félix yndurain: nanociencia y tecnologías energéticas

84
Zaragoza 17 septiembre 2015 La ciencia (la nanociencia) y las tecnologías energéticas del futuro Félix Yndurain Departamento de Física de la Materia Condensada Universidad Autónoma de Madrid (e-mail: [email protected])

Upload: fundacionzcc

Post on 12-Feb-2017

392 views

Category:

Education


2 download

TRANSCRIPT

Zaragoza 17 septiembre 2015

La ciencia (la nanociencia) y las tecnologías energéticas del futuro

Félix Yndurain Departamento de Física de la Materia Condensada

Universidad Autónoma de Madrid

(e-mail: [email protected])

Zaragoza 17 septiembre 2015

INDICE

•  Introducción: Por qué hay que hacer investigación básica?

•  Consumo de energía. El medio ambiente

•  La investigación Básica en el DOE: 5 “grandes retos” científicos

•  Necesidades y ejemplos de investigación básica en:

!  Energía nuclear

!  Fotovoltaica

!  Hidrógeno

!  Eficiencia

!  Almacenamiento

!  “Nuevos” combustibles fósiles

•  Conclusiones

IUPAP Energy Report (2003). http://www.iupap.org/

US Department of Energy. http://www.energy.gov/

Zaragoza 17 septiembre 2015

¿Por qué Investigación Básica?

A finales de 1944 el presidente Roosevelt encargó a Vannevar Bush, Director of the Office of Scientific Research and Development un estudio sobre las

razones para realizar investigación básica.

“Science can be effective in the national welfare only as a member of a team, whether the conditions be peace or war. But without scientific progress no

amount of achievement in other directions can insure our health, prosperity, and security as a nation in the modern World”.

“Basic research is performed without thought of practical ends. It results in general knowledge and an understanding of nature and its laws. This general

knowledge provides the means of answering a large number of important practical problems, though it may not give a complete specific answer to any

one of them. The function of applied research is to provide such complete answers. The scientist doing basic research may not be at all interested

in the practical applications of his work, yet the further progress of industrial development would eventually stagnate if basic scientific

research were long neglected.”

Zaragoza 17 septiembre 2015

MIT CAMBRIDGE, Mass., Mar. 5, 1997

In the first national study of the economic impact of a research university, BankBoston reported today that graduates of the Massachusetts

Institute of Technology have founded 4,000 firms which, in 1994 alone, employed at least 1.1 million people and generated $232 billion of

world sales. The five states benefiting most from MIT-related jobs are California

(162,000), Massachusetts (125,000), Texas (84,000), New Jersey (34,000) and Pennsylvania (21,000).

Wayne M. Ayers, chief economist of BankBoston:

"In a national economy that is increasingly emphasizing innovation, these findings extend our understanding of how MIT has been instrumental in

generating new businesses nationwide. MIT is not the only university that has had a national impact of this kind, but because of its historical and

continuing importance, it illustrates the contribution of research universities to the evolving national economy."

Zaragoza 17 septiembre 2015

Stanford University

“Stanford University's spirit of innovation and entrepreneurship has always played an important role in the university's history. Our faculty and students are immersed in entrepreneurship as well as its natural

extensions to industry. The entrepreneur then benefits from a research-driven university through a myriad of ways: direct research, classroom lessons, discussions with

faculty, the cross-fertilization of ideas from different disciplines, and even the entrepreneurial spirit of Stanford.

In the last several decades, over 6,000 companies were founded by members of the Stanford University community”.

Top Silicon Valley companies founded or co-founded by those with a current or former affiliation with Stanford University, as an alumnus/

alumna or faculty/staff. In 2010, the 53 largest Silicon Valley companies on our list were

responsible for generating sales totaling $267.4 billion. This represents 49.2% of the $543.9 billion total sales reported by the 150 firms that make

up the “The Silicon Valley 150”.

