area de figuras planas calculo integral aplicaciones

Upload: ernestosand

Post on 03-Apr-2018

265 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    1/71

    CAPITULO XI.

    APLICACIONES DE LA

    INTEGRAL DEFINIDA

    SECCIONES

    A. Areas de figuras planas.

    B. Calculo de volumenes.

    C. Longitud de curvas planas.

    D. Ejercicios propuestos.

    37

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    2/71

    A. AREAS DE FIGURAS PLANAS.

    En Geometra Elemental se conocen las formulas para hallar el area de cual-quier region limitada por una poligonal cerrada. Ahora bien, si una regi onesta limitada por alguna lnea curva, como es el crculo, el area se expresacomo un lmite de las areas de poligonales proximas. El procedimientodescrito en el captulo anterior para definir el concepto de integral de unafuncion consiste precisamente en aproximar la funcion por funciones esca-lonadas; si consideramos una funcion y = f(x) no negativa en un intervalo[a, b], la integral inferior es el lmite de la suma de las areas de los rectangu-los inscritos en la region limitada por la curva y = f(x), el eje OX y las

    rectas x = a y x = b, y la integral superior es el lmite de las areas de losrectangulos circunscritos a dicha region. De este modo podemos definir elarea de dicha region como la integral de la funcion f en el intervalo [a, b].En general,

    Dada una funcion y = f(x) integrable en un intervalo [a, b], el area de laregion limitada por la funcion, el ejeOX y las rectas x = a y x = b se definecomo

    A =

    ba|f(x)| dx.

    Observacion: El valor absoluto de la funcion es debido a que en los inter-valos donde la funcion es negativa, la integral tambien es negativa y su valores opuesto al del area correspondiente.

    En la practica, para eliminar el valor absoluto en el integrando, debemosdeterminar los intervalos de [a, b] donde la funcion es positiva o negativa ydescomponer la integral en suma de integrales correspondientes a cada unode los intervalos indicados colocando el signo adecuado. As, en la figuraadjunta, el area se expresa como

    A =

    ra

    f(x) dx sr

    f(x) dx +

    bs

    f(x) dx.

    38

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    3/71

    En particular, si la funcion esta expresada en forma parametrica x = x(t), y =

    y(t), el area viene expresada como

    A =

    ba

    y dx =

    t1t0

    y(t) x(t) dt,

    donde a = x(t0), b = x(t1).

    Regiones mas generales que las descritas son aquellas que estan limitadaspor dos funciones y = f(x), y = g(x) entre dos rectas verticales x = a yx = b. En este caso el area se expresa mediante la formula

    A =

    ba|f(x) g(x)| dx.

    En el ejemplo de la figura, el area se descompone como:

    A =

    ra

    [g(x) f(x)] dx +sr

    [f(x) g(x)] dx +bs

    [g(x) f(x)] dx.

    Si la region esta limitada por dos curvas y = f(x), y = g(x) entre dosrectas horizontales y = c e y = d, consideramos las funciones inversase integramos respecto a la variable y. E l area se expresa entonces como

    A =

    dc|f1(y) g1(y)| dy.

    En el ejemplo de la figura, dicha integral se descompone como

    A =

    rc

    [f1(y) g1(y)] dy +dr

    [g1(y) f1(y)] dy.

    39

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    4/71

    En los ejercicios que siguen veremos ejemplos de todas las situaciones plan-

    teadas. Al ser validas aqu todas las propiedades de las integrales obtenidasen el captulo anterior, aplicaremos siempre los teoremas fundamentales dela integral. Omitiremos en la mayora de los casos el calculo de las primi-tivas pues ya se han realizado en el captulo 7. Nos limitaremos a escribirel resultado de dicha primitiva y a indicar las sustituciones en los extremosde integracion. S es muy conveniente tener una idea aproximada de la re-presentacion grafica de las funciones involucradas para conocer la posicionrelativa de las mismas y los intervalos de integracion. Es importante tam-bien observar las simetras de las figuras para as poder escribir formulasmas sencillas para el area de las mismas.

    PROBLEMA 11.1

    Calcular el area de la region limitada por la grafica de la funcionf y el eje X en el intervalo indicado:

    a) f(x) = |x| |x 1| en [1, 2].b) f(x) = x(ln x)2 en [1, e].

    c) f(x) = ex| sen x| en [0, 2].

    Solucion

    a) El area de la region (que es la parte sombreada de la figura) viene dada

    por la formula A =

    21

    |x| |x 1| dx.

    Teniendo en cuenta el signo de la funcion, la integral se descomponeas:

    A =

    01

    1 dx +0,50

    (2x 1) dx +10,5

    (2x 1) dx +21

    1 dx = 52

    .

