informe de laboratorio numero 3 fisica 1 unmsm

25
INDICE 1. Introducción 2. Objetivos 3. Materiales 4. Fundamento Teórico 5. Procedimiento 6. Cuestionario 7. Conclusiones 8. Bibliografía I. INTRODUCCION . Péndulo, dispositivo formado por un objeto suspendido de un punto fijo y que oscila de un lado a otro bajo la influencia de la gravedad. Los péndulos se emplean en varios mecanismos, como por ejemplo algunos relojes. En el péndulo más sencillo, el llamado péndulo simple, puede considerarse que toda la masa del dispositivo está concentrada en un punto del objeto oscilante, y dicho punto solo se mueve en un plano. El movimiento del péndulo de un reloj se aproxima bastante al de un péndulo simple. El péndulo esférico, en cambio, no

Upload: juank-huamani-c

Post on 15-Apr-2016

135 views

Category:

Documents


18 download

DESCRIPTION

informe de laboratorio #3 de física mecánica, laboratorio de fisica 1 de la universidad nacional mayor de san marcos unmsm

TRANSCRIPT

Page 1: Informe de Laboratorio numero 3 fisica 1 unmsm

INDICE

1. Introducción

2. Objetivos

3. Materiales

4. Fundamento Teórico

5. Procedimiento

6. Cuestionario

7. Conclusiones

8. Bibliografía

I. INTRODUCCION

.

Péndulo, dispositivo formado por un objeto suspendido de un punto fijo y que oscila de un lado a otro bajo la influencia de la gravedad. Los péndulos se emplean en varios mecanismos, como por ejemplo algunos relojes.

En el péndulo más sencillo, el llamado péndulo simple, puede considerarse que toda la masa del dispositivo está concentrada en un punto del objeto oscilante, y dicho punto solo se mueve en un plano. El movimiento del péndulo de un reloj se aproxima bastante al de un péndulo simple. El péndulo esférico, en cambio, no

Page 2: Informe de Laboratorio numero 3 fisica 1 unmsm

está limitado a oscilar en un único plano, por lo que su movimiento es mucho más complejo.

El estudio de este tema nos servirá para comprender los movimientos

pendulares; ya que son múltiples los que podemos encontrar en distintas

ocasiones y dimensiones, también a través de esta experiencia aprenderemos a

desmenuzar los distintos elementos que tiene este movimiento en particular.

II. OBJETIVOS

1. Establecer una ley mediante el movimiento de un péndulo simple.

2. Medir tiempos de eventos con una precisión determinada.

3. Calcular la aceleración de la gravedad (g) en Lima.

Page 3: Informe de Laboratorio numero 3 fisica 1 unmsm

III. MATERIALES

Soporte universal

Prensas

Varilla de 20cm

Clamps

Cuerdas

Cronometro

Regla métrica

Juego de pesas pequeñas: 100g, 50g, 20g, 10g.

Hojas de papel milimetrado.

Hojas de papel logarítmico.

Transportador circular

Instrumentos de medición:

Cronómetro:

El cronómetro es un reloj o una función de reloj utilizada para medir fracciones

temporales, normalmente breves y precisas. El funcionamiento usual de un

cronómetro, consiste en empezar a contar desde cero al pulsarse el mismo botón

que lo detiene. Además habitualmente pueden medirse varios tiempos con el

mismo comienzo y distinto final. Para ello se congela los sucesivos tiempos con un

botón distinto, normalmente con el de reinicio, mientras sigue contando en segundo

plano hasta que se pulsa el botón de comienzo. Para mostrar el segundo tiempo o

el tiempo acumulado, se pulsa reset o reinicio.

Page 4: Informe de Laboratorio numero 3 fisica 1 unmsm

Regla graduada:

La regla graduada es un instrumento de medición con forma de plancha delgada y

rectangular que incluye una escala graduada dividida en unidades de longitud, por

ejemplo centímetros o pulgadas; es un instrumento útil para trazar segmentos

rectilíneos con la ayuda de un bolígrafo o lápiz, y puede ser rígido, semirígido o

flexible, construido de madera, metal, material plástico, etc. Su longitud total rara

vez supera el metro de longitud. Suelen venir con graduaciones de diversas

unidades de medida, como milímetros, centímetros, y decímetros, aunque también

las hay con graduación en pulgadas o en ambas unidades.

