cálculo de el condensador en un intercambiador de calor

21
CÁLCULO DEl CONDENSADOR CONDENSADOR Los condensadores son los equipos encargados de transferir hacia fuera del ciclo de refrigeración el calor absorbido en el evaporador y en la etapa de compresión. Lo hacen condensando el vapor refrigerante desde el compresor. TIPOS DE CONDENSADORES Existen diversos tipos de condensadores y estos se clasifican dependiendo del arreglo, área de intercambio de calor, y de otras características. Algunos de estos condensadores son de tubo y coraza, doble tubo, compactos, entre otros. En este trabajo se estudiaron los condensadores de tubo y coraza, los cuales se pueden clasificar según su geometría y lugar donde se condensa el fluido, de la siguiente forma: Condensadores horizontales en la coraza. En este equipo el fluido que va a ser condensado circula por fuera de los tubos. No es apropiado para la condensación total. Tienen una alta caída de presión, sin embargo, la caída de presión puede controlarse utilizando diferentes tipos de carcasas, además el nivel de ensuciamiento se mantiene bajo. Condensadores verticales en la coraza. La condensación ocurre fuera de los tubos. Son poco usados como condensadores en el tope, en cambio son más usados como rehervidores. La coraza puede tener bafles. Entre las ventajas de este tipo de condensador, es que tiene bajo consumo de agua o fluido refrigerante y su mantenimiento no requiere detener el proceso. Condensadores horizontales en los tubos. La condensación es por dentro de los tubos. Típicas aplicaciones de este tipo de condensadores son los condensadores de aire y los condensadores-rehervidores horizontales. Por lo general se diseñan en un arreglo de un sólo paso de tubos, o tubo en U. Son muy poco usados en arreglos multipaso. Este tipo de condensador, es útil cuando se trata de fluidos, que causan problemas por ensuciamiento o corrosión. Condensadores verticales en los tubos (Flujo ascendente). La condensación es por dentro de los tubos. Es usado en los condensadores parciales, donde pequeñas cantidades de vapor ascienden mientras que el condensado desciende por gravedad. La principal desventaja ocurre cuando la velocidad del vapor ascendente impide el descenso del condensado. Condensadores verticales en los tubos (Flujo descendente). Este arreglo es popular en la industria química. Tienen un coeficiente de transferencia de calor más elevado que en la

Upload: etir-eugenio-mendoza

Post on 22-Jan-2018

4.024 views

Category:

Technology


2 download

TRANSCRIPT

Page 1: Cálculo de el condensador en un intercambiador de calor

CÁLCULO DEl

CONDENSADOR

CONDENSADOR

Los condensadores son los equipos encargados de transferir hacia fuera del ciclo de refrigeración el calor absorbido en el evaporador y en la etapa de compresión. Lo hacen

condensando el vapor refrigerante desde el compresor. TIPOS DE CONDENSADORES

Existen diversos tipos de condensadores y estos se clasifican dependiendo del

arreglo, área de intercambio de calor, y de otras características. Algunos de estos condensadores son de tubo y coraza, doble tubo, compactos, entre otros. En este trabajo se estudiaron los condensadores de tubo y coraza, los cuales se pueden clasificar según su

geometría y lugar donde se condensa el fluido, de la siguiente forma:

Condensadores horizontales en la coraza. En este equipo el fluido que va a ser condensado circula por fuera de los tubos. No es apropiado para la condensación total. Tienen una alta caída de presión, sin embargo, la caída de presión puede controlarse utilizando diferentes

tipos de carcasas, además el nivel de ensuciamiento se mantiene bajo.

Condensadores verticales en la coraza. La condensación ocurre fuera de los tubos. Son poco usados como condensadores en el tope, en cambio son más usados como rehervidores. La coraza puede tener bafles. Entre las ventajas de este tipo de condensador, es que tiene

bajo consumo de agua o fluido refrigerante y su mantenimiento no requiere detener el proceso.

