nos. 1 60 y 1 6 1).

Entre las págs. Nos. 146 y 1 5 1 el lector encontrará una serie de diagrama que

permiten conocer, por simple inspección, el comportamiento de los hidrocarburos.

Observe, por ejemplo, cónio varía la ubicación del punto crítico según se trate de un

Page 154: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

gas seco o de un petróleo. En el primer caso aparece del lado izquierdo del diagrama y

en el segundo, completamente a la derecha.

Para gases o mezclas de hidrocarburos muy livianas no aplica la regla de las

palancas. El dibujo de la pág. No. 147 demuestra esa conducta. Este diagrama de fases

corresponde al ejemplo de la GPSA (pág. No. 143). En el centro del dibujo se ve el

punto correspondiente a las condiciones de trabajo del separador (600 lpca y -20°F),

lo que equivale al 2,7% de líquido en el sistema. Cualquier observador poco entrenado

esperaría una condensación equivalente al 50% molar.

El diagrama de fases de la pág. No. 148 compara las condiciones extremas del

gas que pudiera llegar a la planta tipo. En esta situación aparece el comportamiento de

la mezcla más rica (identificada como Furrial) y la más pobre (Carito oeste). Eso le

advierte al ingeniero sobre los valores de presiones y temperaturas con los cuales debe

operar sin producir condensación dentro del absorbedor. Como podrá apreciar, la torre

de absorción trabaja a 1200 lpca y 120°F.

A partir de la pág. No. 152 se inicia la explicación del significado del término

presión de convergencia. Note el lugar geométrico de los puntos críticos de un

compuesto binario formado por etano y heptano, el cual se dibujó a partir de las

mezclas presentadas en la pág. No. 153. La presión de convergencia se logra

intersectando una línea vertical sobre la temperatura del fluido con el lugar geométrico

de los puntos críticos del bicomponente.

En las figuras subsiguientes se verán otras combinaciones binarias, hasta llegar

al diagrama de Hadden, en el cual se ilustran los lugares geométricos de los puntos

críticos de varias combinaciones de metano con otro compuesto más pesado. Por esta

razón, para encontrar el valor de Pk de una mezcla de hidrocarburos, se asemeja la

composición a un bicomponente, haciendo aparecer todos los elementos diferentes del

metano como un residuo pesado.

En la pág. No. 158 se ofrecen los diagrarnas de fases del fluido que entra al

primer separador del ejemplo de la pág. No. 169. El comportamiento del producto que

llega, identificado con la curva (B), el gas (A) y el líquido (C), se superpone en el

mismo gráfico y, luego (pág. No. 159), se dibuja el lugar geométrico que se consigue

con el diagrama de Hadden, con el cual se dispone de la presión de convergencia, de

Page 155: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

esta composición en particular, para cualquier valor de presión y temperatura. En la

pág. No. 162 se define el criterio de Pk y se agregan dos figuras que permitirían construir la curva teórica de constantes de equilibrio para cualquier hidrocarburo en

estado puro, gracias a que, mediante su uso, se obtiene el punto de inflexión de la curva.

Page 156: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Procediminto práctico para investigar el estado de una muestra de gas natural a determinada presión y temperatura

Punto crít ico

\ E z i / K i = 1

Vapor Z Z i / K i < 1

Zi Ki > 1

Dos fases

Ezi / Ki > 1

Temperatura -

Page 157: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Determinación del estado de una mezcla de hidrocarburos

Presión: lpca Temperatura: "F

Page 158: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Determinación del estado de una mezcla de hidrocarburos

Presión: 1214,7 lpca Temperatura: 90 "F

Page 159: Ing Gas Principios y Aplicaciones_ocr

Ecuación para el cálculo de la separación instantánea de los hidrocarburos

Ez i = moles del componente "i" en la carga.

L.x i = moles del componente "i" en el líquido.

V.y i = moles del componente "i" en el gas.

Page 160: Ing Gas Principios y Aplicaciones_ocr

Ingenieria de gas, principios y aplicaciones

Page 161: Ing Gas Principios y Aplicaciones_ocr
Page 162: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

00

b

cL)

LO

-.J

a

-9 (3

CY

m E E - O

0 b

- N . 9

- f ' z l

G " .J

a , 8 ' ~ 1 v , ~ g! o .I

8 8

II

P # .- o @ " E ' N E q j 0 2 0 0 s

b r n

O e O O C

L

R S m >

. - < ~ w c o m 8 % 8 B 2 m * m C U o

Z Z E % 5 8 N 8 8 8 8 ~ 0 0 0 0 8 0 0 0 o ó o o 6 o ó 9 6 9

m - m c o m z o * m t a 1 - ~ , g k z g 88'3 ,,m, q o r - 8 q o q q q o o o o o o o o o o

O Q ) O r - m - m C 3 N b a - t C U 7 - b - a b m m t D C n o m 0 , m ,

3 < R T _ w b m m 8 c y w r o ~ r 9 9 0 9 9 9 C ) ~ 0 0 0 0 0 0 0 0

N C U O > - ~ c O ~ r Q m W C D r h m C 9 t - E - b C U C D ( U N a b

8 i L - m r - - w m m m % N 9 r r 9 9 0 9 9 9 0 0 0 0 0 0 0 0 0 0

% % I a D 3 : % % 8 R O o c n ~ t r - c n m b o m m o - - 8 * CU CU q o y r q o 0 0 8 8 0 0 0 0 0 0 0 0 0 0

0,oCUco % % # e % % 3 g = N c m . - < o L (O N m O a m a C U ~ ~ o ~ - ~ o o o ~ F 0 0 0 0 0 0 0 9 0 0

0 SI IN

m m 8 2

3 q r

o> 8 m 2

;X m m o

z v- v 4

8853885 j8883 m O s a 0 s ~ , - , , g X ' t ' 9 9 9 9 9

. - 0 0 0 0 0 0 0 0

rOUiOO O C O O b m m ~ ~ ~ M 0' 8z50 , q % 6 q o g % Z $ 8 o o o o o o o o o ó

o " , , - ; - - + ooooL2cQ2Sg

> + J

en U1 II

b- a

g

9 > + A

8 d II J

il -I

8 o II J

-

Ñ

Kj-

> + J

Y'

+ a

a + y- 2

Ii -

Page 163: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

F!

-

2

-

O r

-

O

<D

g

- E - iñ

E A

m .- Y) n

O n

IZ 6 I-

E - .o @ o u - u = 58::s ". b =

O

Y) z a O- - - m -

o = r 4 = P O

E

'

S >

w

Y>

-

.iI

-

C)

N

.- "3

E

$ ' ? v ? v ? g ' ? $ ~ P-O.-NIDcn o P - w m m , 3 7 a

**=??*..o7 , * ,O,

! 5 3 % b % 8 ~ %

m,, ,,N+-,

8 6 4 i $ 1 ~ 1 3 8 6 q q r T * q q 7 y O O O O O O O O O

- N ObmNmb

f& !a rqG3$ t-*<lN

~ C ~ W , , , , Q , -- -bONNlnmw q q F v r * - - e

3 8 + " * m * x e * :

*!383R$'i53$%8 % ? ~ : ! 8 ~ 8 8 8 8 m o o o 0 8 0 0 0 0 0 0 0 0 0 0 ~ o 0

-I O - 0 0 0 0 0 0 0 0

a

Y>06%;5380 ;f ' 5 t f r iogo , , . . e , -I 8 - 423;;qqssas 0 0 0 0 0 0 0 0 0 0 O

3 g m o ~ m --$8%P88 E

3 3 6 ~ 1 8 8 ~ 3 3 Z $2 N O - - ~ 0 0 0 . - c r

A d 0 0 0 0 0 0 0 0 0 0 4

Cy

$

2 z

8 - 8 *

m

fe o

S Y II

p' .A m

gi m

E S ; N 8 . ú " A", ~2

s u s

8 W 3 H 8 m 8 Q O O W O 7 - r O 3 i $ ó x g x x a f ~gmt.">mr..gg

a - m ~ g g o 8 e 8 z ~ E g ~ z ~ ~ ~ ~

O * + $ o o 0 O ú T G ~ 6 ' $

V)

w J

o C

Page 164: Ing Gas Principios y Aplicaciones_ocr

Cálculo de la presión de convergencia

(según el GPSA-87)

Page 165: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 166: Ing Gas Principios y Aplicaciones_ocr

Diagrama de fases (Soave-Redlich-Kwong)

-300 -250 -200 -150 -100 -50 O 50 100

Temperatura ('F) Composición presentada en el GPSA (87)

Page 167: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

o o o o o o o o ó o O C D q

Page 168: Ing Gas Principios y Aplicaciones_ocr

2

Presión de agotamiento a temperatura

Temperatura ,->

Diagrama de P-T para un petróleo relativamente volátil o de alta merrna

Page 169: Ing Gas Principios y Aplicaciones_ocr

Diagrama de presión-temperatura para un petróleo relativamente pesado (baja merma)

Presión de agotamiento a temperatura del yacimiento

Temperatura ->

Page 170: Ing Gas Principios y Aplicaciones_ocr

m 1 r I t 1 4

Zona 111 Zona II Zona 1

O 50 100 150 200 250 300 350

Temperatura (OF)

Diagrama Presión-Temperatura para un sistema de hidrocarburos multicomponentes

Page 171: Ing Gas Principios y Aplicaciones_ocr

Diagrama presión-temperatura para un sistema etano - heptano normal

Presión (Ipca) 1400 I I 1 1

- Puntos crí t icos -

\ /

/ \

/

/

/' / ' c7

Temperatura ( O F)

Page 172: Ing Gas Principios y Aplicaciones_ocr

Diagrama presión-temperatura para un sistema etano-heptano normal

Presión (Ipca) 1400

Temperatura ( " F)

Page 173: Ing Gas Principios y Aplicaciones_ocr

009 009 OOP OOE 0 0 Z OOC O OOL- 002- OOE- OOP- o

O O C Z

OOOE

O O C E

(eadl) UO!SaJd OOOP

Page 174: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 175: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 176: Ing Gas Principios y Aplicaciones_ocr

rni O

.M k ed d

*ril

9 rni

i w C1 rni *d rni

cd t cd a ed . M U 51 w L w * el O U w a a :S rni w Pi

Ingeniería de gas, principios y aplicaciones

Page 177: Ing Gas Principios y Aplicaciones_ocr

Diagrama de fases para el vapor, mezcla y líquido

(Peng Robinson) Presión (Ipcm)

* Punto crítico A = Vapor B = Mezcla C = Líquido

-200 -100 O 100 200 300 400 500 Temperatura ("F)

Page 178: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 179: Ing Gas Principios y Aplicaciones_ocr

Valor aproximado de la presión 'de convergencia

Método de Standing

Presión de convergencia (Ipca) 12000 1 1000 1 O000 9000 8000 7000 6000 5000 4000 3000 2000 1 O00

o 1 O0 1 20 1 40 1 60 1 80

Peso molecular del C:

Page 180: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 181: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 182: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

K mínimo

K mínimo

Correlación del valor mínimo de la constante de equilibrio Km, con la presión de convergencia Pk y la presión de vapor del

componente Po.

Page 183: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Correlación de la presión a la cual ocurre el valor mínimo de la constante de equilibrio PmK, con la presión de convergencia

Pk y la presión de vapor del componente Po.

Presiíin para uii K mínimo Presión de convergencia aparente

Page 184: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Separadores.

El disefío de separadores comienza con un análisis, en tres etapas, del comportamiento de una mezcla de hidrocarburos. Se parte de un petróleo que llega del

yacimiento con un 44,04% de metano y el cual se trabaja a 500 lpcm y 90°F. De esa separación se logra un gas con 91,5853% de metano y un petróleo con 16,2850% de

metano. El producto del fondo en la unidad a 500 lpcm se pasa, a su vez, a otro

separador, en el cual se genera un líquido remanente con sólo el 2,1855% de metano y

un gas con 12,3251% de etano. En el tanque (la última etapa de equilibrio), el

producto estabilizado contiene 80,9745% de heptano y el gas, 47,8170% de metano.

(Pág. No. 167).

El lector podrá verificar estos resultados haciendo los cálculos correspondientes en cada etapa. Igualmente, se hará todo lo relacionado con el balance de materiales en cada separador.

En la pág. No. 171 aparecen los diversos valores de Ki que podrian obtenerse

con diferentes presiones de convergencia y/o mediante el uso de simuladores, como el de Peng Robinson ylo Soave, Redlich y Kwong.

En las págs. Nos. 172 a 174 se encuentran los diagrarnas de fases de los fluidos

en el primer recipiente. En ellos se compara la ubicación del punto crítico del sistema

Page 185: Ing Gas Principios y Aplicaciones_ocr

1 Ingeniería de gas, principios y aplicaciones

con los puntos seudocríticos que se lograron con las reglas de Kay. Más adelante, se

superponen los resultados alcanzados con SRK y PR. El interesado podrá hacer las

deducciones respectivas. En la pág. No. 178 se analizan los valores que se obtendrían usando el heptano

como compuesto más pesado y, por comparación, el c;. En la curva intermedia, el

C: se hace con el heptano y octano, al 50% molar c/u, y en la última curva,

empleando del C7 al Cio. Obsérvese la importancia de incluir los compuestos pesados

de manera apropiada. Cuando se usan, para el diseíío de las plantas, muestras que no

han sido bien caracterizadas, los errores que se derivan impiden que el conjunto

trabaje en condiciones óptimas. Algunas veces podría ser imposible utilizar la

instalación cuando ésta se arranca, debido a que la composición del gas usada en el

I disefio no fue bien seleccionada.