Transportador:

Un transportador es un instrumento de medición de ángulos en grados que viene

en dos presentaciones básicas:

Transportador con forma semicircular graduado en 180° (grados

sexagesimales) o 200g (grados centesimales). Es más común que el

circular, pero tiene la limitación de que al medir ángulos cóncavos (de más

de 180° y menos de 360°), se tiene que realizar una doble medición.

Transportador con forma circular graduado en 360°, o 400g.

Para medir un ángulo en grados, se alinea el lado inicial del ángulo con el radio

derecho del transportador (semirrecta de 0°) y se determina, en sentido contrario

al de las manecillas del reloj, la medida que tiene, prolongando en caso de ser

necesario los brazos del ángulo por tener mejor visibilidad.

Page 5: Informe de Laboratorio numero 3 fisica 1 unmsm

IV. FUNDAMENTO TEÓRICO

Péndulo Simple:

Un péndulo simple es un cuerpo ideal que consiste en una masa punto, suspendida

de un hilo inextensible. Cuando se separa de su posición de equilibrio y se suelta,

el péndulo oscila en un plano vertical bajo la acción de la gravedad. El movimiento

es periódico y oscilatorio. Se desea determinar el periodo del movimiento.

En la figura muestra un péndulo de longitud L, una partícula de masa m, que forma

un ángulo con la vertical. Las fuerzas que obran sobre m son mg, la fuerza

gravitacional, y T, la tensión en la cuerda. Escogemos unos ejes tangentes al círculo

del movimiento y a lo largo del radio. Descomponemos a mg en una componente

radial de magnitud mgcos y una componente tangencial de magnitud mgsen. Las

componentes radiales de las fuerzas proporcionan la aceleración centrípeta

necesaria para conservar a la partícula moviéndose en un arco de círculo. La

componente tangencial es la fuerza restauradora que obra sobre m y tiende a

volverla a la posición de equilibrio. Por consiguiente la fuerza restauradora es:

F = - mgsen

Nótese que la fuerza restauradora no es proporcional al desplazamiento angular sino

al sen por lo tanto, el movimiento resultante no es armónico simple. Sin embargo

si el ángulo es pequeño, sen es casi igual a . El desplazamiento a lo largo del

arco es x = L, y para ángulos pequeños es casi un movimiento rectilínea. Por

consiguiente, considerando que

𝐒𝐞𝐧𝛉 ≅ 𝛉

entonces:

𝐟 = −𝐦𝐠𝛉 = −𝐦𝐠𝐱

𝐥= −

𝐦𝐠

𝐥𝐱

Por consiguiente, para elongaciones pequeñas, la fuerza restauradora es

proporcional a la elongación y de sentido contrario a ella. El periodo de un péndulo

simple cuando su amplitud es pequeña corresponde a:

𝐓 = 𝟐𝛑√𝐦

𝐤= √

𝐦

𝐦𝐠/𝐥

𝐓 = 𝟐𝛑√𝐥

𝐠

Page 6: Informe de Laboratorio numero 3 fisica 1 unmsm

Nótese que el periodo es independiente de la masa de la partícula suspendida.

Cuando la amplitud de la oscilación no es pequeña, se puede demostrar que la

ecuación general del periodo (T) es:

𝐓 = 𝟐𝛑√𝐥

𝐠(𝟏 +

𝟏

𝟐𝟐𝐬𝐞𝐧𝟐𝛉 +

𝟏

𝟐𝟐

𝟑𝟐

𝟒𝟐𝐬𝐞𝐧𝟒𝛉 +)

En este caso es el máximo desplazamiento angular.