Zaragoza 17 septiembre 2015

CONSUMO DE ENERGEIA

Zaragoza 17 septiembre 2015

Consumo mundial de Energía…y creciendo

Zaragoza 17 septiembre 2015

Producción y consumo de petróleo por región (millones de barriles diarios)

Production by region Consumption by region

Fuente: BP Statistical Review of World Energy June 2015

Zaragoza 17 septiembre 2015

Lo arriesgado de hacer predicciones: El pico de Hubbert (1956)

Zaragoza 17 septiembre 2015

Reservas probadas de petróleo en 19924, 2004 y 2012 (porcentage)

Fuente: BP Statistical Review of World Energy June 2015

Zaragoza 17 septiembre 2015

Reservas probadas de gas en 1994, 2004 y 2014 (porcentage)

Fuente: BP Statistical Review of World Energy June 2015

Zaragoza 17 septiembre 2015

Consumo de energía primaria en algunos países en el año 2012 (Mtoe) Petróleo Gas natural Carbón Nuclear Hidráulica Renovable Per

capita (toe)

PIB(k$) per

capita USA 819,9 722,1 437,8 183,2 86,0 50,7 8,07 43,68

China 483,7 143,8 1873,3 22,0 194,8 31,9 0,78 7,78 Japón 218,2 116,7 124,4 4,1* 18,3 8,2 3,99 33,07 España 63,8 31,4 19,3 13,9 4,6 14,9 3,27 25,47 Alemania 111,5 75,2 79.2 22,5 4,8 26,0 3,99 31,93 Francia 80,9 42,5 11,4 96,3 13,2 5,4 4,36 31,16 Reino Unido 68,5 78,3 39,1 15,9 1,2 8,4 3,69 31,94 Brasil 125,6 29,2 13,5 3,6 94,5 11,2 1,03 8,77

Fuente: BP Statistical Review of World Energy June 2013

Zaragoza 17 septiembre 2015

Fuente: http://www.nationmaster.com y United Nations Development Programme y elaboración propia

Consumo de energía por habitante frente producto interior bruto para diversos países

Zaragoza 17 septiembre 2015

Consumo de energía por habitante frente a “índice de desarrollo humano”

Fuente: http://www.nationmaster.com y United Nations Development Programme y elaboración propia

Zaragoza 17 septiembre 2015

El ejemplo de California

Consumo de electricidad y PIB en Estados Unidos y California

Zaragoza 17 septiembre 2015

Problemas relacionados con la energía:

Distribución geográfica no uniforme de los

recursos fósiles (finitos)

Deterioro del medio ambiente

Zaragoza 17 septiembre 2015

Efectos de las actividades humanas en el Medio Ambiente

población emisiones

CO2 D

Zaragoza 17 septiembre 2015

Necesidad de Nuevas Tecnologías (Que deberán ser respetuosas con el medio ambiente)

Zaragoza 17 septiembre 2015

Máquina de vapor: J. Watt (1769)

Motor eléctrico: W. Siemens (1866)

Plantas de carbón para producir electricidad: H. Stinnes (1898)

Motor de explosión: C. & B. Benz (1888) {H. Ford (1903)}

Pila de combustible: W. R. Grove (1843)

Lámpara incandescente: T. Edison (1879)

Batería eléctrica: A. Volta (1798)

Efecto fotovoltaico: Becquerel (1839)

Turbinas para aviación: 1930-40

Nuclear: 1940 aprox.

Molino de viento ?

Las Tecnologías Energéticas no son Nuevas: están en evolución gracias al I+D

Zaragoza 17 septiembre 2015

Maduración y Penetración Tecnológica

Investigación en Energía: de la Investigación Básica a la Tecnología

Investigación Aplicada

•  Investigación básica para generar conocimiento sobre materiales y sistemas aunque puedan parecer solo marginalmente relacionados con los problemas actuales de las tecnologías energéticas.

