ecosistemas 3 c

55
Escuela Secundaria Diurna No 170 “Heberto Castillo” Turno Matutino Temas: Ecosistemas, fibras ópticas, generador eléctrico, sistema de generación y distribución energía eléctrica Alumna: Gachuz Ramírez Susan Anahi Prof.: Adolfo Cameras Grupo: 3°C N.L 13

Upload: susangara

Post on 24-Jul-2015

779 views

Category:

Education


0 download

TRANSCRIPT

Escuela Secundaria Diurna No 170 “Heberto Castillo”Turno Matutino

Temas: Ecosistemas, fibras ópticas, generador eléctrico, sistema de generación y distribución energía eléctrica

Alumna: Gachuz Ramírez Susan Anahi

Prof.: Adolfo Cameras

Grupo: 3°C N.L 13

Fecha de entrega:12 de Febrero del 2011

En este trabajo se muestran los diferentes ecosistemas tales como: desierto, selva, bosque, tundra, taiga, pantano, pluviselva, arrecife de coral, etc.Se muestra su fauna, flora, clima y otros aspectos.También hablamos sobre las fibras ópticas, su historia, su fabricación, sus usos y los diferentes modelos, así como sus características.También sobre los generadores eléctricos, ejemplos de ellos, sus usos etc.También sobre el sistema de generación y distribución de energía eléctrica, cuales son sus centrales etc.

Un ecosistema es un sistema natural que está formado por un conjunto de organismos vivos (biocenosis) y el medio físico donde se relacionan (biotopo). Un ecosistema es una unidad compuesta de organismos interdependientes que comparten el mismo hábitat. Los ecosistemas suelen formar una serie de cadenas que muestran la interdependencia de los organismos dentro del sistema

El concepto, que comenzó a desarrollarse entre 1920 y 1930, tiene en cuenta las complejas interacciones entre los organismos (por ejemplo plantas, animales, bacterias, protistas y hongos) que forman la comunidad (biocenosis) y los flujos de energía y materiales que la atraviesan

Ecosistemas Acuáticos Se entiende por ecosistemas acuáticos a todos aquellos ecosistemas que tienen por biotopo algún cuerpo de agua, como pueden ser: mares, océanos, ríos, lagos, pantanos etc. Los dos tipos más destacados son: los ecosistemas marinos y los ecosistemas de agua dulce.El montante, variaciones y regularidad de las aguas de un río son de gran importancia para las plantas, animales y personas que viven a lo largo de su curso. La fauna de los ríos es de anfibios, peces y una variedad de invertebrados acuáticos.El agua dulce de los ríos presenta una enorme variedad de composición. Como esta composición química depende, en primer lugar, de lo que el agua pueda disolver del suelo por el que discurre, es el suelo lo que determina la composición química del agua.

Las principales adaptaciones de los animales y vegetales están directamente relacionadas con las características físicas del agua, con la que están permanentemente en contacto los organismos que viven en este medio acuático

Ecosistemas lentico, lotico, de humedales. Partiendo del 'movimiento del agua', se acuerda una división de los ecosistemas de agua dulce:'Ecosistema de humedal': áreas donde el suelo está saturado de agua o inundado por una parte del año. Es donde se llama agua salobre al agua como para la explotación y gestión de las aguas interiores.

ECOSISTEMA CHAPARRALChaparral es un ecosistema de abúsales o brezales, primariamente de California, EE. UU., con un clima mediterráneo (medio, inviernos húmedos y veranos cálidos y secos) y quemazones. Similares comunidades vegetales se encuentran en cinco regiones climáticas mediterráneas del mundo, incluyendo la cuenca endorreica mediterránea (conocida bosque o matorral mediterráneo), Chile central (matorral chileno), región del Cabo en Sudáfrica (conocida como fynbos), y el oeste y sur de Australia.El chaparral es una de las zonas verdes de Norteamérica con mayores probabilidades de que se produzca un incendio en ella. Como consecuencia de esto, y teniendo en cuenta que el límite entre la zona urbana y el rural cada vez se desplaza más al interior de estas zonas, mantener el control sobre el chaparral se convierte cada vez en algo más importante.

Hay dos hipótesis relativas al régimen de fuego del chaparral que aparecen causando considerable confusión y controversia en el campo del "fuego silvestre" y el manejo de tierras:1º), los más viejos stands de vegetación del chaparral se ponen “senescentes” o “decadentes”, implicando que necesitan quema para reverdecer (Hanes 1971), 2º), las políticas de supresión del fuego han conseguido que el chaparral acumule niveles antinaturales de combustible (pasto seco) engendrando la posibilidad de más grandes fuegos (Múnich 1983).

ECOSISTEMA DE ARRECIFE DE CORALUn arrecife de coral es un tipo de arrecife biótico que se desarrolla en aguas tropicales. Son estructuras sólidas del relieve del fondo marino formadas predominantemente por el desarrollo acumulado de corales pétreos, no obstante también se pueden encontrar en la Zona nerítica debido al oleaje y las corrientes marinas, estas zonas reciben un flujo continuo de nutrientes, lo que las convierte en hábitats ideales para una gran diversidad de especies acuáticas.Por su situación estratégica entre la costa y el mar abierto, Los arrecifes sirven de barreras que protegen a los manglares y praderas de yerbas marinas de los embates del oleaje; los manglares y praderas de yerbas, a su vez, protegen al arrecife de la sedimentación y sirven de áreas de reproducción y crianza para muchas de las especies que forman parte del ecosistema del arrecife.La respuesta de estos ecosistemas ante el cambio climático se conoce como blanqueo de coral. Cuando enfrentan un extremo y prolongado estrés por el calentamiento de las aguas tropicales, el coral expele las algas (zoo antelas) que viven en sus tejidos, con lo cual pierde su color natural y adquiere uno blancuzco; al perder su asociación con las algas, el coral muere. Se ha asociado esto a la mortalidad de muchas colonias de corales que en ocasiones parecen recuperarse naturalmente. La enfermedad de banda negra ha sido descrita como tejido necrótico que crece en los corales y parece ser causada por la cianobacterias Phormidium corallyticum. Este fenómeno se ha descrito en muchas áreas tropicales incluyendo el Caribe.

ECOSISTEMA DESIERTOUn desierto es un ecosistema que recibe pocas precipitaciones. Tienen reputación de tener poca vida, pero eso depende de la clase de desierto; en muchos existe vida abundante, la vegetación se adapta a la poca humedad y la fauna usualmente se esconde durante el día para preservar humedad. El establecimiento de grupos sociales en los desiertos es complicado y requiere de una importante adaptación a las condiciones extremas que en ellos imperan. Los desiertos forman la zona más extensa de la superficie terrestre: con más de 50 millones de kilómetros cuadrados, ocupan casi un tercio de ésta. De este total, 53% corresponden a desiertos cálidos y 47% a desiertos fríos.Los procesos de erosión son factores importantes en la formación del paisaje desértico. Según el tipo y grado de erosión que los vientos y la radiación solar han causado, los desiertos presentan diferentes tipos de suelos: desierto arenoso es aquel que están compuesto principalmente por arena, que por acción de los vientos conforma las dunas, desierto pedregoso o rocoso es aquel cuyo terreno está constituido por rocas o guijarros.