Condensadores horizontales en los tubos. La condensación es por dentro de los tubos. Típicas aplicaciones de este tipo de condensadores son los condensadores de aire y los

condensadores-rehervidores horizontales. Por lo general se diseñan en un arreglo de un sólo paso de tubos, o tubo en U. Son muy poco usados en arreglos multipaso. Este tipo de

condensador, es útil cuando se trata de fluidos, que causan problemas por ensuciamiento o corrosión. Condensadores verticales en los tubos (Flujo ascendente). La condensación es por dentro de

los tubos. Es usado en los condensadores parciales, donde pequeñas cantidades de vapor ascienden mientras que el condensado desciende por gravedad. La principal desventaja

ocurre cuando la velocidad del vapor ascendente impide el descenso del condensado. Condensadores verticales en los tubos (Flujo descendente). Este arreglo es popular en la

industria química. Tienen un coeficiente de transferencia de calor más elevado que en la

Page 2: Cálculo de el condensador en un intercambiador de calor

condensación fuera de los tubos. Presentan ventajas en el caso de mezclas

multicomponentes, si la caída de presión se encuentra entre los límites establecidos.

MÉTODO DE CÁLCULO

Para el cálculo del diseño de los condensadores se sugiere la siguiente metodología de cálculo:

1. Especificar las condiciones operacionales del condensador (datos de entrada)

2. Seleccionar el tipo de condensador

3. Seleccionar el fluido refrigerante 4. Determinar la carga de calor que debe ser retirada en el condensador

5. Calcular la diferencia de temperatura (ΔT)

6. Calcular el área del condensador, evaluando el coeficiente global de transferencia de calor

7. Verificar que se satisfacen las condiciones operacionales establecidas (caída de presión,

esbeltez, entre otras)

En la Fig. 2, se presenta un flujograma con esta metodología de diseño para un

condensador.

Page 3: Cálculo de el condensador en un intercambiador de calor

Especificación de las condiciones operacionales (datos de entrada). Antes de iniciar los cálculos para el diseño del condensador, se debe tener el problema referente al destilado

Page 4: Cálculo de el condensador en un intercambiador de calor

bien definido, es decir, se deben conocer las composiciones de los productos que salen por

el tope y la presión de operación de la columna. En general, la caída de presión en el condensador es despreciable, y se trabaja a la misma presión de la torre.

Selección del tipo de condensador. Existen diversos factores que influyen en la selección del condensador, como lo son la temperatura, la presión, entre otros. Es importante

considerarlos, para determinar, si la condensación se realizará por dentro o por fuera de los tubos, en el caso del condensador de tubos y coraza. Para las tablas de selección se tomó

como referencia el trabajo de Odreman (2000) y Kister (1992). En la Tabla 1, se presentan los parámetros para seleccionar el equipo según las condiciones de operación; tanto para condensación total como parcial.

Otro factor importante en la selección de un condensador es la orientación (vertical

u horizontal). En las Tablas 2 y 3 se presentan una serie de recomendaciones para realizar

una elección apropiada cuando se trata de un condensador total. En las Tablas 4 y 5 se muestra la misma información, pero en este caso para un condenador parcial o mixto.

Page 5: Cálculo de el condensador en un intercambiador de calor
Page 6: Cálculo de el condensador en un intercambiador de calor

Determinación de la carga de calor. Para estimar el calor necesario, se utiliza un balance de

energía:

Q = msHs – meHe (1)

En el condensador no hay acumulación de masa por lo tanto el flujo másico que

entra es igual al que sale, y la ecuación queda reducida de la siguiente forma:

Page 7: Cálculo de el condensador en un intercambiador de calor

Q =m(Hs – He ) (2)

Las entalpías de entrada y salida de la mezcla se obtienen mediante el siguiente

cálculo de la entalpía para mezclas.

H(T, P, xi) = xiHoi(Toi ,P) + xiCpidT + H(T, P, xi)) (3)

Donde la entalpía de mezclado (ΔH ) de los componentes presentes en la destilación, puede aproximarse a cero (ΔH=0) en el caso de hidrocarburos, ya que por lo

general estas mezclas no se alejan del comportamiento ideal. Según Van Ness (1997), el comportamiento de una solución ideal se aproxima al de una solución que comprende moléculas no muy diferentes en tamaño y de la misma naturaleza química.