•  Investigación con el objetivo de cumplir hitos tecnológicos y ensayos con énfasis en el desarrollo , rendimiento, reducción de coste, durabilidad de materiales y componentes y en procesos eficientes

•  Investigación de escala

• Plantas de demostración

• Reducción de costes

• Prototipos

• Soporte a la comercialización

Investigación Básica

Evidentemente no es tan simple…

Zaragoza 17 septiembre 2015

La investigación promovida por el

Deparment of Energy (DOE) en

Estados Unidos

Zaragoza 17 septiembre 2015

"  Increase energy efficiency

"  Increase use of renewables

"  Adaptation of Carbon Capture and Sequestration

"  Increase nuclear power

"  Improve climate prediction

Energy Imperatives (DOE)

Zaragoza 17 septiembre 2015

Beneficio de la Ciencia Básica (Department of Energy)

The energy systems of the future—whether they tap sunlight, store electricity, or make fuel from splitting water or reducing carbon dioxide—will revolve around materials and chemical

changes that convert energy from one form to another. Such materials will need to be more functional than today’s energy materials. To control chemical reactions or to convert a solar photon to an electron requires coordination of multiple

steps, each carried out by customized materials with designed nanoscale structures. Such advanced materials are not found in nature; they must be designed and fabricated to

exacting standards using principles revealed by basic science.

Zaragoza 17 septiembre 2015

Beneficio de la Ciencia Básica (Basic Energy Sciences )

“The Department of Energy BES program also plays a major role in enabling the nanoscale revolution. The

importance of nanoscience to future energy technologies is clearly reflected by the fact that all of

the elementary steps of energy conversion (e.g., charge transfer, molecular rearrangement, and

chemical reactions) take place on the nanoscale. The development of new nanoscale materials, as well as

the methods to characterize, manipulate, and assemble them, create an entirely new paradigm for

developing new and revolutionary energy technologies.”

Zaragoza 17 septiembre 2015

Status of FY 2014 Appropriations (DOE)

Zaragoza 17 septiembre 2015

History of BES Request vs. Appropriation (¡aumenta durante la crisis!)

26

Zaragoza 17 septiembre 2015

Office of Science Programs FY 2010 Appropriation

Advanced Scientific Computing Research (ASCR)

Basic Energy Sciences (BES)

Biological and Environmental Research (BER)

Fusion Energy Sciences (FES)

High Energy Physics (HEP)

Nuclear Physics (NP)

Workforce Development for Teachers and Scientists (WDTS)

Science Lab Infrastructure (SLI)

ASCR, $394,000K

BES, $1,636,500K

BER, $604,182K

FES, $426,000K

HEP, $810,483K

NP, $535,000K

WDTS, $20,678K

SLI, $127,600K

S&S, $83,000K

SCPD, $189,377K

FY 2010 Funding Total = $4,903,710K

ASCR

BES

BER

FES

HEP

NP

BESAC November 5, 2009

Zaragoza 17 septiembre 2015

National Synchrotron Light Source

Advanced Photon Source

Stanford Synchrotron Radiation Laboratory

Advanced Light Source

High-Flux Isotope Reactor

Intense Pulsed Neutron Source

Manuel Lujan Jr. Neutron Scattering Center

The Basic Energy Sciences Major Scientific User Facilities

Combustion Research Facility 28 28

Zaragoza 17 septiembre 2015

Spallation Neutron Source (SNS) Oak Ridge National Laboratory

29

Zaragoza 17 septiembre 2015

"  Combustion Studies

"  Catalysts

"  Fuel Cells

"  Batteries

"  Solar Energy Utilization

"  etc.

How Synchrotron Radiation (X-rays) can help to Solve Energy Problems

Zaragoza 17 septiembre 2015

Ultrafast Imaging of Fuel and Biofuel Sprays Towards More Efficient and Cleaner Combustion Engines

•  Use of ultrafast x-ray imaging, to elucidate this complex multiphase fluid dynamics problem at a fundamental level.

•  The x-ray images of the sprays have revealed, for the first time, the instantaneous spray structure and dynamics of optically dense sprays with a combined unprecedented spatial and temporal resolution.

•  The spray morphology and dynamics will play an important role, well beyond the combustion research, in the emerging fields of microfluidics and nanofluidics.