TIPOS DE DESIERTOS:Desiertos en regiones de vientos alisiosLos vientos alisios tienen lugar en dos franjas del globo divididas por la línea del ecuador, y se forman por el calentamiento del aire en la región ecuatorial. Estos vientos secos disipan la cobertura de nubes, permitiendo que se caliente más el suelo por la radiación del Sol. La mayoría de los grandes desiertos de la Tierra está en regiones surcadas por vientos alisios. El mayor desierto de nuestro planeta, el Sáhara, situado al norte de África —que en ocasiones experimenta temperaturas de más de 57° C—, es un desierto de vientos alisios.

Desiertos de latitudes mediasLos desiertos de latitudes medias se localizan entre los paralelos 30° N y 50° N, y también en la misma franja en el hemisferio sur, en zonas subtropicales de alta presión atmosférica. Estos desiertos están en cuencas de drenaje apartadas de los océanos y tienen grandes variaciones de temperaturas anuales. El desierto de Sonora, en el suroeste de América del Norte es un típico desierto de latitud media. El desierto de Tengger, en China, es otro ejemplo.Desiertos debidos a barreras al aire húmedoSe forman debido a grandes barreras montañosas que impiden la llegada de nubes húmedas en las áreas a sotavento (o sea, protegidas del viento, que trae la humedad). A medida en que el aire sube por la montaña, el agua se precipita y el aire pierde su contenido húmedo. Así, se forma un desierto en el lado opuesto.

Desiertos costerosLos desiertos costeros se localizan generalmente en los bordes occidentales de continentes próximos a los trópicos de Cáncer y de Capricornio. Están influidos por corrientes oceánicas costeras frías que discurren paralelas a la costa. Debido a los sistemas de viento locales que dominan los vientos alisios, estos desiertos son menos estables que los de otro tipo. Durante el invierno, la niebla, producida por corrientes frías ascendentes, cubre frecuentemente los desiertos costeros con un manto blanco que bloquea la radiación solar. Desiertos de monzónMonzón (palabra derivada del árabe que significa estación climática) se refiere a un sistema de vientos estacionales. Las monzones se desarrollan como consecuencia de las variaciones de temperatura entre los continentes y los océanos. Así, los vientos alisios del sur del océano Índico descargan lluvias en la India al llegar a la costa.

Paleo desiertos (desiertos «fósiles»)Las investigaciones en mares de arena (vastas regiones de dunas) antiguos, cambios en cuencas pantanosas, análisis arqueológicos y de vegetación indican que las condiciones climáticas cambiaron considerablemente en grandes áreas del planeta en un pasado geológico reciente. Durante los últimos 12.500 años, por ejemplo, partes de algunos desiertos ya eran muy áridas. Cerca de un 10% del terreno situado entre la latitud 30° N y 30° S está hoy cubierta por desiertos. Sin embargo, hace 18.000 años, los desiertos (que formaban dos inmensos cinturones) ocupaban sólo un 50% de esta área. Tal y como ocurre hoy, las selvas tropicales y las sabanas ocupaban la zona entre estas dos franjas.

Ecosistema marino

Los ecosistemas marinos están dentro de los ecosistemas acuáticos. Incluyen los océanos, mares, marismas, etc. La vida surgió y evolucionó en el mar. El medio marino es muy estable, si lo comparamos con los hábitats terrestres o de agua dulce. Las temperaturas de las grandes masas oceánicas varían poco, así como la salinidad del agua (3,5%). La composición iónica del agua del mar es similar a la de los fluidos corporales de la mayoría de los organismos marinos, lo que soluciona la regulación osmótica.

En el medio oceánico la luz solar penetra en el mar tan sólo unos 200 metros. A mayor profundidad, las aguas se encuentran en oscuridad absoluta. A la zona iluminada del mar se le denomina región fótica. A la zona oscura región afótica.El principal problema en el océano es la gran distancia entre la zona fótica (superficial) y los nutrientes (sedimentados en aguas profundas). Donde hay luz para la producción primaria hay pocos nutrientes inorgánicos, y viceversa. No es de extrañar, pues, que las zonas con mayor productividad sean aquellas en que las aguas profundas, frías y cargadas de nutrientes afloran a la superficie; tales zonas se conocen como afloramientos; en ellas el fitoplancton se desarrolla de modo extraordinario, y puede mantener una cadena trófica con muchos eslabones; por ese motivo son las zonas más ricas en pesca.

PLUVISELVAPluviselva es la denominación de la selva tropical lluviosa que se caracteriza por unas elevadas precipitaciones (2000 a 5000 mm anuales) y una elevada temperatura media. Las pluviselvas se sitúan en las proximidades del ecuador terrestre, en Sudamérica, África y Asia.Su vegetación está formada por especies de hoja perenne y ancha. Son comunes las especies epifitas. Es un ecosistema con una gran riqueza y variedad de especies y de gran interés porque su biodiversidad es fuente de muchos recursos: alimentos, medicinas, sustancias de interés industrial. Aunque ocupan menos del 7% de la superficie de las tierras emergidas, contienen más del 50% (según algunos científicos este porcentaje se elevaría hasta más del 90%) de las especies animales y vegetales del mundo. Una hectárea de pluviselva tropical puede contener más de 600 especies arbóreas.El suelo de estas selvas es muy pobre en comparación con la riqueza de vida que soporta ya que la mayor parte de los nutrientes se encuentran en los seres vivos y no en el suelo. Cuando este ecosistema es destruido, por la tala o el fuego, su recuperación es muy difícil porque el suelo desnudo se hace costroso y duro sufriendo un proceso de laterización. Los suelos pobres de estas selvas no son aptos para la agricultura, porque en tres o cuatro cosechas pierden sus nutrientes.

SABANALa sabana es una llanura ubicada en climas tropicales en la cual la vegetación se encuentra formando un estrato herbáceo continuo por gramíneas perennes, salpicada por algún árbol, arbusto o matorral individual o en pequeños grupos de talla inferior a 10 m. Normalmente, las sabanas son zonas de transición entre bosques y estepas. Estas zonas se encuentran en diferentes tipos de ecosistemas y existen varios tipos: sabana de zona intertropical, sabanas de zonas templadas, sabanas montañosas y sabanas mediterráneas. Su vegetación es de: Gramíneas estas herbáceas a veces superan los 2 m muchas veces por su tamaño pueden ser confundidas con estepas especialmente entre sabanas y desierto. Arbustivo: Diversos; sin vegetación emergentes de las hierbas "campos de amazonia". Con arboles y arbustos diseminados "campos cerrados" Con arboles abundantes "bosques claros".Especies: Acacia, Albizia, Prosopis, Afzalia, etc.

