conceptos básicos de plantas electricas

127
UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECÁNICA ELÉCTRICA INGENIERÍA ELECTRICA 2 Catedrático: Ing. Otto Andrino PhD Página1 CONCEPTOS BÁSICOS En esta sección obtendrás información elemental y principios básicos relacionados con la electricidad. La energía, los circuitos eléctricos, el magnetismo y el funcionamiento de los generadores eléctricos son algunos de los temas que se tratan y que dotan de los conocimientos necesarios para comprender con total claridad el resto de contenidos presentes en este documento. La energía 1. Concepto de energía El hombre, desde su existencia, ha necesitado la energía para sobrevivir. Pero… ¿qué es? ¿Por qué tiene tanta importancia la energía? ¿Por qué es importante el ahorro energético? La energía es la capacidad de los cuerpos para realizar un trabajo y producir cambios en ellos mismos o en otros cuerpos. Es decir, la energía es la capacidad de hacer funcionar las cosas. La unidad de medida que utilizamos para cuantificar la energía es el Joule (J). 2. Tipos de energía La energía se manifiesta de diferentes maneras, recibiendo así diferentes denominaciones según las acciones y los cambios que puede provocar. Encontramos los siguientes tipos de energía: Energía mecánica La energía mecánica relacionada con la posición y el movimiento del cuerpo, y que se divide en estas dos formas: Energía cinética, que se manifiesta cuando los cuerpos se mueven. Es decir, es la energía asociada a la velocidad de cada cuerpo. Se calcula con la fórmula: o E c= ½ m • v 2 o Donde m es la masa (Kg), v la velocidad (m/s) y E c la energía cinética (J=Kg·m 2 /s 2 ) Energía potencial, que hace referencia a la posición que ocupa una masa en el espacio. Su fórmula es:

Upload: roberto-mazariegos

Post on 08-Nov-2015

43 views

Category:

Documents


5 download

DESCRIPTION

Conceptos Básicos de Plantas Eléctricas, Segundo Parcial, Ingeniería Eléctrica 2, Ingeniero Otto Andrino, Ingenieria Usac 2015

TRANSCRIPT

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina1

    CONCEPTOS BSICOS

    En esta seccin obtendrs informacin elemental y principios bsicos relacionados con la electricidad. La energa, los circuitos elctricos, el magnetismo y el funcionamiento de los generadores elctricos son algunos de los temas que se tratan y que dotan de los conocimientos necesarios para comprender con total claridad el resto de contenidos presentes en este documento.

    La energa

    1. Concepto de energa

    El hombre, desde su existencia, ha necesitado la energa para sobrevivir. Pero qu es? Por qu tiene tanta importancia la energa? Por qu es importante el ahorro energtico?

    La energa es la capacidad de los cuerpos para realizar un trabajo y producir cambios en ellos mismos o en otros cuerpos. Es decir, la energa es la capacidad de hacer funcionar

    las cosas.

    La unidad de medida que utilizamos para cuantificar la energa es el Joule (J).

    2. Tipos de energa

    La energa se manifiesta de diferentes maneras, recibiendo as diferentes denominaciones

    segn las acciones y los cambios que puede provocar.

    Encontramos los siguientes tipos de energa:

    Energa mecnica

    La energa mecnica relacionada con la posicin y el movimiento del cuerpo, y que se divide

    en estas dos formas:

    Energa cintica, que se manifiesta cuando los cuerpos se mueven. Es decir, es la

    energa asociada a la velocidad de cada cuerpo. Se calcula con la frmula:

    o E c= m v 2 o Donde m es la masa (Kg), v la velocidad (m/s) y E c la energa cintica

    (J=Kgm 2 /s 2 )

    Energa potencial, que hace referencia a la posicin que ocupa una masa en el

    espacio. Su frmula es:

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina2

    o E p= m g h o Donde m es la masa (Kg), g la gravedad de la Tierra (9,81 m/s 2 ), h= la

    altura (m) y E p la energa potencial (J=Kgm 2 /s 2 ).

    La energa mecnica es la suma de la energa cintica y la energa potencial de un

    cuerpo. Su frmula es:

    E m = E p + E c

    Donde E m es la energa mecnica (J), E p la energa potencial (J) y E c la energa

    cintica (J).

    Energa interna

    La energa interna se manifiesta a partir de la temperatura. Cuanto ms caliente est un

    cuerpo, ms energa tendr.

    Energa elctrica

    La energa elctrica est relacionada con la corriente elctrica. Es decir, en un circuito en el

    que cada extremo tiene una diferencia de potencial diferente.

    Energa trmica

    Se asocia con la cantidad de energa que pasa de un cuerpo caliente a otro ms fro

    manifestndose mediante el calor.

    Energa electromagntica

    Esta energa se atribuye a la presencia de un campo electromagntico.

    Las radiaciones que provoca el Sol son un ejemplo de ondas electromagnticas que se

    manifiestan en forma de luz, radiacin infrarroja u ondas de radio.

    Energa qumica

    La energa qumica se manifiesta en determinadas reacciones qumicas.

    La energa nuclear

    sta se produce cuando los ncleos de los tomos se rompen (fisin) o se unen (fusin).

    3. Propiedades de la energa

    La energa tiene 4 propiedades bsicas:

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina3

    Se transforma. La energa no se crea, sino que se transforma, siendo durante esta

    transformacin cuando se ponen de manifiesto las diferentes formas de energa.

    Se conserva. Al final de cualquier proceso de transformacin energtica nunca puede

    haber ms o menos energa que la que haba al principio, siempre se mantiene. La

    energa no se destruye.

    Se transfiere. La energa pasa de un cuerpo a otro en forma de calor, ondas o trabajo.

    Se degrada. Solo una parte de la energa transformada es capaz de producir trabajo

    y la otra se pierde en forma de calor o ruido (vibraciones mecnicas no deseadas).

    4. Transferencia de energa

    Hay tres formas de transferir energa de un cuerpo a otro:

    Trabajo

    Cuando se realiza un trabajo se pasa energa a un cuerpo que cambia de una posicin a

    otra.

    Por ejemplo, si en casa desplazamos una caja, estamos realizando un trabajo para que su

    posicin vare.

    Ondas

    Las ondas son la propagacin de perturbaciones de ciertas caractersticas, como el campo

    elctrico, el magnetismo o la presin, y que se propagan a travs del espacio transmitiendo

    energa.

    Calor

    Es un tipo de energa que se manifiesta cuando se transfiere energa de un cuerpo caliente

    a otro cuerpo ms fro. Sin embargo, no siempre viaja de la misma manera, existiendo tres

    formas diferentes de transferencia energtica:

    Conduccin: cuando se calienta un extremo de un material, sus partculas vibran y

    chocan con las partculas vecinas, transmitindoles parte de su energa.

    Radiacin: el calor se propaga a travs de ondas de radiacin infrarroja (ondas

    que se propagan a travs del vaco y a la velocidad de la luz).

    Conveccin: que es propia de fluidos (lquidos o gaseosos) en movimiento.

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina4

    La naturaleza elctrica de la materia

    1. La estructura de la materia

    La materia es todo aquello que tiene masa y que, por lo tanto, ocupa un volumen.

    Desde hace muchos aos, una de las grandes preocupaciones de los cientficos ha sido poder

    conocer la constitucin de la materia para poder llegar a predecir su comportamiento.

    Los avances experimentales y tericos del siglo XX han permitido conocer mejor la

    estructura interna de la materia. Ahora sabemos que toda materia est formada por un

    conjunto de tomos que, a su vez, estn constituidos por las llamadas partculas

    subatmicas: los electrones, los protones y los neutrones (principalmente).

    En los tomos que forman la materia se pueden distinguir dos partes:

    El ncleo, que es la parte central del tomo y que ocupa una parte muy pequea. En

    su interior se encuentran los protones y los neutrones, entre otras partculas

    subtomicas.

    La corteza, que es la parte exterior del tomo y ocupa la mayor parte de su volumen.

    Esta parte est formada por un nico tipo de partculas subatmicas, los electrones

    que se mueven a una gran velocidad alrededor del ncleo, describiendo unas

    trayectorias elpticas llamadas rbitas.

    Estructura de la materia

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina5

    2. La carga elctrica

    Los protones (partculas que forman parte del ncleo del tomo) y electrones (que rodean el

    ncleo del tomo) crean fuerzas de atraccin y de repulsin debido a que estas partculas

    atmicas tienen una carga elctrica.

    Se puede establecer una ley muy sencilla en relacin a las fuerzas de atraccin y repulsin

    entre partculas: las cargas de diferente smbolo se atraen y las del mismo signo se

    repelen.

    La carga de un protn es la misma que la de un electrn, con la diferencia de que la carga

    de protones es positiva y la de los electrones negativa.

    En cambio, los neutrones no tienen carga elctrica, ni positiva ni negativa. Por lo tanto los

    neutrones no son atrados ni repelidos por los protones ni los electrones.

    La carga elctrica es una propiedad general de la materia que se puede medir, cuya unidad es

    el Coulomb (C).

    La masa y la carga elctrica de las principales partculas subatmicas son:

    Masa (Kg) Carga (C)

    Protn (p) 1,6725 10-27 1,6 10 -19

    Neutrn (n) 1,6748 10-27 -

    Electrn (e) 9,1095 10-31 1,6 10 -19

    3. El campo elctrico

    El campo elctrico es el espacio alredededor de una carga elctrica. En l se manifiestan las

    fuerzas de atraccin o de repulsin sobre otras cargas elctricas situadas en este espacio.

    4. Prdida o ganancia de electrones

    En relacin a la naturaleza elctrica del tomo, hay que destacar que la carga elctrica de

    un tomo es nula porque tiene el mismo nmero de protones que de electrones, teniendo as

    la misma cantidad de cargas positivas que negativas.