Fuente:

Yujie Wang et al, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nature Phys. 4, 305 (2008).

X. Liu, et al., Appl. Phys. Lett. 94, 084101 (2009).

The liquid breakup of a high-density stream from a fuel injector as imaged with ultrafast synchrotron x-ray full-field phase contrast imaging at the APS.

Zaragoza 17 septiembre 2015

X-ray studies show:

"  Dealloyed Cu3Pt nanoparticle catalyst forms core-shell structure with Pt rich shell

"  The Pt shell is compressively strained & this results in higher catalytic activity

"  Dynamics of dealloying and stability studied in-situ with X-rays

"  Cu3Pt catalysts are nearly as stable as pure Pt

PEMFCs "  Pt catalyst in cathode is

inefficient & expensive.

"  Dealloyed Cu3Pt nanoparticle catalysts are more active & use less Pt

Pt

Cu

Pt-Cu Catalysts for Polymer Electrolyte Membrane Fuel Cells (PEMFC)

R.Yang et al., J. of Physical Chemistry C, 115, 9074 (2011)

Zaragoza 17 septiembre 2015

Underground Storage of Solid CO2

Image courtesy of Lawrence Berkeley National Laboratory

X-ray computer tomography (CT) image showing solid carbonate

(calcite, green) grown in a network of glass beads (blue).

Nanoscale features of natural rock surfaces accelerate the nucleation

and growth of carbonate minerals, the thermodynamically favored form of carbon dioxide (CO2) in geologic formations. This research used

advanced experiments and computational modeling to probe

these nanoscale features and discover how they control the growth and distribution of solid carbonates.

DePaolo Center for Nanoscale Control of Geologic CO2

(NCGC) EFRC Lawrence Berkeley National Laboratory

Zaragoza 17 septiembre 2015

Nanoscience and energy technologies

Zaragoza 17 septiembre 2015

Center for Nanophase Materials Sciences

(Oak Ridge National Laboratory)

Center for Nanoscale Materials (Argonne National Laboratory)

Molecular Foundry (Lawrence Berkeley National

Laboratory)

Center for Integrated Nanotechnologies (Sandia & Los Alamos National Labs)

Nuevos centros de materiales/nanotecnologia

Zaragoza 17 septiembre 2015

Five grand Challenges for Basic Energy Sciences. Department of Energy

1. How do we Control Materials Processes at the Level of Electrons

2. How do we Design and Perfect Atom- and Energy-Efficient Syntheses of Revolutionary New Forms of Matter with Tailored Properties

3. How do Remarkable Properties of Matter Emerge from the Complex Correlations of Atomic or Electronic Constituents and How Can We Control These Properties

4. How can we Master Energy and Information on the Nanoscale to Create New Technologies with Capabilities Rivaling Those of Living Things?

5. How do we Characterize and Control Matter Away—Especially Very Far Away—from Equilibrium

Zaragoza 17 septiembre 2015

•  Fuels from Sunlight (Joint Center for Artificial Photosynthesis)

•  Energy Efficient Building Systems Design

•  Modeling and Simulation for Nuclear Fuel Cycles and Systems

•  Batteries and Energy Storage

•  Critical Materials

DOE Energy Innovation Hubs

Each Hub will comprise a world-class, multi-disciplinary, and highly collaborative research and development team.

Strong scientific leadership must be located at the primary location of the Hub. Each hub must have a clear organization and management plan that “infuses” a culture of empowered central research management throughout the Hub.

Zaragoza 17 septiembre 2015

Fundamental research JCESR’s core task is basic research—using a new generation of nanoscience tools that enable us to observe, characterize, and control matter down to the atomic and molecular scales. This enhanced ability to understand materials and chemical processes at a fundamental level will enable us to reinvent electrical storage and achieve major improvements in battery performance at reduced cost. Our industrial partners will help guide our efforts to ensure that research leads toward practical solutions that are competitive in the

marketplace.