PANTANOUn pantano o ciénega son aguas estancadas y poco profundas, en el cual crece una vegetación acuática a veces muy densa. Son la consecuencia del avenamiento insuficiente en un terreno llano (pero que puede estar en cotas elevadas, como ocurre en algunas turberas).La mayoría de las veces, el pantano ocupa en un valle la parte abandonada por las aguas de un río, como antiguos meandros, lechos antes muy anchos y luego reducidos por alguna causa que haya afectado al caudal del río. En las regiones semidesérticas no es raro que el endorreísmo dé lugar a la formación de extensos pantanos cuya área esté sujeta a enormes variaciones estacionales. Los pantanos pueden ser de agua dulce o de agua salada y de marea o sin ella.En España, también se conoce comúnmente como pantanos a los embalses, aunque distan mucho de ser pantanos artificiales.Es común que en ciertos pantanos, se produzca escorrentía en forma de manto, y el terreno posea habitualmente una o dos especies vegetales aéreas dominantes (como los manglares de Envergadles, en Estados Unidos). En otros tipos de pantanos, el agua circula por canales, pero corre sólo en épocas de deshielo o de fuertes precipitaciones lo cual genera la existencia de barro, sedimentos y nutrientes en el pantano, e influye a su vez en que vaya variando estacionalmente la profundidad del agua pantanosa.

TUNDRALa tundra es un bioma que se caracteriza por su subsuelo helado, falta de vegetación arbórea, o en todo caso de árboles naturales, por lo que es debido a la poca heliófila y al estrés del frío glacial; los suelos están cubiertos de musgos y líquenes y son pantanosos con turberas en muchos sitios. Se extiende principalmente por el Hemisferio Norte: en Siberia, Alaska, norte de Canadá, sur de Groenlandia y la costa ártica de Europa. En el Hemisferio Sur se manifiesta con temperaturas mucho más parejas durante el año y en lugares como el extremo sur de Chile y Argentina, islas subantárticas como Georgia del Sur y Kerguelen, y en pequeñas zonas del norte de la Antártida cercanas al nivel del mar.

Entre los animales podemos encontrar herbívoros, como el caribú, reno, buey almizclero, liebre ártica, cabra nival y el lemming, y carnívoros, como el oso blanco (en el extremo norte) lobo, halcón gerifalte, oso Kodiak y el búho nival; los salmones son, en gran medida, la base de la red trófica para la fauna de este bioma

La vida vegetal se ve expuesta a bajas temperaturas lo cual le dificulta su supervivencia debido a la dificultad para conseguir agua la cual esta congelada en la mayor parte del año, además el material orgánico mineralizado es muy pobre debido a la baja tasa de descomposición de la materia orgánica

SELVAUna selva tropical es un bioma de la zona intertropical con vegetación exuberante, en regiones de clima isotermo con abundantes precipitaciones y con una extraordinaria biodiversidad. Hay muchas especies vegetales diferentes (como puede observarse en la imagen con la floración de distintas especies), pero con pocos ejemplares de cada especie en cada unidad de superficie.Características de las selvas:Clima: Cálido húmedo (Af en la nomenclatura de Köppen).Temperatura media anual: Oscila entre los 27º y los 29º C, hasta los 400 m de altitud o algo más.Altitud: Se dispone normalmente en el piso de la tierra caliente. Si se encuentra en pisos superiores, debe hablarse de selvas montañas o nubladas o bosques nubosos.Precipitación media anual: Oscila entre 1500 a 2000 mm y los 3000 mm o más. Estacionalidad de las lluvias: Casi imperceptible: según el índice xerotérmico de Gaussen todos los meses son lluviosos. Suelos: son poco profundos, ácidos y pobres si los analizamos con criterios de la zona templada.

Latitud: 0-5° latitud N y S (continua) y 5-10º de latitud N y S (discontinua).

Número de especies: Es la zona que posee mayor número de organismos, tanto vegetales como animales. Sin embargo, hay que señalar que no abundan las especies animales de mediano y gran tamaño.

BOSQUEUn bosque es un área con una alta densidad de árboles.

Los bosques pueden hallarse en todas las regiones capaces de mantener el crecimiento de árboles, hasta la línea de árboles, excepto donde la frecuencia de fuego natural es demasiado alta, o donde el ambiente ha sido perjudicado por procesos naturales o por actividades humanas.

Bosques tropicales húmedos de tierra bajaEs motivo de preocupación mundial el deterioro rápido o destrucción completa de muchas áreas del bosque tropical húmedo de tierra baja, caracterizado por su gran diversidad de especies y complejidad ambiental, y las dificultades que se presentan al tratar de manejarlos de manera sostenible. Si bien la conservación de estas áreas forestales únicas, mediante el establecimiento de parques y reservas, es, potencialmente, la mejor manera de proteger su biodiversidad, los procesos ambientales, y los estilos de vida de sus moradores indígenas, sólo se puede proteger, en esta forma, algunas áreas limitadas.

MANGLAREl manglar es un tipo de ecosistema considerado a menudo un tipo de bioma, formado por árboles muy tolerantes a la sal que ocupan la zona intermareal cercana a las desembocaduras de cursos de agua dulce de las costas de latitudes tropicales de la Tierra. Así, entre las áreas con manglares se incluyen estuarios y zonas costeras. Tienen una enorme diversidad biológica con alta productividad, encontrándose tanto gran número de especies de aves como de peces, crustáceos, moluscos, etc.

Los manglares desempeñan una función clave en la protección de las costas contra la erosión eólica y por oleaje. Poseen una alta productividad, alojan gran cantidad de organismos acuáticos, anfibios y terrestres; son hábitat de los estadios juveniles de cientos de especies de peces, moluscos y crustáceos y por ende desempeñan un papel fundamental en las pesquerías litorales y de la plataforma continental. Son hábitat temporal de muchas especies de aves migratorias septentrionales y meridionales. Representan un recurso insustituible en la industria de la madera (maderas pesadas, de gran longitud, de fibra larga y resistentes a la humedad) y de los taninos empleados en curtimbres y tintorería.

PRADOUn prado es una tierra llana o de relieve suave, húmeda o de regadío, en la cual crece la hierba con el fin de generar pasto para el ganado y forraje para conservar, cuando hay producción sobrante. Por lo general los prados mesofíticos crecen en regiones húmedas y no muy frías, en las que apenas existe sequía, bajo el dominio de los bosques caducifolios o aciculifolios. Los prados forman ecosistemas creados como consecuencia de la actividad humana consistente en una economía rural basada en la ganadería, manteniendo la vegetación en un estado de subclímax, gracias a la alternancia de siega y pastoreo; estas actuaciones alternantes se complementan frecuentemente con otros cuidados como enmiendas calizas, o fertilización orgánica o mineral

FIBRA OPTICA

La fibra óptica es un medio de transmisión empleado habitualmente en redes de datos; un hilo muy fino de material transparente, vidrio o materiales plásticos, por el que se envían pulsos de luz que representan los datos a transmitir. El haz de luz queda completamente confinado y se propaga por el interior de la fibra con un ángulo de reflexión por encima del ángulo límite de reflexión total, en función de la ley de Snell. La fuente de luz puede ser láser o un LED.