    Hay, sin embargo, excepciones que hay que tener en cuenta:

    En algunas situaciones los tomos pueden perder o ganar electrones y quedar

    cargados elctricamente. Estos tomos se llaman iones.

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina6

    Cuando un tomo pierde uno o diversos electrones queda cargado positivamente y

    recibe el nombre de catin.

    De forma contraria, cuando un tomo gana uno o varios electrones queda cargado

    negativamente, recibiendo el nombre de anin.

    5. De dnde viene la electricidad?

    La energa elctrica o electricidad es un fenmeno fsico que se origina a raz de las cargas

    elctricas y de la interaccin entre ellas. As, son los electrones y los protones las dos

    partculas subatmicas principales que pueden originar la aparicin de energa elctrica.

    La electricidad se puede originar o transmitir provocando el movimiento de cargas

    elctricas de un punto a otro.

    Esta situacion es muy comn ya en la propia Naturaleza, dado que la energa elctrica se

    manifiesta de diversas formas, transformndose en otros tipos de energa. Ejemplos de este

    fenmeno son las tormentas elctricas o el sistema nervioso de los seres vivos.

    En el siguiente enlace puedes conocer una serie de magnitudes elctricas que ayudan a definir

    las caractersticas de la electricidad.

    La rama que estudia la interaccin de las cargas elctricas cuando estas estn en reposo se

    denomina electrosttica.

    6. Materiales conductores y materiales aislantes

    Las cargas elctricas se pueden mover a travs de los materiales, per no se mueven de la

    misma manera en todos ellos. A la propiedad que indica la facilidad con que las cargas se

    mueven a a travs de un material especfico se la denomina conductividad.

    Segn su conductividad, podemos dividir todos los materiales en dos grandes grupos:

    Materiales conductores. Son los que tienen una estructura atmica que favorece que

    las cargas elctricas se puedan mover con facilidad por su interior. En general, todos

    los metales son buenos conductores.

    Materiales aislantes, son los que tienen los electrones muy ligados al tomo al que

    pertenecen, de manera que no se pueden mover con facilidad. Algunos ejemplos

    aislantes son la madera, la resina o el cristal.

    Deseas saber ms sobre la conductividad elctrica? Tienes un juego a tu disposicin.

    7. La corriente elctrica

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina7

    La corriente elctrica es el movimiento de los electrones por un conductor. Este

    movimiento de cargas elctricas se puede comparar con el agua del ro, y de la misma manera

    que podemos medir el caudal de un ro en un punto podemos medir la intensidad de la

    corriente elctrica.

    Para que el movimiento de electrones se produzca hace falta que entre los extremos del

    conductor haya una diferencia de potencial , que tambin se llama tensin o voltaje.

    8. Tipos de corriente elctrica

    El movimiento de electrones (cargas negativas) del generador se produce desde su polo

    positivo (lugar de salida de los electrones) hasta su polo negativo (lugar donde vuelven los

    electrones). Cuando dicho flujo es al revs (de polo negativo a positivo), se considera que la

    corriente es negativa. Asi, y dependiendo del sentido del movimiento de dichos electrones,

    se puede clasificar la corriente elctrica en:

    Corriente continua , que se caracteriza porque los electrones se mueven en un solo

    sentido por el hilo conductor. Ejemplos de generadores de corriente continua son las

    pilas o las dinamos.

    Corriente alterna, cuya caracterstica principal es que los polos del generador

    cambian de negativo a positivo en el mismo periodo, provocando que el flujo de

    electrones no mantengan el mismo sentido. La generacion de este tipo de corriente

    la realizan los alternadores.

    Los circuitos elctricos

    1. Elementos de un circuito elctrico

    Se denomina circuito elctrico al conjunto de elementos elctricos conectados entre s que

    permiten generar,transportar y utilizar la energa elctrica con la finalidad de transformarla

    en otro tipo de energa como, por ejemplo, energa calorfica (estufa), energa lumnica

    (bombilla) o energa mecnica (motor). Los elementos utilizados para conseguirlo son los

    siguientes:

    Generador. Parte del circuito donde se produce la electricidad, manteniendo una

    diferencia de tensin entre sus extremos.

    Conductor. Hilo por donde circulan los electrones impulsados por el generador.

    Resistencias. Elementos del circuito que se oponen al paso de la

    corriente elctrica .

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina8

    Interruptor. Elemento que permite abrir o cerrar el paso de la corriente elctrica.

    Si el interruptor est abierto no circulan los electrones, y si est cerrado permite su

    paso.

    2. Resistencias de los conductores elctricos

    La resistencia es la oposicin que encuentra la corriente elctrica para pasar por los

    materiales y esta depende de tres factores:

    El tipo de material. Cada material presenta una resistencia diferente y unas

    caractersticas propias, habiendo materiales ms conductores que otros. A esta

    resistencia se le llama resistividad [] y tiene un valor constante. Se mide [m]. La longitud. Cuanto mayor es la longitud del conductor, ms resistencia ofrece. Se

    mide en metros [m].

    La seccin. Cuanto ms grande es la seccin, menos resistencia ofrece el conductor.

    Por lo tanto, presenta ms resistencia un hilo conductor delgado que uno de grueso.

    Se mide en [m 2].

    La resistencia de un conductor se cuantifica en ohmios (), y se puede calcular mediante frmula:

    R = l / s

    3. Interpretacin del cdigo de colores de una resistencia

    Las resistencias comerciales (las que se acostumbran a usar para hacer prcticas de circuitos

    elctricos) tienen 4 anillos pintados que sirven para identificar su valor.

    El primer anillo corresponde a la primera cifra, el segundo anillo a la segunda cifra, el tercer

    anillo al nmero de ceros y el cuarto anillo al lmite de tolerancia de la resistencia.

    El cdigo de colores de las resistencias es el siguiente:

    Resistencia ()

    Color 1 a Cifra 2 a Cifra 3 a Cifra 4 a Cifra

    ninguno - - - 20%

    Plata - - 10 -2 10%

    Oro - - 10 -1 5%

    Negro - 0 10 0

    Marrn 1 1 10 1

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina9

    Rojo 2 2 10 2

    Naranja 3 3 10 3

    Amarillo 4 4 10 4

    Verde 5 5 10 5

    Azul 6 6 10 6

    Lila 7 7 10 7

    Gris 8 8 10 8

    Blanco 9 9 10 9

    4. Asociacin de resistencias

    Las resistencias (y otros elementos del circuito)pueden conectarse de dos formas diferentes:

    Asociacin en serie. Los elementos asociados se colocan uno a continuacin del

    otro. La corriente elctrica tiene un nico camino por recorrer, habiendo as la misma

    intensidad en todo el circuito.

    Por ejemplo, en caso de tener cuatro resistencias conectadas en serie, la resistencia

    equivalente se puede calcular como:

    R eq = R1 + R2 + R3 + R4

    Asociacin en paralelo. Se crean derivaciones en el circuito. La corriente elctrica

    que sale del generador tiene distintos caminos por recorrer.

    Por ejemplo, en caso de tener cuatro resistencias asociadas en paralelo, la resistencia

    equivalente del circuito se calcula como:

    1/R eq = 1/R1 + 1/R2 + 1/R3 + 1/R4

    Para entender y poner en prctica, dispones de un juego interactivo sobre la asociacin de

    resistencias.

    Todos los componentes de un circuito elctrico son representados graficamente mediante

    smbolos elementales aceptados por normas internacionales. Los esquemas de los circuitos

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina1

    0

    elctricos son dibujos simplificados que se utilizan para ver de forma clara y rpida como

    estn conectados los circuitos.

    6. La Ley de Ohm

    Son varias las leyes que han estudiado los circuitos elctricos. Entre ellas destaca la del ao

    1827 cuando, de forma experimental, Georg Simon Ohm encontr la relacin que se poda

    expresar de forma matemtica entre las tres magnitudes ms importantes de un circuito

    elctrico: diferencia de potencial, intensidad de corriente y resistencia.

    La ley de Ohm es la ley fundamental de la corriente elctrica que dice:

    "En un circuito elctrico, la intensidad de la corriente que lo recorres directamente

    proporcional a la tensin aplicada e inversamente proporcional a la resistencia que este

    presenta".

    Y se expresa de la siguiente manera:

    V=R I

    En el siguiente juego interactivo puedes entender de una manera ms grfica la ley de Ohm.

    7. La Ley de Joule

    Cuando por un conductor circula corriente elctrica, este se calienta y produce calor. Esto es

    debido a que parte del trabajo que se realiza para mover las cargas elctricas entre dos puntos

    de un conductor se pierde en forma de calor.

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina1

    1

    El ao 1845, James Prescott Joule fue capaz de encontrar la ley que permite calcular este

    efecto, viendo que este trabajo disipado en forma de calor es:

    Proporcional al tiempo durante el que pasa la corriente elctrica.

    Proporcional al cuadrado de la intensidad que circula.

    Proporcional a la resistencia del conductor.

    Se expresa de la siguiente manera:

    W = R I 2 t

    El efecto Joule limita la corriente elctrica que pueden transportar los cables de las

    conducciones elctricas. Este lmite asegura que la temperatura que pueden conseguir los

    cables no pueda producir un incendio. Una manera de asegurar que no supere el lmite es

    utilizando un fusible: un dispositivo formado por un hilo de metal que va conectado en serie

    al circuito general de la instalacin elctrica.

    Magnetismo

    El magnetismo es un fenmeno fsico por el que los objetos ejercen fuerzas de atraccin o

    repulsin sobre otros materiales. Hay materiales que presentan propiedades magnticas

    detectables fcilmente, como el nquel, el hierro o el cobalto, que pueden llegar a convertirse

    en un imn.