ELEMENTOS Y CARACTERÍSTICAS DEL PÉNDULO SIMPLE

A) LONGITUD “L” : LONGITUD DE LA CUERDA DESDE EL PUNTO DE

SUSPENSIÓN HASTA EL CENTRO DE GRAVEDAD DEL OBJETO SUSPENDIDO.

B) OSCILACIÓN : ES EL ARCO RECORRIDO POR EL PÉNDULO DESDE SUS

POSICIONES EXTREMAS HASTA LA OTRA, MÁS SU REGRESO A SU POSICIÓN

INICIAL.

C) PERIODO “T” : TIEMPO QUE EMPLEA EN REALIZAR UNA OSCILACIÓN.

D) AMPLITUD “ ” : ES EL ÁNGULO FORMADO POR LA CUERDA DEL

PÉNDULO CON UNA DE SUS POSICIONES EXTREMAS Y LA VERTICAL. (LAS LEYES

DEL PÉNDULO SE CUMPLEN SÓLO CUANDO < 10°).

E) FRECUENCIA “F” : ES EL NÚMERO DE OSCILACIONES EN CADA UNIDAD DE

TIEMPO, SE CALCULA ASÍ: T1f

Page 7: Informe de Laboratorio numero 3 fisica 1 unmsm

LEYES DEL PÉNDULO

- PRIMERA LEY:

EL PERIODO “T” DE UN PÉNDULO ES INDEPENDIENTE DE SU OSCILACIÓN.

SEAN DOS PÉNDULOS DE LA MISMA MASA “M” Y LONGITUD “L”. SE PONEN EN

POSICIONES EXTREMAS DISTINTAS Y SE SUELTAN, SE MIDE EL TIEMPO QUE

DEMORAN 10 OSCILACIONES, SE DIVIDE ENTRE 10, ESE TIEMPO SERÁ EL VALOR

DEL PERÍODO EN AMBOS CASOS, COMPROBADO EXPERIMENTALMENTE, ES EL

MISMO.

- SEGUNDA LEY:

EL PERÍODO “T” DE UN PÉNDULO ES INDEPENDIENTE DE SU MASA.

SEAN DOS PÉNDULOS DE IGUAL LONGITUD “L” PERO DE MASAS DISTINTAS (M Y

M), SI SE LLEVAN A UNA POSICIÓN INICIAL SIMILAR Y SE SUELTAN, AMBOS TIENEN

EL MISMO PERÍODO “T”.

- TERCERA LEY:

“L”, PERÍODO “T” DE UN PÉNDULO ES DIRECTAMENTE PROPORCIONAL A LA RAÍZ

CUADRADA DE SU LONGITUD “L”.

1

1

L

T

L

T

Page 8: Informe de Laboratorio numero 3 fisica 1 unmsm

- CUARTA LEY:

EL PERÍODO “T” DE UN PÉNDULO ES INVERSAMENTE PROPORCIONAL A LA RAÍZ

CUADRADA DE LA GRAVEDAD “G”.

g

T

g

T 1

1

1. Péndulo de torsión

Se dice que un cuerpo se desplaza con movimiento armónico de rotación entono a

un eje fijo cuando un Angulo de giro resulta función sinusoidal del tiempo y el cuerpo

se encuentra sometido a una fuerza recuperadora cuyo momento es proporcional a

la elongación angular.

2. Péndulo físico

El péndulo físico, también llamado péndulo compuesto, es un sistema integrado por

un sólido de forma irregular, móvil en torno a un punto o a eje fijos, y que oscila

solamente por acción de su peso.

Oscilaciones de mayor amplitud

La integración de la ecuación del movimiento, sin la aproximación de pequeñas oscilaciones, es considerablemente más complicada e involucra integrales elípticas de primera especie, por lo que omitimos el desarrollo que llevaría a la siguiente solución:

Donde es la amplitud angular. Así pues, el periodo es función de la amplitud de las oscilaciones.