Las fibras se utilizan ampliamente en telecomunicaciones, ya que permiten enviar gran cantidad de datos a una gran distancia, con velocidades similares a las de radio o cable. Son el medio de transmisión por excelencia al ser inmune a las interferencias electromagnéticas, también se utilizan para redes locales, en donde se necesite aprovechar las ventajas de la fibra óptica sobre otros medios de transmisión.

El uso de la luz para la codificación de señales no es nuevo, los antiguos griegos usaban espejos para transmitir información, de modo rudimentario, usando luz solar. En 1792, Claude Chappe diseñó un sistema de telegrafía óptica, que mediante el uso de un código y torres y espejos distribuidos a lo largo de los 200 km que separan Lille y París, conseguía transmitir un mensaje en tan sólo 16 minutos.La gran novedad aportada en nuestra época es la de haber conseguido “domar” la luz, de modo que sea posible que se propague dentro de un cable tendido por el hombre. El uso de la luz guiada, de modo que no expanda en todas direcciones, sino en una muy concreta y predefinida se ha conseguido mediante la fibra óptica, que podemos pensar como un conducto de vidrio -fibra de vidrio ultra delgada- protegida por un material aislante que, sirve para transportar la señal lumínica de un punto a otro.Además tiene muchas otras ventajas, como bajas pérdidas de señal, tamaño y peso reducido, inmunidad frente a emisiones electromagnéticas y de radiofrecuencia y seguridad. Todos estos apartados se describirán a continuación, abriéndonos las puertas al descubrimiento de un nuevo mundo: el mundo de la información sin límite de ancho de bandaComo resultado de estudios en física enfocados de la óptica, se descubrió un nuevo modo de empleo para la luz llamado rayo láser. Este último es usado con mayor vigor en el área de las telecomunicaciones, debido a lo factible que es enviar mensajes con altas velocidades y con una amplia cobertura. Sin embargo, no existía un conducto para hacer viajar los fotones originados por el láser.

M.C.V.D Modified Chemical Vapor DepositionFue desarrollado originalmente por Corning Glass y modificado por los Laboratorios Bell Telephone para su uso industrial. Utiliza un tubo de cuarzo puro de donde se parte y es depositado en su interior la mezcla de dióxido de silicio y aditivos de dopado en forma de capas concéntricas. A continuación en el proceso industrial se instala el tubo en un torno giratorio. El tubo es calentado hasta alcanzar una temperatura comprendida entre 1.400 °C y 1.600 °C mediante un quemador de hidrógeno y oxígeno.Al girar el torno el quemador comienza a desplazarse a lo largo del tubo. Por un extremo del tubo se introducen los aditivos de dopado, parte fundamental del proceso, ya que de la proporción de estos aditivos dependerá el perfil final del índice de refracción del núcleo. La deposición de las sucesivas capas se obtienen de las sucesivas pasadas del quemador, mientras el torno gira; quedando de esta forma sintezado el núcleo de la fibra óptica. La operación que resta es el colapso, se logra igualmente con el continuo desplazamiento del quemador, solo que ahora a una temperatura comprendida entre 1.700 °C y 1.800 °C. Precisamente es esta temperatura la que garantiza el ablandamiento del cuarzo, convirtiéndose así el tubo en el cilindro macizo que constituye la preforma. Las dimensiones de la preforma suelen ser de un metro de longitud útil y de un centímetro de diámetro exterior.

V.A.D Vapor Axial DepositionSu funcionamiento se basa en la técnica desarrollada por la Nippon Telephone and Telegraph (N.T.T), muy utilizado en Japón por compañías dedicadas a la fabricación de fibras ópticas.La materia prima que utiliza es la misma que el metodo M.C.V.D, su diferencia con este radica, que en este último solamente se depositaba el núcleo, mientras que en este además del núcleo de la FO se deposita el revestimiento. Por esta razón debe cuidarse que en la zona de deposición axial o núcleo, se deposite más dióxido de germanio que en la periferia, lo que se logran a través de la introducción de los parámetros de diseño en el software que sirve de apoyo en el proceso de fabricación. A partir de un cilindro de vidrio auxiliar que sirve de soporte para la preforma, se inicia el proceso de creación de esta, depositándose ordenadamente los materiales, a partir del extremo del cilindro quedando así conformada la llamada "preforma porosa".Conforme su tasa de crecimiento se va desprendiendo del cilindro auxiliar de vidrio

O.V.D Outside Vapor DepositionDesarrollado por Corning Glass Work. Parte de una varilla de substrato cerámica y un quemador.En la llama del quemador son introducidos los cloruros vaporosos y esta caldea la varilla. A continuación se realiza el proceso denominado síntesis de la preforma, que consiste en el secado de la misma mediante cloro gaseoso y el correspondiente colapsado de forma análoga a los realizados con el método V.A.D, quedando así sintetizados el núcleo y revestimiento de la preforma.Entre las Ventajas, es de citar que las tasas de deposición que se alcanzan son del orden de 4.3g / min, lo que representa una tasa de fabricación de FO de 5km / h, habiendo sido eliminadas las pérdidas iniciales en el paso de estirado de la preforma. También es posible la fabricación de fibras de muy baja atenuación y de gran calidad mediante la optimización en el proceso de secado, porque los perfiles así obtenidos son lisos y sin estructura anular reconocible.

P.C.V.D Plasma Chemical Vapor DepositionEs desarrollado por Philips, se caracteriza por la obtención de perfiles lisos sin estructura anular reconocible. Su principio se basa en la oxidación de los cloruros de silicio y germanio, creando en estos un estado de plasma, seguido del proceso de deposición interior.

La etapa de estirado de la preformaSea cualquiera que se utilice de las técnicas que permiten la construcción de la preforma es de común a todas el proceso de estirado de esta. Consiste básicamente en la existencia de un horno tubular abierto, en cuyo interior se somete la preforma a una temperatura de 2.000 °C, logrando así el reblandamiento del cuarzo y quedando fijado el diámetro exterior de la FO. Este diámetro se ha de mantener constante mientras se aplica una tensión sobre la preforma, para lograr esto precisamente la constancia y uniformidad en la tensión de tracción y la ausencia de corrientes de convección en el interior del horno, son los factores que lo permiten. En este proceso se ha de cuidar que en la atmósfera interior del horno esté aislada de partículas provenientes del exterior para evitar que la superficie reblandecida de la FO pueda ser contaminada, o se puedan crear micro fisuras, con la consecuente e inevitable rotura de la fibra.

Comunicaciones con fibra ópticaLa fibra óptica se emplea como medio de transmisión para las redes de telecomunicaciones, ya que por su flexibilidad los conductores ópticos pueden agruparse formando cables. Las fibras usadas en este campo son de plástico o de vidrio, y algunas veces de los dos tipos. Para usos interurbanos son de vidrio, por la baja atenuación que tienen.El FTPLa fibra óptica posee una variante llamada FTP (No confundir con el protocolo FTP)El FTP , o Par trenzado de fibra óptica en español, es la combinación de la fiabilidad del par trenzado y la velocidad de la fibra óptica, se emplea solo en instalaciones científico-militares gracias a la velocidad de transmisión 10gb/s, no esta disponible para el mercado civil actualmente, su costo es 3 veces mayor al de la fibra óptica.Para las comunicaciones se emplean fibras multimodo y monomodo, usando las multimodo para distancias cortas (hasta 5000 m) y las monomodo para acoplamientos de larga distancia.