    Existe un mineral llamado magnetita que es conocido como el nico imn natural. De hecho

    de este mineral proviene el trmino de magnetismo.

    Sin embargo, todos los materiales son influidos, de mayor o menor forma, por la presencia

    de un campo magntico.

    Historia del magnetismo: sus orgenes

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina1

    2

    La magnetita es un mineral ferromagntico, formado principalmente por xido ferroso

    frrico

    Los fenmenos magnticos fueron conocidos por primera vez por los antiguos griegos, a

    travs de una mineral llamado magnetita (de ah surge el trmino magnetismo). Se dice que

    se pudo observar por primera vez en la ciudad de Magnesia, en Asia

    Menor. Originariamente se pens que la magnetita se podra utilizar para mantener la piel

    joven. De hecho, Cleopatra dorma con una magnetita en la frente para retrasar el proceso de

    envejecimiento.

    Esta reputacin teraputica de la magnetita se transmiti tambin a los griegos, los cuales la

    usaban para la curacin de dolencias. En el siglo III a.C., Aristteles escribi acerca de las

    propiedades curativas de los imanes naturales, que llamaba "imanes blancos".

    Posteriormente las aplicaciones basadas en el magnetismo fueron desarrollndose. Por el

    siglo 12 d.C., los marineros chinos ya utilizaban magnetitas como brjulas para la navegacin

    martima.

    Para qu sirven los imanes?

    Un gran nmero de mdicos y sanadores utilizaron los imanes para curar diferentes

    problemas mdicos a lo largo de la historia. Hoy en da la ciencia mdica utiliza el

    magnetismo ms que nunca, por ejemplo:

    La magnetoencefalografa (MEG) se utiliza para medir la actividad cerebral.

    La terapia de choque para volver a iniciar corazones.

    El uso de imanes en aplicaciones industriales y mecnicas tambin es muy comn. Los

    imanes son la fuerza motriz bsica para todos los motores elctricos y generadores elctricos.

    Los imanes

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina1

    3

    Qu es un imn?

    Los imanes son los materiales que presentan las propiedades del magnetismo. Hay que

    destacar que estos pueden ser naturales o artificiales. El ms comn de los imanes naturales

    e sun mineral llamado magnetita.

    Los imanes pueden ser permanentes o temporales, segn el material con el que se fabriquen

    y segn la intensidad de campo magntico al que le sometan.

    Imn artificial temporal (a) y permanente (b)

    Partes de un imn: los polos magnticos

    Cualquier imn presenta dos zonas donde las acciones se manifiestan con mayor fuerza.

    Estas zonas estn situadas en los extremos del imn y son los denominados polos

    magnticos: Norte y Sur.

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina1

    4

    Detalle sobre las zonas de accin de mayor fuerza magntica

    Efecto repulsin y atraccin en un imn

    Una de las propiedades fundamentales de la interaccin entre imanes es que los polos iguales

    se repelen, mientras que los polos opuestos se atraen.

    El efecto de atraccin y repulsin tiene que ver con las lneas de campo magnticas. Las

    lneas de campo magnticas exteriores suelen ir del polo Norte al polo Sur. Por lo tanto,

    cuando se acercan dos polos opuestos, estas lneas tienen a saltar de un polo a otro: tienden

    a pegarse. Y segn sea la distancia entre los dos imanes esta atraccin ser mayor o menor.

    En cambio, cuando se acercan dos polos iguales, estas lneas de campos no tienden a saltar

    de un polo a otro, si no que se empiezan a comprimir hacia su propio polo. Cuando esta

    compresin es mxima, las lneas de campo tienden a expandirse, lo que provoca que los

    polos iguales de dos imanes no puedan acercarse y se repelan.

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina1

    5

    Efecto de un imn al ser dividido en varias partes

    Otra caracterstica de los imanes es que los polos no se pueden separar. Si un imn se rompe

    en dos partes no se obtienen un polo norte y un polo sur sino que se obtienen dos imanes,

    cada uno de ellos con un polo norte y un polo sur.

    Si tenemos un imn supendido por un hilo colocado en su centro de gravedad, observamos

    que siempre queda orientado hacia una misma direccin. Uno de los polos se orienta hacia el

    norte y otro hacia el sur, pues los polos del imn se alinean segn los polos magnticos de

    la Tierra, que acta como imn natural.

    Sentido de los polos magnticos de la tierra

    El campo magntico, flujo magntico e intensidad de

    campo magntico

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina1

    6

    El campo magntico es la agitacin que produce un imn a la regin que lo envuelve.

    Es decir, el espacio que envuelve el imn en donde son apreciables sus efectos magnticos,

    aunque sea imperceptible para nuestros sentidos.

    Para poder representar un campo magntico utilizamos las llamadas lneas de campo. Estas

    lneas son cerradas: parten (por convenio) del polo Norte al polo Sur, por el exterior del imn.

    Sin embargo por el interior circulan a la inversa, de polo Sur a polo Norte.

    Las lneas de campo no se cruzan, y se van separando, unas de las otras, en alejarse del imn

    tangencialmente a la direccin del campo en cada punto.

    El recorrido de las lneas de fuerza recibe el nombre de circuito magntico, y el nmero de

    lneas de fuerza existentes en un circuito magntico se le conoce como flujo magntico.

    Estas lneas nos dan una idea de:

    Direccin que tendr el campo magntico. Las lneas de campo van desde el polo

    sur al polo norte en el interior del imn y desde el polo norte hasta el polo sur por el

    exterior.

    La intensidad del campo magntico,tambin conocida como intensidad de campo

    magntico, es inversamente proporcional al espacio entre las lneas (a menos espacio

    ms intensidad).

    En un campo magntico uniforme, la densidad de flujo de campo magntico que atraviesa

    una superficie plana y perpendicular a las lneas de fuerza valdr:

    Donde la letra griega phi es el flujo magntico y su unidad es el Weber (Wb).

    En el caso de que la superficie atravesada por el flujo magntico no sea perpendicular a la

    direccin de este tendremos que:

    Donde alfa es el angulo que forma B con el vector perpendicular a la superficie.

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina1

    7

    Detalle de un imn con la direccin de las lneas de campo

    Las propiedades magnticas de la materia

    Las lneas de campo magntico atraviesan todas las sustancias. No se conoce ninguna

    sustancia que impida la penetracin del campo magntico, pero no todas las sustancias se

    comportan de la misma manera.

    Segn su comportamiento, los materiales se pueden clasificar de la siguiente manera:

    Materiales ferromagnticos

    Cuando a un material ferromagntico se le somete a un campo magntico este se

    magnetiza: se consigue un imn artificial. Este fenmeno se conoce como imantacin. Una

    vez se aleja el imn del material magntico y segn la intensidad de campo magntico

    aplicada, este puede quedarse imantado permanentemente o mantener sus propiedades

    magnticas durante un periodo determinado de tiempo (imn temporal).

    El ferromagnetismo est presente en el cobalto, el hierro puro, en el nquel y en todas las

    aleaciones de estos tres materiales.

    Materiales paramagnticos

    Los materiales paramagnticos son aquellas sustancias, como el magnesio, el aluminio, el

    estao o el hidrgeno, que al ser colocados dentro de un campo magntico se convierten en

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina1

    8

    imanes y se orientan en la direccin del campo. En cesar el campo magntico desaparece el

    magnetismo inmediatamente y, por tanto, dejan de actuar como imanes.

    Materiales diamagnticos

    Los materiales diamagnticos son aquellas sustancias, como el cobre, el sodio, el

    hidrgeno, o el nitrgeno, que en ser colocadas dentro de un campo magntico, se magnetizan

    en sentido contrario al campo aplicado.

    La permeabilidad relativa

    El hecho de que los materiales ferromagnticos, se queden imantados permanentemente, y

    que tengan la propiedad de atraer y de ser atrados con ms intensidad que los paramagnticos

    o diamagnticos, es debido a su permeabilidad relativa.

    Le permeabilidad relativa es el resultado del producto entre la permeabilidad

    magntica y la permeabilidad de vaco (constante magntica).

    La permeabilidad del vaco es una constante magntica cuyo valor es:

    Para los materiales ferromagnticos esta permeabilidad relativa tiene que ser muy superior a

    1, para los paramagnticos es aproximadamente 1, y para los diamagnticos es inferior a 1.

    Histresis magntica

    El estudio de la histresis tiene gran importancia en los materiales magnticos ya que

    produce prdidas. Las prdidas por histresis representan una prdida de energa que se

    manifiesta en forma de calor en los ncleos magnticos. El calor as generado reduce el

    rendimiento de los dispositivos con circuitos magnticos como transformadores, motores

    y/o generadores.

    La histresis es el fenmeno de inercia por el cual un material ofrece resistencia a un cambio,

    ya que tiene tendencia a conservar sus propiedades. Esta resistencia se manifiesta haciendo

    que el proceso de variacin sea distinto en un sentido contrario.

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina1

    9

    Despus de someter a una sustancia ferromagntica a la accin de un campo magntico,

    cuando este desaparece la sustancia manifiesta todava un cierto nivel de induccin

    magntica, que llamamos magnetismo remanente.

    La prdida de potencia es directamente proporcional al rea de la curva de histresis.

    Curva de histresis magntica

    La curva de histresis muestra la curva de magnetizacin de un material. Sea cual sea el

    material especfico, la forma siempre tiene caractersticas similares:

    Al principio, la magnetizacin requiere un mayor esfuerzo elctrico. Este intervalo es

    la llamada zona reversible.

    En un determinado punto, la magnetizacin se produce de forma proporcional. En ese

    punto se inicia la denominada zona lineal.