Selección del fluido refrigerante. En muchos casos se sugiere el uso de agua, debido a que

es un medio de fácil obtención y con una gran capacidad calorífica. Generalmente en la industria petroquímica es el medio refrigerante más utilizado. En este caso, la mezcla se va a condensar desde su punto de rocío (tope de la columna) hasta su punto de burbuja (salida

del condensador), sin llegar a ser subenfriada. Como la temperatura de operación del agua, es mayor que la temperatura en el punto de burbuja y de rocío de los componentes con que

se va a trabajar (hidrocarburos livianos), entonces el agua es buen medio refrigerante.

En el caso de mezclas de hidrocarburos muy livianos (metano, etano), se sugiere

utilizar otro fluido refrigerante o agua fría si se trabaja a bajas presiones; pues la temperatura en el punto de burbuja y rocío de las mezclas de este tipo de compuestos, es

más baja que la temperatura de operación del agua a esta presión. Por esta razón, en las columnas de destilación se trabaja normalmente a presiones altas.

Cálculo de la variación de temperatura (ΔT). La variación de la temperatura del producto de destilación a lo largo del condensador no es constante. Por esta razón se plantean diferentes

formas de estimar la variación de la temperatura durante el proceso. Para obtener la temperatura de la mezcla a lo largo del condensador, se calcula la

temperatura de equilibrio para diferentes fracciones vaporizadas, desde cero (entrada como vapor saturado) hasta uno (salida como líquido saturado), utilizando la ecuación de

Rachford-Rice y la ley de Raoult como modelo termodinámico. La temperatura del agua se resuelve dividiendo el condensador en secciones intermedias y resolviendo el

balance de energía para el agua.

Un buen método para estimar la diferencia de temperaturas es calculando

numéricamente el área entre la curva de temperatura del agua y de la mezcla. Para esto se divide la curva en varios segmentos y se calcula el área para cada una de las divisiones, finalmente el área total es la suma de todas las áreas calculadas. En la Fig. 3, se muestra

una curva de la diferencia de temperaturas entre una mezcla de hidrocarburos (etano, propano, butano e isobutano) como fluidos condensantes y agua como fluido refrigerante.

Page 8: Cálculo de el condensador en un intercambiador de calor

Figura 3. Variación de temperatura en una mezcla de hidrocarburos

Otra buena manera de estimar esta variación, es dividir la curva de temperatura en varios segmentos y calcular la diferencia de temperatura, en cada segmento por aproximación logarítmica. Los resultados obtenidos, serán más exactos en la medida que se

aumente el número de segmentos en los que se divide la curva.

Finalmente, un último método para estimar la diferencia de temperatura es a través de una aproximación media logarítmica entre los valores de la temperatura a la entrada y la salida del condensador; pero esta aproximación sólo es valida si el fluido está en una sola

fase. Si el condensador está trabajando en contracorriente, esta aproximación se puede calcular mediante la siguiente relación, que depende únicamente de las temperaturas de

entrada y salida del condensador.

TLMTD =

cb

sr

cbsr

TT

TT

TTTT

ln

)()(

Donde Tr y Tb son la temperatura de rocío y de burbuja de la mezcla

respectivamente. Ts y Te son la temperatura de entrada y de salida del agua.

Esta relación también es válida para calcular la diferencia de temperatura en cada segmento, si se prefiere dividir la curva de temperatura. El cálculo de la variación de temperatura que proporciona los resultados más precisos, es el primero, a través de un

Page 9: Cálculo de el condensador en un intercambiador de calor

método integral, y se mejora la exactitud al aumentar el número de divisiones. La

aproximación logarítmica entre la entrada y la salida es un método de fácil aplicación pero los resultados son deficientes, ya que en la mayoría de los casos de condensación de

hidrocarburos no se puede suponer que la curva de temperatura se comporta como una función logarítmica. Las diferencias de exactitud entre los métodos empleados dependerán en gran medida de las composiciones de las sustancias presentes en la mezcla. En la Fig. 3,

se observa que ambas curvas se alejan del comportamiento logarítmico, por lo tanto una aproximación logarítmica da resultados imprecisos.

En la Tabla 6, se presenta la diferencia de temperaturas para cuatro compuestos

(etano, propano, n-butano e isobutano), en diferentes proporciones. Se muestra la

desviación entre la temperatura calculada con el método integral (real), y la calculada con el método de la aproximación logarítmica entre la entrada y la salida del condensador. El

error en el cálculo por ambos métodos, aumenta conforme disminuyen las composiciones de los componentes más livianos.