    40

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    5/71

    b) La funcion y = x(ln x)2 es no negativa en el intervalo [1, e].

    El area es entonces, integrando por partes,

    A =

    e1

    x(ln x)2 dx =

    x2

    2 (ln x)2 x

    2

    2 ln x + x

    2

    4

    e1

    =e2 1

    4.

    c) Nuevamente la funcion es no negativa, por lo que A =

    20

    ex| sen x| dx.

    Para integrar descomponemos en dos sumandos y tenemos:

    A =

    20

    ex| sen x| dx =0

    ex sen x dx +2

    ex sen x dx

    =

    e

    x

    2(sen x + cos x)

    0

    +

    ex

    2(sen x + cos x)

    2

    =(e + 1)2

    2.

    PROBLEMA 11.2

    Hallar el area de la figura limitada por la funcion f(x) = x(x 1)(x 2) y el eje OX.

    Solucion

    Como la curva corta al eje OX en los puntos de abscisa x = 0, x = 1 y

    x = 2, el area viene dada por A =

    20|f(x)| dx.

    41

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    6/71

    Ahora bien, en el intervalo [0, 1] la curva queda por encima del eje X mientrasque en el intervalo [1, 2] queda por debajo del mismo. Tenemos pues

    A =

    10

    f(x) dx+

    21f(x) dx =

    10

    (x33x2+2x) dx21

    (x33x2+2x) dx = 12

    .

    PROBLEMA 11.3

    Hallar el area del menor de los sectores que la recta x = 3 deter-

    mina en la circunferencia de ecuacion x2 + y2 = 25.

    Solucion

    Teniendo en cuenta la simetra de la figura basta calcular el area de la regioncontenida en el primer cuadrante. Tenemos

    A = 2

    53

    25 x2 dx

    = 2

    x

    2

    25 x2 + 25

    2arc sen

    x

    5

    53

    =25

    2 12 25arcsen 3

    5.

    42

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    7/71

    PROBLEMA 11.4

    Hallar el area de la figura limitada por la recta x = 2a y la hiperbolax2

    a2 y

    2

    b2= 1.

    Solucion

    De acuerdo con la figura, el area se obtiene como

    A = 2

    2aa

    b

    (x/a)2 1 dx

    =

    bx

    a x2 a2 ab ln

    x +

    x2 a2a

    2aa

    = ab[2

    3 ln(2 +

    3)].

    PROBLEMA 11.5

    Hallar el area limitada por la curva y2 = x4(4 + x).

    Solucion

    Como la figura esta determinada por el intervalo x [4, 0] y es simetricarespecto al eje X, el area sera

    A = 2

    04

    x2

    4 + x dx =

    4(4 + x)3/2

    (4 + x)2

    7 8(4 + x)

    5+

    16

    3

    04

    =4096

    105.

    43

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    8/71

    PROBLEMA 11.6

    Hallar el area limitada por la curva x4 ax3 + b2y2 = 0.

    Solucion

    La curva esta definida cuando x [0, a] y es simetrica respecto a OX. Elarea viene dada por:

    A = 2

    a0

    x

    b

    ax x2 dx = (cambio (a/2)cos t = x a/2)

    =a3

    4b

    0

    sen2 t (1 + cos t) dt = a3

    4b

    t

    2 sen2t

    4+

    sen3 t

    3

    0

    =a3

    8b.

    PROBLEMA 11.7

    Hallar el area de la figura limitada por la curva (x/5)2 + (y/4)2/3 =1.

    Solucion

    El area de la figura, teniendo en cuenta sus simetras, es

    A = 4

    50

    4(1 x2/25)3/2 dx = (cambio x = 5 cos t) = 16/20

    5sen4 t dt

    = 20

    /20

    (1 cos2t)2 dt = 20

    3t

    2 sen2t + sen4t

    8

    /20

    = 15.

    44

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    9/71

    PROBLEMA 11.8

    Hallar el area limitada por la curva x = (y2 + x)2.

    Solucion

    En forma explcita, la ecuacion de la curva es y =

    x x. Como lagrafica es simetrica respecto al eje OX, el area viene dada por

    A = 2

    10

    x x dx = (cambio 1

    2x = sen t

    2)

    =1

    2 /2

    /2

    cos2 t (1 sen t) dt = 12

    t

    2+

    sen2t

    4+

    cos3 t

    3 /2

    /2

    =

    4.

    PROBLEMA 11.9

    Hallar el area encerrada por la curva y2 =x2

    a2(a2 x2).