    Finalmente, se llega un instante a partir del cual, por mucha fuerza magntica que

    induzcamos al material, ya no se magnetiza ms. Este es el llamado punto de

    saturacin, que determina el inicio de la llamada zona de saturacin.

    La curva de histresis magntica se representa:

    En horizontal la intensidad de campo magntico H.

    En vertical representamos la induccin magntica B, que aparece en el material que

    estamos estudiando como consecuencia del campo magntico creado.

    1) En el inicio, punto O, el material no ha sido magnetizado todava y la induccin magntica

    es nula.

    2) En el tramo O-Hs, se va aumentando progresivamente la intensidad de campo magntico,

    y en el material aparece una induccin cada vez mayor hasta llegar al su punto de saturacin,

    punto Hs.

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina2

    0

    3) En el tramo entre Hs y Br, se reduce la intensidad de campo magntico en el material. La

    induccin tambin ser reduce pero en una proporcin menor que antes.

    4) En el punto Br, se ha anulado la intensidad de campo magntico pero el material manifiesta

    todava un cierto magnetismo remanente.

    5) En el tramo Br-Hc, se invierte el sentido de campo magntico ( la corriente circula en

    sentido contrario, a travs del material).

    6) En el punto Hc, la induccin(B) es nula, se ha eliminado el magnetismo remanente, para

    ellos ha sido necesario aplicar una intensidad Hc, llamada campo coercitivo.

    7) En el tramo Hc-D, se sigue aplicando una intensidad de campo negativa, con lo que se

    consigue que la induccin aumente hasta el punto de saturacin D.

    8) En el tramo D-Hs, se completa el ciclo. La curva no vuelve a pasar por O, a causa de la

    histresis.

    Las prdidas que se originan en los materiales ferromagneticos debido a la histresis son

    proporcionales al rea del ciclo. Una medida de su amplitud la da el valor del campo

    coercitivo, Hc.

    Por lo tanto para construir aparatos que funcionan con corriente alterna se eligen materiales

    con un campo coercitivo lo ms pequeo posible. En cambio, si se desean fabricar imanes

    permanentes, se buscan materiales con un campo coercitivo muy grande.

    Electromagnetismo

    El electromagnetismo es la parte de la electricidad que estudia la relacin entre los

    fenmenos elctricos y los fenmenos magnticos. Los fenmenos elctricos y magnticos

    fueron considerados como independientes hasta 1820, cuando su relacin fue descubierta por

    casualidad.

    As, hasta esa fecha el magnetismo y la electricidad haban sido tratados como fenmenos

    distintos y eran estudiados por ciencias diferentes. Sin embargo, esto cambi a partir del

    descubrimiento que realiz Hans Chirstian Oersted , observando que la aguja de una brjula

    variaba su orientacin al pasar corriente a travs de un conductor prximo a ella. Los estudios

    de Oersted sugeran que la electricidad y el magnetismo eran manifestaciones de un mismo

    fenmeno: las fuerzas magnticas proceden de las fuerzas originadas entre cargas

    elctricas en movimiento.

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina2

    1

    El electromagnetismo es la base de funcionamiento de todos los motores elctricos y

    generadores elctricos.

    Orgenes del electromagnetismo: el experimento de

    Oersted

    Esta relacin entre la electricidad y el magnetismo fue descubierta por el fsico dans Hans

    Christian ersted. ste observ que si colocaba un alfiler magntico que sealaba la

    direccin norte-sur paralela a un hilo conductor rectilneo por el cual no circula corriente

    elctrica, sta no sufra ninguna alteracin.

    Sin embargo en el momento en que empezaba a pasar corriente por el conductor, el alfiler

    magntico se desviaba y se orientaba hacia una direccin perpendicular al hilo conductor.

    En cambio, si dejaba de pasar corriente por el hilo conductor, la aguja volva a su posicin

    inicial.

    De este experimento se deduce que al pasar a una corriente elctrica por un hilo

    conductor se crea un campo magntico.

    Campo magntico creado por una corriente elctrica

    Una corriente que circula por un conductor genera un campo magntico alrededor del

    mismo.

    El valor del campo magntico creado en un punto depender de la intensidad del corriente

    elctrico y de la distancia del punto respecto el hilo, as como de la forma que tenga el

    conductor por donde pasa la corriente elctrica.

    El campo magntico creado por un elemento de corriente hace que alrededor de este elemento

    se creen lneas de fuerzas curvas y cerradas. Para determinar la direccin y sentido del campo

    magntico podemos usar la llamada regla de la mano derecha.

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina2

    2

    La regla de la mano derecha nos dice que utilizando dicha mano, y apuntando con el dedo

    pulgar hacia el sentido de la corriente, la curvatura del resto de dedos nos indicar el sentido

    del campo magntico

    En el caso de un hilo conductor rectilneo se crea un campo magntico circular

    alrededor del hilo y perpendicular a l.

    Cuando tenemos un hilo conductor en forma de espira, el campo magntico sera

    circular. La direccin y el sentido del campo magntico depende del sentido de la

    corriente elctrica.

    Cuando tenemos un hilo conductor enrollado en forma de hlice tenemos una bobina

    o solenoide. El campo magntico en su interior se refuerza todava ms en existir ms

    espiras: el campo magntico de cada espira se suma a la siguiente y se concentra en

    la regin central.

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina2

    3

    Espira por la cual circula una corriente, esta corriente genera un campo magntico a su

    alrededor

    Una aplicacin muy comn de las bobinas es utilizarlas como electroimanes. Este tipo de

    electroimanes consiste en una bobina, por donde circula una corriente elctrica, y un ncleo

    ferromagntico, colocado en el interior de la bobina. Cuando por la bobina circula una

    corriente elctrica, el ncleo de hierro se convierte en un imn temporal. Cuantas ms espiras

    tenga la bobina, mayor ser su campo magntico.

    Fuerza electromagntica

    Cuando una carga elctrica est en movimiento crea un campo elctrico y un campo

    magntico a su alrededor.

    As pues, este campo magntico realiza una fuerza sobre cualquier otra carga elctrica que

    est situada dentro de su radio de accin. Esta fuerza que ejerce un campo magntico ser la

    fuerza electromagntica.

    Si tenemos un hilo conductor rectilneo por donde circula una corriente elctrica y que

    atraviesa un campo magntico, se origina una fuerza electromagntica sobre el hilo. Esto

    es debido a que el campo magntico genera fuerzas sobre cargas elctricas en

    movimiento.

    Si en lugar de tener un hilo conductor rectilneo tenemos un espiral rectangular, aparecern

    un par de fuerzas de igual valor pero de diferente sentido situadas sobre los dos lados

    perpendiculares al campo magntico. Esto no provocar un desplazamiento, sino que la

    espira girar sobre si misma.

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina2

    4

    Espira rectangular girando de un campo magntico

    La direccin de esta fuerza creada se puede

    determinar por la regla de la mano izquierda.

    Si la direccin de la velocidad es paralela a

    la direccin del campo magntico, la fuerza

    se anula y la trayectoria de la partcula ser

    rectilnea.

    Si la direccin de la velocidad es

    perpendicular al campo magntico la fuerza

    vendr dada por la expresin:

    Y si esta fuerza es perpendicular al plano

    formado por la velocidad y el campo

    magntico, la partcula entonces describir una

    trayectoria circular.

    Si la direccin de la velocidad es oblicua a la del campo magntico, la

    partcula describir una trayectoria en espiral.

    Faraday-Lenz, la induccin electromagntica y la fuerza

    electromotriz inducida

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina2

    5

    La induccin electromagntica es la produccin de corrientes elctricas por campos

    magnticos variables con el tiempo. Este fenmeno es justamente el contrario al que

    descubri Oersted, ya que es la existencia de un campo magntico lo que nos producir

    corrientes elctricas. Adems, la corriente elctrica incrementa en aumentar la rapidez con

    la que se producen las variaciones de flujo magntico.

    Estos hechos permitieron enunciar la ley que se conoce como la Ley de Faraday-Lenz.

    La ley de Faraday-Lenz

    Basado en el principio de conservacin de la energa, Michael Faraday pensaba que si una

    corriente elctrica era capaz de generar un campo magntico, entonces un campo

    magntico deba tambin producir una corriente elctrica.

    En 1831 Faraday llev a cabo una serie de experimentos que le permitieron descubrir el

    fenmeno de induccin electromagntica . Descubri que, moviendo un imn a travs de

    un circuito cerrado de alambre conductor, se generaba una corriente elctrica, llamada

    corriente inducida. Adems, esta corriente tambin apareca al mover el alambre sobre el

    mismo imn quieto.

    Faraday explic el origen de esta corriente en trminos del nmero de lneas de campo

    atravesados por el circuito de alambre conductor, que fue posteriormente expresado

    matemticamente en la hoy llamada Ley de Faraday, una de las cuatro ecuaciones

    fundamentales del electromagnetismo.

    La Ley de Faraday nos dice que :

    "La fuerza electromotriz inducida en un circuito es igual y de signo opuesto a la rapidez con

    que varia el flujo magntico que atraviesa un circuito, por unidad de tiempo.

    Para determinar el sentido de una corriente inducida se utiliza la llamada Ley de Lenz, que

    formulaba que:

    "La corriente inducida crea un campo magntico que se opone siempre a la variacin de flujo

    magntico que la ha producido.

    Estas leyes se pueden resumir en la siguiente expresin:

    Donde se establece que el cociente entre la variacin de flujo() respecto la variacin del tiempo(t) es igual a la fuerza electromotriz inducida(). El signo negativo viene dado por la

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina2

    6

    ley de Lenz , y indica el sentido de la fuerza electromotriz inducida, causa de la corriente

    inducida.La corriente inducida, pues, se debe al movimiento relativo que hay entre la

    bobina y el imn.