En los condensadores de tubo y coraza el arreglo no es en contracorriente neto, por lo tanto se debe realizar una corrección a partir de las temperaturas de entrada y de salida

de ambos fluidos al condensador. El factor de corrección f se obtiene de la literatura y es diferente para cada arreglo del condensador.

Cálculo del valor del coeficiente global de transferencia de calor (U) y del área de transferencia de calor (A). Para el cálculo del coeficiente global de transferencia de calor, se

utiliza la siguiente relación:

U

1=

ii Ah

1+

i

if

A

R ,+

PIhL

DD

i

2

ln 0

+0

,

A

R of+

00

1

Ah (5)

Para los cálculos de U la resistencia a la transferencia de calor debido a la

conductividad térmica de la tubería es muy pequeña y por esta razón se considera

despreciable.

Page 10: Cálculo de el condensador en un intercambiador de calor

Tabla 6. Desviación entre la diferencia de temperatura calculada por dos métodos diferentes

El coeficiente convectivo (h) se calcula con distintas correlaciones obtenidas de la literatura, según los diferentes casos planteados: Condensador horizontal o vertical,

condensación por dentro o por fuera de los tubos, condensación por convección forzada, entre otros.

Para condensación horizontal por la coraza, Mueller (1983) plantea la siguiente correlación para calcular el coeficiente convectivo:

Nu =

41

3

)(

)(27.0

TwTsatKl

gHgllD fg

(6)

Una correlación para condensación horizontal fuera de los tubos también fue propuesta por, Taborek (1974):

Nu = 0.3Re0.6 Pr0.4g

l

(7)

Una correlación que depende de la calidad, para condensación por convección

forzada por dentro de los tubos, tanto horizontales como verticales fue propuesta por,

Rohsenow y Baron (1973). Esta correlación es para Reg>35000 y flujo anular.

Page 11: Cálculo de el condensador en un intercambiador de calor

Nu =

476.0

9.085.21RePr015.0

XXF

l l (8)

donde X es el parámetro de Martinelli,

X =

5.09.01.0

1

l

g

x

x

g

l

(9)

F representa la resistencia térmica de la película anular,

F = 5Prl + 5ln(1 + 5Prl) + 2.5ln(0.0031Re0.812f ) (10)

el Reynolds se debe calcular para cada fase:

Rel =l

DxG

)1( (11)

Reg =g

GxD

(12)

donde G se define como el gasto másico,

G = A

mm fg (13)

En este último caso, cuando las correlaciones dependen de la calidad, los resultados

que se obtienen son más precisos, pero requieren una estrategia de cálculo un poco

laboriosa, porque todas las propiedades de la mezcla varían a lo largo del condensador, conforme se va incrementando la calidad. Es posible calcular las propiedades de la mezcla

en diferentes puntos a lo largo del intercambiador, calcular el área en estos puntos y finalmente, realizar la suma de total de las áreas para obtener el área total del intercambiador.

Para el cálculo del coeficiente convectivo del fluido refrigerante se utilizara

cualquier correlación nombrada en la literatura para fluidos sin cambios de fase.

Page 12: Cálculo de el condensador en un intercambiador de calor

Como se puede observar en la Ec. (5), el coeficiente global de transferencia de calor depende del coeficiente convectivo (h), y de los diámetros (D), del intercambiador de calor,

y por ende del diámetro tanto interno como externo de los tubos que lo conforman. De igual forma, también depende del coeficiente convectivo (h), que a su vez, es también función del diámetro de los tubos. Si el objetivo final es realizar un cálculo de diseño, como lo es el

caso en cuestión, no es posible calcular el coeficiente de transferencia (U), si no se conocen previamente las dimensiones del equipo. Por esta razón es necesario seguir un

procedimiento iterativo que se explica a continuación. Primero es necesario buscar en la bibliografía un coeficiente global de transferencia

de calor (referencia). Este coeficiente depende del tipo de fluido frío que se va a utilizar y del fluido que se quiere condensar.

Un segundo paso, es calcular el área de transferencia de calor del intercambiador a

través de la siguiente ecuación, utilizando el coeficiente de transferencia obtenido

previamente:

A =TU

Q

(14)

Donde el calor (Q) y la variación de la temperatura (ΔT) se han calculado

previamente.