    Solucion

    De acuerdo con la figura y gracias a la simetra, tenemos:

    A = 4

    a0

    x

    a

    a2 x2 dx = (cambio x = a sen t) = 4a2

    /20

    cos2 t sen t dt

    = 4a2cos

    3 t

    3

    /20

    =4a2

    3.

    45

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    10/71

    PROBLEMA 11.10

    Hallar el area de la figura limitada por la cardioide de ecuacionx(t) = a(2cos t cos2t), y(t) = a(2sen t sen2t).

    Solucion

    Como la figura es simetrica respecto al eje OX, el area viene dada por

    A = 2

    a3a

    y dx = 20

    y(t)x(t) dt

    = 20

    a(2sen t sen2t)2a(sen2t sen t) dt

    = 4a23t

    2+ 2 sen3 t +

    sen2t

    2+

    sen4t

    8

    0

    = 6a2.

    PROBLEMA 11.11

    Hallar el area comprendida entre un lazo de la cicloide x = a(t sen t), y = a(1 cos t) y el eje OX.

    Solucion

    2a

    Integrando respecto a la variable t, como un lazo de la cicloide se encuentraen el intervalo t [0, 2], resulta:

    A =

    2a0

    y(t) dx(t) =

    20

    a(1 cos t)a(1 cos t) dt

    = a2

    3t

    2 2sen t + sen2t

    4

    20

    = 3a2.

    46

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    11/71

    PROBLEMA 11.12

    Hallar el area encerrada por la astroide de ecuacion (ax)2/3 +(by)2/3 = (a2 b2)2/3.

    Solucion

    Escribimos la ecuacion en forma parametrica como x(t) = (c2/a)cos3 t,y(t) = (c2/b)sen3 t, donde c2 = a2 b2.

    c2/b

    c2/a

    Teniendo en cuenta la simetra de la figura podemos escribir el area co-mo

    A = 4

    c2/a0

    y dx = 40/2

    (c2/b)sen3 t (c2/a)(3cos2 t sen t) dt

    =12c4

    ab

    /20

    sen4 t cos2 t dt =12c4

    ab

    t

    16 sen4t

    64 sen

    3 2t

    48

    /20

    =3c4

    8ab.

    PROBLEMA 11.13

    Hallar el area de la figura limitada por la curva y3 = x, la rectay = 1 y la vertical x = 8.

    Solucion

    47

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    12/71

    Como la recta y = 1 corta a la curva en el punto de abscisa x = 1 y en

    el intervalo [1, 8] la curva queda por encima de la recta, el area viene dadapor

    A =

    81

    (x1/3 1) dx =

    3 x4/3

    4 x

    81

    =17

    4.

    PROBLEMA 11.14

    Calcular el area limitada por la curva y = e2x y las rectas y = e2,x = 0.

    Solucion

    En este caso, la recta y = e2 queda por encima de la curva y = e2x en laregion comprendida entre los valores x = 0 y x = 1.

    e2

    El area se obtiene como

    A = 1

    0

    (e2

    e2x) dx = e2x

    e2x

    21

    0

    = e2

    e2

    2+

    1

    2=

    e2 + 1

    2.

    PROBLEMA 11.15

    Hallar el area de la region y x2 9, x2 + (y 3)2 9, y x + 3.

    48

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    13/71

    Solucion

    El centro de la circunferencia es el punto (0, 3) por el cual pasa la rectay = x + 3. Esto quiere decir que la recta es un diametro y el area de lafigura sombreada es la diferencia entre el area de la region comprendida entredicha recta y la parabola y el area del semicrculo de radio 3. Los puntos deinterseccion de la parabola y la recta se obtienen del sistema

    y = x2 9, y = x + 3 = x2 + x 12 = 0 = x = 3, x = 4.

    Tenemos entonces:

    A =

    34

    [(x + 3) (x2 9)] dx 92

    =

    34

    (x2 x + 12) dx 92

    =

    12x x

    2

    2 x

    3

    3

    34 9

    2=

    343

    6 9

    2.

    PROBLEMA 11.16

    Calcular el area de la figura limitada por las curvas y = ex, y = ex

    y la recta x = 1.

    49

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    14/71

    Solucion

    Como en el intervalo x [0, 1] la curva y = ex queda por encima de la curvay = ex, el area viene dada por

    A =

    10

    (ex ex) dx = ex + ex10

    = e + e1 2.

    PROBLEMA 11.17

    Hallar el area comprendida entre las parabolas y2

    = 2px, x2

    = 2py.

    Solucion

    Como los puntos de interseccion de ambas parabolas son (0, 0) y (2p, 2p), elarea viene dada por la integral:

    A =

    2p0

    2px x

    2

    2p

    dx =

    2p 2x

    3/2

    3 x

    3

    6p

    2p0

    =4p2

    3.