Sensores de fibra ópticaLas fibras ópticas se pueden utilizar como sensores para medir la tensión, la temperatura, la presión y otros parámetros. El tamaño pequeño y el hecho de que por ellas no circula corriente eléctrica le da ciertas ventajas respecto al sensor eléctrico.Las fibras ópticas se utilizan como hidrófonos para los sismos o aplicaciones de sónar. Se ha desarrollado sistemas hidrofónicos con más de 100 sensores usando la fibra óptica. Los hidrófonos son usados por la industria de petróleo así como las marinas de guerra de algunos países. La compañía alemana Sennheiser desarrolló un micrófono que trabajaba con un láser y las fibras ópticas.Los sensores de fibra óptica para la temperatura y la presión se han desarrollado para pozos petrolíferos. Estos sensores pueden trabajar a mayores temperaturas que los sensores de semiconductores.Otro uso de la fibra óptica como un sensor es el giroscopio óptico que usa el Boeing 767 y el uso en micro sensores del hidrógeno.

IluminaciónOtro uso que le podemos dar a la fibra óptica es el de iluminar cualquier espacio. Debido a las ventajas que este tipo de iluminación representa en los últimos años ha empezado a ser muy utilizado.Entre las ventajas de la iluminación por fibra podemos mencionar:Ausencia de electricidad y calor: Esto se debe a que la fibra sólo tiene la capacidad de transmitir los haces de luz además de que la lámpara que ilumina la fibra no está en contacto directo con la misma.Se puede cambiar de color la iluminación sin necesidad de cambiar la lámpara: Esto se debe a que la fibra puede transportar el haz de luz de cualquier color sin importar el color de la fibra.Con una lámpara se puede hacer una iluminación más amplia por medio de fibra: Esto es debido a que con una lámpara se puede iluminar varias fibras y colocarlas en diferentes lugares.

Más usos de la fibra ópticaSe puede usar como una guía de onda en aplicaciones médicas o industriales en las que es necesario guiar un haz de luz hasta un blanco que no se encuentra en la línea de visión.La fibra óptica se puede emplear como sensor para medir tensiones, temperatura, presión así como otros parámetros.Es posible usar latiguillos de fibra junto con lentes para fabricar instrumentos de visualización largos y delgados llamados endoscopios. Los endoscopios se usan en medicina para visualizar objetos a través de un agujero pequeño. Los endoscopios industriales se usan para propósitos similares, como por ejemplo, para inspeccionar el interior de turbinas.Las fibras ópticas se han empleado también para usos decorativos incluyendo iluminación, árboles de Navidad.Líneas de abonadoLas fibras ópticas son muy usadas en el campo de la iluminación. Para edificios donde la luz puede ser recogida en la azotea y ser llevada mediante fibra óptica a cualquier parte del edificio.También es utilizada para trucar el sistema sensorial de los taxis provocando que el taxímetro (algunos le llaman cuenta fichas) no marque el costo real del viaje.

Características

La fibra óptica es una guía de ondas dieléctrica que opera a frecuencias ópticas.

Cobertura más resistente: La cubierta contiene un 25% más material que las cubiertas convencionales.Uso dual (interior y exterior): La resistencia al agua y emisiones ultravioleta, la cubierta resistente y el funcionamiento ambiental extendido de la fibra óptica contribuyen a una mayor confiabilidad durante el tiempo de vida de la fibra.Mayor protección en lugares húmedos: Se combate la intrusión de la humedad en el interior de la fibra con múltiples capas de protección alrededor de ésta, lo que proporciona a la fibra, una mayor vida útil y confiabilidad en lugares húmedos.Empaquetado de alta densidad: Con el máximo número de fibras en el menor diámetro posible se consigue una más rápida y más fácil instalación, donde el cable debe enfrentar dobleces agudos y espacios estrechos. Se ha llegado a conseguir un cable con 72 fibras de construcción súper densa cuyo diámetro es un 50% menor al de los cables convencionales.

FuncionamientoLos principios básicos de su funcionamiento se justifican aplicando las leyes de la óptica geométrica, principalmente, la ley de la refracción (principio de reflexión interna total) y la ley de Snell.Su funcionamiento se basa en transmitir por el núcleo de la fibra un haz de luz, tal que este no atraviese el revestimiento, sino que se refleje y se siga propagando. Esto se consigue si el índice de refracción del núcleo es mayor al índice de refracción del revestimiento, y también si el ángulo de incidencia es superior al ángulo limite.

TiposLas diferentes trayectorias que puede seguir un haz de luz en el interior de una fibra se denominan modos de propagación. Y según el modo de propagación tendremos dos tipos de fibra óptica: multimodo y monomodo.

Fibra monomodoUna fibra monomodo es una fibra óptica en la que sólo se propaga un modo de luz. Se logra reduciendo el diámetro del núcleo de la fibra hasta un tamaño (8,3 a 10 micrones) que sólo permite un modo de propagación. Su transmisión es paralela al eje de la fibra. A diferencia de las fibras multimodo, las fibras monomodo permiten alcanzar grandes distancias (hasta 400 km máximo, mediante un láser de alta intensidad) y transmitir elevadas tasas de información (decenas de Gb/s).

Fibra multimodoUna fibra multimodo es aquella en la que los haces de luz pueden circular por más de un modo o camino. Esto supone que no llegan todos a la vez. Una fibra multimodo puede tener más de mil modos de propagación de luz. Las fibras multimodo se usan comúnmente en aplicaciones de corta distancia, menores a 1 km; es simple de diseñar y económico.

Tipos según su diseñoDe acuerdo a su diseño, existen dos tipos de cable de fibra ópticaCable de estructura holgadaEs un cable empleado tanto para exteriores como para interiores que consta de varios tubos de fibra rodeando un miembro central de refuerzo y provisto de una cubierta protectora. Cada tubo de fibra, de dos a tres milímetros de diámetro, lleva varias fibras ópticas que descansan holgadamente en él. Los tubos pueden ser huecos o estar llenos de un gel hidrófugo que actúa como protector antihumedad impidiendo que el agua entre en la fibra.

Cable de estructura ajustadaEs un cable diseñado para instalaciones en el interior de los edificios, es más flexible y con un radio de curvatura más pequeño que el que tienen los cables de estructura holgada.Contiene varias fibras con protección secundaria que rodean un miembro central de tracción, todo ello cubierto de una protección exterior.

FC, que se usa en la transmisión de datos y en las telecomunicaciones.FDDI, se usa para redes de fibra óptica.LC y MT-Array que se utilizan en transmisiones de alta densidad de datos.SC y SC-Dúplex se utilizan para la transmisión de datos.ST o BFOC se usa en redes de edificios y en sistemas de seguridad.