Basándose en el área obtenida con la Ec. (14), y los diámetros nominales disponibles, se decide un arreglo de condensador, se recalcula el coeficiente global de

transferencia de calor y el área de transferencia para verificar que el arreglo escogido

cumpla con los requerimientos del diseño.

Para obtener los coeficientes convectivos es necesario un método de cálculo iterativo, debido a que las correlaciones involucran el valor de la temperatura en la superficie del tubo, y este parámetro es desconocido.

Primero se debe suponer una Tw, el primer estimado es un promedio entre las

temperaturas promedio de los fluidos.

Tw = 2

mezclaagua TT (15)

Se desprecia la resistencia del tubo y se asume que la temperatura de superficie

interna del tubo es igual a la temperatura de su superficie externa, para simplificar los

Page 13: Cálculo de el condensador en un intercambiador de calor

cálculos. Una vez conocida esta temperatura se puede estimar el coeficiente convectivo de

la mezcla de hidrocarburos, la viscosidad del agua y calcular su coeficiente convectivo .

Para cerrar el tanteo, se recalcula la Tw por medio de la ecuación de convección para el fluido:

Q = haguaA(Tw – Tagua) (16)

Si la nueva temperatura de superficie es distinta a la supuesta se realizan todos los

pasos previos, hasta que este valor se estabilice.

Verificación de las condiciones de operación. Una vez finalizado el diseño del

condensador, es importante verificar, que en efecto, la caída de presión a lo largo del equipo esta en el rango permitido, según Kern (1974) la caída de presión en una columna de destilación no debe ser mayor que 5 psi. De no cumplirse esta condición será necesario

reanudar los cálculos para un nuevo tipo de condensador o un nuevo arreglo del mismo tipo de condensador. Generalmente, las variaciones que se realizan en esta última fase, son

referentes a las propiedades del equipo, (número de pasos de los tubos o de corazas, número de tubos, diámetro nominal de los tubos, diámetro de la coraza, entre otros). Kern (1974) propuso una serie de ecuaciones para el cálculo de la caída de presión dentro y fuera

de los tubos.

Para verificar la caída de presión cuando la condensación es fuera de los tubos, se puede utilizar la siguiente relación.

Pc = c

c

D

NDfV

2

)1(4 2 (17)

donde N+1 es el número de veces que el haz cruza. Si la condensación es por dentro de los tubos, sin cambio de fase se recomienda

utilizar la ecuación:

Pt= 4fDe

LNpV 2

(18)

Si dentro de los tubos hay cambio de fase, entonces se debe utilizar la relación

siguiente

Pt = n

gn

fn PP

11

(19)

Page 14: Cálculo de el condensador en un intercambiador de calor

donde n=4 cuando ambas fases presentan flujo turbulento, o 3,5 cuando una o ambas fases están en régimen laminar.

Para la caída de presión tanto en la fase líquida, como en la fase vapor se tiene:

Pf =4fDi

lLNpV 2

(20)

Pg =4fDi

lLNpV 2

(21)

Al evaluar los parámetros de diseño, se puede decir que la diferencia de temperatura

no debe ser calculada por aproximación logarítmica, debido a que la curva de temperatura

del fluido condensado no presenta una forma de este tipo. El coeficiente convectivo de la mezcla que se condensa, depende en gran parte de la calidad, y varía punto a punto a lo

largo de la tubería, por esta razón es necesario considerar las correlaciones apropiadas dependiendo de si la condensación ocurre dentro o fuera de los tubos. En este último caso las correlaciones no toman este parámetro en cuenta directamente, pero si de forma

intrínseca ya que estas correlaciones involucran las propiedades tanto del líquido como del vapor y estas depende de la calidad.El fluido refrigerante más usado en el diseño de