    50

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    15/71

    PROBLEMA 11.18

    Dada la curva de ecuacion y = x3 y la recta y = x (ver figura),demostrar que la region S1 limitada por la curva y la recta en elintervalo x [0, a] tiene la misma area que la region S2 limitadapor la curva y el eje X en el mismo intervalo.

    Solucion

    Como la recta pasa por el punto (a, a3), se debe cumplir que a3 = a, esdecir = a2.

    Al calcular cada una de las areas mencionadas obtenemos

    S1 =

    a0

    (x x3) dx =

    x2

    2 x

    4

    4

    a0

    =2a2 a4

    4=

    a4

    4,

    S2 =

    a0

    x3 dx =

    x4

    4

    a0

    =a4

    4,

    lo que prueba el enunciado.

    PROBLEMA 11.19

    Hallar el area de la figura encerrada por la parabola y = x2/4 y la

    curva de Agnesi y =8

    x2 + 4.

    51

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    16/71

    Solucion

    Los puntos de interseccion de ambas curvas son solucion del sistema formadopor ambas ecuaciones. Tenemos que:

    x2

    4=

    8

    x2 + 4

    x4 + 4x2 = 32

    x2 =

    2

    4 + 32 =

    2

    6.

    Como la solucion x2 = 8 no es real, solo es posible x2 = 4 x = 2. Elarea es entonces, teniendo en cuenta la simetra de la figura,

    A =

    22

    8

    x2 + 4 x

    2

    4

    dx = 2

    20

    8

    x2 + 4 x

    2

    4

    dx

    = 2

    4arctg

    x

    2 x

    3

    12

    20

    = 2 43

    .

    PROBLEMA 11.20

    Calcular el area limitada por las curvas y = x2, y = sen x2

    .

    Solucion

    Como se observa en la figura, la region que limitan dichas curvas se encuentra

    en el intervalo [0, 1] en el cual la funcion y = senx

    2queda por encima de

    y = x2.

    El area es entonces

    A =

    10

    sen

    x

    2 x2

    dx =

    2

    cos

    x

    2 x

    3

    3

    10

    = 13

    +2

    .

    52

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    17/71

    PROBLEMA 11.21

    Calcular el area de los dos trozos en que la circunferencia x2 + (y +R)2 = 2R2 divide a la circunferencia x2 + y2 = R2.

    Solucion

    Los puntos de interseccion de ambas curvas son:

    x2+y2 = R2, x2+y2+2Ry+R2 = 2R2 = 2Ry = 0 = y = 0 = x = R,y las regiones que limitan son las indicadas en la figura.

    Las areas de ambas regiones son:

    A1 =

    RR

    R2 x2

    2R2 x2 + R

    dx

    =

    x

    R2 x22

    +R2

    2arc sen

    x

    R

    RR

    x

    2R2

    x2

    2+ R2 arc sen

    x

    R2R

    R+ [Rx]R

    R= R2;

    A2 = R2 A1 = ( 1)R2.

    PROBLEMA 11.22

    Calcular el area comprendida entre las curvas y = sen3 x, y =1/ sen x, para x [/4, /2].

    53

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    18/71

    Solucion

    En el intervalo indicado, la curva y = 1/ sen x queda por encima de y =sen3 x.

    /4 /2

    A =

    /2/4

    1

    sen x sen3 x

    dx

    =

    ln | cosec x cotg x| + cos x cos

    3 x

    3

    /2/4

    = ln(

    2 1) 5

    2

    12.

    PROBLEMA 11.23

    Calcular el area comprendida entre las curvas y = 1/ cos2 x, y =sen6 x para x [0, /4].

    Solucion

    En este caso tambien la curva y = 1/ cos2 x queda por encima de y =sen6 x. Bastara pues integrar la resta de ambas funciones en el intervaloindicado.

    /4 /2

    54

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    19/71

    A = /4

    0

    (sec2 x

    sen6 x) dx

    =

    tg x 5

    16x +

    1

    4sen2x 3

    64sen4x 1

    48sen3 2x

    /40

    =59

    48 5

    64.

    PROBLEMA 11.24

    Hallar el area de la figura comprendida entre la hiperbola equilaterax2 y2 = 9, el eje OX y la recta que une el origen con el el punto(5, 4).

    Solucion

    El area de la region se puede obtener como la resta entre el area del triangulode vertices O(0, 0), A(5, 0) y B(5, 4) y el area de la region limitada por lahiperbola y el eje OX en el intervalo [3, 5].