1 Las curvas siguientes (Págs. Nos. 179 a 181) indican el comportamiento del GPM en el gas del primer separador con respecto a la cantidad de producto

estabilizado que se obtendría en el tanque (refiérase al ejemplo de la pág. No. 167). I Nótese cuánto se beneficiaría una planta de recuperación de condensables del gas l

natural, si se optimizaran previamente las presiones de campo a las cuales se operan

los separadores. i I En las páginas siguientes (Nos. 182 a 191) se estudia el comportamiento de los

! hidrocarburos en el segundo separador y en el tanque, tanto si se utilizan 65 lpcm en la

segunda etapa, como al optimar la presión de esta unidad a 92 lpcm.

El lector encontrará, al final, otros dos ejemplos, también en tres etapas, los cuales le permitirán profiindizar y consolidar la materia.

Page 186: Ing Gas Principios y Aplicaciones_ocr

Ejemplo de cálcul ería de . ~ separadores Componentes Separador 1 Separador I I Tanque

Yi Y¡ Yi

8; 91,5853 74,4251 47,8170 4,9636 12,3251 20,7909

c3 2,1871 8,3363 18,9846 0,5981 2,5697 6,4609 O, 1 377 0,5663 1,4523

w 0,0865 0,3207 0,8185 0,441 8 1,4568 3,6758

t T Preaibn variable

, 65 Ipcm T=90"F 4, 14.7 l p ~ m

1 90°F

90°F

\ -

I U

Componentes Yacimiento Separador I Xi Xi

c 1 44,w 1 6,2850

C; 4,32 3,9443 4,05 5,1375

nC4 2,84 4,1487 nC5 1,74 2,6753 nC6 2,90 4,5424 nC7 40,11 63,2667

Separador I I Tanque Xi Xi

2,1855 0,5223 1,9119 1,2238 4,361 8 3,8288 4,531 6 4,461 3 3,1868 3,2500 5,5662 5,7393

78,2561 80,9745

Page 187: Ing Gas Principios y Aplicaciones_ocr

Balance de materiales en una batería de separadores Variables Separador 1 Separador ll Tanque

W (Ibsldía) 1 7593,9883 7456,2500 1482,7395

H (MM BTUIdía) O, 7822 0,7750 0,2206

lpcm

u Variables Yacimiento Separador I Separador II Tanque

n (lb m01 ldia) 2.635,1157 1.663,8350 1.339,0930 1.292,0017

W (Ibsldía) 146.902,9370 129.308,9370 121.852,6870 120.369,8750

P (I~cm) 1.200,0000 ~ , o o O O 65,0000 14,7000

H (MM BTUIdía) 3,1194 3,2574 3,2732 3,2507

M (Ib~/lb-mal) 55,7482 77,7174 90,9964 93,1654

L 0,8574 0,631 4 0,8048 0,9648

35,531 3 39,7571 41,6857 41,9830

V (BLS/día) 736,3796 579,2898 520,631 1 51 0,6536

F % 2. 8. P

% m 8 2 5' L. w g ' '4 w 'P. 5- P: o" m

Page 188: Ing Gas Principios y Aplicaciones_ocr

Separador No. 1

Composición Zi Composición Yi

1 44,04 1 91,5853

2 4,32 C 2 4,9636

c 3 4,05 C 3 2,1871

nC 4 2,84 nC 4 0,5981

"C5 1,74 nC 5 O, 1 377 Gas "' 6 2,90 r nC 6 O, 0865

40,l l nC 7 0,441 8

"C 7

Composición Xi

1 16,2850

2 3,9443

C 3 5,1375

nC 4 4,1487

nC 5 2,6753

nC 6 4,5424 nC7 . 63,2667

Page 189: Ing Gas Principios y Aplicaciones_ocr

Variables Variables

F -. 3 %

9 P,

e 09

u%

2 3' 1. w E'

CC P, 'z 5. i? 8' S cn

M (Ibs/lb.mol) 55,7482 M (Ibsllb. mol) 18,1142

P i (1 bslpie ) 35,531 3 Pg (1 bslpie 3, 1,7113

Q 1 (blsldía) 736,3796 G (adim.) 0,6255

L (adim.) 0,8574 Gas Z (adim.) 0,9230

r* V(adim.) 0,3686

T ( "F) 90,0000

\

..

6 Q = 10 pcdn

O

Variables

ni (lb.mol/día) 1.663,8350 w (Ibsldía) Separador No. 1

- I 29.308,9370

P (I~cm) 500,0000

I M (Ibs/lb.mol) 77,7174 * Pi ( ~ b s / ~ i e ~ ) 39,7571

- - Q (blsldía) 579,2898 3

0,631 4 L (adim.) P

i:

Page 190: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Comparación de los valores de "Kit'

Separación de un gas a P = 500 lpca y T = 90°F

Separación en el tanque a P = 14,7 (variable), y T = 90 OF

Page 191: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 192: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 193: Ing Gas Principios y Aplicaciones_ocr

Diagrama de fases líquido en el separador No. 1

7 Curva de rocio

Curva de burbujeo

* Punto crítico

+ Punto seudocrí tico

-200 -100 O 100 200 300 400 500 Temperatura ( QF)

Page 194: Ing Gas Principios y Aplicaciones_ocr

(j .) e~n~e~aduial 009 OOP 00s 002 001 o 001- ooz-

O

00s

O00 1

00s 1

oooz

Page 195: Ing Gas Principios y Aplicaciones_ocr

Diagrama de fases vapor en el separador No. 1

(Soave-Redlich-Kwong y Peng Robinson) -

Presión (Ipcm) 1600

Peng Robinson

-100 -50 Temperatura (" F)

Page 196: Ing Gas Principios y Aplicaciones_ocr

Diagrama de fases líquido del separador No. 1

(Soave-Redlich-Kwong y Peng Robinson) Presión (Ipcm)

Page 197: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 198: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 199: Ing Gas Principios y Aplicaciones_ocr

c7 GPM (ga1/1000 p3) VAPOR (fracción)

Comportamiento del GPM y "V" vs. Presión. en el separador No. 1

xi (%) 13,1911 3,6268 5,0912 4,2659 2,7872 4,7526 66,2852

(Sepa. 1) 565,9902 (Tanque) 511,5198

F % 5 w i

9 m a CD 09 "e: 'Ef E' O,. 't3.

v

'P. o" S 5- S $

Page 200: Ing Gas Principios y Aplicaciones_ocr

-. C . , , -a

GPM-vapor vs. presión Separador No. 1

c..(

3 % 3. $ p;'

e Oc "e: "Et a' O,. a E' V w z 5- w 9. O 3 S!

Page 201: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

O .- - c u v J d - V ) ( D b g 0 0 0 0 0 0 0 C C C C

0 0 0 0 0 0 0 C C C C

Page 202: Ing Gas Principios y Aplicaciones_ocr

Variables

P (I~cm) 500,0000

M (Ibs/lb.mol) 77,7174

p l (1 bslPie3 ) 39,7571

Q , (blsldía) 579,2898

L (adim.) 0,631 4 Gas

Separador No. 2

Variables

ni (moles/día)

w (lbsldía)

P (Ipcm)

M (Ibs/lb.mol)

pg (lbslpie3 )

G (adim.)

Z (adim.)

V (adim.)

T ("F)

Variables

Liquido Q , (blsldía)

L (adim.)

Page 203: Ing Gas Principios y Aplicaciones_ocr

Diagrama de fases líquido y vapor del separador No. 2

(Soave Redlich Kwong y Peng Robinson) Presión (Ipcm)

100 200 Temperatura PF)

Page 204: Ing Gas Principios y Aplicaciones_ocr

Composición

Tanque

Gas

r-

Líquido d

Composición

Composición

Page 205: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

3 n \- e

3 $ 3 e 79 .- O u, i l o - e ^ ^ ^ í3 ES, a o a E e . E E E 3 E E - e - e ~ Q) %- T E 9 a u - E o o u , g Z o E V) .- .- e e O .m g g g g ~ g ~ 5 .- 3 .- ¿* C - w

> e- P H ~ U N > I - > r g

Page 206: Ing Gas Principios y Aplicaciones_ocr

* -- .-y-, +~- - . A- - - i r - - O k d ~ --..- *-e1- & + -.?--+ - ,<&L6 -- 4 - - - -* - . --

Composición

Cl

C 2

c 3

nC 4

nC 5

nC 6

nC 7

Separador No. 2 (Optimado)

Gas

Composición

Composición

Liquido nC 6 nC 7

Page 207: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

8 0 O O W

W O I n * m 8 8 Q a o m , , - - 0- CO- * o>_ --

á a 8 ~ 0 0 0 0 8 a

W

n a S SI \- E - \-

TZ ,T s . g ? - 2 \S g - - 8 0 2 - g .- p o c o E ~ > € e e E E .- -2 u ~ e & g e ~ ~ m ~ .- a ;a g - E # X o S S : u Y

g g o3 .- = F g a H e c 9 ~ ~ > r ~ - ~ I q o _ i ,-

Page 208: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 209: Ing Gas Principios y Aplicaciones_ocr

Composición Zi

Tanque (Optimado)

Composición Yi

C l 46,9900

c 2 21,1200

C 3 1 9,3700

nC 4 6,5500

Gas nC 5 1,4600

Composición Xi

- 1 0,5200

c 2 1,2400

C 3 3,8900 Liquido

b nC 4 4,4900

nC 5 3,2500

3 % e. 0;' !% 00 "e: Y. z .o' O* V1

w P, 2 5- $3 O' 5 C1

Page 210: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 211: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 212: Ing Gas Principios y Aplicaciones_ocr

Balance molar y de materiales en una batería de separadores.

V (fracción) Qg pcn '

Moles (Ibmol/día) Ya

500 lpca

120 "F 65 lpca 14,7 lpca A

\ Líq;ido del \ L i d o del \~íquido~petróleo) Se arador No. 1 Se arador No. 2 de Tan ue

L (fracción) F = 1,0000 0,5655 0,8601 0,951 1 Moles (Ibmolldía) 2634,3500 1489,7300 1281,3200 121 8,6600 Mi (Ibs/lbmol) 130,6720 216,1190 246,4920 256,2060 " (c;5;;.:5) 344236,0400 321 958,9600 31 5835,1300 31 2228,0000

53,9100 54,261 0 54,3370 VI (bisldía) 1063,6100 1036,6300 1 023,3500

Page 213: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 214: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Normativa de Petróleos de Venezuela, S.A. (PDVSA) para el diseño de

separadores.

El diseño de un separador involucra la aplicación de las fórmulas inherentes al

comportamiento de los fluidos y el posterior dimensionamiento de la unidad. Se

presentan dos alternativas: una sugerida por la GPSA y la otra, por PDVSA. Al

comparar los espacios que deben preverse para cada parte del recipiente, resultará la

longitud final recomendada, así como la relación de esbeltez (LD). Las págs. Nos.

203 a 205 sugieren una metodología para dimensionar depuradores verticales.

En la página No. 206 se presenta la fónnula utilizada para el cálculo del

espesor de pared de una tubería. Una variante de esta ecuación (pág. No. 207) se

utiliza para calcular el espesor del material de un recipiente.

Seguidamente se verán las recomendaciones básicas para realizar los cálculos.

Las primeras indicaciones se refieren al diseño de unidades verticales, luego (pág. No.

218) se presentan las ecuaciones para calcular recipientes para gas y petróleo. Los

cómputos más complejos comprenden el disefio de separadores para gas, petróleo y

agua, lo cual se cubre a partir de la pág. No. 222.

Page 215: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Parámetros necesarios para diseñar un separador

1. Composición del fluido que se va a separar.

2. Caudal del gas en condiciones normales.

3. Presión de operación (lpca).

4. Temperatura de operacióri.

5. Factor de compresibilidad del gas en las condiciones de operación.

6. Densidad del gas en las condiciones de operación.

7. Velocidad crítica del gas dentro de la unidad.

8. Cantidad de liquido y de gas dentro de la unidad.

9. Tipo de líquido: gravedad.

10. Tiempo de retención asignado al líquido.

1 l. Dimensionamiento del recipiente.

Page 216: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Diseño de un separador vertical según GPSA

Deflector de entrada

Extractor de niebla

Salida de liquido

Salida del gas

~ D , I + = Di ro exterior de la boquilla hO = DJ4

h l = (D, - De)/2 - h0

Deflector de entrada

Diámetro de - entrada, D,

f h2 = 6"

h3 = D, o 24" (mín.)

A h

h4=2D, -

h5 = 12" (mín.) u U h6 = 12" (mín.)

4 D~ Capacidad para el líquido

I I

Page 217: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Diseño de un separador vertical según PDVSA

Deflector de entrada

Deflector de entrada

Diámetro de entrada, Di

Extractor de niebla

Salida del gas / '.im = ~ i&etro exterior de la boquilla

1 h5 = 0,3 D, o 24" (mín.)