    La induccin electromagntica constituye un fenmeno destacado en el electromagnetismo.

    Se han desarrollado un sin nmero de aplicaciones prcticas de este fenmeno fsico:

    El transformador , que se emplea para conectar un telfono mvil a la red.

    La dinamo de una bicicleta.

    El alternador de una gran central hidroelctrica .

    La induccin electromagntica en una bobina

    Para entender correctamente qu es la induccin electromagntica analizaremos una bobina

    (componente del circuito elctrico en forma de espiral que almacena energa elctrica):

    Cuando el imn y la bobina estn en reposo el galvanmetro no seala paso

    de corriente elctrica a travs de la bobina.

    Si acercamos un imn a esta bobina, observamos que el galvanmetro marca

    el paso de una corriente elctrica en la bobina.

    Si alejamos el imn, el galvanmetro marcar el paso de la corriente

    elctrica a travs de la bobina, pero de sentido contrario a cuando lo

    acercbamos.

    Si en vez de mover el imn movemos la bobina, podemos comprobar los

    mismos efectos a travs del galvanmetro.

    De esta experiencia se puede deducir que el corriente dura mientras se realiza el movimiento

    del imn o de la bobina y es ms intenso como mas rpido se haga este movimiento. La

    corriente elctrica que aparecen a la bobina es la corriente inducida.

    Corrientes de Foucault

    Las corrientes de Foucault, tambin conocidas como corrientes parsitas, fueron

    descubiertas por el fsico francs Lon Foucault en 1851, al construir un dispositivo que

    utilizaba un disco de cobre el cual se mova en un campo magntico intenso.

    Este fenmeno se produce cuando un material conductor atraviesa un campo magntico

    variable (o viceversa. En este caso, el movimiento relativo entre el material conductor y el

    campo magntico variable, causa una circulacin de electrones, o corriente inducida a

    travs del material conductor.

    Estas corrientes circulares, de Foucault crean campos magnticos variables con el tiempo,

    que se oponen al sentido del flujo del campo magntico aplicado.

    Las corrientes de Foucault, y los campos opositores generados sern mayores cuanto:

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina2

    7

    Ms fuerte sea el campo magntico aplicado.

    Mayor la conductividad del conductor.

    Mayor la velocidad relativa de movimiento.

    Las corrientes de Foucault crean prdidas de energa a travs del efecto Joule, que es un

    fenmeno irreversible por el cual si en un conductor circula corriente elctrica, parte de la

    energa cintica de los electrones se transforma en calor debido a los choques que sufren con

    los tomos del material conductor por el que circulan, elevando la temperatura del mismo.

    Sin embargo, hay infinidad de aplicaciones que se basan en las corrientes de Foucault, como:

    Los hornos de induccin, de gran utilidad en la industria ya que funcionan a

    altas frecuencias y con grandes corrientes.

    Las corrientes Foucault, tambin, son la base del funcionamiento de los

    detectores de metales.

    Tambin estn presentes en los sistemas de levitacin magntica usado en los

    trenes.

    Pero las corrientes parsitas tambin disminuyen la eficiencia de muchos dispositivos que

    usan campos magnticos variables, como los transformadores de ncleo de hierro y los

    motores elctricos. Estas prdidas son minimizadas utilizando ncleos con materiales

    magnticos que tengan baja conductividad elctrica (como por ejemplo ferrita) o utilizando

    delgadas hojas de acero elctrico, apiladas pero separadas entre s mediante un barniz aislante

    u oxidadas tal que queden mutuamente aisladas elctricamente.

    En general, las corrientes de Foucault son indeseadas, ya que representan una disipacin

    de energa en forma de calor, pero, como ya hemos visto, estas corrientes son la base de

    muchas aplicaciones. Tambin son la causa principal del efecto pelicular en conductores que

    transportan corriente alterna , lo que crea la mayor parte de las prdidas en el transporte de

    la electricidad.

    Los generadores elctricos

    Un generador es una mquina elctrica rotativa que transforma energa mecnica en

    energa elctrica. Lo consigue gracias a la interaccin de los dos elementos principales que

    lo componen: la parte mvil llamada rotor, y la parte esttica que se denomina esttor.

    Cuando un generador elctrico est en funcionamiento, una de las dos partes genera un flujo

    magntico (acta como inductor) para que el otro lo transforme en electricidad (acta como

    inducido).

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina2

    8

    Los generadores elctricos se diferencian segn el tipo de corriente que producen. As, nos

    encontramos con dos grandres grupos de mquinas elctricas rotativas: los alternadores y las

    dinamos.

    Los alternadores generan electricidad en corriente alterna. El elemento inductor es el rotor

    y el inducido el esttor. Un ejemplo son los generadores de las centrales elctricas, las cuales

    transforman la energia mecnica en elctrica alterna.

    Las dinamos generan electricidad en corriente continua. El elemento inductor es el esttor y

    el inducido el rotor. Un ejemplo lo encotraramos en la luz que tiene una bicicleta, la cual

    funciona a travs del pedaleo.

    Mquinas elctricas rotativas: los generadores

    Llamamos mquinas elctricas a los dispositivos capaces de transformar energa elctrica en

    cualquier otra forma de energa. Las mquinas elctricas se pueden dividir en:

    Mquinas elctricas rotativas, que estn compuestas de partes giratorias, como las

    dinamos, alternadores y motores.

    Mquinas elctricas estticas, que no disponen de partes mviles, como los

    transformadores.

    Vamos a fijarnos en el grupo de las mquinas rotativas, que lo constituyen los motores y los

    generadores. Las mquinas elctricas rotativas son reversibles, yq que pueden trabajar de

    dos maneras diferentes:

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina2

    9

    Como motor elctrico: Convierte la energa elctrica en mecnica.

    Como generador elctrico: Convierte la energa mecnica en elctrica.

    Detalle del rotor y del esttor de un generador

    Las mquinas elctricas se pueden dividir en rotativas y estticas. En este caso vamos a

    fijarnos en el grupo de las mquinas rotativas que lo constituyen los motores y los

    generadores.

    Todas las mquinas rotativas estn formada por una parte fija llamada esttor, tiene forma

    cilndrica, y otra mvil llamada rotor. El rotor se monta en un eje que descansa en dos

    rodamientos o cojinetes. El espacio de aire que separa el esttor del rotor, necesario para que

    pueda girar la mquina se denomina entrehierro.

    Normalmente tanto en el esttor como en el rotor existen devanados hechos con conductores

    de cobre por los que circulan corrientes suministradas o cedidas a un circuito exterior que

    constituye el sistema elctrico. Uno de los devanados crea un flujo en el entrehierro y se

    denomina inductor. El otro devanado recibe el flujo del primero y se denomina inducido.

    De igual manera, se podria situar el inductor en el esttor y el inducido en el rotor o viceversa.

    Prdidas y eficiencia de las mquinas elctricas rotativas

    Como cualquier mquina, la potencia de salida que ofrecen las mquinas elctricas rotativas

    es menor que la potencia de alimentacin que se les suministra, potencia suministrada. La

    diferencia entre la potencia de salida y la suministrada son las prdidas:

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina3

    0

    La potencia de salida de un generador elctrico es la potencia elctrica que entrega, la

    potencia til. La potencia suministrada o total es la potencia mecnica de entrada: la potencia

    mecnica que absorbe la mquina para poder generar electricidad.

    Dentro de una mquina elctrica rotativa, las prdidas ms significativas son:

    Prdidas mecnicas: Causadas por el rozamiento entre las piezas mviles y por la

    ventilacin o refrigeracin interior de los devanados.

    Prdidas elctricas o prdidas en el cobre: Se producen en el circuito elctrico y en

    sus conexiones y son debidas al efecto Joule.

    Prdidas magnticas o prdidas en el hierro: Dependen de las variaciones que se

    producen en los campos magnticos y de la frecuencia.

    As mismo, el cociente entre la potencia de salida (tambin llamada potencia til) y la

    potencia suministrada (tambin llamada potencia total o absorbida) es la eficiencia. Esta

    eficiencia se expresa en tanto por ciento(%):

    Por lo tanto, la eficiencia de una mquina elctrica determina la cantidad de trabajo til que

    puede producir, a partir de la energia total que consume.

    Principio de funcionamiento de un generador elctrico:

    Ley de Faraday

    Representacin del experimento que realiz Faraday

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina3

    1

    El principio de funcionamiento de los generadores se basa en el fenmeno de induccin

    electromagntica.

    La Ley de Faraday. Esta ley nos dice que el voltaje inducido en un circuito es

    directamente proporcional al cambio del flujo magntico en un conductor o espira. Esto

    quiere decir que si tenemos un campo magntico generando un flujo magntico, necesitamos

    una espira por donde circule una corriente para conseguir que se genera la f.e.m. (fuerza

    electromotriz).

    Este descubrimiento, realizado en el ao 1830 por Michael Faraday, permiti un ao

    despus la creacin del disco de Faraday. El disco de Faraday consiste en un imn en forma

    de U, con un disco de cobre de doce pulgadas de dimetro y 1/5 de pulgas de espesor en

    medio colocado sobre un eje, que est girando, dentro de un potente electroimn. Al colocar

    una banda conductora rozando el exterior del disco y otra banda sobre el eje, comprob con

    un galvanmetro que se produca electricidad mediante imanes permanentes. Fue el

    comienzo de las modernas dinamos Es decir, generadores elctricos que funcionan por

    medio de un campo magntico. Era muy poco eficiente y no tena ningn uso como fuente

    de energa prctica, pero demostr la posibilidad de generar electricidad usando magnetismo

    y abri la puerta a los conmutadores, dinamos de corriente continua y finalmente a los

    alternadores de corriente.