Tipos de conectoresEstos elementos se encargan de conectar las líneas de fibra a un elemento, ya puede ser un transmisor o un receptor. Los tipos de conectores disponibles son muy variados, entre los que podemos encontrar se hallan los siguientes:

Emisores del haz de luzEstos dispositivos se encargan de convertir la señal eléctrica en señal luminosa, emitiendo el haz de luz que permite la transmisión de datos, estos emisores pueden ser de dos tipos:LEDs. Utilizan una corriente de 50 a 100 mA, su velocidad es lenta, solo se puede usar en fibras multimodo, pero su uso es fácil y su tiempo de vida es muy grande, además de ser económicos.Lasers. Este tipo de emisor usa una corriente de 5 a 40 mA, son muy rápidos, se puede usar con los dos tipos de fibra, monomodo y multimodo, pero por el contrario su uso es difícil, su tiempo de vida es largo pero menor que el de los LEDs y también son mucho más costosos.

Conversores luz-corriente eléctricaEste tipo de dispositivos convierten las señales luminosas que proceden de la fibra óptica en señales eléctricas. Se limitan a obtener una corriente a partir de la luz modulada incidente, esta corriente es proporcional a la potencia recibida, y por tanto, a la forma de onda de la señal moduladora.Se fundamenta en el fenómeno opuesto a la recombinación, es decir, en la generación de pares electrón-hueco a partir de los fotones. El tipo más sencillo de detector corresponde a una unión semiconductora P-N.Las condiciones que debe cumplir un foto detector para su utilización en el campo de las comunicaciones, son las siguientes:La corriente inversa (en ausencia de luz) debe ser muy pequeña, para así poder detectar señales ópticas muy débiles (alta sensibilidad).Detectores PIN: Su nombre viene de que se componen de una unión P-N y entre esa unión se intercala una nueva zona de material intrínseco (I), la cual mejora la eficacia del detector.Se utiliza principalmente en sistemas que permiten una fácil discriminación entre posibles niveles de luz y en distancias cortas.Detectores APD: Los fotodiodos de avalancha son foto detectores que muestran, aplicando un alto voltaje en inversa, un efecto interno de ganancia de corriente (aproximadamente 100), debido a la ionización de impacto (efecto avalancha). El mecanismo de estos detectores consiste en lanzar un electrón a gran velocidad (con la energía suficiente), contra un átomo para que sea capaz de arrancarle otro electrón.

Cables de fibra ópticaUn cable de fibra óptica esta compuesto por un grupo de fibras ópticas por el cual se transmiten señales luminosas. Las fibras ópticas comparten su espacio con hiladoras de aramida que le confieren la necesaria resistencia a la tracción.Los cables de fibra óptica proporcionan una alternativa sobre los coaxiales en la industria de la electrónica y las telecomunicaciones. Así, un cable con 8 fibras ópticas tiene un tamaño bastante más pequeño que los utilizados habitualmente, puede soportar las mismas comunicaciones que 60 cables de 1623 pares de cobre o 4 cables coaxiales de 8 tubos, todo ello con una distancia entre repetidores mucho mayor.

La “fibra óptica” no se suele emplear tal y como se obtiene tras su proceso de creación (tan sólo con el revestimiento primario), sino que hay que dotarla de de más elementos de refuerzo que permitan su instalación sin poner en riesgo al vidrio que la conforma. Es un proceso difícil de llevar a cabo, ya que el vidrio es quebradizo y poco dúctil. Además, la sección de la fibra es muy pequeña, por lo que la resistencia que ofrece a romperse es prácticamente nula. Es por tanto necesario protegerla mediante la estructura que denominamos cable.

Las funciones del cableLas funciones del cable de fibra óptica son varias. Actúa como elemento de protección de la(s) fibra(s) óptica(s) que hay en su interior frente a daños y fracturas que puedan producirse tanto en el momento de su instalación como a lo largo de la vida útil de ésta. Además, proporciona suficiente consistencia mecánica para que pueda manejarse en las mismas condiciones de tracción, compresión, torsión y medioambientales que los cables de conductores. Para ello incorporan elementos de refuerzo y aislamiento frente al exterior.

Instalación y explotaciónReferente a la instalación y explotación del cable, nos encontramos frente a la cuestión esencial de qué tensión es la máxima que debe admitirse durante el tendido para que el cable no se rompa y se garantice una vida media de unos 20 años.Empalme mecánico con el cual se pueden provocar pérdidas del orden de 0.5 dB.Empalme con pegamentos con el cuál se pueden provocar pérdidas del orden de 0.2 dB.Empalme por fusión de arco eléctrico con el cuál se logran pérdidas del orden de 0.02 dB.

Elementos y diseño del cable de fibra ópticaLa estructura de un cable de fibra óptica dependerá en gran medida de la función que deba desempeñar esa fibra. A pesar de esto, todos los cables tienen unos elementos comunes que deben ser considerados y que comprenden: el revestimiento secundario de la fibra o fibras que contiene; los elementos estructurales y de refuerzo; la funda exterior del cable, y las protecciones contra el agua. Existen tres tipos de “revestimiento secundario”:

“Revestimiento ceñido”: Consiste en un material (generalmente plástico duro como el nylon o el poliéster) que forma una corona anular maciza situada en contacto directo con el revestimiento primario. Esto genera un diámetro externo final que oscila entre 0’5 y 1 mm. Esto proporciona a la fibra una protección contra microcurvaturas, con la salvedad del momento de su montaje, que hay que vigilar que no las produzca ella misma.“Revestimiento holgado hueco”: Proporciona una cavidad sobredimensionada. Se emplea un tubo hueco extruido (construido pasando un metal candente por el plástico) de material duro, pero flexible, con un diámetro variable de 1 a 2 mm. El tubo aísla a la fibra de vibraciones y variaciones mecánicas y de temperatura externas.

Elementos estructuralesLos elementos estructurales del cable tienen como misión proporcionar el núcleo alrededor del cual se sustentan las fibras, ya sean trenzadas alrededor de él o dispersándose de forma paralela a él en ranuras practicadas sobre el elemento a tal efecto.

Elementos de refuerzoTienen por misión soportar la tracción a la que éste se ve sometido para que ninguna de sus fibras sufra una elongación superior a la permitida. También debe evitar posibles torsiones. Han de ser materiales flexibles y, ya que se emplearán kilómetros de ellos han de tener un coste asequible. Se suelen utilizar materiales como el acero, Kevlar y la fibra de vidrio.

FundaPor último, todo cable posee una funda, generalmente de plástico cuyo objetivo es proteger el núcleo que contiene el medio de transmisión frente a fenómenos externos a éste como son la temperatura, la humedad, el fuego, los golpes externos, etc. Dependiendo de para qué sea destinada la fibra, la composición de la funda variará. Por ejemplo, si va a ser instalada en canalizaciones de planta exterior, debido al peso y a la tracción bastará con un revestimiento de polietileno extruido.

Perdidas de los cables de fibras ópticasPérdidas por absorción. Ocurre cuando las impurezas en la fibra absorben la luz, y esta se convierte en energía calorífica; las pérdidas normales van de 1 a 1000 dB/Km.