I4 Capacidad para DV el liquido

I 1 1 h6 = 12" (mín.)

Salida de líquido

Page 218: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 219: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Cálculo del diámetro de un separador Parámetros:

Caudal de gas: MM pcnd

Temperatura: OF = OR

Presión: lpca

Peso molecular del gas:

Densidad del líquido a C.O.: 1bslpie3

Factor de compresibilidad (Z,):

Caudal de gas en condiciones de operación:

Densidad del gas en condiciones de operación:

Pv M - - > o - - lbs Pg = - & R Top ( )(10,732)( ) - pie3

Velocidad del gas en el separador:

( ) ( - > - V = (O,,, - -) 10.000 i / - - - pie ( ) seg

Área para el gas en el separador:

Page 220: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Diámetro interno del separador:

- pies

Espacio para el líquido:

Caudal (Q,) = blsldía.

Tiempo de retención (tr) = min.

(Ql)(5,615) - - ( )(5,615) - - - pie3 Q' = 60 x 24 1440 min

hs = - pies

L ( 1 - Relación - = --- - D O

TERMINOLOGIA:

Qdcn, = Caudal de gas en condiciones normales (MMpcnd).

Qdopl = Caudal de gas en condiciones de operación @ie31seg).

Pcn = Presión en condiciones normales (l4,7 lpca).

POP = Presión de operación (Ipca).

Tcn = Temperatura en condiciones normales (520°R).

TOP = Temperatura de operación ("R). Zcn = Factor de co~npresibilidad en condiciones normales.

ZOP = Factor de compresibilidad en condiciones de operación. M = Peso molecular de gas.

R = Constante universal de los gases = 10,732.

V, = Velocidad del gas (pielseg.).

pl = Densidad del liquido en condiciones de operación (1bslpie3).

Ps = Densidad del gas en condiciones de operación (1bslpie3).

Page 221: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Ag = Área para el gas (pie2).

A = Área del separador (pie2).

DI = Diámetro interno del separador (pie).

QI = Caudal de líquido (blsldía). Vol = Volumen de líquido (pie3).

hi = Altura del líquido (pies).

hs = Altura del separador (pies). tr = Tiempo de retención (min.).

Page 222: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Presión de trabajo en líneas de transmisión. Se usa la siguiente fórmula para determinar la presión de trabajo interna de

las tuberías ubicadas fuera de las refinerías y otras instalaciones de proceso, de acuerdo con el código ANSI-B-31.8-1982: "Código de presión en tuberias de transmisión y distribución de gas".

Donde: P - -

S - -

D =

e - -

F - -

Presión de disefio, lpcm SMYS o RCME: Resistencia Cedente Mínima Especificada, lpcm Diámetro nominal exterior, pulgs. Espesor de pared, pulgs. Factor de construcción: Tipo A, F = 0,72 Tipo B, F = 0,60 Tipo C, F = 0,50 Tipo D, F = 0,40 Factor de soldadura para tuberías sin costura. Normalmente es igual a 1,O; excepto en los siguientes casos: Soldadura a fusión A134 y A139, E = 0,80 Soldadura en espiral A-2 1 1, E = 0,80 Soldadura a puntos ASTM A-53 y API-SL, E = 0,60 Factor de temperatura: Temperatura, OF Factor T 250 o menos 1,000 300 0,967 350 0,933 400 0,900 450 0,867 Para temperaturas intermedias se puede interpolar.

Page 223: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Diseíio del espesor de pared de un separador

Ejemplo:

donde: P = Presión de diseno (lpcm) 1.200,O

R = Radio interno del recipiente (pulgs) 21,O S = Tensión máxima del metal (lpcm) 15.600,O

E = Eficiencia de las juntas (fracción) 1,o c = Corrosión permisible (pulgs) O, 125

e = 1,693 + 0,125 = 1,8185 pulgs

Espesor comercial inmediato superior: 1,785 pulgs. Diámetro externo: 42 + (2)(1,785) = 45,75 pulgs.

Nota: eficiencia entre las juntas: Valor de E para: Doble soldadura Soldadura simple Totalmente radiografiada 1 ,O0 0,90

Parcialmente radiografiada 0,85 0,80

Sin radiografiada 0,70 0,65

Page 224: Ing Gas Principios y Aplicaciones_ocr

Esfuerzo permisible para algunos materiales

Resistencia Resistencia mínima a la mínima a la

Composición efluencia rotura -20a 700 750 800 850 900 950 1000 Especiñcación Grado nominal ( i ~ ) ( i~c) ea''F OF OF OF OF . OF OF OF

B SA-106 A

B C

ACERO 51670

Page 225: Ing Gas Principios y Aplicaciones_ocr

Ingenieria de gas, principios y aplicaciones

Page 226: Ing Gas Principios y Aplicaciones_ocr

Separadores horizontales

Características.

Separación de dos fases líquidas.

Manejan mejor tres fases.

Más baratos.

Fáciles de transportar ensamblados sobre patines.

Control del nivel del líquido más crítico.

Son más difíciles de limpiar.

Page 227: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 228: Ing Gas Principios y Aplicaciones_ocr

Ingenierfa de gas, principios y aplicaciones

Page 229: Ing Gas Principios y Aplicaciones_ocr
Page 230: Ing Gas Principios y Aplicaciones_ocr

Diseño de separadores verticales l

1 I 4. Diámetro interno del recipiente:

donde: D = Diámetro interno del recipiente (pies)

2 A = Área de la sección transversal (pie )

5. Tasa volumétrica del líquido:

W~ donde: Q, = 3 p l

Q = Tasa volumétrica del líquido (pie /seg)

WI = Tasa másica del líquido (Ibslseg)

P 1 = Densidad del líquido a P y T (lbslpie3)

Page 231: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

A v v u

Page 232: Ing Gas Principios y Aplicaciones_ocr

Diseño de separadores verticales

7. Altura del Iíquido en el recipiente: Vi donde:

I

h ' = ~ h = Altura del líquido (pies) n

VI = Volumen de retención del Iíquido (pieJ) A = Área de la sección transversal (pie2)

8. Densidad de la mezcla:

wl + wg donde: P - m- QI +Qg W = Tasa másica de líquido (Ibslseg)

Wg = Tasa másica de gas (Ibslseg) 3 Q = Tasa volumétrica del Iíquido pie /seg)

3 Qg = Tasa volumétrica del gas (pie /seg) P = Densidad de la mezcla ( ~ b s / ~ i z ) m

Page 233: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 234: Ing Gas Principios y Aplicaciones_ocr

Diseño de separadores horizontales (gas-petróleo) @

1. Velocidad crítica del gas donde:

K se obtiene de:

vg = Velocidad del gas (pieslseg)

P 1 = Densidad del Iíq"ido (lbslpie3) 3 P; = Densidad del gas (Ibslpie )

donde:

L = Longitud el separador (pies) mínimo 7,5 pies

D = Diámetro del separador (pies)

Page 235: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 236: Ing Gas Principios y Aplicaciones_ocr

Diseño de separadores horizontales (gas-petróleo) @

4. Diámetro interno del recipiente para A = 2 Ag :

donde: D =

I D = ?iámetro interno del recipiente (pies)

. .

A = Area de la sección transversal del separador

5. Suponer la longitud costura a costura del recipiente (L). La longitud comienza con 7,5 pies y aumenta en incrementos de 2,5 pies.

6. Tasa volumétrica del líquido:

Wl donde:

Ql =- P 1

Q = Tasa volumétrica del líquido (pie3/seg)

WI = Tasa másica del líquido (Ibslseg)

P 1 = Densidad del líquido a P y T (lbslpie3)

Page 237: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

"a, - *- CV

a, - .- a.

O - .- U O 3 4- - w a, .= u - t a,

4 0 cb 'O 3 C a. a, Cl a, L ñ a, *E u O a

Y) E ü

Page 238: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 239: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 240: Ing Gas Principios y Aplicaciones_ocr

Diseño de separadores horizontales (gas-petróleo-agua) @

4. Área para el flujo de agua:

A Al donde: n

A, = Área para el agua (piez) 0

= Área para el petróleo (pieL) - Ao+ Aw

Aw - 2 A 1 = Área del líquido (pie )

1 + (A0 IAw) Al =Ao+Aw

5. Área para el flujo de petróleo:

6. Hallar b e n las tablas de área segmental en GPSA-87 (pág. 6-2 1 y 6-22).

Page 241: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

n

00 'S

0. w

CVO 0 s d- a 'O Y

X CV P- O

c.

Y

- .- a w

O a, -- 'E? .ci ‘"S a, a , s E a0 o

L. 1 a , O E uE m ' " w w cd - 0 0 oa ,a> n m.0 'O a,

L. n . 2 ''' b -m ~ ~ @ ~ g a, Q a E c U a ' O C C n U 2 Q ' ' ' L O : O $ cd 0- o w o - a cd O cd 3 > m m s m ' ' " ' ' m c d @ c d S ~ , a ,a ,a ,ZU u u = = u ' D o m a @ L . a cdu U 5 o o . z O ‘" ‘" O 0.5 S C O - a, =- 0 0 " ' > o o n >

Page 242: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 243: Ing Gas Principios y Aplicaciones_ocr

Diseño de separadores horizontales (gas-petróleo-agua)

11. Longitud requerida para el recipiente, suponiendo que - sólo dos tercios están disponibles para un asentamiento

efectivo de las partículas:

Seleccionar la mayor de las dos

donde: Lw = Longitud para el agua (pies) Qw = Tasa volumétrica para el agua (pie3/seg) t w = Tiempo de retención para el agua (min) Aw = Área de flujo de agua (pie2) Lo = Longitud para el petróleo (pies) Qo = Tasa volumétrica del petróleo (pie3/seg) t = Tiempo de retención del petrgeo (min) A, = Área de flujo del petróleo (pie )

Page 244: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

5 v 2,

v

8 ni- - a, a, -2 3 c 0

Page 245: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Constantes de equilibrio según J.M. Campbell.

Se ha creído conveniente agregar las curvas de las constantes de equilibrio, para

los componentes más comunes del gas natural, disefíadas por el profesor J. M.

Campbell (págs. Nos. 23 1 a 243). En este caso, el autor obvia el requerimiento de las

presiones de convergencia. Aunque desde el punto de vista académico el trabajo

resulta más fácil mediante el uso de estas curvas, la exactitud de la respuesta no

compite con los valores obtenidos utilizando las gráficas de constantes de equilibrio

del GPSA, según se muestra en la sección que sigue.

Page 246: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Fraccionamiento.

La consolidación de los conocimientos básicos que hemos revisado no sería

factible si el interesado no estudiara, con detenimiento, las instalaciones más comunes

de la industria del gas natural. A tal fin se discuten brevemente algunos modelos

relativos a plantas de fraccionamiento, deshidratación con trietilénglicol, eliminación

del agua con desecantes sólidos y otros planteamientos relacionados con los sistemas

de endulzamiento o desacidificación del gas natural que trabajan con aminas.

En lo que concierne al fraccionamiento, el lector encontrará un dibujo

esquemático de una torre y del comportamiento de los fluidos dentro del recipiente,

seguido de un tren compuesto por tres etapas de separación (pág.. No. 280). Allí se

podrá estudiar la segregación de los hidrocarburos en cada una de las unidades.

Obsérvese la distribución secuencia1 de los productos de tope y de fondo en cada

torre.

Adicionalmente, se podrá entender mejor el significado de la destilación

fraccionada para un bicomponente (pág. No. 278) y el perfil de temperatura en una

destiladora (pág. No. 279).

A partir de la pág. No. 283 se exhibe un esquema de una fraccionadora de

gasolina integrada por cuatro torres. Se agregan los diagrama de fases de los

Page 247: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

productos de la depropanizadora, en los cuales se podrá ver la correspondencia entre

los puntos de burbujeo de cada una de las mezclas y las condiciones de trabajo de la columna, un apecto de extremada importancia para que el operador garantice el

funcionamiento eficiente de la instalación. Entre las págs. Nos. 287-294 encontrará la partición de los productos y el respectivo balance de materiales de cada una de las

torres.

La página No. 295 presenta el gráfico de Kremser-Brown para el cálculo de los

factores de absorción (A) y10 despojamiento (S).

Page 248: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principi0s.y aplicaciones

Page 249: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 250: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

BURBUJEO DE GAS

Page 251: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

98 MOL % C4 2 MOL % C5

DESTILADOR No.5 93 MOL % Cq 7 MOL % C5

DESTILADOR No.4 1 LIQUIDO

DESTILADOR No.3

DESTILADOR No.

DESTILADOR No. 1 20 MOL%Cq A 1

CALOR QUE ENTRA

Destilación fraccionada

Page 252: Ing Gas Principios y Aplicaciones_ocr

Esquema de una torre de fraccionamiento @ @

SECCIÓN DE RECTIFICACI~N O ENRIQUECIMIENTO

FRACCIONADOR

SECCI~N DE DESPOJAMIENTO

ENFRIANTE

m BOMBA DE REFLUJO

1 PRODUCTO DE TOPE

1 2 2 4 O F L : ;

REHERVIDOR I f

I -1 I . .