Energy Innovation Hub: Batteries and Energy Storage (Joint Center for Energy Storage Research: JCESR)

Zaragoza 17 septiembre 2015

Scanning electron micrograph of a new solid electrolyte material (lithium thiophosphate)

showing its surface morphology and the nanoscale porosity which are responsible for its high ionic conductivity; Inset shows its crystal

structure.

The Science Introduction of nanoscale porosity in a bulk electrolyte material (lithium thiophosphate)

was found to promote surface conduction of lithium ions, thereby enhancing the ionic

conductivity in the nanostructured material by three orders of magnitude over the normal

bulk phase. The Impact

The high ionic conductivities in these new, nanoporous electrolytes coupled with sulfur-rich, nanostructured cathode materials have led to the development of a new type of solid-state, rechargeable lithium-sulfur battery that

is potentially safer and more reliable than today’s commercial Li ion batteries.

New Materials for High-Energy, Long-Life Rechargeable Batteries Using sulfur-rich, highly ionic compounds as cathodes and electrolytes enables solid-

state lithium-sulfur rechargeable batteries.

Z. Liu, W. Fu, E. Andrew Payzant, X. Yu, Z. Wu, N. J. Dudney, J. Kiggans, K. Hong, A. J. Rondinone, and C. Liang, “Anomalous High Ionic Conductivity of Nanoporous b-Li3PS4”, J.

Am. Chem. Soc., 135, 975, (2013).

Zaragoza 17 septiembre 2015

Nano-Composite Designs for Energy Storage

Nano-porous metal oxide coatings on carbon fiber dramatically enhance the electrical storage capacity for supercapacitors.

Researchers have discovered that controlling the

nanostructured architecture of metal oxides coated on carbon fibers can lead to an unusually high capacity to store electrical

charge in a special type of supercapacitor known as a

pseudocapacitor.

Scanning electron microscopy of conductive carbon fibers coated with metal oxide nanowires (left) and close-ups of the cobalt oxide (Co3O4) nanowires (top right) and the nanowire surface

(bottom right). These materials are being developed to improve the storage capacity of a

type of supercapacitor known as a

psuedocapacitor.

Zaragoza 17 septiembre 2015

Algunos ejemplos de investigación básica relacionada con la energía

Zaragoza 17 septiembre 2015

• Secciones eficaces de neutrones

• Separación de isótopos

• Físico-química de elementos pesados

• Daño por Radiación

Energía Nuclear

Zaragoza 17 septiembre 2015

Evolución de conceptos de Reactores

Zaragoza 17 septiembre 2015

REPROCESADO DEL COMBUSTIBLE IRRADIADO El proceso PUREX actual

(separación de U y Pu)

•  Disolución del UO2 en ácido nítrico

•  Separación del U+Pu con TBP ( tri-butil-fosfato)

•  Separación del U por reducción del Pu

•  Transformación del U y del Pu en óxidos para nuevo uso

•  Almacenamiento del resto de los residuos ( incluyen los productos de fisión y los actínidos menores ( Am Np y Cm)

Probablemente el mayor cuello de botella para el desarrollo de los nuevos reactores nucleares

Necesidad de Nuevos métodos de Separación

Zaragoza 17 septiembre 2015

Daño por Radiación

Esencial para:

• Almacenamiento del Combustible Nuclear

• Protección Radiológica

Zaragoza 17 septiembre 2015

Quantification of actinide a-radiation damage in minerals and ceramics

Nature 445, 190-193 (2007)

Ian Farnan, Herman Cho & William J. Weber

There are large amounts of heavy a-emitters in nuclear waste and nuclear materials inventories stored in various sites around the world. These include plutonium and minor actinides such as americium and curium. In preparation for geological disposal there is consensus that actinides that have been separated from spent nuclear fuel should be immobilized within mineral-based ceramics rather than glass because of their superior aqueous durability and lower risk of accidental criticality. However, in the long term, the -decay taking place in these ceramics will severely disrupt their crystalline structure and reduce their durability. A fundamental property in predicting cumulative radiation damage is the number of atoms permanently displaced per -decay. At present, this number is estimated to be 1,000–2,000 atoms/ in zircon. Here we report nuclear magnetic resonance, spin-counting experiments that measure close to 5,000 atoms/ in radiation-damaged natural zircons. New radiological nuclear magnetic resonance measurements on highly radioactive, 239Pu zircon show damage similar to that caused by 238U and 232Th in mineral zircons at the same dose.