intercambiadores es el agua, debido a su facilidad de obtención. NOMENCLATURA

A Área transversal

Cp Calor específico D Diámetro f Factor de fricción

H Entalpía por unidad de materia K Coeficiente de conductividad térmica

L Longitud del condensador m Flujo másico N Número

Nu Número de Nusselt

Page 15: Cálculo de el condensador en un intercambiador de calor

P Presión

Pr Número de Prandalt Q Calor

R Factor de ensuciamiento Re Número de Reynolds T Temperatura

U Coeficiente global de transferencia de calor V Velocidad de flujo

x Fracción molar, calidad Griegas

Δ Diferencia µ Viscosidad dinámica

ρ densidad Subíndices

b Burbuja c En la coraza

e Entrada g Fase vapor i Interno

L Fase líquida LMTD Diferencia de temperatura media logarítmica

o Externo 0 Estado de referencia p Pasos de tubos

r Rocío s Salida

t En los tubos sat Valor de saturación w Valor en la pared

INFLUENCIA DE LAS IMPUREZAS EN LA CONDENSACIÓN

En las operaciones de destilación el componente volátil es siempre separado

únicamente de manera parcial de los componentes menos volátiles y el producto de la parte superior de la torre nunca es 100% puro. Así, puede contener desde una traza a una

concentración sustancial de los componentes mas pesados, y no se condensa isotérmicamente excepto cuando el producto de la destilación en la parte superior es una mezcla de punto de ebullición constante o una mezcla formada por dos líquidos

inmiscibles. Cuando el rango de temperatura en la que la condensación de la mezcla tiene lugar es pequeño, muchas veces que no exceda de 10 a 20º F, puede tratarse como un

componente puro siendo la LMTD la diferencia verdadera de temperatura para condensadores 1-1 o Ft * LMTD para condensadores 1-2.

El uso de la LMTD convencional en cualquier caso supone que la carga de calor

Page 16: Cálculo de el condensador en un intercambiador de calor

eliminada del vapor por grado de disminución en la temperatura es uniforme.

Particularmente cuando se involucran acercamientos reducidos a la temperatura del medio enfriante, esto puede conducir a serios errores. Para la mayoría de los servicios la

suposición anterior no causa serios errores. Otro tipo de impureza que origina desviaciones de la condensación exotérmica, es la

presencia de trazas de gases no condensables tales como el aire mezclados con el vapor. Un gas no condensable es en realidad un gas sobrecalentado que no es enfriado a su

temperatura de saturación, mientras que el vapor mismo es condensado. Un ejemplo común es la presencia de aire en la condensación de vapor de agua. La

presencia de únicamente 1% de aire por volumen, puede causar una reducción en el coeficiente de condensación del vapor de agua de 50%. El mecanismo de condensación se

transforma a uno de difusión del vapor a través del aire, sirviendo este ultimo como resistencia a la transferencia del calor. Bajo condiciones de presiones superatmosféricas hay poco peligro de que el aire pueda entrar en el sistema excepto por la pequeñas cantidades

que puedan disolverse en el alimento antes de que éste se vaporice. En las operaciones al vacío la posibilidad de la entrada de aire al sistema requiere que se tome providencias para

su eliminación continua. COMPARACIÓN ENTRE CONDENSACIÓN HORIZONTAL Y VERTICAL

El valor del coeficiente de película de condensación para una cantidad dada de

vapor en superficie establecida, es afectado significativamente por la posición del condensado. En un tubo vertical cerca del 60% del vapor se condensa en la mitad superior del tubo. Para un tubo de 16 pulgadas de largo y ¾ de plg. De DE el coeficiente horizontal

seria 3.07 veces más grande que el coeficiente vertical, siempre y cuando el flujo de la película de condensando este en régimen laminar. Ordinariamente, sin embargo, la ventaja

no es tan grande a debido a otras modificaciones que prevalecen, tales como las regiones de transición entre el flujo laminar y turbulento de la película de condensado.

Cuando se emplea un condensador en una columna de destilación, deben tomarse en cuenta factores específicos como por ejemplo el reflujo. El mantenimiento y el soporte

estructural para el condensador vertical pueden ser costosos y considerablemente más difíciles. Por otra parte, si se desea no solamente condensar el vapor sino al mismo tiempo enfriar el condensado, el condensador vertical es admirablemente adecuado. Subenfriar es

la operación de enfriar el condensado bajo su temperatura de saturación, y esto se hace frecuentemente cuando el producto de la destilación es un líquido volátil que debe

almacenarse. Subenfriandolo es posible evitar grandes pérdidas por evaporación durante el almacenaje inicial. La combinación de condensación y subenfriamiento en una sola unidad elimina la necesidad para un enfriador separado.