Page 9: Informe de Laboratorio numero 3 fisica 1 unmsm

En la Figura hemos representado gráficamente la variación de T (en unidades de T0) en función de Θ, tomando un número creciente de términos en la expresión anterior. Se observará que el periodo T difiere significativamente del correspondiente a las oscilaciones de pequeña amplitud (T0) cuando Θ > 20º. Para valores de Θ suficientemente pequeños, la serie converge muy rápidamente; en esas condiciones será suficiente tomar tan sólo el primer término correctivo e, incluso, sustituir senΘ/2 por Θ/2, de modo que tendremos

Donde Θ se expresará en radianes. Esta aproximación resulta apropiada en gran parte de las situaciones que encontramos en la práctica; de hecho, la corrección que introduce el término Θ2/16 representa menos de 0.2% para amplitudes inferiores a 10°.

Para oscilaciones de pequeña amplitud, las expresiones anteriores se reducen a

V. PROCEDIMIENTO

Primera parte:

1) Observe el cronometro y analice sus características. Aprenda su manejo

*¿Cuál es el valor mínimo en la escala? 0,001 seg.

*¿Cuál es el error instrumental a considerar? Ya que el valor mínimo en la

escala es 0,001 seg. El error instrumental se obtendrá dividiendo esta cantidad

entre dos lo cual nos da 0.0005 seg. Lo que viene a ser el error instrumental.

2) Disponga un péndulo de masa m=50mg y de longitud L=100cm.

Page 10: Informe de Laboratorio numero 3 fisica 1 unmsm

3) Aleje ligeramente la masa a una posición cerca de la posición de equilibrio

formando un ángulo menor igual que 12 grados.

4) Suelte la masa y mida con el cronometro el tiempo t que se tarda en realizar 10

oscilaciones completas.

5) Cuando el péndulo se mueva con una L igual a 100cm, que por efecto de ser

desplazado a una amplitud de 12 grados de la posición de equilibrio, inicia un

movimiento de vaivén hacia el otro extremo equidistante de esta posición, y

continua este movimiento oscilatorio de 20 segundos que corresponden

aproximadamente a 10 oscilaciones completas; numero y tiempo optimo para

mediar el tiempo T de una oscilación completa.

6) Determinar el periodo T de una oscilación completa experimental de acuerdo a

la siguiente relación: T =𝟏

𝑵 donde N es el número de oscilaciones completas.

7) A continuación revisar la medida “L” del péndulo que hizo oscilar , Observe si la

cuerda tiene el comportamiento de cuerda inextensible o hay una variación en su

medida? Coloque la nueva medida como L final en la Tabla # 1.

Page 11: Informe de Laboratorio numero 3 fisica 1 unmsm

Tabla Nº 1

LONGITUD ANTES (CM)

LONGITUD FINAL L´

(CM)

T DE 10 OSCILACIONES COMPLETAS (S)

(EXPERIMENTAL)

T periodo (S) (

EXPERIMENTAL

T2(S2)(EXPERIMENTAL)

100 101.0 20.10 2.01 4.64

80 81.5 18.9 1.89 3.57

60 62 15.84 1.58 2.496

50 50.5 14.28 1.42 2.02

40 40.6 12.62 1.26 1.58

30 30.2 11.31 1.13 1.28

20 20.1 9.65 0.96 0.92

10 10.3 7.03 0.70 0.49

Page 12: Informe de Laboratorio numero 3 fisica 1 unmsm

8) Hacer mediciones para 10 oscilaciones completas para cada mediada de L,

revisando las Li como el paso 7; colocar los Ti medidos en la tabla #1 así como los

nuevos valores Li.

9) En el papel milimetrado grafique T versus L’ y L’ versus T. ¿Qué gráficas

obtiene? ¿Cuál es más fácil reconocer, según sus estudios?

Al representar gráficamente los valores de T versus L’ en papel milimetrado se

obtiene una recta, la cual sería similar a esta grafica adjunta

10) En el mismo papel milimetrado, grafique T2 versus L’. ¿Qué tipo de grafica

obtiene usted ahora?