L PRODUCTO DE FONDO

F % 2. S P

fk m "e: 't! C..

3 c. $1.

-! P 'b O' !% 8' 3 t%

Page 253: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 254: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

I ren de traccionamiento

P

OLlNA

MOLESIHR NATURAL

REF: GPSA 87, Pág. 19-5

Page 255: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Tren de fraccionamiento

GAS PROPANO 1 BUTANO 1

REF: GPSA-87, Pág. 19-5

C1

C2

C3

iC4

nC4

c5+ TOTAL

galldía

1

0,3941

6,4635

44,7451

8,1450

20,1524

20,0999

100,000

2

4,8077

71,1538

24,0385

100,000

3

0,6869

46,5942

8,8724

21,951 9

21,8946

100,000

4

1,4528

98,0024

0,5448

100,000

41,340

5

0,4887

16,3409

41,6395

41,5309

100,000

6

0,8654

28,9423

69,3269

0,8654

100,000

31,160

7

5,7357

94,2643

100,000

29,290

Page 256: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 257: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Separación de un fluido en una torre de fraccionamiento (depropanizadora)

Componentes c1 c2

c3

iC4 nC4 iCs nC5 c6

c7

C8 c9

Cio

Presión (ipca) 100,o 150,O 200,o 250,O 300,O 350,O 400,O 450,O 500,O 550,O 600,O 650,O

Diagrama de fases (P-T) de la carga.

Temp. de Rocío ("F) 207,023 229,023 245,462 258,626 269,56 1 278,837 286,792 293,6 1 O 299,40 1 304,159 307,704 309,37 1

Temp. de Burbujeo ("F) 85,23 1

1 16,964 142,02 1 163,177 18 1,764 198,545 2 14,009 228,529 242,3 82 255,861 269,368 283,674

Page 258: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Diagrama de fases (P - T) del producto del tope, en una depropanizadora

Presión (ipca) 100,o 150,O 200,o 250,O 300,O 350,O 400,O 450,O 500,O 550,O 600,O

Puntos de Rocío ("F) 054,241 08 1,595 102,888 120,598 135,906 149,469 161,700 172,873 183,177 192,749

Puntos de Burbujeo ("F) 5 1,295 78,982

100,548 1 18,490 134,012 147,773 160,209 171,589 182,119 19 1,954 20 1,325

Diagrama de fases (P - T) del producto del fondo en una depropanizadora.

Presión (ipca) 100,o 150,O 200,o 250,O 300,O 350,O 400,O 450,O 500,O 550,O 600,O

Punto de Rocío ("0 254,740 28 1,872 302,492 3 19,220 333,275 345,3 12 355,700 364,605 37 1,965 377,143

Punto de Burbujeo ("F) 164,355 199,876 227,9 1 8 25 1,592 272,4 1 O 291,241 308,669 325,167 341,234 368,234

Page 259: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 260: Ing Gas Principios y Aplicaciones_ocr

Composición de los hidrocarburos en la torre depropanizadora

COME ni 'i

Page 261: Ing Gas Principios y Aplicaciones_ocr

Composición de los hidrocarburos que llegan y salen de la torre depropanizadora

nt = 62,3830 Ibmol/hr T = 165,1120°F P = 240,300 lpcm v = 0,00000

WI = 3428,41 lbs

QI = 17,4856 b l ~ a=

Page 262: Ing Gas Principios y Aplicaciones_ocr

v- 'v- . y.r v V tr - . r . * '-7 .. -

Composición de los hidrocarburos en la torre debutanizadora

COME ni 'i

C3 0,0085 0,0301 ic4 7,5218 46,2277

iC4 8,0551 28,5910 nc4 8,7065 53,5087

nC4 9,6857 34,3788 icg 0,0342 0,2102

iC5 2,7885 9,8976

nC5 1,5970 5,6685

c6 3,5870 12,7318 0,9792 21,5180

C7 1,5284 5,4250 0,5793 1 2,7302

Cg 0,4367 1,5500

C1 o 0,1560 0,5537

28,1735 100,0000 "5 1,0175 13,8403

c6 3,2019 43,5532

C7 1,4284 19,4295

cg 0,4367 5,9401

Cl0 0,1560 2,1220

Page 263: Ing Gas Principios y Aplicaciones_ocr

Composición de los hidrocarburos que llegan y salen de la torre debutanizadora

28,1735 I bmol/hr nt = 16,2712

@ T = 209,857 "F m T = 172,636

P = 152,000 lpcm P = 150,000

v = 0,00000 v = 0,00000

4- Fa-

Page 264: Ing Gas Principios y Aplicaciones_ocr

Composición de los hidrocarburos

X en -la separadora de butanos

COMF! ni i

Page 265: Ing Gas Principios y Aplicaciones_ocr

Composición de los hidrocarburos en la separadora de butanos @

y 1 6,271 2 I bmollhr T = 133,106 "F P = 85,0600 lpcm El V = 0,00000

Page 266: Ing Gas Principios y Aplicaciones_ocr

Com~osición de los hidrocarburos en la fraccionadora de gasolina

COMI? ni Xi

COMR ,- x i iC5 0,7806 23,5952

nC5 1,0158 30,7046

c6 1.5119 45,7002 3.3083 1 00.0000

nC5 0,0017 0,0421

c6 1,6900 41,7965

C7 1,4284 35,3267

C8 0,3306 8,1763

Cg 0,4367 10,8003

Cl0 0,1560 3,8581

4,0434 1 00,0000

Page 267: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

@ g g O Q , b ( D o , d - 0 L O a ) m n i n i

O - 0 0 a) a m (O a) d - n i o o n i I n t D Q , a s q z s s a ~ ~ O O ~ ~ O O o m U)

* ? n i = ? e a ) LO - - ( e . " 0 - o-=!. O o <o_ q Y. C 9 - V ) O b ~ - O O d - n i m 0 - d- - o o

Page 268: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 269: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Sistemas binarios.

Dentro de este criterio se incluyen la deshidratación y el endulzamiento del gas

natural, por cuanto se trabaja principalmente con plantas de deshidratación (por

ejemplo glicol-agua) y de endulzamiento o eliminación de los componentes ácidos del

gas (amina - agua).

Un dibujo de una deshidratadora que trabaja con T.E.G. permite observar cómo

hncionan estos disefios. Además, los diagramas bifásicos glicol-agua le permiten al

ingeniero entender el funcionamiento de la regeneración. En el dibujo de la pág. No.

300 se aprecia la temperatura en la cual el fluido está en estado líquido, bifásico o

completamente gasificado, a una presión fija de una atmósfera. Esto obliga a

garantizar que el sistema trabaje en condiciones tales que el glicol no se volatilice más

de lo debido. Por ejemplo, si el operador mantiene la temperatura en el tope de la torre

de regeneración a 225"F, deberá esperar pérdidas de glicol equivalentes al 0,5% por

peso de toda el agua que está retirando del gas natural (pág. No. 301).

En la pág. No. 302 se observa un dibujo del otro extremo del diagrama, donde

se aprecia la pureza factible en el glicol cuando se eleva la temperatura del

regenerador. De allí la razón por la cual se dice que a 400°F se obtiene una pureza del

98,7%.

Page 270: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Entre las págs. Nos. 303 y 309 se encuentran algunas figuras apropiadas para

realizar estos disefios. El gráfico presentado anteriormente en la página No. 277

permite observar el corriportarniento de los fluidos dentro de la torre. El glicol cae por

los bajantes, plato a plato, mientras entra en contacto con el gas que sube hacia el tope

de la torre. En este contacto íntimo del glicol y el gas, el líquido retiene el agua que

transporta el gas, el que -a su vez- sale deshidratado.

Las gr6 ricas de las págs. Nos. 3 10 a 3 15 permiten estudiar la eficiencia de la

absorción para una torre que contiene de tres a diez platos, con determinadas

concentraciones del glicol regenerado. Para obtener un descenso del punto de rocío en

el gas de 60°F, serán suficientes dos (2) galones de TEG por cada libra de agua que se

retira del gas, si la torre tiene cinco platos de burbujeo.

Con tres (3) galsllbs H20, el descenso del punto de rocío podría aumentar hasta

64,5"F aproximadamente. Esto indica que, en la medida en que la torre de absorción

tenga mayor número de platos, menor será la cantidad de glicol requerida para realizar

un determinado trabajo.

Adicionalmente, al incrementar la pureza del glicol en la torre de regeneración,

también será mayor la disminución del punto de rocío en el gas, para una misma tasa

de glicol.

El interesado podrá concretar mejor estas ideas con un ejercicio breve que se

presenta al final del tema.

Page 271: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 272: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Diagrama binario agua-TEG a 760 mm Hg (absoluta)

Vapor

/

CU~VC. de rocíc~

1 ~

I DOS fases

1 / + -

-

( ~ ~ V C I de burbujeo

íqu do

Temperatura ("F) 650

Temperatura ("C)

337.8

O 10 20 30 40 50 60 70 80 90 100

Trietilénglicol (% por peso)

Page 273: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Diagrama binario agua-TEG a 760 mm Hg (absoluta)

Temperatura (" F)

O 1 2 3 4 5 6 7 8 9 1011121314151617181920

Trietilénglicol (% por peso)

Page 274: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Diagrama binario agua-TEG a 760 mm Hg (absoluta)

Temperatura ("F) 575

Var or

Dos fases /

/

90 91 92 93 94 95 96 97 98 99 100

Trietilenglicol (% por peso)

Page 275: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Tamaño de los absorbedores

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Presión de flujo (lpcm)

Nota: los diámetros están expresados en pulgadas.

Page 276: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Capacidad de los absorbedores de glicol, para y = 0,7 y T = 100°F

Presión de operación (lpca)

Page 277: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Basados en columnas empacadas con rnolduras INTALOX de 1,5"

A ---------------------------------

1 1

Tamaño de las columnas de fraccionamiento para los deshidratadores de glicol

Page 278: Ing Gas Principios y Aplicaciones_ocr

I Carga calorífica del regenerador (M BTUIhr) 0 I

F % e. 2 E- a CD 0-u "e: S. 3 a. 'P p. w P,

5. % 8' 5 CD m

Page 279: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

m3 pcn -;-X 133.67 = - litro gal

Page 280: Ing Gas Principios y Aplicaciones_ocr

Solubilidad del gas natural en TEG. Glicol: 95% TEG a 80°F

Gas: gas típico dulce, 94% metano Gas en solución (pcn/gal de TEG)

1.1

Presión del absorbedor (Ipca)

Page 281: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 282: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 283: Ing Gas Principios y Aplicaciones_ocr

Número de platos reales de TEG

Temperatura de contacto: 100°F

r Tasa de circulación del TEG (gal/lb H,O)

2.8 2.6 2.4

/ / / / / / / /

2.2 2.C 1.8 1.6 1.4 1.2 1 .o

35 40 45 50 55 60 65 70 75 80 85 90 95

Descenso del punto de rocío ("F) .: DM lnternational

Page 284: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 285: Ing Gas Principios y Aplicaciones_ocr

Número de platos reales de TEG

Temperatura de contacto: 100°F

Ref

,Tasa de circulación del TEG (gal/lb H ,O) 4.4 - I I 4.2 l ~ ú r n e r o de pfatos] 4 4 5 6 7 8 9 10 4.0 3.8 I I 1 / 1 1 1 1 3.6

/ / / x / /

3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1 .o

35 45 55 65 75 85 95 105 115 125 Descenso del punto de rocío ('F)

.: D M lnternational

Page 286: Ing Gas Principios y Aplicaciones_ocr

Número de platos reales de TEG

Temperatura de contacto: 1 00°F

C T a s a de circulación del TEG (gal/lb H20) 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1 .o

35 45 55 65 75 85

Descenso del punto de rocío ("F) Ref.: DM lnternat ional

Page 287: Ing Gas Principios y Aplicaciones_ocr

Número de platos reales de TEG

Temperatura de contacto: 100°F

r Tasa de circulación del TEG (gal/lb H,O)

35 45 55 65 75 85 95 105 115 125 135

Descenso del punto de rocío ("F)

Ref.: DM lnternational

F % 3 E' F;' e 09 "e: 2 2- w . L.

w P 'b. 5' R O' i! rn

Page 288: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Ejercicios de aplicación

Deshidratación con TEG

Se desea deshidratar 50 MM pcdn de gravedad específica y = 0,6

para llevarlo a 7 lbs de agua 1 MM pcn. La presión del gas es 1 O00 lpca y

la temperatura, 90°F.

Calcule:

1 . Contenido de agua en el gas, a la entrada de la planta.

R: W, = 45,4 1bsIMM pcn.

2. Temperatura de rocío del gas a la salida de la planta.

R: T=32"F

3. Cantidad de TEG que se requiere para deshidratar el gas.

R: (45,4 - 7,O) 3 gals 1 lbs H20 = 1 15,2 gals/MM pcn.

1 15,2 x 50 = 5760 gals.

4. Diámetro de la torre de absorción recomendada.

Caudal del gas, en condiciones de operación:

Q,, = 7,83 pie3 / seg

Velocidad del gas en la torre:

(1,115)(62,4)-3,384 = 0,69 pies1 seg

3,384

Área requerida para el gas:

Page 289: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Área total de la torre:

Diámetro del absorbedor:

D = 4,237' o bien D = 51"

Page 290: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

-

Ejemplo de un sistema de deshidratación con

desecantes sólidos.