RESOLUCIÓN

El condensador que he elegido es de condensación por la coraza y horizontal ya que

como hemos visto en las tablas anteriores este tipo es bueno para vapores simples y para

Page 17: Cálculo de el condensador en un intercambiador de calor

baja caída de presión. Por dentro de los tubos circula el agua de refrigeración y por el

exterior de la coraza el DME.

La expresión del balance de energía es el siguiente:

V*λDME = Q (solamente considero que hay DME en el condensador)

λDME = C1*(1-Tr)C2+C3*Tr+C4*Tr*Tr

donde:

C1 = 2.994*107

C2 = 0.3505

C3 = 0 C4 = 0 Tr =T/Tcrítica =319.0838 / 400.1 = 0.7975

Tcrítica = 400.1 K

Por lo tanto λDME = 17105909.06 J /Kmol. La cantidad de vapor es V = 197.885 Kmol/h.

Una vez que ya tenemos estos datos pedo calcular la cantidad de calor, que es:

Q=3385002,814 kJ/h

Para poder calcular la LMTD:

Fluido Caliente Fluido Frío Diferencia

319.0838 K Alta temp. 313 K 6.0838

319.0838 K Baja temp. 288 K 31.0838

0 Diferencias 25 25

El intercambiador está en contracorriente verdadera, puesto que el fluido del lado de la coraza es isotérmico.

LMTD = Δt1- Δt2/(ln (Δt1/ Δt2)) = 36,2919

Supongo un coeficiente global de intercambio de 100 (BTU/ft2 h F).

Page 18: Cálculo de el condensador en un intercambiador de calor

una vez que he conseguido el valor de U (de la tabla), puedo calcular el área de intercambio

con: Q = U A LMTD

De manera que A = 45.63 m2 = 491.157 ft2.

Con el área de intercambio, la longitud de los tubos y la superficie por pie lineal –sacada de la tabla - puedo saber el número de tubos:

Número de tubos = área / (longitud del tubo * superficie por pie lin.)

Numero de tubos =118, si miro el las tablas el valor que más se aproxima es 131 tubos.

La configuración que he elegido es:

CORAZA TUBOS DI = 17 1/4 ’’ ARREGLO TRIANGULAR 1 plg.

PASOS = 1 Nº TUBOS = 131 ESPACIO DEFLECTORES = 31’’ LONGITUD =16’’

PASOS = 1 DE = 1 ‘’ BWG = 8

a’t = 0.355 plg2

La condensación es por la coraza ya que por el interior de los tubos circula el agua

fría y por el exterior de los tubos circula el DME.

Empezando a hacer los cálculos de la coraza:

La velocidad lineal y de mesa del fluido cambia continuamente a través del haz de

tubos, ya que el ancho de la coraza y el número de tubos varía de cero en la parte superior y

Page 19: Cálculo de el condensador en un intercambiador de calor

en el fondo a un máximo en el centro de la coraza. La longitud del área de flujo se tomo

igual al espaciado de los deflectores B. el paso de los tubos es la suma del diámetro del tubo y el claro C’. si el diámetro interior de la coraza se divide por el paso del tubo, se

obtiene un numero ficticio, pero no necesariamente entero de tubos que debe superponerse en el centro de la coraza. Actualmente en muchas distribuciones no hay hileras de tubos en el centro de la coraza, sino que en su lugar existen dos hileras con máximas en ambos

lados de la línea media y que tienen algunos tubos más que los computados para el centro. Estas desviaciones se desprecian. Para cada tubo o fracción se considera que hay C’ * 1

plg2 de área transversal de flujo por pulgada de espacio de deflector. El área transversal de flujo para el lado de la coraza as esta dada por:

as = ID*C’*B/(144 * PT) = 17.25*0.1875*31/(144*1) = 0,696289063 ft2

y la masa velocidad es:

Gs = W/ as = 20068 lb/h / 0,696289063 ft2 = 28821,36325 lb / h ft2

W es la cantidad de DME por unidad de tiempo que pasa por el intercambiador, para obtenerla simplemente paso los 197.885 kmol/h a kg/h multiplicando por el peso

molecular (46).

En los haces con tubos horizontales se ha encontrado que la salpicadura de los condensados a medida que éstos gotean el las hileras sucesivas de los tubos, origina que G’’ (carga para tubo horizontal) sea casi inversamente proporcional a N t 2/3 en lugar de a Nt, de

manera que es preferible usa un valor ficticio para los tubos horizontales:

G’’= W / L * NT2/3 = 20068/ 1,33333*1312/3 = 583,5152953 lb/ h pie lin.