“On the basis of these measurements, the initially crystalline structure of a 10 weight per cent 239Pu zircon would be amorphous after only 1,400 years in a geological repository (desired immobilization timescales are of the order of 250,000 years)”. These measurements establish a basis for assessing the long-term structural durability of actinide-containing ceramics in terms of an atomistic understanding of the fundamental damage event.

Zaragoza 17 septiembre 2015

Radiation Damage

α-decay process

Recoil

~ 100 keV

α-particle

~ 5 MeV

It causes: • Amorphisation • Swelling • Cracks • Leaching

Zircon: model study: old natural samples

Zaragoza 17 septiembre 2015

zircon

Zaragoza 17 septiembre 2015

•  Supercell of insulator’s bulk

•  Periodic boundary conditions

•  Density functional theory

•  Add external charge (potential)

•  Move it and follow electron wave-functions with Time-Dependent DFT

Zaragoza 17 septiembre 2015

Stopping power vs velocity

Threshold effect yes,

but still too low values

Proton/antiproton right

Zaragoza 17 septiembre 2015

Potential impact on ANES

Summary of research direction Scientific challenges

• Overcome limitations in current experimental/theoretical approaches to determining/describing actinide material properties

• Fundamental understanding of thermal properties of complex microstructure/composition materials

• New approach to modeling phase stability/compatibility in complex, multicomponent actinide systems

• Develop new quantum chemical/molecular dynamic approaches that can accommodate the additional complexity of 5f elements

• Utilize/develop non-conventional experimental techniques to measure and model thermal properties of complex behavior actinide materials

• Develop innovative defect models for multi-component actinide fuel/fission product systems

• Scientific basis for nuclear fuel design • Optimizing fuel development and testing • Reducing uncertainty in operational/safety margins

Mystery of 5f-electron elements New paradigm for 5f-electron research

Beyond cook and look

Advanced actinide fuels: Develop a fundamental understanding of actinide-bearing materials properties

Fuente: DOE. Advanced Nuclear Energy Systems

Zaragoza 17 septiembre 2015

The Development of New Density Functional Theory and Computational Approaches for Strongly Correlated f-Electron Ststems and Actinide Materials

Investigating the Nature of Extreme Condition Actinide Chemistry

Actinide Chemistry in Oxidative Alkaline Solutions: Synergistic Molecular Chemistry for Advanced SNF Reprocessing

A First-principles Theory of the Energetics and Materials Properties of Actinides: The 5f-electron Challenge

Actinide Binding to Dendritic Nanoscale Ligands: Fundamental Investigations and Applications to Nuclear Separations

Probing f-electron interactions in actinide metal-ligand and metal-metal bonding

f-Electron Physics in α-Uranium, New Tools for an Historic Challenge

Materials for highly specific extraction of Cs and Sr from aqueous nuclear waste solutions

Modeling Spectroscopy and Photochemistry of Actinide Systems in Solution

An Experimental and Computational Study of Actinide and Fission Product Separation and Sequestration by Engineered Mesoporous Materials

The link between actinide chemistry and core-level spectroscopies

An Ab Initio Full Potential Fully Relativistic Electronic Structure Study of Actinide Nitrides as Nuclear Fuels

Algunos Proyectos financiados por el DOE

Zaragoza 17 septiembre 2015

Energía Fotovoltaica

Shockley-Queisser límite para la eficiencia para el Si: 32%

Gap 1.1 eV, gap inidrecto, perdidas por calor etc.