    Tenemos pues:

    A =5 4

    253

    x2 9 dx

    = 10

    x

    x2 92

    92

    ln

    x +

    x2 93

    53

    =9

    2ln 3.

    PROBLEMA 11.25

    Determinar el area de la parte comun a las dos elipses

    x2

    a2+

    y2

    b2= 1,

    x2

    b2+

    y2

    a2= 1 con a > b.

    55

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    20/71

    Solucion

    Debido a la simetra de la region (ver figura), basta calcular el area de laregion comprendida en el primer cuadrante.

    El punto de interseccion de las elipses tiene abscisa x =ab

    a2 + b2, con lo

    que el area pedida es

    A = 4

    aba2+b2

    0b

    1 x2/a2 dx + 4b

    aba2+b2

    a

    1 x2/b2 dx

    = 4ba

    a22

    arc sen xa

    + x2

    a2 x2

    ab

    a2+b20

    + 4ab

    b22

    arc sen xb

    + x2

    b2x2b

    aba2+b2

    = 2ab

    arc sen

    ba2 + b2

    arc sen aa2 + b2

    +

    2

    .

    PROBLEMA 11.26

    Calcular el area de la region limitada por las graficas de f(x) =

    |x 1| y g(x) = x2 2x.

    Solucion

    Los puntos de interseccion de las curvas son:

    y = |x 1|, y = x2 2x = |x 1| = x2 2x

    =

    x 1 = x2 2x si x > 1x + 1 = x2 2x si x < 1 =

    x = 3+

    5

    2 ,

    x = 15

    2 .

    56

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    21/71

    Debido a la simetra de la figura, el area se puede expresar como:

    A =3+5

    2

    15

    2

    [|x1|(x22x)] dx = 23+5

    2

    1[(x1)(x22x)] dx = 7 + 55

    6.

    PROBLEMA 11.27

    Calcular el area de la figura limitada por la parabolas y = x2,y = x2/2 y la recta y = 2x.

    Solucion

    La primera parabola y = x2 corta a la recta en el punto de abscisa x = 2mientras que la segunda parabola y = x2/2 corta a la recta en el punto deabscisa x = 4.

    El area se descompone entonces como suma de integrales de la siguienteforma:

    A =

    20

    (x2 x2/2) dx +42

    (2x x2/2) dx = 4.

    57

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    22/71

    PROBLEMA 11.28

    Calcular el area de la region limitada por las graficas de f y g enel intervalo que se indica en cada caso:

    a) f(x) =

    x, g(x) = x2 en [0, 2].

    b) f(x) = x(x2 1), g(x) = x en [1, 2].

    Solucion

    a) Los puntos de interseccion de las curvas son

    y =

    x, y = x2 = x = x4 = x = 0, x = 1.

    El area se descompone entonces como la suma

    A =10 (x x

    2

    ) dx +21 (x

    2

    x) dx =10

    4

    2

    3 .

    b) Los puntos de interseccion de las curvas son:

    y = x(x21), y = x = x(x21) = x = x = 0, x =

    2, x =

    2.

    58

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    23/71

    El area se obtiene entonces como:

    A =

    21|x(x2 1) x| dx

    =

    01

    (x3 2x) dx +20

    (2x x3) dx +22

    (x3 2x) dx = 114

    .

    PROBLEMA 11.29

    Calcular el area limitada por las regiones y x2 + 1, y x2 9,y 3 x.

    Solucion

    Calculamos los puntos de interseccion de las curvas:

    y = x2 + 1, y = 3 x = x2 + x 2 = 0 = x = 2, x = 1;y = x2 9, y = 3 x = x2 + x 12 = 0 = x = 4, x = 3.

    59

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    24/71

    El area queda entonces como la suma de las siguientes integrales:

    A =

    24

    [(3 x) (x2 9)] dx +12

    [(x2 + 1) (x2 9)] dx

    +3

    1

    [(3

    x)

    (x2

    9)] dx

    =

    24

    (x2 x + 12) dx +12

    10 dx +

    31

    (x2 x + 12) dx = 1583

    .

    PROBLEMA 11.30

    Calcular el area comprendida entre las cuatro parabolas

    y2 = x, y2 = 2x, x2 = y, x2 = 2y.

    Solucion

    Los distintos puntos de interseccion son los siguientes:

    x2 = 2y, y2 = x = x = 0, x = 41/3;x2 = y, y2 = x = x = 0, x = 1;

    x2 = y, y2 = 2x = x = 0, x = 41/6;x2 = 2y, y2 = 2x = x = 0, x = 2.