Pérdida de Rayleigh. En el momento de la manufactura de la fibra, existe un momento donde no es líquida ni sólida y la tensión aplicada durante el enfriamiento puede provocar microscópicas irregularidades que se quedan permanentemente; cuando los rayos de luz pasan por la fibra, estos se difractan haciendo que la luz vaya en diferentes direcciones.

Dispersión cromática. Esta dispersión sólo se observa en las fibras tipo unimodal, ocurre cuando los rayos de luz emitidos por la fuente y se propagan sobre el medio, no llegan al extremo opuesto en el mismo tiempo; esto se puede solucionar cambiando el emisor fuente.

Pérdidas por radiación. Estas pérdidas se presentan cuando la fibra sufre de dobleces, esto puede ocurrir en la instalación y variación en la trayectoria, cuando se presenta discontinuidad en el medio.

Dispersión modal. Es la diferencia en los tiempos de propagación de los rayos de luz.

Generador eléctricoUn generador eléctrico es todo dispositivo capaz de mantener una diferencia de potencial eléctrico entre dos de sus puntos, llamados polos, terminales o bornes. Los generadores eléctricos son máquinas destinadas a transformar la energía mecánica en eléctrica. Esta transformación se consigue por la acción de un campo magnético sobre los conductores eléctricos dispuestos sobre una armadura (denominada también estator). Si mecánicamente se produce un movimiento relativo entre los conductores y el campo, se generará una fuerza electromotriz (F.E.M.). Están basados en la ley de Faraday.

Un generador es una máquina eléctrica que realiza el proceso inverso que un motor eléctrico, el cual transforma la energía eléctrica en energía mecánica. Aunque la corriente generada es corriente alterna, puede ser rectificada para obtener una corriente continua. En el diagrama adjunto se observa la corriente inducida en un generador simple de una sola fase. La mayoría de los generadores de corriente alterna son de tres fases

No sólo es posible obtener una corriente eléctrica a partir de energía mecánica de rotación sino que es posible hacerlo con cualquier otro tipo de energía como punto de partida. Desde este punto de vista más amplio, los generadores se clasifican en dos tipos fundamentales:

Primarios: Convierten en energía eléctrica la energía de otra naturaleza que reciben o de la que disponen inicialmente, como alternadores, dinamos, etc.Secundarios: Entregan una parte de la energía eléctrica que han recibido previamente, es decir, en primer lugar reciben energía de una corriente eléctrica y la almacenan en forma de alguna clase de energía. Posteriormente, transforman nuevamente la energía almacenada en energía eléctrica. Un ejemplo son las pilas o baterías recargables.Se agruparán los dispositivos concretos conforme al proceso físico que les sirve de fundamento.

Otros sistemas de generación de corrientes eléctricas

Generadores primariosSe indican de modo esquemático la energía de partida y el proceso físico de conversión. Se ha considerado en todos los casos conversiones directas de energía. Por ejemplo, el hidrógeno posee energía química y puede ser convertida directamente en una corriente eléctrica en una pila de combustible. También sería su combustión con oxígeno para liberar energía térmica, que podría expansionar un gas obteniendo así energía mecánica que haría girar un alternador para, por inducción magnética, obtener finalmente la corriente deseada.En la mayoría de los casos, el rendimiento de la transformación es tan bajo que es preferible hacerlo en varias etapas. Por ejemplo, convertir la energía nuclear en energía térmica, posteriormente en energía mecánica de una gas a gran presión que hace girar una turbina a gran velocidad, para finalmente, por inducción electromagnética obtener una corriente alterna en un alternador, el generador eléctrico más importante desde un punto de vista práctico como fuente de electricidad para casi todos los usos de ahora

Generadores idealesDesde el punto de vista teórico (teoría de circuitos) se distinguen dos tipos de generadores ideales:[1]

Generador de voltaje o tensión: un generador de voltaje ideal mantiene un voltaje fijo entre sus terminales con independencia de la resistencia de la carga, Rc, que pueda estar conectada entre ellos. Generador de tensión ideal; E = I×RcGenerador de corriente o intensidad: un generador de corriente ideal mantiene una corriente constante por el circuito externo con independencia de la resistencia de la carga que pueda estar conectada entre ellos.

Una característica de cada generador es su fuerza electromotriz (F.E.M.), simbolizada por la letra griega épsilon (ε), y definida como el trabajo que el generador realiza para pasar la unidad de carga positiva del polo negativo al positivo por el interior del generador.

La F.E.M. (ε) se mide en voltios y en el caso del circuito de la Figura 2, sería igual a la tensión E, mientras que la diferencia de potencial entre los puntos a y b, Va-b, es dependiente de la carga Rc.

La F.E.M. (ε) y la diferencia de potencial coinciden en valor en ausencia de carga, ya que en este caso, al ser I = 0 no hay caída de tensión en Ri y por tanto Va-b = E.

Fuerza electromotriz de un generador

En general, la generación de energía eléctrica consiste en transformar alguna clase de energía química, mecánica, térmica o luminosa, entre otras, en energía eléctrica. Para la generación industrial se recurre a instalaciones denominadas centrales eléctricas, que ejecutan alguna de las transformaciones citadas. Estas constituyen el primer escalón del sistema de suministro eléctrico.

Desde que Nikola Tesla descubrió la corriente alterna y la forma de producirla en los alternadores, se ha llevado a cabo una inmensa actividad tecnológica para llevar la energía eléctrica a todos los lugares habitados del mundo, por lo que, junto a la construcción de grandes y variadas centrales eléctricas, se han construido sofisticadas redes de transporte y sistemas de distribución. Sin embargo, el aprovechamiento ha sido y sigue siendo muy desigual en todo el planeta. Así, los países industrializados o del Primer mundo son grandes consumidores de energía eléctrica, mientras que los países del llamado Tercer mundo apenas disfrutan de sus ventajas.

Generación de energía eléctrica

Centrales termoeléctricasUna central termoeléctrica es una instalación empleada para la generación de energía eléctrica a partir de calor. Este calor puede obtenerse tanto de combustibles fósiles (petróleo, gas natural o carbón) como de la fusión nuclear del uranio u otro combustible nuclear o del sol como las solares termoeléctricas. Las centrales que en el futuro utilicen la fusión también serán centrales termoeléctricas.

En su forma más clásica, las centrales termoeléctricas consisten en una caldera en la que se quema el combustible para generar calor que se transfiere a unos tubos por donde circula agua, la cual se evapora. El vapor obtenido, a alta presión y temperatura, se expande a continuación en una turbina de vapor, cuyo movimiento impulsa un alternador que genera la electricidad. Luego el vapor es enfriado en un Condensador donde circula por tubos agua fría de un caudal abierto de un río o por torre de refrigeración.