El área de flujo por tubo se obtiene de la tabla -0.355’’ - pudiendo así calcular el

área de flujo:

at = Nt * at/(144*n) = 131*0.355/(144*1) = 0,32295139 ft2

la masa velocidad es:

Gt = w/at = 71293,5 / 0.32295139 = 220756,134 lb/ h pie2

w es el flujo de agua, para obtener este valor utilizo la siguiente expresión:

Q = m Cp ΔT

Donde m es lo que quiero calcular, Cp es la capacidad calorifica del agua (1 cal/g ºC) y ΔT es la diferencia entre la temperatura de salida y de entrada, la temperatura de entrada es de 288K y la de salida es de 313 K (40ºC) ya que esta temperatura es la máxima

que se puede conseguir en una condensación.

Page 20: Cálculo de el condensador en un intercambiador de calor

La velocidad que lleva el fluido frío es de:

V = Gt / (3600* ρ) = 220756.134 / (36000*62.42) = 0.9823 pps

Este valor es practicamente la unidad por lo que coincidiría con el eje de ordenadas

de la gráfica. La temperatura promedio del fluido frío es ta = 58.73 ºF, con esta temperatura

podemos saber la viscosidad del fluido frío que es de 2,41909 lb / pie h. El diámetro de los tubos es de 1 `` y el diámetro interior es de 0.67’’ que pasados a ft2 son 0.67/12 = 0,05583333, todos estos datos me sirven para poder calcular el numero de Reynolds:

ReT = D* Gt / μ = 0.05583 * 220756,134 / 2,41909 = 5095,11874

Con la figura que se presenta en el anexo puedo calcular hi (coeficiente de transferencia de calor del fluido interior) que es igual a 256.5 y con este dato puedo calcular hi0 (valor de hi

cuando se refiere al diámetro exterior del tubo): hi0 = hi *ID/OD = 256.5* 0.67/1 = 171.885 btu/h pie2 ºF.

La gráfica de la que se obtiene este valor es para BWG 16 y como en mi caso es 8

hay que multiplicar por un factor que se obtiene de la gráfica de arriba, que en este caso es

de 0.95.

Para poder calcular U necesito saber h0 para ello primero la supongo (elijo un valor de 2750 btu/h pie2 (º/pie)) y calculo la temperatura de la pared del tubo, una vez que la he calculado puedo saber la temperatura de la película. La temperatura de la pared del tubo

puede ser computada a partir de las temperaturas calóricas cuando tanto hi como ho son conocidas, es costumbre despreciar la diferencia de temperatura a través del metal del tubo

tw-tp y se considera que el tubo en su totalidad está a la temperatura de la superficie externa de la pared tw.

Tw =ta + ho/(hio+ho)*(Tv-ta)

Donde: Ta= 58.73 (temperatura promedio del fluido frío)

Tv = 114.681ºF (temperatura promedio del fluido caliente) Tw = 111,3901252 ºF

Bien, ahora ya puedo calcular la temperatura de la película:

Tf = (Tv+ Tw) / 2 = 113,0355626 ºF

La conductividad térmica de la película es de 0,07569 btu/h pie2 (º/pie), la gravedad especifica es de 0.79 y la viscosidad es μ = 0.55 cp, sustituyendo estos datos en la siguiente ecuación:

Page 21: Cálculo de el condensador en un intercambiador de calor

h0 = 3100/(D01/4 * Δtf1/3) = 2821,646398 btu/h pie2 (º/pie)

siendo Δtf = (tv – tw) /2 = 1,64543742 ºF.

Como el valor supuesto y el calculado no se alejan excesivamente doy mi suposición como buena ya que la diferencia no es muy grande, y ya puedo calcular el

verdadero valor de U, en el caso de que la diferencia no hubiera sido despreciable busco un nuevo valor de tw.

A continuación recalculo Ureal con:

Ureal = h0 * hi / (h0 + hi) = 161.9 (btu /ft2 h F)

Se aproxima al que yo supuse inicialmente (100) por lo tanto lo doy por válido y la configuración escogida es la adecuada.