    60

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    25/71

    El area es entonces

    A =

    41/61

    [x2 x] dx +41/341/6

    [

    2xx] dx +241/3

    [

    2x x2/2] dx = 13

    .

    PROBLEMA 11.31

    Calcular el area de la figura interior a la circunferencia x2 + (y 1)2 = 5 y a la parabola x = 2(y

    1)2.

    Solucion

    Los puntos de interseccion de ambas curvas son:

    x2 + (y1)2 = 5, x/2 = (y1)2 = 2x2 + x10 = 0 = x = 2, x = 5/2.

    Como la parabola esta definida en x 0, solo es posible la solucion x = 2lo que da los puntos (2, 0) y (2, 2).

    Como debemos descomponer la integral en dos sumandos para integrar res-

    61

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    26/71

    pecto a la variable x, integramos respecto a y, lo que da lugar a:

    A =

    20

    5 (y 1)2 2(y 1)2

    dy

    =

    5

    2arc sen

    y 15

    +y 1

    2

    5 (y 1)2 2

    3(y 1)3

    20

    = 5arcsen1

    5+

    2

    3.

    PROBLEMA 11.32

    Encontrar el area de la region comun a las circunferencias C1 :x2 + y2 = 4, C2 : x

    2 + y2 = 4x.

    Solucion

    Los puntos de interseccion de las circunferencias son (1,

    3) y (1,3), demodo que, si integramos respecto a la variable y, el area puede expresarsecomo la integral

    A = 2

    30

    [

    4 y2 (2

    4 y2)] dy = 430

    (

    4 y2 1) dy

    = 4y

    2

    4 y2 + 2 arc sen y

    2 y

    30

    =8

    3 2

    3.

    PROBLEMA 11.33

    Sea f la funcion indicada en la figura adjunta.

    Hallar

    10

    f y tambien el area de la region comprendida entre la

    funcion f y el eje X.

    62

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    27/71

    Solucion

    El area sera la suma de las areas de los triangulos que la funcion determinacon el eje OX. Resulta entonces la siguiente serie geometrica:

    A =

    n=1

    1

    2

    1

    2n1 1

    2n

    1 =

    n=1

    1

    2 1

    2n=

    1

    2 1/2

    1 1/2 =1

    2.

    Para calcular la integral, debemos sumar las areas de los triangulos que que-

    den por encima del eje OX y restarle la suma de las areas de los triangulosque quedan por debajo del mismo. Tenemos nuevamente las series geometri-cas,

    10

    f =n=0

    1

    2

    1

    22n 1

    22n+1

    n=1

    1

    2

    1

    22n1 1

    22n

    =n=0

    1

    22n+2

    n=1

    1

    22n+1=

    1/4

    1 1/4 1/8

    1 1/4 =1

    6.

    B. CALCULO DE VOLUMENES.

    El concepto de integral tambien puede aplicarse para calcular volumenes deciertos solidos. Los distintos casos y metodos utilizados son los que expone-mos a continuacion.

    63

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    28/71

    B.1.- VOLUMENES DE SOLIDOS DE SECCION CONOCIDA.

    Supongamos que un solido esta limitado por dos planos paralelos entre s yperpendiculares a un eje fijo t en los puntos t = t0 y t = t1. Supongamosademas que las secciones producidas en el solido por planos perpendicularesal eje t son regiones cuya area se puede escribir como una funcion A(t)integrable en [t0, t1]. Entonces el volumen de dicho solido verifica la formulade Cavalieri

    (1) V =

    t1t0

    A(t) dt.

    En particular, si las secciones son perpendiculares al eje OX entre los valoresx0 y x1, V =

    x1

    x0

    A(x) dx.

    As, en el ejemplo de la figura tenemos una piramide de base b y altura h ylas secciones perpendiculares al eje OX son cuadrados.

    Para calcular el lado de un cuadrado generico escribimos la ecuacion de la

    recta que une el origen con el punto (h, b) y calculamos su valor en el puntode abscisa x. Resulta pues y = bx/h con lo que la funcion a integrar sera elarea del cuadrado A(x) = (2y)2 = (2bx/h)2 y el volumen es

    V =

    h0

    (2bx/h)2 dx =4b2

    h2

    x3

    3

    h0

    =4b2h

    3.

    64

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    29/71

    B.2.- VOLUMENES DE SOLIDOS DE REVOLUCION.

    El solido de revolucion es la figura obtenida al girar una region plana al-rededor de un eje fijo (eje de revolucion o eje de giro). Esto quiere decirque las secciones perpendiculares a dicho eje son crculos (o coronas circula-res). El volumen se obtiene segun el caso con los siguientes metodos: B.2.1.-

    METODO DE LOS DISCOS.