Zaragoza 17 septiembre 2015

Conversion Efficiencies vs. time (NREL)

Zaragoza 17 septiembre 2015

Mercado de células fotovoltaicas

Fuente: P. Frankl, NEEDS, 2007

Zaragoza 17 septiembre 2015

Células fotoeléctricas tandem

Usadas en el Espacio

Zaragoza 17 septiembre 2015

Otra manera de aumentar la eficiencia: Introducción de una banda intermedia:

Zaragoza 17 septiembre 2015

Zaragoza 17 septiembre 2015

Zaragoza 17 septiembre 2015

Nuevas ideas para células Fotovoltaicas

Basadas en colorantes y nanoparticulas

Basadas en “pozos cuánticos”

… y moléculas orgánicas

Zaragoza 17 septiembre 2015

HIDRÓGENO COMO VECTOR ENERGÉTICO

Zaragoza 17 septiembre 2015

"  There exists an enormous gap between present state-of-the-art capabilities and requirements that will allow hydrogen to be competitive with today’s energy technologies:

"  Production: 9M tons to 40M tons (vehicles)

"  Storage: 4.4 MJ/L (10K psi gas) to 9.72 MJ/L

"  Fuel cells: $3,000/kW to $35/kW (gasoline engine)

"  Major R&D efforts will be required: "  Simple improvements of today’s technologies will not

meet requirements

"  Technical barriers can be overcome only with high risk/high payoff basic research

"  Research is highly interdisciplinary, requiring chemistry, materials science, physics, biology, engineering, nanoscience, computational science.

"  Basic and applied research should couple seamlessly.

DOE Basic Research Needs for the Hydrogen Economy

Workshop: May 13-15, 2003

Report: Summer 2003

Zaragoza 17 septiembre 2015

How to produce H2?

(The Joint Center for Artificial Photosynthesis: JCAP)

“Net primary energy balance of a solar-driven photoelectrochemical water-splitting device”

Pei Zhai et al. Energy Environ. Sci., 2013,6, 2380-2389

“A fundamental requirement for a renewable energy generation technology is that it should produce more energy during its lifetime than is required to manufacture it. In this study we evaluate the primary energy requirements of a prospective renewable energy technology, solar-driven photoelectrochemical (PEC) production of hydrogen from water. Using a life cycle assessment (LCA) methodology, we evaluate the primary energy requirements for upstream raw material preparation and fabrication under a range of assumptions of processes and materials. As the technology is at a very early stage of research and development, the analysis has considerable uncertainties”.

Zaragoza 17 septiembre 2015

How to produce H2?

(The Joint Center for Artificial Photosynthesis: JCAP)

Molecular and Nanoscale Interfaces Project

Research in the Molecular and Nanoscale Interfaces Project is directed towards the development of strategies and tools for linking individual components into fully functioning, nanoscale artificial photosynthetic assemblies. A major obstacle towards the development of a viable artificial photosynthetic systems for water splitting to hydrogen and oxygen, or the conversion of carbon dioxide and water to liquid fuel, involves the inefficient charge transport between light absorbers and catalysts and, in particular, between the sites of water oxidation and fuel-generating half-reactions. To address these challenges, the Molecular and Nanoscale Interfaces Project aims to couple light absorbers, catalysts, and half-reactions for optimal control of the rate, yield, and energetics of electron and proton flow at the nanoscale, so that complete macroscale artificial photosynthetic systems can achieve maximum conversion of solar photon energy into the chemical energy of a fuel.

Zaragoza 17 septiembre 2015

Hydrogen storage at metal-organic materials

Zaragoza 17 septiembre 2015

Hydrogen storage at metal-organic materials

Only H2 2% uptake: not enough to be usefull!

Zaragoza 17 septiembre 2015

Eficiencia energética

Ejemplos de nuevas tecnologías:

• Diodos de Estado Sólido para la iluminación

• Superconductividad

Zaragoza 17 septiembre 2015

Zero resistance Below Tc (-270 ºC) the

resistance drops (rapidly) to zero.