    Como se observa en el captulo de electromagnetismo, cuando dentro de un campo

    magntico tenemos una espira por donde circula una corriente elctrica aparecen un

    par de fuerzas que provocan que la espira gire alrededor de su eje. De esta misma

    manera, si dentro de un campo magntico introducimos una espira y la hacemos girar

    provocaremos la corriente inducida. Esta corriente inducida es la responsable de la f.e.m. y

    ser variable en funcin de la posicin de la espira y el campo magntico.

    La cantidad de corriente inducida o f.e.m. depender de la cantidad de flujo magntico

    (tambin llamado lneas) que la espira pueda cortar, cuanto mayor sea el nmero, mayor

    variacin de flujo generara y por lo tanto mayor fuerza electromotriz..

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina3

    2

    Se observa los dos casos ms extremos, cuando la espira est situada a 0 o 180 y no corta

    lneas, y cuando est a 90 y 270 y las corta todas

    Al hacer girar la espira dentro del imn conseguiremos una tensin que variar en funcin

    del tiempo. Esta tensin tendr una forma alterna, puesto que de 180 a 360 los polos estarn

    invertidos y el valor de la tensin ser negativo.

    El principio de funcionamiento del alternador y de la dinamo se basa en que el alternador

    mantiene la corriente alterna mientras la dinamo convierte la corriente alterna en corriente

    continua.

    Seales de salida de un alternador, en corriente alterna, y de una dinamo en corriente continuo

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina3

    3

    Generador de corriente alterna: el alternador

    Los generadores de corriente alterna o alternadores son mquinas que transforman energa

    mecnica, que reciben por el rotor, en energa elctrica en forma de corriente alterna. La

    mayora de alternadores son mquinas de corriente alterna sncrona, que son las que giran a

    la velocidad de sincronismo, que est relacionada con el nombre de polos que tiene la

    mquina y la frecuencia de la fuerza electromotriz. Esta relacin hace que el motor gire a la

    misma velocidad que le impone el esttor a travs del campo magntico. Esta relacin viene

    dada por la expresin:

    Donde f es la frecuencia a la cual esta conectada la mquina y P es el numero de pares de

    polos.

    Modelizacin del funcionamiento de un generador

    Su estructura es la siguiente:

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina3

    4

    Esttor: Parte fija exterior de la mquina. El esttor est formado por una carcasa

    metlica que sirve de soporte. En su interior encontramos el ncleo del inducido, con

    forma de corona y ranuras longitudinales, donde se alojan los conductores del

    enrollamiento inducido.

    Rotor: Parte mvil que gira dentro del esttor El rotor contiene el sistema inductor y

    los anillos de rozamiento, mediante los cuales se alimenta el sistema inductor. En

    funcin de la velocidad de la mquina hay dos formas constructivas.

    o Rotor de polos salidos o rueda polar: Utilizado para turbinas hidrulicas o

    motores trmicos, para sistemas de baja velocidad.

    o Rotor de polos lisos: Utilizado para turbinas de vapor y gas, estos grupos son

    llamados turboalternadores. Pueden girar a 3000, 1500 o 1000 r.p.m. en

    funcin de los polos que tenga.

    El alternador es una mquina elctrica rotativa sncrona que necesita de una corriente de

    excitacin en el bobinaje inductor para generar el campo elctrico y funcionar. Por lo tanto

    su diagrama de funcionamiento es el siguiente:

    Diagrama de funcionamiento del alternador

    Al ser mquinas sncronas que se conectan a la red han de trabajar a una frecuencia

    determinada. En el caso de Europa y algunas zonas de Latinoamrica se trabaja a 50 Hz,

    mientras que en los Estados Unidos usan 60 Hz. En aplicaciones especiales como en el caso

    de la aeronutica, se utilizan frecuencias ms elevadas, del orden de los 400 Hz.

    El principio de funcionamiento de los alternadores es el mismo que hemos estudiado hasta

    ahora, con una pequea diferencia. Para generar el campo magntico, hay que aportar una

    corriente de excitacin (Ie) en corriente continua. Esta corriente genera el campo magntico

    para conseguir la corriente inducida (Ii) que ser corriente alterna.

    Los alternadores estn acoplados a una mquina motriz que les genera la energa mecnica

    en forma de rotacin. Segn la mquina motriz tenemos tres tipos:

    Mquinas de vapor: Se acopla directamente al alternador. Generan una velocidad

    de giro baja y necesitan un volante de inercia para generar una rotacin uniforme.

    Motores de combustin interna: Se acoplan directamente y las caractersticas son

    similares al caso anterior.

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina3

    5

    Turbinas hidrulicas: La velocidad de funcionamiento tiene un rango muy amplio.

    Estos alternadores estn diseados para funcionar bien hasta el doble de su velocidad

    de rgimen.

    Excitatriz de los alternadores

    Los alternadores necesitan una fuente de corriente continua para alimentar los

    electroimanes (deanados) que forman el sistema inductor. Por eso, en el interior del rotor

    se incorpora la excitatriz.

    La excitatriz es la mquina encargada de suministrar la corriente de excitacin a las bobinas

    del esttor, parte donde se genera el campo magntico. Segn la forma de producir el flujo

    magntico inductor podemos hablar de:

    Excitacin independiente. La corriente elctrica proviene de una fuente exterior.

    Excitacin serie. La corriente de excitacin se obtiene conectando las bobinas

    inductoras en serie con el inducido. Toda la corriente inducida a las bobinas del rotor

    pasa por las bobinas del esttor.

    Excitacin shunt o derivacin. La corriente de excitacin se obtiene conectando las

    bobinas del esttor en paralelo con el inducido. Solo pasa por las bobinas del esttor

    una parte de la corriente inducida.

    Excitacin compound. En este caso las bobinas del esttor estn conectadas tanto en

    serie como en paralelo con el inducido.

    Efectos del funcionamiento de un alternador

    Cuando un alternador funciona conectado a un circuito exterior se crean corrientes inducidas

    que nos generan los siguientes efectos:

    Cada de tensin en los bobinajes inducidos: La resistividad que nos presentan los

    conductores hace que tengamos una cada de tensin.

    Efecto de reaccin en el inducido: El tipo de reaccin que tendremos en el inducido

    depender de la carga conectada:

    o Resistiva: Tenemos un incremento en la cada de tensin interna y una

    disminucin de la tensin en los bornes de salida.

    o Inductiva: Aparece una cada de tensin importante en los bornes de salida.

    o Capacitiva: Disminuye la cada de tensin interna y eleva mas el valor de la

    tensin de salida en los bornes de salida.

    Efecto de dispersin del flujo magntico: Hay lneas de fuerza que no pasan por el

    inducido, se pierden o llegan al siguiente polo. Cuanto ms alta sea la corriente del

    inducido, ms prdidas por dispersin nos encontramos.

    Generador de corriente continua: la dinamo

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina3

    6

    El generador de corriente continua, tambin llamado dinamo, es una mquina elctrica

    rotativa a la cual le suministramos energa mecnica y la transforma en energa elctrica en

    corriente continua. En la actualidad se utilizan muy poco, ya que la produccin y transporte

    de energa elctrica es en forma de corriente alterna.

    Una de las caractersticas de las dinamos es que son mquinas reversibles: se pueden utilizar

    tanto como generador o como motor. El motor es la principal aplicacin industrial de la

    dinamo, ya que tiene facilidad a la hora de regular su velocidad de giro en el rotor.

    Las principales partes de esta mquina son:

    Esttor

    El esttor es la parte fija exterior de la dinamo. El esttor contiene el sistema inductor

    destinado a producir el campo magntico. Est formado por:

    Polos inductores: Diseados para repartir uniformemente el campo magntico.

    Distinguimos en ellos el ncleo y la expansin polar. El nmero de polos ha de

    ser par, en caso de mquinas grandes se han de utilizar polos auxiliares.

    Devanado inductor: Son las bobinas de excitacin de los polos principales,

    colocadas alrededor del ncleo. Estn hechos con conductores de cobre o de

    aluminio recubiertos por un barniz aislante.

    Culata: La culata sirve para cerrar el circuito magntico y sujertar los polos.

    Esta construida con material ferromagntico.

    Rotor

    El rotor es la Parte mvil que gira dentro del esttor. El rotor al estar sometido a variacin de

    flujo crea la fuerza electromotriz inducida, por lo tanto contiene el sistema inducido. Est

    formado por:

    Ncleo del inducido: Cilindro construido para reducir las prdidas magnticas.

    Dispone de ranuras longitudinales donde se colocan las espiras del enrollamiento del

    inducido.

    Devanado inducido: Formado por espiras que se distribuyen uniformemente por las

    ranuras del ncleo. Se conecta al circuito exterior de la mquina por medio del

    colector y las escobillas.

    Colector: Cilindro solidario al eje de la mquina formado por segmentos de cobre o

    lminas aisladas elctricamente entre ellas. En cada lmina se conecta una bobina. Es

    el encargado de realizar la conversin de corriente alterna a corriente continua.

    Escobillas: Son piezas de carbn-grafito o metlicas, que estn en contacto con el

    colector. Hacen la conmutacin de la corriente inducida y la transportan en forma de

    corriente continua hacia el exterior.

    Cojinetes: Sirven de soporte y permiten el giro del eje de la mquina.

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina3

    7

    Entrehierro

    El entrehierro e s el espacio de aire comprendido entre el rotor y el esttor. Suele ser

    normalmente de entre 1 y 3 milmetros. El entehierro es imprescindible para evitar

    rozamientos entre la parte fija y la parte mvil.

    Detalle de la espira de una dinamo con los colectores delgas

    La conmutacin en las dinamos

    La conmutacin es la operacin de transformacin de una seal alterna a una seal continua

    y tambin se conoce como rectificacin de seal. Las dinamos hacen esta conmutacin

    porque tienen que suministrar corriente continua.