No es mucha la información que se ofrece al respecto. No obstante, en la figura

de la pág. No. 321 el lector observará un diagrama de flujo de un diseño típico, en el

cual se ilustra la forma cómo trabaja esta unidad. En las páginas siguientes aparece

desglosado el diseño conceptual de la planta. El interesado podrá hacerle seguimiento

para entender mejor lo inherente al tema.

Page 291: Ing Gas Principios y Aplicaciones_ocr

Ejemplo de un sistema de deshidratación con desecantes sólidos @

Gas de regeneración (g.r.) Compresor del g.r.

i t

X Válvula abierta

V Válvula A cerrada

F

Gas húmedo

Page 292: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones - -- - - - - -- -

Problema de adsorción Con el fin de ilustrar el cálculo de un sistema de adsorción, utilizando

desecantes sólidos, consideremos el siguiente ejemplo:

Tasa del flujo del gas: 10 MM pcnd a 14,7 lpca y 60 "F

Presión a la entrada: 1 .OOO,O lpc

Punto de rocío a la entrada: 90 "F

Punto de rocío a la salida: 10 "F

Capacidad de adsorción: 5% plp

Duración del ciclo: 8 hrs

Regeneración: gas natural Enfriamiento: gas natural

Tipo de torre: vertical

Velocidad permisible: 30 pieslmin

Temp. del gas a la entrada: 95 "F Gravedad específica del gas: 0,70

El contenido de agua del gas en la entrada de la planta es de 46 lbs/MM pcn y

en la salida: 2,9 lbs/MM pcn, lo cual totaliza:

Ww = 10 . (46 - 2,9) = 43 1 lbsldía. En un ciclo de ocho horas, el deshidratante debe retener:

WWE = 43 113 = 143,7 lbs de agua, aproximadamente: 144.

Cantidad de desecante: Con un 5 % por peso de la capacidad de adsorción, cada torre debe retener:

WWE = 143,7 1 0,05 = 2.874,O lbs del desecante.

Si el deshidratante tiene una densidad bruta de aproximadamente 50 lbslpie3, el

volumen requerido (V,) sería:

Vs = 2.874,O 150 = 573 pie3.

Algunos operadores limitan la velocidad del gas dentro de la torre a 30 - 45

pieslmin, con el fin de disminuir las pérdidas de presión en la torre y la rotura del

sólido. Este procedimiento se apoya en la experiencia y normalmente se calcula para

el área transversal de la torre vacía, utilizando las leyes de los gases, con el cálculo de

la velocidad real. El resultado es una cifra de quasivelocidad.

Page 293: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Tasa de flujo del gas:

b Área de la sección:

86,97 pie3 / min 0,785 . D~ = = 2,899 pie2

30 pie/ min

i De donde, D = 1,92' => D = 23,0611 sin incluir el espesor permisible.

\ Debido a que normalmente los cabezales se consiguen solo en incrementos de

i 6" por encima de 24", se puede escoger un recipiente de 30" de diámetro externo.

I La nueva área transversal sería de:

l La longitud de la camada sería:

1 El tamaño del recipiente dependerá del disefio mecánico que utilice un determinado fabricante.

La escogencia de la altura, a su vez, permite estimar un determinado 1

seudotiempo de contacto del gas con el desliidratante: 1

P , = 11,7 130 = 0,39 mins = 23,4 segs.,

lo cual se considera satisfactorio.

Se requiere por lo menos de varios segundos como tiempo de contacto, con el ?

fin de permitir la rata de adsorción del agua en el desecante.

En cualquier caso se recomienda que la camada tenga por lo menos de 2 a 3 pies de espesor, para evitar la canalización.

Page 294: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Endulzamiento del gas natural.

En las págs. Nos. 327 a 358 se proporcionan ideas sobre los sistemas de

desacidificación del gas natural que utilizan minas. En las primeras hojas se

presentan arreglos comunes. Al compararlos se podrán apreciar las diferencias de

criterio entre los diversos diseñadores, así coino los parámetros principales que entran

en juego en el momento de realizar los cómputos.

Sigue una enumeración de las patentes comerciales con solventes químicos,

desde el más antiguo, la monoetanolmina (MEA), hasta la llamada familia Ucarsol,

que se ha vuelto especialmente atractiva durante los últimos años. No se incluye lo

relativo a la aplicación de compuestos químicos en la corriente de gas, que tiende a

reemplazar estos procesos. Las experiencias de MARAVÉN, S.A. señalan la

factibilidad de que -en tiempo breve- sea posible eliminar el sulfuro de hidrógeno del

gas y del petróleo, mediante la aplicación directa de productos químicos en el flujo

multifásico, mientras se transporta en las tuberías.

Apoyándose en la información que, hasta ahora, ha sido liberada, es factible

pensar en la posibilidad de que desaparezcan las plantas que se usan para el

tratamiento de los gases de cola, con la ventaja de que las sales que resultan de la

Page 295: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

eliminación del sulfuro de hidrógeno podrían ser empleadas como abonos. Esto sería

un aporte extraordinario para la conservación del ambiente.

La presión parcial del gas ácido en la corriente de gas es un parámetro decisivo

cuando se desea seleccionar la mejor patente para el tratamiento del gas natural. Este

libro contiene una hoja para calcular la presión parcial de los gases, antes y después de

la torre de absorción (págs. Nos. 333 y 334).

Las cuatro láminas que siguen a esas páginas sugieren el uso de varios procesos

comerciales. La decisión final dependerá de la composición del gas que llega a la

planta y de las condiciones del tratamiento. Es obvio que lo más cornple.jo es llevar el

gas natural a condiciones de contenido mínimo de impurezas cuando el gas de la

alimentación llega con un porcentaje alto de componentes ácidos. El lector tomará en

cuenta las sugerencias presentadas en el encabezamiento de cada uno de los gráficos,

antes de usar la información ofrecida en ellos.

Se presentan en el libro algunas ideas sobre decisiones rutinarias en unidades

que trabajan con aminas. El operario tiene el deber de seguirlas con alto celo, para

garantizar la operación exitosa del sistema.

Igual que en las deshidratadoras de glicol, se ofrecen los diagramas binarios

para las aminas.

Los parámetros de diseño en una endulzadora típica que trabaja con MDEA'

aparecen al final del libro. Las condiciones de entrada y salida del gas indican el tipo

de tratamiento que se desea realizar. Obsérvese que la principal responsabilidad en el

diseño es llevar el contenido de sulfuro de hidrógeno a 4 ppin,v.

El estudioso encontrará los esquemas de las torres de absorción y de rcgcnera-

ción con los principales indicadores. Las características del solvente y el balance de

energía entre las torres se transcriben con los parámetros determinantes en el

funcionamiento cabal de la planta. Para cerrar la sección, aparece el cálculo del

diámetro del absorbedor y el diseño del espesor de pared del separador de entrada,

dados a título de ejemplo.

Page 296: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Principales equipos de una planta de amina

Separador:

de entrada.

de salida.

Absorbedor.

Tanque de venteo.

Intercarnbiador de calor.

Regenerador:

Acumulador.

Rehervidor.

Recuperador.

Tanque de abastecimiento.

Filtros.

Page 297: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

L 'a, S a, 0

Page 298: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 299: Ing Gas Principios y Aplicaciones_ocr

Procesos para el endulzamiento del gas natural

GRUPO No 1 : PROCESOS CON SOLVENTES QUIMICOS ALCANOLAMINAS.

MEA 2.5 N - MEA EN AGUA, 15% P/F? MEA - AMlNA GUARD MEA GASISPEC IT 1

5.0 N - MEA EN AGUA, 30% P/F! MEA - AMlNA GUARD ST

5.0 N - MEA EN AGUA, 30% P/P (CON INHIBIDORES).

DGA 6.0 N - DlGLlCOLAMlNA EN AGUA 63% P/P ( 23% AL 70% P/P ) (CON INHIBIDORES).

DEA 2.5 N - DEA EN AGUA, 26% P/P (1 5% AL 26% P/P) .

Page 300: Ing Gas Principios y Aplicaciones_ocr

Procesos de endulzamiento del gas natural

I GRUPO NO 1: PROCESOS CON SOLVENTES QU~MICOS l

ALCANOLAMINAS.

DEA-SNEA 3.0 N - DIETANOLAMINA EN AGUA AL 32% P/P (25% AL 35% P/P).

DEA-AMINA GUARD Y DEA AMlNA AGUARD ST 5.0 N - DEA EN AGUA AL 52% P/P (CON INHIBIDORES).

DlPA O ADlP 4.0 N - DIISOPROPANOLAMINA EN AGUA AL 54% P/P (30% AL 54% P/P).

MDEA 4.0 N - METILDIETANOLAMINA EN AGUA

Page 301: Ing Gas Principios y Aplicaciones_ocr

Procesos para el endulzamiento del gas natural.

GRUPO NO 1: PROCESOS CON SOLVENTES QU~MICOS. ALCANOLAMINAS.

MDEAActivada: 4.0-N, METILDIETANOLAMINA EN AGUA, 48 % P/P (30% AL 50% P/P).

SNEA-P-MDEA IGUAL A LA MDEA, PERO CON ACTIVADOR.

UCARSOL HS-102 3.4-N, MDEA+ EN AGUA AL 50% P/F?

TEA TRIETANOLAMINA EN AGUA.

NOTA: 2,5 N INDICA QUE 2,5 MOLES DE AMINAABSOR- BEN UN MOL DE GAS ÁCIDO, O QUE SE RE- QUIERE DE 0,4 MOLES DE GAS ÁCIDO POR MOL DE AMINA.

3 '2 3 E* a' c$. m "e: z s. c. 'Ct E' Y P 7L O' $ O' 3 M

Page 302: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Cálculo de la presión parcial en una muestra de hidrocarburos

Presión total: lpca

Page 303: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Cálculo de la presión parcial en una muestra de hidrocarburos

Presión total: 1.214,7 lpca

Page 304: Ing Gas Principios y Aplicaciones_ocr

Procesos de endulzamiento de gas, remoción de C 0 2 y H2S simultáneamente

Presión parcial del gas ácido en la alimentación (Ipca)

1 O00

1 10

Presión parcial del gas ácido en el producto (Ipca)

Page 305: Ing Gas Principios y Aplicaciones_ocr

Procesos de endulzamiento de gas, remoción selectiva de H9S

1 Presión parcial del HgS en la L

alimentación (loca)

1 1 o 1 O0

Presión parcial del 4 s en el producto (Ipea)

Page 306: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

O 'T-

Page 307: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 308: Ing Gas Principios y Aplicaciones_ocr

Verifique el contenido de gas ácido en el gas tratado. Ajuste el caudal de la solución pobre. Ajuste la carga calo- rífica del rehervidor Verifique el nivel en cada recipiente. Restituya el control de nivel. Verifique la caída de presión en los filtros. Limpie o cambie los elementos. Temperatura de la so- lucion 10°F por enci- ma de la temperatura de la carga. Ajuste el nivel de agua o de aire de los enfriadores. ¿Presión en el tanque de venteo y en el re- generador? Ajuste los controla- dores.

6. Verifique el caudal de la solución: hacia el absorbedor principal; @ Operaciones de rutina en la planta. queño. hacia el contactor pe-

Page 309: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 310: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 311: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

LO O LO O m O L O O L O

Page 312: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 313: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 314: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Puntos de burbujeo y temperatura de condensación para soluciones de MEA-agua a varias presiones

Referencia: Union Carbide

Page 315: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Puntos de burbujeo y temperatura de condensación para soluciones de MEA-agua a bajas presiones absolutas

Monoetanolamina (%p/p) Referencia: Union Carbide

Page 316: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Diagrama binario MDEA-agua a bajas presiones

Temperatura ("F) 550

500

450

400

350

300

250

200 O 10 20 30 40 50 60 70 80 90 100

MDEA (%p/p)

Page 317: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Diagrama binario CO,/H,O Varias presiones @

Temperatura ( O F )

0,0 0,l 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Fracción de CO,

Page 318: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Ejercicio de aplicación

Una planta de endulzamiento tiene una composición de entrada como se indica a continuación. La tasa de remoción de gas ácido es de 3 pie3/gal. ¿Cuál es la tasa de flujo de MEA en el absorbedor?

Q = 43 MM pcnd H2S = 0,4 % co2 = 0,6 % Total = 1,0%

Volumen de gas ácido que debe ser removido:

Q, = 0,O 1 x 43.000.000 = 430.000 pcnd.

Galonaje de amina requerido a razón de 3,O pie31gal.

Rata de flujo = 430.000 1 3 = 143.300 galsldía. = (143.000160 x 24) = 100 gpm.

Con Ucarsol, el coeficiente de absorción es de 3,85 pie31gal, el galonaje requerido sería:

qa = 430.000 1 3,85 = 1 1 1.688,3 1 galsldía.

- 1 1 1.688,3 1

qa - = 77,56 gpm. 24 x 60

Page 319: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Ejercicio

La planta de endulzamiento típica recibe 350 MM pcnd de gas natural para extraerle el 1,04% del gas ácido. Si el solvente utilizado puede retener 3,72 pie3/gal, ¿cuál sería el galonaje de solución requerida, al 50% plp?