Al representar gráficamente los valores de T2versus L’ en papel milimetrado se

obtiene una recta, la cual sería similar a esta grafica adjunta. y en la que

observamos que T2 versus L’ son directamente proporcionales.

11) ¿Se establece una proporcionalidad directa entre T2 y L’? use la pendiente

para expresar la formula experimental.

Segunda parte:

12) Realice mediciones para péndulos de 100 cm de longitud y diferentes valores

de masas. Considere una amplitud angular de 10°. Complete la Tabla 2.

M (G) 10 20 40 50 70 100

T (S) 19,455 19,644 19,847 19,846 19,880 19,996

T (S) 1,9455 1,9644 1,9847 1,9846 1,9880 1,9996

13) Realice mediciones en un péndulo, de 100 cm de longitud y

10g de masa, para diferentes amplitudes angulares.

Complete la Tabla 3.

Page 13: Informe de Laboratorio numero 3 fisica 1 unmsm

VI. CUESTIONARIO:

1.-De la Tabla Nº1 tenemos la grafica de 𝑇2(𝑠) 𝑣𝑠 𝐿′(𝑐𝑚) . A partir de la

ecuación del gráfico calcularemos el error porcentual experimental con

respecto al valor g=9.78 m/𝑠2.

De la grafica se tiene:

𝐿′ = 0,25 ∙× 𝑇2…. (i)

Por teoría se sabe que:

𝑇 = 2𝜋 ∙ √𝐿

𝑔

0

20

40

60

80

100

120

1.945 1.9644 2 1.9936 1.9986 1.9996

T2

L

T2 vs L

(GRADOS)

2° 6° 8° 12° 30° 45°

T (S) 19,808 19,901 20,109 20,232 19,992 20,318

T (S) 1,9808 1,9901 2,0109 2,0232 1,9992 2,0318

Page 14: Informe de Laboratorio numero 3 fisica 1 unmsm

Despejando L se tiene:

𝐿 =𝑔

4𝜋2 ∙ 𝑇2 ….(∝)

Reemplazando (i) en (∝):

𝐿′

𝑇2∙ 4𝜋2 = 𝑔

(0,25) ∙ 4𝜋2 = 𝑔

𝑔 = 9,87 𝑚𝑠2⁄

Luego, calculamos el error porcentual experimental (Eex.%):

Eex. % =Valor teórico − Valor experimental

Valor teórico× 100%

Eex. % =9.78 − (9,87)

9.78× 100%

Eex. % = −0.92%

2.-Explicar como se han minimizado los errores sistemáticos.

Rspt:

Para poder evitar el mínimo error al momento de la experimentación, tratamos de

llevar constante el equilibrio inicial del péndulo. Desde el punto en que este se

encontraba perpendicularmente al sujetador del soporte universal hasta el punto

en cual le asignábamos un valor fijo a la amplitud del péndulo. Otro aspecto a

considerar fue la de la variación de la longitud de la cuerda; esto ocurría al

momento en el que se realizaban los cambios de medida en la cuerda y cuando

dejábamos en reposo la masa esférica, la tensión producida generaba un ligero

Page 15: Informe de Laboratorio numero 3 fisica 1 unmsm

estiramiento sobre la cuerda. Por ello realizamos nuevas mediciones, las cuales

íbamos registrando, después de establecer el equilibrio de nuestro péndulo en

cada ensayo.

Así también, se trato de mantener una linealidad al observar la forma en la que

oscilaba el péndulo desde que este era soltado. Finalmente por estar en un

ambiente cerrado libre de fuertes vientos, radiación entre otras cosas, no hubo

cualidades relevantes que dificulten el proceso de experimentación.

3.-Mencionar otros errores sistemáticos para cada una de las tres tablas.

Rspt:

En el primer caso, de la 2da parte del ensayo, solo hubo problemas al momento

de probar los distintos valores de masa. En el instante en que soltábamos nuestra

masa (con longitud de cuerda y amplitud constante), realizaba una ligera

trayectoria irregular presente en cada situación. Esto se daba por la forma de

nuestra masa, porque al momento de soltarla el efecto del aire hacia rotar

nuestro péndulo a la vez que se trasladaba. De modo que, al presentarse casos

de trayectorias ciertamente fuera de plano, optamos por realizar la experiencia

nuevamente hasta obtener situaciones que cumplan nuestros parámetros.