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina3

    8

    Esta conmutacin en las dinamos se realiza a travs del colector de delgas. Los anillos

    del colector estn cortados debido a que por fuera de la espira la corriente siempre tiene que

    ir en el mismo sentido.

    A la hora de realizar esta conmutacin existen diferentes problemas. Cuando el generador

    funciona con una carga conectada en sus bornes, nos encontramos con una cada de tensin

    interna y una reaccin en el inducido.

    El inducido crear un flujo magntico que se opone al generado por el imn. A este efecto se

    le da el nombre de fuerza contraelectromotriz, que desplazar el plano neutro.

    Para solucionar este problema se pueden realizar diversas mejoras como:

    Desplazamiento de las escobillas: Este mtodo cambia las escobillas a su nueva

    posicin corrigiendo el desvo del plano, el problema es que el motor puede trabajar

    desde el 0% de su carga total al 100%, por lo que el plano puede cambiar.

    Polos de conmutacin o auxiliares: la funcin de estos polos auxiliares es la de

    compensar el flujo producido por las bobinas inducidas y compensarlo. Es una

    solucin muy til y econmica.

    Bobinas de compensacin: Cuando los generadores son de gran potencia, los polos

    de conmutacin no son suficientes, en este caso usamos bobinas de compensacin.

    Ventajas del alternador respecto a la dinamo

    El alternador tiene varias ventajas que hacen que sea un tipo de mquina ms utilizada, ya no

    solo el hecho de que produce electricidad en corriente alterna, que es como se consume, si

    no por otras ventajas del tipo utilizacin.

    Las ventajas del alternador respecto a la dinamo son las siguientes:

    En el alternador elctrico se puede obtener mayor gama de velocidad de giro. La

    velocidad de giro puede ir desde 500 a 7.000 rpm. La dinamo a altas rpm sufre el el

    colector y las escobillas elevado desgaste y subida de temperaturas.

    El conjunto rotor y esttor en el alternador es muy compacto.

    Los alternadores poseen un solo elemento como regulador de tensin.

    Los alternadores elctricos son ms ligeros: pueden llegar a ser entre un 40 y un 45%

    menos pesados que las dinamos, y de un 25 a un 35% ms pequeos.

    El alternador trabaja en ambos sentidos de giro sin necesidad de modificacin.

    La vida til del alternador es superior a la de la dinamo. Esto es debido a que el

    alternador elctrico es ms robusto y compacto, por la ausencia del colector en el

    inducido, y soporta mejor las altas temperaturas.

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina3

    9

    Funcionamiento de los transformadores

    Un transformador es una mquina esttica de corriente alterno, que permite variar alguna

    funcin de la corriente como el voltaje o la intensidad, manteniendo la frecuencia y la

    potencia, en el caso de un transformador ideal.

    Para lograrlo, transforma la electricidad que le llega al devanado de entrada en magnetismo

    para volver a transformarla en electricidad, en las condiciones deseadas, en el devanado

    secundario.

    La importancia de los transformadores, se debe a que, gracias a ellos, ha sido posible el

    desarrollo de la industria elctrica. Su utilizacin hizo posible la realizacin prctica y

    econmica del transporte de energa elctrica a grandes distancias.

    Componentes de los transformadores elctricos

    Los transformadores estn compuestos de diferentes elementos. Los componentes bsicos

    son:

    Modelizacin de un

    transformador monofsico ideal

    Ncleo: Este elemento est constituido por chapas de acero al silicio aisladas entre

    ellas. El ncleo de los transformadores est compuesto por las columnas, que es la

    parte donde se montan los devanados, y las culatas, que es la parte donde se realiza

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina4

    0

    la unin entre las columnas. El ncleo se utiliza para conducir el flujo magntico, ya

    que es un gran conductor magntico.

    Devanados: El devanado es un hilo de cobre enrollado a travs del ncleo en uno de

    sus extremos y recubiertos por una capa aislante, que suele ser barniz. Est compuesto

    por dos bobinas, la primaria y la secundaria. La relacin de vueltas del hilo de cobre

    entre el primario y el secundario nos indicar la relacin de transformacin. El

    nombre de primario y secundario es totalmente simblico. Por definicin all donde

    apliquemos la tensin de entrada ser el primario y donde obtengamos la tensin de

    salida ser el secundario.

    Esquema bsico y funcionamiento del transformador

    Esquema bsico de funcionamiento de un transformador ideal

    Los transformadores se basan en la induccin electromagntica . Al aplicar una fuerza

    electromotriz en el devanado primario, es decir una tensin, se origina un flujo magntico en

    el ncleo de hierro. Este flujo viajar desde el devanado primario hasta el secundario. Con

    su movimiento originar una fuerza electromagntica en el devanado secundario.

    Segn la Ley de Lenz, necesitamos que la corriente sea alterna para que se produzca esta

    variacin de flujo. En el caso de corriente continua el transformador no se puede utilizar.

    La relacin de transformacin del transformador elctrico

    Una vez entendido el funcionamiento del transformador vamos a observar cul es la relacin

    de transformacin de este elemento.

    Donde N p es el nmero de vueltas del devanado del primario, N s el nmero de vueltas del

    secundario, V p la tensin aplicada en el primario, V s la obtenida en el secundario, I s la

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina4

    1

    intensidad que llega al primario, I p la generada por el secundario y r t la relacin de

    transformacin.

    Como observamos en este ejemplo si queremos ampliar la tensin en el secundario tenemos

    que poner ms vueltas en el secundario (N s), pasa lo contrario si queremos reducir la tensin

    del secundario.

    Tipos de transformadores elctricos

    Hay muchos tipos de transformadores pero todos estn basados en los mismos principios

    bsicos, Pueden clasificarse en dos grandes grupos de tipos bsicos: transformadores de

    potencia y de medida.

    Transformadores de potencia

    Los transformadores elctricos de potencia sirven para variar los valores de tensin de un

    circuito de corriente alterna, manteniendo su potencia. Como ya se ha explicado

    anteriormente en este recurso, su funcionamiento se basa en el fenmeno de la induccin

    electromagntica.

    Transformadores elctricos elevadores

    Los transformadores elctricos elevadores tienen la capacidad de aumentar el voltaje de

    salida en relacin al voltaje de entrada. En estos transformadores el nmero de espiras del

    devanado secundario es mayor al del devanado primario.

    Modelizacin de un transformador elevador

    Transformadores elctricos reductores

    Los transformadores elctricos reductores tienen la capacidad de disminuir el voltaje de

    salida en relacin al voltaje de entrada. En estos transformadores el nmero de espiras del

    devanado primario es mayor al secundario.

    Podemos observar que cualquier transformador elevador puede actuar como reductor, si lo

    conectamos al revs, del mismo modo que un transformador reductor puede convertirse en

    elevador.

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina4

    2

    Modelizacin de un transformador reductor

    Autotransformadores

    Modelizacin de un autotransformador

    Se utilizan cuando es necesario cambiar el valor de un voltaje, pero en cantidades muy

    pequeas. La solucin consiste en montar las bobinas de manera sumatoria. La tensin, en

    este caso, no se introducira en el devanado primario para salir por el secundario, sino que

    entra por un punto intermedio de la nica bobina existente.

    Esta tensin de entrada (V p) nicamente recorre un determinado nmero de espiras (N p),

    mientras que la tensin de salida (V s) tiene que recorrer la totalidad de las espiras (N s).

    Transformadores de potencia con derivacin

    Son transformadores de elevacin o reduccin, es decir, elevadores o reductores, con un

    nmero de espiras que puede variarse segn la necesidad. Este nmero de espiras se puede

    modificar siempre y cuando el transformador no est en marcha. Normalmente la diferencia

    entre valores es del 2,5% y sirve para poder ajustar el transformador a su puesto de trabajo.

    Transformadores elctricos de medida

    Sirven para variar los valores de grandes tensiones o intensidades para poderlas medir sin

    peligro.

    Transformadores elctricos de intensidad

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina4

    3

    El transformador de intensidad toma una muestra de la corriente de la lnea a travs del

    devanado primario y lo reduce hasta un nivel seguro para medirlo. Su devanado secundario

    est enrollado alrededor de un anillo de material ferromagntico y su primario est formado

    por un nico conductor, que pasa por dentro del anillo.

    El anillo recoge una pequea muestra del flujo magntico de la lnea primaria, que induce

    una tensin y hace circular una corriente por la bobina secundaria.

    Transformador elctrico potencial

    Se trata de una mquina con undevanado primario de alta tensin y uno secundario de baja

    tensin. Su nica misin es facilitar una muestra del primero que pueda ser medida por los

    diferentes aparatos.

    Posibles

    conexiones de un transformador trifsico con la fuente de alimentacin

    Transformadores trifsicos

    Debido a que el transporte y generacin de electricidad se realiza de forma trifsica, se han

    construido transformadores de estas caractersticas.

    Hay dos maneras de construirlos: una es mediante tres transformadores monofsicos y la otra

    con tres bobinas sobre un ncleo comn.

    Esta ltima opcin es mejor debido a que es ms pequeo, ms ligero, ms econmico y

    ligeramente ms eficiente.

    La conexin de este transformador puede ser:

    Estrella-estrella

    Estrella-tringulo

    Tringulo-estrella

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina4

    4

    Tringulo-tringulo

    Transformador ideal y transformador real

    En un transformador ideal, la potencia que tenemos en la entrada es igual a la potencia

    que tenemos en la salida, esto quiere decir que:

    Pero en la realidad, en los transformadores reales existen pequeas prdidas que se

    manifiestan en forma de calor. Estas prdidas las causan los materiales que componen un

    transformador elctrico.