Q, = 350.000.000 pcnd.

Gas ácido:

Q, = 350.000.000 x 0,0104 = 3.640.000 pcnd.

2.527,77 Galonaje = = 682 gpm.

3,7 1

Page 320: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Planta típica de endulzamiento

Condiciones de operación:

Gas de alimentación:

Caudal de gas:

Presión:

Temperatura:

Peso molecular:

Gravedad específica:

GPM (c:):

Valor calorífico bruto: \

Componentes

GPM

350 MM pcnd

1.200,O lpcm

115 - 120°F

23,7

0,82

3,95

1.300,O B T U I ~ ~ ~ '

Entrada Salida

4,6793 3,7500

0,0060 0,0004

- O, 1927

0,2500 0,25 19

8 1,9069 82,5447

13,1578 1 3,2603

3,9543 3,985 1

Page 321: Ing Gas Principios y Aplicaciones_ocr

Ingenieria de gas, principios y aplicaciones

Planta típica de endulzamiento

Condiciones de operación:

Absorbedor:

Presión:

Caudal, gas:

solución:

N" de platos:

Diámetro:

Temperatura tope:

gas:

fondo:

Regenerador:

Presión de la torre:

Presión de los gases de cola:

Caudal:

No de platos:

Diámetro:

Temperatura tope, salida:

retorno de reflujo:

fondo, salida:

amina rica:

1.200,O lpcm

175 MM pcnd

342 gpm

10

90"

130°F

120°F

150°F

8 lpcm

6 lpcm

4 a 5 MMpcnd

Page 322: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 323: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Regenerador de la planta de amina

T = 120°F Gas de cola Q = 9,5 MM BTUIhr P = 61pcm f lEw T = 1 99,g°F P = 5 lpcm

A Y -

q = 17,32 gpm D.I. = 90"

Amina rica: A 0,30 mol/mol

T. amb. = 90°F

te de calentamiento 2,82 MM BTU/hr

T Amina pobre: 0,005 mol/mol T = 148,4"F

R = 1,25 mol H20 mol G.A.

Page 324: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Page 325: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Cálculo del diámetro del

absorbedor de amina

Parámetros:

Caudal de gas:

Temperatura:

Presión:

Peso molecular del gas:

Densidad de la arnina a C.O.:

Factor Z:

350 MM pcnd

130°F = 590°R

1.200,O lpca

23,7 13

65,5 1bslpie3

0,773

Caudal de gas en condiciones de operación:

Densidad del gas en condiciones de operación:

P M - (1214,7)(23,713) lbs 4 = - - = 5,9 -

Z R T (0,773)(10,732)(590) pie3

Velocidad del gas en el absorbedor:

J653:,9

pies V, = (0,36 - 0,12)(0,8) = 0,61 -

seg

Área para el gas en el absorbedor:

Page 326: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Área total:

Diámetro interno del absorbedor:

(4)(44,06) = 7,s pies = 90 pulg.

7r

Page 327: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Factores de conversión de unidades.

Las últimas páginas del texto muestran los factores de conversión con los

cuales trabaja el diseflador. Eso facilita la operación cuando se convierten las cifras que se presentan en este libro a otros sistemas de unidades.

Page 328: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Factores de Conversión:

Longitud: 1 m = 3,2808383 pies = 39,370059 pulg = 100 cms = 1000 mm lpie = 0,304801 m = 12 pulg = 30,4801 cms = 304,801mm 1 milla = 1,609349 km, = 5279,998 pies 1 km = 3280,8383 pies Área: 1 m2 = 10000 c m 2 = 10,7639 pies2 = 1549 pulg2 1 pie2 = 144 pulg2 = 929,0349 cms2 = 0,9290349 m2 1 milla2 = 2,59 kms2 Volumen: 1 m3 = 35,3 145 1 pie3 = 6,289774 bls = 1000 lts = 264,1708 gal 1 pie3 = 7,4805 17 gal = 28,3 1697 lts = 0,178 1074 bls = 0,0283 1697 m' Masa: 1 kg = 2,204622 lbs = 1000 gr 1 lbs = 0,4535925 kg = 453,5925 gr Densidad: 1 kglm3 = 0,001 gr/cm3 = 0,0624 lblpie3 1 lblpie3 = 16,02 k g / d = 0,O 1602 gr/cm3 1 gr/cm3 = 1000 kg/m3 = 62,4 lblpie3 Fuerza: 1 Nw = 0,225 lbf = 0,102 kgf = 1 O00 dinas 1 kgf = 9,8 1 Nw = 2,205 lbf 1 lbf = 4,45 Nw = 0,454 kgf Presión: 1 bar = 14,5038 lpca = 0,986923 atm = 1 ,O 19689 kglcm2 = 100000 ~ w l r n ~ = 100 kPa 1 lpca = 6,894733 kPa = 5 1,71475 rnm Hg = 0,06804573 atrn = (lpc + 14,696) 1 lpc = 1,068046 atm = 1,082197 bar = 108,2197 kPa Temperatura: "C = ("F - 32)/1,8 "F = 1,8*("C) + 32 "K = "C + 273,15 "R = "F + 459,67 Varios: 1 B T U / ~ ~ ~ ' = 8,8991 kcal/m3 1 GPM = 0,1336806 m3&lm3 = 133,6806 lts/Mm3 1 lbslpie = 1,488 16 kglm 1 lbs H20lMM pcn = 16,O 184 kg/MM m3

Page 329: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Factores de Conversión >> VISCOSIDAD ABSOLUTA << watt/ { cmA2*OC) 5,6782643-04

lbs/ {pi&*hr) 3600- pascal*seg 1,488164 poise 14,88164 centipoise 1488,164

hect are m" 2 cmA2 m" 2 miA2 3,5870073-08 acre 2,2956843-05 ydA2 O, 1111111 pulgA2 144 * hect=hectárea * mi=USA{5280 pies)

>> DENSIDAD << lb/pieA3 1 grs/cmA3 1,6018463-02 gr /m1 1,6018463-02 gr/lit 16,01846 kg/mA 3 lb/pulgA3 oz/pulgA 3 grav. Esp. lbs/gal oz/gal lbs/bbl grn/gal * bbl=42 gal USA

>> ENERGIA << btu therm hp*hr Tbtu pie*lbf kw*hr kcal Tkcal cal Tcal joule watt*seg * [TI =Termoquímica

>> TRANSFERENCIA DE CALOR << btu/ {hr*pieA2*OF} 1 Tbtu/ {hr*pieA2*OF) 1,000669 cal/ { seg*cmA2 *OC} 1,356233-04 Tcal/ {~eg*cm"2*~~) 1,3571383-04

» VISCOSIDAD CINEMÁTICA << pieA2/hr 1 pieA2/seg 2,7777783-04 mA2/seg 2,580643-05 cmA2/seg O, 258064 stoke O, 258064 mA2/hr 9,2903043-02 centistoke 25,8064

>> LONGITUD << pie mi yd pulg km m cm mm

CUn 304800 * p = micrón

>> MASA << lbs ton [L] ton [C] kip 02

ton [MI kg newton g= * [L]=larga * [C]=corta * [Mldtrica

Page 330: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

>> FLUJO MOLAR << Mpcn/hr 1 MMpcn/hr O, 001 MMpcn/día O, 024 lb-mol/hr 2,64084 Mpcn/día 24 lb-mol/día 63,38015 WA3/hr 28,31685 NmA3/día 679,6043 grs-mol/hr 1197,865 grs-mol/día 28748,75 * [M]=miles; * [MM] =millones * pcn a 5g°F, 14,696 lpca * mA3 normales a 15OC, 1 atm[s]

>> POTENCIA << btu/hr hp [boil] ton [ref ] hp Tbtu/hr kw hp [metr] cal/seg ~cal/seg watt cal/Mpulg Tcal/Mpulg * [M] miles * [TI =Termoquímica

» PRESIÓN psi pulg HG pie H20 pulg H20 torr abisl bar atmltl kg/cmA2 kpa Mbar pascal * [M] miles * m a O°C,

>> TEMPERATURA << OF 1,8*(OC) + 32 OC (OF - 32) /1,8 OR 'F + 459,67 OX OC + 273,15

>> VOLUMEN << pieA3 ydA3 bbl galiI1 gal f loz pulgA3 mA 3 litro cmA 3 m1 * bbl=42 gals USA * [ 11 =Imperial

» FLUJO VOLUMÉTRICO « gal/Mpulg 1 pieA3/seg 2,2280093-03 pieA3/b@ulg O, 1336806 bbl/hr 1,428572 pieA3/hr 8,020834 bbl/día 34,28571 gal/día 1440 mA3/seg 6,309023-05 mA 3/b@ulg 3,7854123-03 lit/seg O, 0630902 mA3/hr O, 2271247 lit/<pulg 3,785412 lit/hr 227,1247 * bbl = 42 gala USA * [M] miles

Page 331: Ing Gas Principios y Aplicaciones_ocr

7

Ingeniería de gas, principios y aplicaciones

Tabla de conversión de temperatura Fahrenheit - Centígrado

Page 332: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Tabla de conversión de temperatura Fahrenheit - Centígrado

Page 333: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Tabla de conversión de temperatura Fahrenheit - Centígrado

Page 334: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Glosario de términos.

A continuación se presenta una recopilación de los términos que más comúnmente se utilizan en la industria del gas natural. Como en otros casos se cita como referencia el GPSA-87, fuente informativa de la mayoría de ellos.

Page 335: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Glosario de términos

Yorbedor. , Torre o columna que facilita el contacto entre el gas natural y otro fluido (aceite de

absorción, glicol o solución de d a ) produciendo una transferencia de masas en el

proceso.

Aceite de absorción. r i -

Es el hidrocarburo liquido que se utiliza para absorber o retirar un componente del

gas natural que se procesa.

Adsorbente. G ó l i d a usada para remover componentes del gas natural en un proceso.

=de ciertos componentes de la corriente de gas que incluye, pero que no se

limita a, uno o más de los siguientes componentes: gases ácidos, agua, vapor o

vapores de hidrocarburos. Estos componentes son adsorbidos en una camada

. granular de sólidos debido a la atracción molecular hacia la superficie adsorbente.

Amina. Alguna de las alcanolaminas, tales como MEA, DEA, TEA, MDEA, etc. empleada

en el tratamiento del gas natural. Las aminas por lo general se trabajan en soluciones

Page 336: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

acuosas para remover el sulfuro de hidrógeno o el dióxido de carbono de las corrientes de gas. Barril. s d que se usa en la industria del petróleo para medir los hidrocarburos en

estado líquido, equivalente a 42 galones (E.U.A.) de petróleo o de subproductos

medidos a 60°F y en equilibrio con su presión de vapor. Los productos químicos

pueden venir empacados en recipientes de 55 galones.

Calor de combustión. . OJO Es la cantidad de calor que se libera por la combustión completa de una cantidad

unitaria de un material. Para el gas natural por lo general se expresa como valor

calorífico superior o bruto (normalmente referido para los Estados Unidos de

América) y se mide en BTU por pie cúbico de gas. El valor calorífico superior o

bruto se mide en un calorímetro donde el agua producida durante el proceso de

combustión ha sido condensada. El calor de condensación del agua se incluye en el

calor total medido. El valor calorífico neto (normalmente referido a Europa) es el

que se obtiene cuando el agua obtenida durante el proceso de combustión no se

condensa y permanece en estado gaseoso. La diferencia entre el valor calorífico

bruto y el neto es la cantidad de calor que se podría recuperar si se condensa el agua

producida.

Calorímetro. _e___llc.

Aparato en el cual se determina el valor calorífico de un material combustible,

principalmente del gas natural.

Colchón de gas.

Fase gaseosa con la cual se aisla una fase líquida para evitar que se contamine con

aire.

Columna empacada.

Una columna de fraccionamiento o de absorción llena con empaques diseñados para

proveer una superficie relativamente grande por unidad de volumen, que

proporciona el contacto requerido entre el vapor que sube y el líquido que

descienden dentro de la torre.

Page 337: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones - - -- - -- -

acuosas para remover el sulfuro de hidrógeno o el dióxido de carbono de las

corrientes de gas.

Barril.

s d que se usa en la industria del petróleo para medir los hidrocarburos en

estado líquido, equivalente a 42 galones (E.U.A.) de petróleo o de subproductos

medidos a 60°F y en equilibrio con su presión de vapor. Los productos químicos

pueden venir empacados en recipientes de 55 galones.

Calor de combustión. - - Es la cantidad de calor que se libera por la combustión completa de una cantidad

unitaria de un material. Para el gas natural por lo general se expresa como valor

calorífico superior o bruto (normalmente referido para los Estados Unidos de

América) y se mide en BTU por pie cúbico de gas. El valor calorífico superior o

bruto se mide en un calorímetro donde el agua producida durante el proceso de

combustión ha sido condensada. El calor de condensación del agua se incluye en el

calor total medido. El valor calorífico neto (normalmente referido a Europa) es el

que se obtiene cuando el agua obtenida durante el proceso de combustión no se

condensa y permanece en estado gaseoso. La diferencia entre el valor calorífico

bruto y el neto es la cantidad de calor que se podría recuperar si se condensa el agua

producida.