    Consiste en interpretar el volumen como lmite de la suma de los volumenesde los discos que se obtienen al cortar la figura por planos perpendicularesal eje de giro. Podemos distinguir dos casos:

    (*) El eje de giro forma parte del contorno de la region plana.

    Si consideramos la region plana limitada por la curva y = f(x), el eje degiro y las rectas x = a, x = b, las secciones perpendiculares al eje de giroson crculos con lo que debemos integrar la funcion que corresponda al areade los mismos en el intervalo correspondiente.

    As, si el eje de giro es el eje OX, tenemos la formula

    (2) V = b

    a[f(x)]2 dx.

    Si el eje de giro es la recta y = r, el radio del crculo en un punto de abscisax es |f(x) r| y el volumen queda entonces:

    (3) V =

    ba

    [f(x) r]2 dx.

    En otros casos se procede de forma similar.

    (**) El eje de giro no forma parte del contorno de la region pla-na.

    65

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    30/71

    Consideramos ahora la region limitada por las curvas y = f(x), y = g(x) y

    dos rectas perpendiculares al eje de giro, siendo este exterior a la region. Eneste caso, las secciones perpendiculares al eje de giro son coronas circulares.Debemos pues restar el area del crculo exterior menos el area del crculointerior.

    Si el eje de giro es el eje OX,

    (4) V =

    ba

    ([f(x)]2 [g(x)]2) dx.

    Analogamente, si el eje de giro es la recta y = r,

    (5) V =

    ba

    ([f(x) r]2 [g(x) r]2) dx.

    Sera necesario conocer la posicion relativa de las funciones f y g para lo cuales fundamental tener una idea de las graficas de las mismas.

    B.2.2.- METODO DE LOS TUBOS.

    Este metodo consiste en interpretar el volumen como lmite de la suma delos volumenes de los tubos obtenidos al girar alrededor del eje de giro lasfranjas de espesor infinitesimal que determina en la region una particion delintervalo. Este metodo sera apropiado cuando al intentar aplicar el metodode los discos se deba descomponer la integral en varios sumandos.

    66

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    31/71

    Como el volumen de cada uno de estos tubos es 2 radio medio altura, elvolumen obtenido al girar la region comprendida entre la funcion y = f(x),el eje X y las rectas x = a, x = b tiene las siguientes formulas.

    Cuando el eje de giro es el eje OY:

    (6) V = 2ba

    x f(x) dx.

    Cuando el eje de giro es la recta vertical x = r:

    (7) V = 2

    ba|x r| f(x) dx.

    Formulas analogas se obtienen para regiones comprendidas entre dos funcio-nes o para ejes horizontales. En los siguientes problemas se realizan ejemplosde todos los casos indicados.

    PROBLEMA 11.34

    Hallar el volumen de la figura engendrada al girar la curva y2 = x3

    alrededor del eje X a lo largo del intervalo x [0, 1].

    67

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    32/71

    Solucion

    De acuerdo con la figura, y aplicando la formula (2), tenemos:

    V =

    10

    x3 dx =

    x4

    4

    10

    =

    4.

    PROBLEMA 11.35

    Hallar el volumen del cuerpo engendrado por la rotacion, alrededordel eje OX, de la superficie limitada por el eje OX y la parabolay = ax

    x2 (a > 0).

    Solucion

    Aplicamos directamente el metodo de los discos integrando en el intervalo[0, a] que corresponde a los valores de x que limitan la superficie dada.

    As:

    V =

    a0

    (ax x2)2 dx = a0

    (a2x2 + x4 2ax3) dx = a5

    30.

    68

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    33/71

    PROBLEMA 11.36

    Calcular el volumen del solido engendrado por la rotacion de laregion limitada por los ejes coordenados y la curva de ecuacion

    x +

    y =

    a (a > 0) alrededor del eje OX.

    Solucion

    De la ecuacion de la curva se obtiene que y2 = (

    a x)4 = a2 + x2 +6ax 4a3/2x1/2 4a1/2x3/2. El volumen buscado es pues

    V =

    a0

    y2(x) dx =

    a0

    (a2 + x2+ 6ax4a3/2x1/24a1/2x3/2) dx = a3

    15.

    PROBLEMA 11.37

    Los semiejes positivos y un cuadrante de la astroide de ecuacionx = a cos3 t, y = a sen3 t delimitan una region cuya area designare-mos por S. Se pide:

    i) El volumen del cuerpo de revolucion engendrado por S al girar entorno al eje OX.

    ii) El volumen del cuerpo de revolucion engendrado por S al girar entorno al eje OY.