Mientras que en el segundo caso (con longitud de cuerda y masa constante),

ocurría algo similar. El efecto del aire se hacía notar aun más a medida que

íbamos incrementando la amplitud de nuestro péndulo. Cuando mayor se hacia el

valor de la amplitud, nuestra masa (del mismo material y forma utilizado en el

Page 16: Informe de Laboratorio numero 3 fisica 1 unmsm

caso anterior) , desde el instante en que descendia, generaba rotaciones y

trayectorias fuera de plano. Por lo que tuvimos que ser muy estrictos al momento

de registrar los diferentes tiempos arrojados luego de cada experiencia.

4.-Expresar los datos aleatorios con datos de la Tabla Nº1.

Rspst:

DE LA TABLA Nº1

Para la magnitud física L’(m):

Se sabe que:

�̅� =𝑋1 + 𝑋1 + 𝑋1 + ⋯ + 𝑋1

𝑛=

∑ 𝑥𝑖𝑛𝑖=1

𝑛

Entonces:

�̅�𝐿′ =1.01 + 0.815 + 0.620 + 0.505 + 0.406 + 0.302 + 0.210 + 0.103

8

�̅�𝐿′ = 0,496 ≈ 0.5

Para la magnitud física T(s) para 10 oscilaciones:

Se sabe que:

�̅� =𝑋1 + 𝑋1 + 𝑋1 + ⋯ + 𝑋1

𝑛=

∑ 𝑥𝑖𝑛𝑖=1

𝑛

Entonces:

�̅�𝑡 =2.01 + 1.809 + 1.581 + 1.428 + 1.262 + 1.131 + 0.935 + 0.73

8

�̅�𝑡 = 1.36075

Page 17: Informe de Laboratorio numero 3 fisica 1 unmsm

6. HALLE LA FÓRMULA EXPERIMENTAL CUANDO SE LINIALIZA LA GRÁFICA EN PAPEL LOG DE T VERSUS L'. SUGERENCIA EL ORIGEN DEBE SER ( 10°, 10-1)

XI YI XI = LOG XI YI = LOGYI

XI YI=LOG XI

LOGYI

xi2 =(log

xi)2

101.0 2.01 2.00 0.30 0.6

4.00

81.5 1.89 1.91 0.27 0.52

3.65

62 1.58 1.79 0.19 0.34

3.20

50.5 1.42 1.70 0.15 0.26

2.89

40.6 1.26 1.60 0.10 0.16

2.56

30.2 1.13 1.48 0.05 0.07

2.19

20.1 0.96 1.30 -0.02 -0.03

1.69

10.3 0.70 1.01 -0.15 -0.15

1.02

392.2 10.95 12.79 0.89 1.77 21.2

Page 18: Informe de Laboratorio numero 3 fisica 1 unmsm

m = 7.75x10-4

b = -1.09x10-3

Fórmula:

T=10-1.09x10-3xL7.75x10-4

y = k xn

T = 0.997xL7.75x10-4

22 log)(log

loglogloglog

ii

iiii

xxp

pm

yxyx

22 )79.12()2.21(8

)89.0)(79.12()77.1(8

m

22 )79.12()2.21(8

)77.1)(79.12()89.0)(2.21(

b

22

2

log)(log

loglogloglog)(log

ii

iiiii

xxp

yb

xxyx

Page 19: Informe de Laboratorio numero 3 fisica 1 unmsm

6. CON LOS DATOS DE LA TABLA N°2, GRAFIQUE T(S) VS. M(G) EN PAPEL MILIMETRADO.

¿A QUÉ CONCLUSIÓN LLEGA OBSERVANDO LA GRÁFICA?