    En los conductores de los devanados existe una resistencia al paso del corriente que tiene

    relacin con la resistividad del material del cual estn compuestos. Adems, existen

    efectos por dispersin de flujo magntico en los devanados. Finalmente, hay que considerar

    los posibles efectos por histresis o las corrientes de Foucault en el ncleo del

    transformador.

    Prdidas en los transformadores reales

    Las diferentes prdidas que tiene un transformador real son:

    Prdidas en el cobre: Debidas a la resistencia propia del cobre al paso de la corriente

    Prdidas por corrientes parsitas: Son producidas por la resistencia que presenta

    el ncleo ferro magntico al ser atravesado por el flujo magntico.

    Prdidas por histresis: Son provocadas por la diferencia en el recorrido de las

    lneas de campo magntico cuando circulan en diferente sentido cada medio ciclo.

    Prdidas a causa de los flujos de dispersin en el primario y en el secundario: Estos flujos provocan una auto inductancia en las bobinas primarias y secundarias.

    Aplicaciones de los transformadores

    Los transformadores son elementos muy utilizados en la red elctrica.

    Una vez generada la electricidad en el generador de las centrales, y antes de enviarla a la

    red, se utilizan los transformadores elevadores para elevar la tensin y reducir as las prdidas

    en el transporte producidas por el efecto Joule. Una vez transportada se utilizan los

    transformadores reductores para darle a esta electricidad unos valores con los que podamos

    trabajar.

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina4

    5

    Los transformadores tambin son usados por la mayora de electrodomsticos y aparatos

    electrnicos, ya que estos trabajan, normalmente, a tensiones de un valor inferior al

    suministrado por la red

    Por ltimo hacer mencin a que uno de los elementos de seguridad elctrica del hogar utiliza

    transformadores. Se trata del diferencial . Este dispositivo utiliza transformadores para

    comparar la intensidad que entra con la que sale del hogar. Si la diferencia entre estos es

    mayor a 10 mA desconecta el circuito evitando que podamos sufrir lesiones.

    GENERACIN

    Explicacin detallada del proceso de produccin de la electricidad, enfocndose en las centrales elctricas ms utilizadas. En cada uno de los diferentes temas podrs aprender desde la materia prima utilizada hasta su impacto medioambiental, pasando por el funcionamiento detallado de su funcionamiento

    Centrales elctricas

    1. Definicin de central elctrica

    Una central elctrica es una instalacin capaz de convertir la energa mecnica en energa

    elctrica.

    Las principales fuentes de energa son el agua, el gas, el uranio, el viento y la energa solar.

    Estas fuentes de energa primaria para mover los labes de una turbina, que a su vez est

    conectada en un generador elctrico.

    Hay que tener en cuenta que hay instalaciones de generacin donde no se realiza la

    transformacin de energa mecnica en electricidad como, por ejemplo:

    Los parques fotovoltaicos, donde la electricidad se obtiene de la transformacin

    directa de la radiacin solar.

    Las pilas de combustible o bateras, donde la electricidad se obtiene directamente

    a partir de la energa qumica.

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina4

    6

    Central Trmica de Ciclo Combinado Sant Adri

    2. Tipos de centrales elctricas

    Una buena forma de clasificar las centrales elctricas es hacindolo en funcin de la fuente

    de energa primaria que utilizan para producir la energa mecnica necesaria para

    generar electricidad:

    Centrales hidroelctricas: el agua de una

    corriente natural o atificial, por el efecto de un

    desnivel, acta sobre las palas de una turbina

    hidrulica.

    Centrales trmicas convencionales: el

    combustible fsil (carbn, fueloil o gas) es

    quemado en una caldera para generar energa

    calorfica que se aprovecha para generar vapor

    de agua. Este vapor (a alta presin) acciona las

    palas de una turbina de vapor, transformando la

    energa calorfica en energa mecnica.

    Centrales trmicas de ciclo combinado: combina

    dos ciclos termodinmicos. En el primero se

    produce la combustin de gas natural en una turbina de gas, y en el segundo, se aprovecha el

    calor residual de los gases para generar vapor y

    expandirlo en una turbina de vapor.

    Centrales nucleares: la fisin de los tomos de

    uranio libera una gran cantidad de energa que se

    utiliza para obtener vapor de agua que, a su vez, se utiliza en un grupo turbina-

    alternador para producir electricidad.

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina4

    7

    Centrales elicas: la energa cintica del viento se transforma directamente en energa

    mecnica rotatoria mediante un aerogenerador.

    Centrales termoelctricas solares: la energa del Sol calienta un fluido que transforma

    en vapor otro segundo fluido, que acciona la turbina-alternador que consigue el

    movimiento rotatorio y as, generar electricidad.

    Centrales de biomasa o de residuos slidos urbanos (RSU): utilizan el mismo

    esquema de generacin elctrica que una central trmica convencional. La nica

    diferencia es el combustible utilizado en la caldera, que proviene de nuestros residuos.

    Centrales trmicas convencionales

    1. Qu es una central trmica convencional?

    En las centrales trmicas convencionales (o termoelctricas convencionales) se produce

    electricidad a partir de combustibles fsiles como carbn, fueloil o gas natural, mediante

    un ciclo termodinmico de agua-vapor. El trmino convencionales sirve para diferenciarlas de otras centrales trmicas, como las nucleares o las de ciclo combinado.

    2. Componentes principales de una central trmica

    convencional

    Caldera. En este espacio el agua se

    transforma en vapor, cambiando su estado.

    Esta accin se produce gracias a la

    combustin del gas natural (o cualquier

    otro combustible fsil que pueda utilizar la

    central), con la que se generan gases a muy

    alta temperatura que al entrar en contacto con

    el agua lquida la convierten en vapor.

    El agua que se transforma en vapor circula por unas

    caeras llamadas serpentines, donde se produce el

    intercambio de calor entre los gases de la combustin

    y el agua.

    Turbina de vapor. Mquina que recoge el

    vapor de agua y que, gracias a un complejo

    sistema de presiones y temperaturas,

    consigue que se mueva el eje que la

    atraviesa. Esta turbina normalmente tiene

    varios cuerpos, de alta, media y baja presin, para aprovechar al mximo el vapor

    de agua.

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina4

    8

    El eje que atraviesa los diferentes cuerpos est conectado con el generador.

    Generador. Mquina que recoge la energa mecnica generada en el eje que atraviesa

    la turbina y la transforma en elctrica mediante induccin electromagntica. Las

    centrales elctricas transforman la energa mecnica del eje en una corriente

    elctrica trifsica y alterna.

    3. Funcionamiento de una central trmica convencional

    El funcionamiento de las centrales termoelctricas convencionales es el mismo

    independientemente del combustible que se utilice.

    Sin embargo, s hay diferencias en el tratamiento previo que se hace al combustible y del

    diseo de los quemadores de las calderas de las centrales.

    Centrales de carbn. Donde el combustible debe ser triturado previamente.

    Centrales de fueloil. Donde el combustible se calienta para una utilizacin ms fcil.

    Centrales de gas natural. Que no precisa almacenaje, llegando as directamente por

    gaseoductos.

    Centrales mixtas. Que pueden utilizar diferentes combustibles, siendo necesarios los

    tratamientos previos anteriormente citados.

    Una vez el combustible est en la caldera, se quema. Esto provoca que se produzca energa

    calorfica que se utilizar para calentar agua y as transformarla en vapor a una presin muy

    elevada.

    A partir de este vapor se hace girar una turbina y un alternador para que este produzca

    electricidad.

    La electricidad generada pasa por un transformador para aumentar su tensin y as

    transportarla reduciendo las prdidas por Efecto Joule.

    El vapor que sale de la turbina se enva a un elemento llamado condensador para convertirlo

    en agua y as retornarlo a la caldera para empezar un nuevo ciclo de produccin de vapor.

    En el siguiente juego interactivo puedes conocer de una manera ms grfica el

    funcionamiento de una central trmica convencional.

    4. Impactos medioambientales de las centrales trmicas

    convencionales

  • UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERIA ESCUELA MECNICA ELCTRICA INGENIERA ELECTRICA 2

    Catedrtico: Ing. Otto Andrino PhD

    Pg

    ina4

    9

    La incidencia de este tipo de centrales sobre el medio ambiente se produce de dos maneras

    bsicas:

    Emisin de residuos a la atmsfera

    Este tipo de residuos provienen de la combustin de los combustibles fsiles que utilizan

    las centrales trmicas convencionales para funcionar y producir electricidad. Esta

    combustin genera partculas que van a parar a la atmsfera, pudiendo perjudicar el entorno

    del planeta.

    Por eso, las centrales trmicas convencionales disponen de chimeneas de gran altura que

    dispersan estas partculas y reducen, localmente, su influencia negativa en el aire.

    Adems, las centrales termoelctricas disponen de filtros de partculas que retienen una

    gran parte de estas, evitando que salgan al exterior.

    Transferencia trmica

    Algunas centrales trmicas (las denominadas de ciclo abierto) pueden provocar el

    calentamiento de las aguas del ro o del mar.

    Este tipo de impactos en el medio se solucionan con la utilizacin de sistemas de

    refrigeracin, cuya tarea principal es enfriar el agua a temperaturas parecidas a las normales

    para el medio ambiente y as evitar su calentamiento

    Centrales trmicas de ciclo combinado

    1. Qu es una central trmica de ciclo combinado?

    La central trmica de ciclo combinado es aquella donde se genera electricidad mediante la

    utilizacin conjunta de dos turbinas:

    Un turbogrupo de gas

    Un turbogrupo de vapor

    Es decir, para la transformacin de la energa del combustible en electricidad se superponen

    dos ciclos:

    El ciclo de Brayton (turbina de gas): toma el aire directamente de l