Centrales hidroeléctricasUna central hidroeléctrica es aquella que se utiliza para la generación de energía eléctrica mediante el aprovechamiento de la energía potencial del agua embalsada en una presa situada a más alto nivel que la central. El agua se lleva por una tubería de descarga a la sala de máquinas de la central, donde mediante enormes turbinas hidráulicas se produce la electricidad en alternadores. Las dos características principales de una central hidroeléctrica, desde el punto de vista de su capacidad de generación de electricidad son:

La potencia, que es función del desnivel existente entre el nivel medio del embalse y el nivel medio de las aguas debajo de la central, y del caudal máximo turbinadle, además de las características de la turbina y del generador.La energía garantizada en un lapso determinado, generalmente un año, que está en función del volumen útil del embalse, de la pluviometría anual y de la potencia instalada.

Centrales eólicasLa energía eólica es la que se obtiene del viento, es decir, de la energía cinética generada por efecto de las corrientes de aire o de las vibraciones que el dicho viento produce. Los molinos de viento se han usado desde hace muchos siglos para moler el grano, bombear agua u otras tareas que requieren una energía. En la actualidad se usan aerogeneradores para generar electricidad, especialmente en áreas expuestas a vientos frecuentes, como zonas costeras, alturas montañosas o islas. La energía del viento está relacionada con el movimiento de las masas de aire que se desplazan de áreas de alta presión atmosférica hacia áreas adyacentes de baja presión, con velocidades proporcionales al gradiente de presión.[2]

El impacto medioambiental de este sistema de obtención de energía es relativamente bajo, pudiéndose nombrar el impacto estético, porque deforman el paisaje, la muerte de aves por choque con las aspas de los molinos o la necesidad de extensiones grandes de territorio que se sustraen de otros usos. Además, este tipo de energía, al igual que la solar o la hidroeléctrica, están fuertemente condicionadas por las condiciones climatológicas, siendo aleatoria la disponibilidad de las mismas.

Centrales fotovoltaicasSe denomina energía solar fotovoltaica a la obtención de energía eléctrica a través de paneles fotovoltaicos. Los paneles, módulos o colectores fotovoltaicos están formados por dispositivos semiconductores tipo diodo que, al recibir radiación solar, se excitan y provocan saltos electrónicos, generando una pequeña diferencia de potencial en sus extremos. El acoplamiento en serie de varios de estos fotodiodos permite la obtención de voltajes mayores en configuraciones muy sencillas y aptas para alimentar pequeños dispositivos electrónicos. A mayor escala, la corriente eléctrica continua que proporcionan los paneles fotovoltaicos se puede transformar en corriente alterna e inyectar en la red eléctrica. Alemania es en la actualidad el segundo productor mundial de energía solar fotovoltaica tras Japón, con cerca de 5 millones de metros cuadrados de colectores de sol, aunque sólo representa el 0,03% de su producción energética total. La venta de paneles fotovoltaicos ha crecido en el mundo al ritmo anual del 20% en la década de los noventa. En la Unión Europea el crecimiento medio anual es del 30%, y Alemania tiene el 80% de la potencia instalada de la unión

Pila voltaicaSe denomina ordinariamente pila eléctrica a un dispositivo que genera energía eléctrica por un proceso químico transitorio, tras de lo cual cesa su actividad y han de renovarse sus elementos constituyentes, puesto que sus características resultan alteradas durante el mismo. Se trata de un generador primario. Esta energía resulta accesible mediante dos terminales que tiene la pila, llamados polos, electrodos o bornes. Uno de ellos es el polo positivo o ánodo y el otro es el polo negativo o cátodo. En español es habitual llamarla así, mientras que las pilas recargables o acumuladores, se ha venido llamando batería.

La primera pila eléctrica fue dada a conocer al mundo por Volta en 1800, mediante una carta que envió al presidente de la Royal Society londinense, por tanto son elementos provenientes de los primeros tiempos de la electricidad. Aunque la apariencia de una pila sea simple, la explicación de su funcionamiento dista de serlo y motivó una gran actividad científica en los siglos XIX y XX, así como diversas teorías, y la demanda creciente que tiene este producto en el mercado sigue haciendo de él objeto de investigación intensa.

Pila de combustibleUna celda, célula o pila de combustible es un dispositivo electroquímico de generación de electricidad similar a una batería, que se diferencia de esta en estar diseñada para permitir el reabastecimiento continuo de los reactivos consumidos. Esto permite producir electricidad a partir de una fuente externa de combustible y de oxígeno, en contraposición a la capacidad limitada de almacenamiento de energía de una batería. Además, la composición química de los electrodos de una batería cambia según el estado de carga, mientras que en una celda de combustible los electrodos funcionan por la acción de catalizadores, por lo que son mucho más estables.

En las celdas de hidrógeno los reactivos usados son hidrógeno en el ánodo y oxígeno en el cátodo. Se puede obtener un suministro continuo de hidrógeno a partir de la electrólisis del agua, lo que requiere una fuente primaria de generación de electricidad, o a partir de reacciones catalíticas que desprenden hidrógeno de hidrocarburos. El hidrógeno puede almacenarse, lo que permitiría el uso de fuentes discontinuas de energía como la solar y la eólica. El hidrógeno gaseoso (H2) es altamente inflamable y explosivo, por lo que se están desarrollando métodos de almacenamiento en matrices porosas de diversos materiales.

Un generador termoeléctrico de radioisótopos es un generador eléctrico simple que obtiene su energía de la liberada por la desintegración radiactiva de determinados elementos. En este dispositivo, el calor liberado por la desintegración de un material radiactivo se convierte en electricidad directamente gracias al uso de una serie de termopares, que convierten el calor en electricidad gracias al efecto Seebeck en el llamado Unidad de calor de radioisótopos (o RHU en inglés). Los RTG se pueden considerar un tipo de batería y se han usado en satélites, sondas espaciales no tripuladas e instalaciones remotas que no disponen de otro tipo de fuente eléctrica o de calor. Los RTG son los dispositivos más adecuados en situaciones donde no hay presencia humana y se necesitan potencias de varios centenares de vatios durante largos períodos de tiempo, situaciones en las que los generadores convencionales como las pilas de combustible o las baterías no son viables económicamente y donde no pueden usarse células fotovoltaicas.

Generador termoeléctrico de radioisótopos

http://es.wikipedia.org/wiki/Ecosistemas

http://es.wikipedia.org/wiki/Ecosistema_acu%C3%A1tico

http://es.wikipedia.org/wiki/Chaparral

http://es.wikipedia.org/wiki/Arrecife_de_coral

http://es.wikipedia.org/wiki/Desierto

http://es.wikipedia.org/wiki/Ecosistema_marino

http://es.wikipedia.org/wiki/Pluviselva

http://es.wikipedia.org/wiki/Sabana

http://es.wikipedia.org/wiki/Pantanohttp://es.wikipedia.org/wiki/Tundra

http://es.wikipedia.org/wiki/Bosquehttp://es.wikipedia.org/wiki/Selvahttp://es.wikipedia.org/wiki/Prado

http://es.wikipedia.org/wiki/Manglar

http://es.wikipedia.org/wiki/Fibras_%C3%B3pticas

http://es.wikipedia.org/wiki/Generador_el%C3%A9ctrico

http://es.wikipedia.org/wiki/Generaci%C3%B3n_de_energ%C3%ADa_el%C3%A9ctrica