M (G) 10 20 40 50 70 100

T (S) 19,455 19,644 19,847 19,846 19,880 19,996

T (S) 1,9455 1,9644 1,9847 1,9846 1,9880 1,9996

Rpta. Se verifica que el período de un péndulo simple no depende de la masa,

pues a masas diferentes, mientras la longitud de la cuerda sea la misma, el

período casi no varía.

7. Grafíque T(s) vs. θ (grados) en papel milimetrado. Determine los pares

ordenados de la tabla N°3. ¿Existe alguna dependencia entre el periodo T con

respecto a la amplitud angular θ? Si este fuere así, ¿cómo seria esta

dependencia?

Tabla Nº3.

(GRADOS)

2° 6° 8° 12° 30° 45°

T (S) 19,808 19,901 20,109 20,232 19,992 20,318

T (S) 1,9808 1,9901 2,0109 2,0232 1,9992 2,0318

Page 20: Informe de Laboratorio numero 3 fisica 1 unmsm

Rpta: Al graficar T(s) vs. θ (grados) observamos puntos dispersos o sin una

tendencia propiamente dicha. No existe dependencia entre el periodo y el

ángulo. Además como información adicional podemos señalar que el periodo

no guarda relación alguna con la masa y es sólo dependiente de la longitud y

de la gravedad del sistema empleado.

8. ¿HASTA QUE VALOR DEL ÁNGULO, EL PERIODO CUMPLIRÁ CON LAS CONDICIONES DE

UN PÉNDULO SIMPLE?

Rpta: El valor que toma el período para que cumpla las condiciones de un

péndulo simple es aproximadamente 15°, con está cantidad se alcanza

precisiones en un 99%.

Como 15° la longitud de arco tomaría la forma de línea recta y cumple

con las ecuaciones de un M.A.S. (movimiento armónico simple).

Podremos escribir, teniendo en cuenta el valor del seno del ángulo:

Se observa que la fuerza recuperadora, que hace oscilar al péndulo, esta en

función de la elongación (X), con lo que podemos afirmar que se trata de un

M. A. S. Por ello, podemos comparar la ecuación que caracteriza a este tipo

de movimientos, que vemos a continuación:

F= -mW2 x , con la ecuación obtenida anteriormente F = - mg x

L

vemos que la pulsación es: W2 = g / L , y teniendo en cuenta que

W = 2 /T

Page 21: Informe de Laboratorio numero 3 fisica 1 unmsm

𝑡 = 2𝜋 ∗ √𝑙

𝑔

donde T es el período: Tiempo utilizado en realizar una oscilación completa,

llegamos a:

9.- ¿Comprobó la dependencia T vs. L? ¿Cómo explica la construcción de

relojes de péndulo de distintos tamaños?

Se podría pensar que al hacer relojes más grandes esta tendría diferencia de

tiempo por el peso o por el tamaño de la longitud, pero a lo largo de la experiencia

hemos comprobado que el tiempo de oscilaciones que realiza el péndulo no

depende del peso, mas solo depende de la longitud y de la gravedad del medio en

el que está; por lo tanto al ver que los relojes de péndulo, su longitudes sea más

grande, diremos que su ángulo de recorrido de este es más grande que el de menor

longitud para así compensar la diferencia.

11.-Expliqué el significado de la afirmación “péndulo que vate el segundo”

Péndulo que vate el segundo: De la expresión:

𝑡 = 2𝜋 ∗ √𝑙

𝑔

(tiempo de oscilación simple) resulta que el tiempo de oscilación depende de la longitud y de la aceleración de la gravedad. Si en determinado lugar (g: conocida) deseamos construir un péndulo cuyo tiempo de oscilación sea un segundo, tendremos que modificar su longitud.

Ello se logra aplicando la expresión:

Page 22: Informe de Laboratorio numero 3 fisica 1 unmsm

𝑡2 = (2𝜋 ∗ √𝑙

𝑔 )2

𝑙 =𝑔 ∗ 𝑡2

4𝜋2

luego:

y

De este modo para t=1 seg. se logra un péndulo que “vate el segundo”. Por ello decimos:

“Péndulo que vate el segundo es aquel que cumple una oscilación simple en un segundo”.