Flux expulsion Below Tc magnetic flux is

expelled from the sample. This give rise to phenomenon of magnetic

levitation.

Use of Superconducting Materials

Zaragoza 17 septiembre 2015

Zaragoza 17 septiembre 2015

La red eléctrica está bajo estrés, cerca de la saturación

Capacidad en Estados Unidos

Crecimiento del 50% para el año 2030

Red urbana: cuello de botella

Fiabilidad

“Blackouts”

Eficiencia

El 7-10% se pierde en el transporte. En Estados Unidos, equivalente a 40

centrales de 1GW

Lower Manhattan infrastructure (Courtesy of Con Edison)

Zaragoza 17 septiembre 2015

Los Superconductores podrían transformar la red de distribución

Japanese Maglev flies with HTS coils, (courtesy CJR)

Albany N.Y.

Zaragoza 17 septiembre 2015

Control of Grain Boundary Currents by Texturing - Key to Second Generation (2G) YBCO Wire

Dimos, Chaudhari + Mannhart, PR 1990

AMSC 2G wire architecture: RABiTSTM process

Texturing within ~50 enables Jc(77 K) ~ 3x106 A/cm2 over 100’s of meters – An amazing success, though it has taken 18 years to get to this point!

Grain boundary critical current vs misorientation angle

Zaragoza 17 septiembre 2015

Science Opportunity: Vortex Physics

Pinning vortices – basis for high critical current density.

Much effort on existing materials (e. g. YBCO) during last years.

But much still to do to increase Ic

Understanding magnetic pinning.

Vortex: nanoscale quantum

of magnetic flux

Zaragoza 17 septiembre 2015

No se conoce el mecanismo responsable de los nuevos superconductores!

Enorme tarea por delante

Nuevos materiales basados en diseño a escala atómica

Zaragoza 17 septiembre 2015

“Nuevos” hidrocarburos

Zaragoza 17 septiembre 2015

Los hidrocarburos no se acaban, Ejemplo: Clatratos de Metano

Muy abundantes en el fondo del mar

Moléculas de agua Metano

Zaragoza 17 septiembre 2015

Like “burning ice”

Zaragoza 17 septiembre 2015

They are very abundant in Earth's permafrost and marine sediments. They are also formed in natural gas extraction pipes and have been detected in other planetary bodies like Mars and some Saturn's moons

•  They can be a future hydrocarbons source

•  They are a serious environmental threat due to the potential melting caused by the temperature increase associated to the global warming and the further uncontrolled release of their hydrocarbons

•  Potential use to store hydrogen and sequestration of CO2

Natural Gas Hydrates

Zaragoza 17 septiembre 2015

NATURE 426,353 (2003)

Fundamental principles and applications of natural gas hydrates E. Dendy Sloan Jr.

Center for Hydrate Research, Colorado School of Mines, Golden, Colorado

Zaragoza 17 septiembre 2015

Enormes reservas

Zaragoza 17 septiembre 2015

Preguntas:

Cómo se forman?

Cuantos hidrocarburos caben?

Son estables sin el hidrocarburo?

Se puede sustituir el Metano por CO2?

Sirven para almacenar H2?

Diagrama de fases P-T?

Zaragoza 17 septiembre 2015

Reproducen la estructura de los clatratos y predicen cuantas moléculas de metano y CO2 se pueden alojar en las cavidades (no más de 2 por cavidad).

La sustitución de metano por CO2 es dudosa

No sabemos como se forman. No son estables sin metano

Cálculos de Primeros Principios

Difusión molecular

Zaragoza 17 septiembre 2015

Conclusiones:

Como para toda tecnología, la investigación básica es indispensable para el desarrollo de la tecnología energética

La investigación básica sirve para generar conocimiento sobre materiales y sistemas aunque puedan parecer solo

marginalmente relacionados con los problemas actuales de las tecnologías energéticas

La investigación básica servirá al desarrollo tecnológico si se aprovecha en un entorno adecuado

Zaragoza 17 septiembre 2015

MUCHAS GRACIAS!