Calorimetro. _C_____CC

Aparato en el cual se determina el valor calorífico de un material combustible,

principalmente del gas natural.

Colchón de gas.

Fase gaseosa con la cual se aisla una fase líquida para evitar que se contamine con

aire.

Columna empacada.

Una columna de .fraccionamiento o de absorción llena con empaques diseñados para

proveer una superficie relativamente grande por unidad de volumen, que

proporciona el contacto requerido entre el vapor que sube y el líquido que

descienden dentro de la torre.

Page 338: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Compensación (peak shaving). El uso de combustibles, equipos para producir gas y10 uso esporádico de reservas acumuladas en los yacimientos o en las misma tuberías, con el fin de suplir los requerimientos de gas en los períodos de alta demanda. Comportamiento retrógrado. Formación de una fase de mayor densidad (condensación), al someter un sistema a una reducción isotémiica de presión o a un incremento isobárico de temperatura. También puede definirse como la formación de una fase de menor densidad (vaporización), al someter un sistema a un aumento isotérmico de presión o a una reducción isobárica de temperatura. Condensación retrógrada. Formación de líquido (condensación) en un sistema, debido a la disminución isotémiica de la presión o aumento isobárico de la temperatura. Condensado. Líquido que se forma por condensación de los vapores del gas, específicamente se refiere a los hidrocarburos líquidos que se condensan del gas natural como consecuencia de los cambios de presión y temperatura cuando el gas del yacimiento se lleva a condiciones de superficie. También podría referirse a condensados de calderas o al agua que se desprende del vapor de agua. Condensado estabilizado. Un condensado que lia sido estabilizado en un fiaccionador a una presión previamente definida. Condiciones criticas. Condiciones a las cuales las propiedades intensivas de las fases líquido y vaRor coexistentes y llegan a ser idénticas. Constante de equilibrio (valores-K) de un componente. Es la razón de la fi-acción molar del componente en la fase de vapor a la fracción

r'

molar del mismo componente en la fase líquida, en un sistema en equilibrio. Constante del gas (R). Es un número constante que representa el producto de la presión total por el volumen total, dividida por la temperatura absoluta; para un m01 de un gas ideal o mezcla de gases ideales a cualquier temperatura.

Page 339: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones - - --

Cricondem bárico.

Presión máxima a la cual las fases de líquido y vapor pueden coexistir. Para

componentes puros, el cricondembárico es igual a la presión crítica del componente.

Cricondentérmico.

Temperatura máxima a la cual las fases de líquido y vapor pueden coexistir. Para

componentes puros el cricondentérmico es igual a la temperatura crítica.

Una técnica mediante la cual se analizan los diversos componentes de un gas o de

un líquido. Para cuantificarlos se transportan dentro de una columna con un gas

inerte, son selectivamente absorbidos y desorbidos para separarlos. A la salida de la

columna se identifican y se determina cualitativa y cuantitativamente, la porción de

cada componente en la muestra. Es la técnica más comúnmente empleada para

investigar la composición del gas natural y de los demás componentes del petróleo.

Curva de puntos de burbujeo.

Lugar geométrico de los puntos de presión y temperatura a la cual se forma la

primera burbuja, al pasar un sistema del estado líquido a la región de dos fases.

Comúnmente se le denomina Curva de Burbujeo.

Curva de puntos de rocío.

Lugar geométrico de los puntos de presión y temperatura a los cuales se forma la

primera gota de líquido, al pasar un sistema del estado gaseoso a la región de dos

fases. Comúnmente se denomina Curva de Rocío.

Debutanizador. * !

Una torre diseñada para separar de la corriente de hidrocarburos el butano y los

componentes más livianos, si están presentes.

w d o r .

Una torre que se utiliza para evitar que el etano que contiene el gas natural se vaya

con los productos del fondo.

Depropanizador. - - Una torre que se utiliza para separar el propano y los componentes más livianos de

la corriente de hidrocarburos.

Page 340: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Desecante. Una substancia utilizada para remover el vapor de agua del gas natural. 'También

aplica a los sólidos que remueven la humedad del aire.

Deshidratación. &minación del agua del gas o del petróleo hasta satisfacer las condiciones de

mercado o del proceso.

Desulfuración. .F 2

El proceso en el cual el azufie y los componentes sulfurosos se remueven del gas o

de las mezclas de hidrocarburos en estado líquido.

Dulce. Se refiere al producto que satisface las cantidades permitidas de componentes

sulfurosos.

Efecto Joule Thomson. El cambio de la temperatura de un gas que ocurre cuando es expandido a entalpía

constante, desde una presión alta a otra más baja. El efecto que se produce en la

mayoría de los gases (con excepción del helio y el hidrógeno) es el enfhamiento del

gas.

Endulzamiento del gas natural. - O

Desacidificación. Eliminación de los componentes ácidos del gas natural, tales

como el sulfuro de hdrógeno y el dióxido de carbono.

Estabilizador. Nombre que recibe una torre de fraccionamiento que estabiliza un líquido. Ejemplo:

reducción la presión de vapor de tal manera que resulte un líquido menos volátil.

Estado crítico. Es el término usado para identificar condiciones únicas de presión, temperatura y

composición de un sistema, donde todas las propiedades del vapor y líquido

coexistentes llegan a ser idénticas.

Expansión adia bática. Es la expansión que se produce en una corriente de gas, vapor o líquido desde una

presión alta a una más baja y en la cual no se produce transferencia de calor entre la corriente en referencia y el medio que la rodea.

Page 341: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Expansor o Turbina de e x . . I una turbina que, al bajar la presión, convierte la energía de un gas o vapor en

trabajo mecánico.

Extracción. Un proceso mediante el cual se retira un material de una corriente, utilizando un solvente. El ténnino puede ser aplicado a absorción líquido - líquido o a cualquier

otro proceso que utilice solvente.

Factor de absorción. Factor usado en cálculos de ingeniería que expresa la facilidad con que un

constituyente del gas natural es absorbido en aceite u otro fluido. En la literatura

este factor se expresa como A = L 1 KV, donde L y V son los moles de líquido y de

vapor que sale de un plato o bandeja de burbujeo, tomado como un valor promedio

en el absorbedor o en toda la torre. De la misma manera K, es la constante de

equilibrio entre el vapor y el líquido de un componente en particular.

Factor de compresibilidad. Un factor que por lo general se identifica con "Z" que expresa la relación entre un

volumen real de un gas a una determinada presión y temperatura con respecto al

volwnen del mismo gas a condiciones ideales.

Flash o separación instantánea. Metodología de cálculo que permite conocer la composición de los fluidos que se

separan a determinadas condiciones de presión y temperatura.

Fraccionador. - Se refiere al proceso de destilación. Por lo general describe la separación de los

hidrocarburos en sus diferentes componentes individuales.

Gas ácido. Aquel que contiene una cantidad apreciable de sulfuro de hidrógeno o de

mercaptanos. También se usa para califícar la presencia de dióxido de carbono en el gas conjuntamente con el sulfuro de hidrógeno. Gas agrio. El sulfuro de hidrógeno y10 el dióxido de carbono contenido o extraído de una

corriente de gas natural.

Page 342: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones - - - - -- - - --

Gas asociado.

Gas que viene asociado con la producción de petróleo.

Gas bajo especificaciones de tuberías. Es el gas que satisface los requisitos mínimos exigidos por las empresas que

transportan el gas por tuberías.

Gas dulce. Gas en el cual han sido separados los componentes ácidos (dióxido de carbono,

sulfuro de hidrógeno, etc.) hasta satisfacer las condiciones de tubería.

Gas en solución. Gas que se origina de la fase líquida en el yacimiento de petróleo.

Gas natural. Mezcla de hidrocarburos en estado gaseoso donde predomina el metano.

Gas o vapor saturado.

Vapor (o gas) en equilibrio con un líquido, a una presión y temperatura dadas. En el

caso de sustancias puras, es el estado del gas o vapor correspondientes al punto de

rocío.

Gas rico.

Es un gas que por lo general alimenta una planta de procesamiento para la

extracción de productos condensables. Gas que contiene una buena cantidad de

productos condensables.

Gas seco.

El GPSA acepta este término aplicado a un gas cuyo contenido de agua ha sido

reducido mediante un proceso de deshidratación. La aplicación más aceptada lo

refiere a un gas natural con un contenido muy bajo de componentes condensables.

GPM. '

Es la cantidad de líquidos de hidrocarburos que se pueden extraer de mil pies

cúbicos de gas medidos a condiciones estándar.

gpm- Galones por minuto.

Page 343: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Gravedad API. Una escala arbitraria que expresa la densidad relativa de los productos de petróleo

que se calcula por medio de la siguiente fórmula:

"MI = (141,5 / y) - 131.5

Hidrato.%

Es un material sólido que resulta de la combinación de hidrocarburos con agua, a

determinadas condiciones de presión y temperatura.

Hidrocarburos livianos.

Hidrocarburos de bajo peso molecular como el metano, etano, propano y butanos.

Inerte.

Elemento o componente que no reacciona químicamente y con el ambiente que lo

rodea. El nitrógeno y el dióxido de carbono son ejemplos de constituyentes inertes

del gas. Se diluyen en el gas pero no se queman y, por lo tanto, no agregan calor en

la combustión.

Inmiscible.

Descripción de un líquido incapaz de mezclarse de forma homogénea con otra

substancia.

Levantamiento artificial por gas.

Método para extraer petróleo o agua hasta la superficie inyectando gas a un pozo en

producción.

Límite de inflamabilidad.

Es la proporción de aire y gas con la cual se puede producir la ignición en presencia

de una llama o chspa. Se habla de un límite de idlamabilidad inferior referido a la

mínima cantidad de gas necesaria para producir la ignición y del límite de

innarnabilidad superior a la máxima cantidad de gas, mezclado con aire, requerido

para que se produzca la llama o explosión.

Líneas isovolumétricas.

También se denomina curvas de calidad. En un diagrama presión-temperatura de un

sistema dado, es el lugar geométrico de los puntos de igual porcentaje de volumen

líquido (o vapor) en la región de dos fases.

Page 344: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Líquido saturado. Es un líquido que está a su punto de burbujeo o en equilibrio con su fase de vapor en el recipiente que lo contiene. Líquido en equilibrio con vapor (gas) a una presión y temperaturas dadas. En el caso de sustancias puras, es el estado del líquido correspondiente al punto de burbujeo.

LPG O GPL. Se refiere a la mezcla de hidrocarburos separada del gas natural donde predominan el propano y el butano.

, Mercaptanos. Es un componente que algunas veces aparece en el gas y en los hidrocarburos líquidos que debe ser reducido por remoción o conversión para satisfacer las especificaciones. Componentes de la fórmula general RSH, análoga a los alcoholes y fenoles, que contiene azufie en lugar de oxígeno. Número Wobbe. Es un número proporcional al calor que se agrega a un quemador a presión constante. En la práctica británica, es el valor calorífico del gas dividido por la raíz cuadrada de la gravedad. Se utiliza ampliamente en Europa, junto con la velocidad de la llama medida o calculada para determinar la intercambiabilidad de combustibles o la factibilidad de utilizar un combustible en sustitución de otro.

Odorante. Un gas muy odorífero, normalmente mercaptanos que se agregan al gas natural o al LPG para darle olor y facilitar la detección de los escapes. Peso en el aire. Es el peso comparativo con respecto a un estándar sin correcciones por efectos de la presión atmosférica o flotabilidad del producto en el aire.

Peso en el vacío. Es el peso con referencia a un estándar medido en el vacío o corregido por el efecto de la flotabilidad en el aire.

Plantas de procesamiento de gas natural. Término que se utiliza para las plantas dé procesamiento de gas, plantas de gasolina natural o plantas de gasolina, en las cuales se separan los diversos componentes de la corriente de gas para satisfacer las exigencias comerciales.

Page 345: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Una parte en un millón de partes iguales. Se habla de ppm,v cuando está referida a

volúmenes de gas y a ppm,p cuando se refiere a unidades de peso o inasa.

Presión atmosférica.

La presión ejercida por la atmósfera terrestre. En condiciones normales se utiliza

760 mm de Hg, 29,92 pulgadas de mercurio o 14,696 lpca.

Presión de coiivergencia. ,

Es la presión a una temperatura dada en la cual, en una mezcla de hidrocarburos de

composición conocida, los valores de Ki de los diferentes componentes tienden a la

unidad. La presión de convergencia se utiliza para ajustar los valores de las

constantes de equilibro vaporllíquido (Ki) a un sistema particular en consideración.

Presión de vapor.

Es la presión que ejerce la fase de vapor en el recipiente que lo contiene, cuando el

líquido y vapor de un componente puro se encuentran en equilibrio a determinadas

condiciones de presión y temperatura. El número de moléculas que se escapan del

líquido, es igual al número que regresan a él. La presión ejercida por un líquido

confinado en un tanque o equipo de prueba, por lo general a una temperatura

especificada.

Presión de vapor Reid (RVP).

Presión de vapor de un producto líquido determinada por el método D-323. Se

reporta en libras por pulgada cuadrada a 100°F. La presión de vapor Reid es

siempre menor que la presión de vapor verdadera a 100°F.