Para el lugar cuya aceleración de la gravedad es normal (g=9,806) la longitud del péndulo que vate el segundo es 0,9936 m, mientras que para el que cumple una oscilación doble en un segundo será l= 24,84 cm.

12.- ¿Por qué es necesario que la amplitud de oscilación para cada

longitud es siempre un décimo de la longitud usada?

Page 23: Informe de Laboratorio numero 3 fisica 1 unmsm

Solución:

Aplicando el teorema de Pitágoras en el grafico

Deducimos que:

Tomando un ángulo igual o menor que 12º, la Amplitud de oscilación (A) siempre

será menor que la longitud del péndulo usada (L).

Ya que a mayor longitud de péndulo mayor será la curvatura de la oscilación y por lo tanto menor será la cantidad de oscilaciones en un intervalo de tiempo, entonces la longitud del péndulo determina el periodo, siempre y cuando el arco de oscilación sea menor de 12° para que el periodo no dependa del ángulo.

Además porque la masa es despreciable, en nuestros en nuestros experimentos

observamos que para masas diferentes el periodo no cambia notoriamente.

13.- ¿En qué puntos de su oscilación, el péndulo tiene la mayor velocidad

y la mayor aceleración?

.

: 2

ctemLmT

mLTSi

Page 24: Informe de Laboratorio numero 3 fisica 1 unmsm

Solución:

El péndulo tendrá mayor velocidad, cuando pase por el punto de equilibrio, es decir, cuando la amplitud de arco del sistema sea igual a cero.

En otras palabras la tendrá la mayor velocidad en el punto más bajo de sui recorrido.

Por otro lado la aceleración tendrá su mayor valor en el punto más alto de su trayectoria, pues ahí posee la mayor una mayor fuerza de empuje para realizar el vaivén.

VII. CONCLUSIONES

- El movimiento pendular es un movimiento armónico simple con frecuencia y periodo definido. El periodo depende de la longitud del péndulo para nada de la masa.

- Al investigar este fenómeno de la naturaleza, tomando en cuenta diferentes variables como: el tamaño de la cuerda que sostiene la masa del péndulo, la misma masa del péndulo y controlando los posibles errores, tanto estadísticos como sistemáticos, conoceremos las causas del movimiento oscilatorio que se produce en el péndulo por el desequilibrio entre la fuerza centrípeta y el peso de la masa colocada, ya que ninguna otra fuerza actúa en nuestro fenómeno físico.

- En el movimiento del péndulo simple, solo con observarlo nos encontramos con un movimiento circular, cuyo radio es la cuerda atada a nuestro soporte universal; pero con la diferencia que el movimiento del péndulo es oscilatorio; es decir, que llega a un punto máximo en su trayectoria y regresa al punto de donde fue soltado por el observador.

- Analizando el movimiento del péndulo simple físicamente y haciendo el diagrama del cuerpo libre en las diferentes posiciones en las que se

Page 25: Informe de Laboratorio numero 3 fisica 1 unmsm

desplaza, obtenemos que en el punto inicial solo actúan el peso de la masa y la tensión de la cuerda, tendremos cuidado en el momento de soltar la masa de no imprimir nosotros alguna fuerza externa que altere el desequilibrio inicial.

- En el punto más bajo del movimiento el peso de la masa y la fuerza centrípeta son iguales. En el punto final o de regreso obtenemos que la energía cinética es nula y que la masa regresa a su punto inicial gracias a la energía potencial.

- El tamaño de la masa no influye en el numero de periodos y también

concluimos que entre más larga sea la cuerda menos periodos cumple.

VIII. BIBLIOGRAFÍA

http://es.wikipedia.org/wiki/P%C3%A9ndulo

FISICA PARTE 1. ROBERT RESNICK, David Halliday. Segunda Edición

en español. pág. 475-477.

Enciclopedia temática de Física.