Presión y temperatura de burbujeo.

Es la presión y temperatura a la cual el sistema se encuentra a su punto de burbujeo.

Presión y temperatura críticas.

Presión y temperatura a las condiciones críticas.

Presión y temperatura de rocío.

Es la condición de presión y temperatura a la cual el sistema se encuentra a su punto

de rocío.

Page 346: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones -- - -- - -

Procesamiento del gas. Separación de los constituyentes del gas natural con el propósitos de satisfacer las condiciones del mercado o llenar las especificaciones del producto. Proceso Claus. Es un proceso mediante el cual se convierte el sulfwo de hidrógeno en azufie

elemental mediante el uso de oxidación selectiva. Producto demetanizado. Producto de fondo de una torre que no contiene metano.

Productos del fondo. Líquidos o materias residuales que se drenan de un fiaccionador o del fondo de un recipiente durante el proceso o mientras está almacenado. También se conoce con este nombre al producto más pesado que queda en la fase líquida después de la destilación. Punto de burbujeo. Estado de un sistema completamente líquido en equilibrio con una cantidad dinitesimal de gas. A

Punto de ebullición normal. Temperatura que produce en un componente puro, una presión de vapor igual a una atmósfera.

Punto de rocío. Estado de un sistema completamente gaseoso en equilibrio con una cantidad infimtesimal de líquido. Punto triple. Las condiciones a las cuales coexisten: sólido, líquido y vapor. Es un punto único para un componente puro.

Razón de compresión. La razón entre la presión de descarga y la presión de succión de un compresor, .*

ambas a condiciones absolutas.

Razón de reflujo. Es el término que se aplica en los procesos de destilación para dar una medida relativa del volumen de reflujo. Comúnmente se expresa como una fiacción de la cantidad neta del producto del tope.

Page 347: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Reflujo. En un proceso de destilación es la parte del condensado del tope de la columna que

se regresa a la torre como una fuente de en£iiamiento.

Región de dos fases. Zona encerrada por las curvas de punto de rocío y de burbujeo, en un diagrama

presión-temperatura del sistema, donde el gas y líquido coexisten en equilibrio.

Región retrtgrada. Cualquier región, en el diagrama presión-temperatura de un sistema donde se

produce condensación o vaporización en sentido inverso a lo que normalmente

ocurre, es decir, donde existe comportamiento retrógrado.

Relación gas - petróleo (GOR O RGP). Es la relación gasllíquido que se produce en un pozo de petróleo. Se expresa en pies

cúbicos medido a condiciones estándar por barril de líquido en el tanque.

=e permite separar el gas de los hidrocarburos líquidos y del agua o a

estos Últimos entre sí.

Sistemas de recolección. Es la red de tuberías que transporta el gas desde los pozos a la planta de

procesamiento u otros equipos de separación.

Sulfuro de carbonilo (COS). Es un contaminante del gas y de los líquidos de hidrocarburos que por lo general se

debe remover para satisfacer las especificaciones.

Termía. Unidad para medir energía que equivale a 100.000 BTU.

La serie de procesos a los cuales se somete al gas o al petróleo para dejarlos en

condiciones de ser utilizados para propósitos específicos o para satisfacer las

condiciones del mercado. En el caso del gas natural se refiere a refiere a la

deshidratación y eliminación de los componentes ácidos tales como el dióxido de

carbono y el sulfuro de liidrógeno.

Page 348: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Válvula de congelamiento.

Una válvula especialmente diseñada y únicamente utilizada para determinar el

contenido de agua en el propano. (ASTM D-27 13).

Vapor saturado.

Vapor a su punto de rocío.

Page 349: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

REFERENCIAS

Pág. No. 5 Composición tipica del gas natural en diferentes áreas de Venezuela. La

Industria del Gas en Venezuela (I.G.V.), Pág. No. 10. Gas Processors Suppliers Association (GPSA), Engineering Data Book, 1987, Pág. NO. 1-2. Constantes fisicas de los htdrocarburos. Gas Processors Suppliers Association (GPSA), Engineering Data Book, 1987, Pág. No. 23-2. Constantes fisicas de los hidrocarburos. Gas Processors Suppliers Association (GPSA), Engineering Data Book, 1980, Pág. No. 16-2. Efectos del HzS. GPSA, 1987, Pág. No. 21-12. Corrosión. GPSA, 1987, Pág. No. 2 1-12. Porcentaje de gas en el aire y Iímite de idamabilidad. Tecnología del Gas, I m g Deutsch. Editorial Blume. Pág. No. 43.' Yacimientos de gas condensado. Clasificación del gas o líquido. Curso de Frank Ashford. Yacimientos de gas condensado. Clasificación del gas o líquido. Curso de Frank Ashford.

i 1

Diagrama de fases para un componente puro. Gas Conditioning and Processing, John M. Campbell (J.M.C.), vol. 1, Pág. No. 78.

Page 350: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Pág. No. 40 Factor de corrección para gases ácidos: Fsk o E. GPSA, 1987, Pág. No. 23-

19. Composición típica del gas natural en diferentes áreas de Venezuela. I.G.V., Pág. No. 10. Corrección de densidad por compresibilidad del líquido. GPSA, 1987, Pág. NO. 23-30. Corrección de densidad por expansión térmica del líquido. GPSA, 1987, Pág. NO. 23-3 1. Presión de vapor vs. temperatura para gasolina típica de motor y gasolina natural. GPSA, 1987, Pág. No. 6-4. Presión de vapor para hidrocarburos livianos a baja temperatura. GPSA, 1987, Pág. No. 23-40. Presión de vapor para hidrocarburos livianos a alta temperatura. GPSA, 1987, Pág. No. 23-41. Gas Processors Suppliers Association (GPSA), EngineeIing Data Book, 1987, Pág. No. 23-44. Gas Processors Suppliers Association (GPSA), Engineering Data Book, 1987, Pág. NO. 13-6. Cortesía de CORE Lab. International S.A. Cortesía de LABINCA. Contenido de agua de los hidrocarburos. GPSA, 1987, Pág. No. 20-4. Contenido de agua en el gas natural dulce. J.M.C., vol. II, Pág. No. 33 1. Correlación de R. Bukacek para calcular del contenido de agua (W) en el gas. Cortesía del Institute of Gas Technology U.G.T.) Contenido de agua del C02 saturado en mezcla de gas natural. GPSA, 1987, Pág. No. 20-5. Contenido de agua del H2S saturado en mezclas de gas natural. GPSA, 1987, Pág. NO. 20-5. Curva de presión - temperatura para predecir la formación de hidratos. GPSA, 1987, Pág. NO. 20-8.

Expansión permisible sin formación de hidratos para un gas natural de y =

0,6. GPSA, 1987, Pág. NO. 20-8.

Page 351: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Pág. No.

107 Expansión permisible sin formación de hidratos para un gas natural de y =

0,7. GPSA, 1987, Pág. NO. 20-9. 108 Expansión permisible sin formación de hidratos para un gas natural de y =

0,8. GPSA, 1987, Pág. NO. 20-9.

109 Expansión permisible sin formación de hidratos para un gas natural de y =

0,9. GPSA, 1987, Pág. NO. 20-9.

110 Expansión permisible sin formación de bidratos para un gas natural de y =

1 ,O. GPSA, 1987, Pág. NO. 20-9. 111 Descenso de temperatura del gas natural por efectos de la expansión.

Petroleum Resevoir Engineering, Amix, Bass y Whiting (A.B.W.), Pág. No. 277.

118 Factor de compresibilidad del gas natural. GPSA, 1987, Pág. No. 23- 1 1 . 119 Gráfíco generalizado del factor de compresibilidad a varias presiones

reducidas. GPSA, 1987, Pág. No. 23-12. 120 Factor de compresibilidad del gas a presión atmosférica. GPSA, 1987, Pág.

NO. 23-12. 121 Propiedades seudocríticas de los hidrocarburos. GPSA, 1987, Pág. No. 23-

14. 122 Propiedades seudocríticas de los hidrocarburos líquidos. A.B.W., Pág. No.

257. 123 Propiedades seudocríticas de los hidrocarburos líquidos. A.B.W., Pág. No.

257. 124 Factor de compresibilidad para gases de bajo peso molecular. GPSA, 1987,

Págs. Nos. 23-15 a 23-17. 143 Separación instantánea a 600 lpca y -20°F. GPSA, 1987, Pág. No. 25-4.

144 Separación instantánea a 600 lpca y -20°F. GPSA, 1987, Pág. No. 25-4. 146 Diagrama de presión temperatura para un gas seco. A.B. W., Pág. No. 224. 149 Diagrama de P-T para un petróleo relativamente volátil o de alta inerma.

A.B.W., Pág. No. 226. 150 Diagrama de presión - temperatura para un petróleo relativamente pesado

(baja merma). A.B.W., Pág. No. 225.

Page 352: Ing Gas Principios y Aplicaciones_ocr

Ingeniería de gas, principios y aplicaciones

Pág. No. 151 Diagramas P-T para un sistema multicomponente de hidrocarburos. Ingeniería

de gas, propiedades y comportamiento de fases, Ramiro Pérez Palacio (R.P.P.), Capítulo Ií, Pág. No. 57. Presión de convergencia (o lugar geométrico de los puntos críticos) para sistemas binarios. GPSA, 1987, Pág. No. 25- 1 1. Presión de convergencia (o lugar geométrico de los puntos críticos) para sistemas binarios. GPSA, 1987, Pág. No. 25-11. Correlación del valor &no de la constante de equilibrio Kin, con la presión de convergencia Pk, y la presión de vapor del componente Po. A.B.W., Pág. No. 421. Correlación de la presión a la cual ocurre el valor mínimo de constante de equilibrio PmK, con la presión de convergencia Pk y la presión de vapor del componente Po. A.B. W., Pág. No. 420. Gas Processors Suppliers Association (GPSA), Engineering Data Book, 1987, Pág. NO. 17-23. Unfired pressure vessels. Robert Cliuse (Código ASME siinpMicado). Pág. No. 24. F. W. Dodge Corporation. N.Y. Guías de ingeniería para instalaciones de producción, sistemas de tuberías y área de te& marítimo. Separadores líquido - vapor. PDVSA 906 16.1.027. Pág. 6 a 13. Constantes de equilibrio. J.M.C., vol. 1, Págs. Nos. 122 a 136.

Constantes de equilibrio. GPSA, 1987, Págs. Nos. 25-62 a 25-89. Tren de fraccionamiento. GPSA, 1987, Pág. No. 19-5. Gas Processors Suppliers Association (GPSA), Engineering Data Book, 1987, Pág. NO. 19-33. Tamaño de los absorbedores. Cortesía de Black, Sivalls y Bryson Inc (B.S.B.). Capacidad de los absorbedores de ghcol, para y = 0,7 y T = 100°F. Cortesía de Sivalls Inc. Tamaño de las columnas de fi-accionamiento para los deshidratadores de ghcol. Cortesía de Intalox. Carga calorífica vs. lbs. de agua removida en el regenerador. Cortesía de B.S.B.

Page 353: Ing Gas Principios y Aplicaciones_ocr

Pág. No. 307

Ingeniería de gas, principios y aplicaciones

% por peso de TEG en una solución rica que deja el absorbedor. J.M.C., vol. 11, Pág. No. 314. Número de platos reales de TEG a 98,7 % plp. Cortesía de DM International. Número de platos reales de TEG a 99,l % plp. Cortesía de DM International. Número de platos reales de TEG a 99,7 % plp. Cortesía de DM International. Número de platos reales de TEG a 99,84 % plp. Cortesía de DM Inte~mtional. Número de platos reales de TEG a 99,9 % plp. Cortesía de DM International. Número de platos reales de TEG a 99,95 % plp. Cortesía de DM International. Puntos de burbujeo y temperatura de condensación para soluciones de monoetanolamina - agua a varias presiones. Gas Treating Chemicals, Union Carbide (U.C.), Pág. No. 54. Puntos de burbujeo y temperatura de condensación para soluciones de monoetanolamina - agua a varias presiones absolutas. U.C., Pág. Características del solvente MDEA. Cortesía de U.C. Gas Conditioning and Processing, John M. Carnpbell (J.M.C.), vol. 11, Pág. No. 380.

Page 354: Ing Gas Principios y Aplicaciones_ocr

Este libro es propiedad exclusiva del profesor Marcías J. Martínez. Los derechos de autor han sido transferidos a la empresa Ingenieros Consultores, S.R.L.

Se prohíbe la reproducción parcial o total o su utilización en cursos dictados por otras instituciones o enmpsesa3, sin la debida autorización por escrito del propietario.

ISBN 980-07-1676-9

Page 355: Ing Gas Principios y Aplicaciones_ocr

Ingenieros Consultores, S.R.L.

Ingeniería de gas, principios y aplicaciones.

Marcías J. Martínez

Edificio Residencias Las Américas, Torre Norte, Local No. 4. Calle Cecilio Acosta, entre avenidas Bella Vista y Santa Rita.

Teléfonos: (061) 928482-920541 ; Fax: 928482. Celular: (014) 6 1261 3 Apartado Postal 10.0 1 1. Maracaibo - Venezuela