    69

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    34/71

    Solucion

    i)

    Por el metodo de los discos, si integramos respecto al parametro t,como los valores extremos x = 0 y x = a corresponden a t = /2 yt = 0, respectivamente, tenemos:

    V =

    a0

    y2(t) dx(t) =

    0/2

    a2 sen6 t (3a cos2 t sen t) dt

    = 3a3/20

    sen7 t cos2 tdt =3a3

    cos3 t

    3 3cos

    5 t

    5+

    3cos7 t

    7 cos

    9 t

    9

    /20

    =16a3

    105

    ii)

    Utilizaremos en este caso el metodo de integracion por tubos. El vo-lumen es

    V = 2

    a0

    x(t)y(t) dx(t) = 2

    0/2

    a cos3 t a sen3 t (3a cos2 t sen t) dt

    = 6a3/20

    cos5 t sen4 t dt = 6a3sen5 t

    5 2sen7 t

    7 +sen9 t

    9/20

    =16a3

    105 .

    El resultado es el mismo debido a las simetras de la figura.

    PROBLEMA 11.38

    Hallar el volumen engendrado por la rotacion alrededor del ejeOY del area limitada por el primer arco de la cicloide de ecuacionx = t sen t, y = 1 cos t.

    70

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    35/71

    Solucion

    2

    De acuerdo con la figura, si aplicamos el metodo de los tubos e integramosrespecto al parametro t, tenemos:

    V = 2

    20

    x(t)y(t) dx(t) = 2

    20

    (t sen t)(1 cos t)(1 cos t) dt

    = 220 (t 2t cos t + t cos

    2

    t sen t + 2 sen t cos t cos2

    t sen t) dt

    = 2

    3t2

    4 cos t + cos

    3 t

    3 3cos2t

    8 7t sen t

    4

    20

    = 63.

    PROBLEMA 11.39

    Calcular el volumen del solido obtenido al girar la region limitadapor la curva f(x) = sen x + cos x y el eje X en el intervalo [0, ]

    alrededor del eje X.

    Solucion

    Si aplicamos el metodo de los discos, resulta:

    V =

    0

    (sen x + cos x)2 dx =

    x 1

    2cos2x

    0

    = 2.

    La siguiente figura da una idea de la forma del solido obtenido.

    71

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    36/71

    PROBLEMA 11.40

    Se considera el area S de la region limitada por un cuadrante deuna circunferencia de radio R y las tangentes en sus extremos.Hallar el volumen que engendra S cuando gira en torno a una de

    las tangentes.

    Solucion

    Tomamos como eje OX el eje de giro y como eje OY la recta que, pasandopor

    el centro de la circunferencia, es paralela a la otra tangente. De este modo laecuacion de la circunferencia sera x2 + (y + R)2 = R2 = y = R2 x2 R.

    El volumen pedido viene expresado por:

    V =

    R0

    y2(x) dx =

    R0

    (

    R2 x2 R)2 dx

    =

    2R2x x

    3

    3R3 arc sen x

    R

    R0

    =R3

    6(10 3).

    72

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    37/71

    PROBLEMA 11.41

    Calcular el volumen engendrado por un segmento circular de angu-lo central 2 (ver figura) con < /2 y radio R al girar alrededorde su cuerda.

    Solucion

    Tomando como eje OX la cuerda AB y como eje OY la perpendicular aesta cuerda que pase por el centro de la circunferencia, debido a que OB =R sen y

    |OC

    |= R cos , la ecuacion de la circunferencia es x2 + (y +

    R cos )2 = R2, de donde y = R cos + R2 x2. De esta forma, elvolumen pedido es

    V =

    R senR sen

    y2 dx = 2

    R sen0

    (R2 cos2 + R2 x2 2R cos

    R2 x2) dx

    =2R3

    3(2sen 3 cos + cos2 sen ).

    PROBLEMA 11.42

    Se considera el arco OAB de la parabola de ecuacion y = x(x a),con OA = a > 0 y OC = c > a. Determinar c de tal manera queel volumen de revolucion engendrado por la zona sombreada de lafigura, al girar en torno a OX, sea igual al volumen engendradopor el triangulo OC B girando en torno al mismo eje.

    73

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    38/71

    Solucion

    El volumen engendrado por la zona sombreada es

    V =

    a0

    y2(x) dx +

    ca

    y2(x) dx =

    a0

    x2(x a)2 dx + ca

    x2(x a)2 dx

    =c3

    30(6c2 15ca + 10a2).

    Como OC = c, BC = c(c a) y el volumen del cono engendrado por eltriangulo OCB es

    V =c2(c a)2 c

    3=

    c3(c a)23

    .

    Igualando los valores de V y V se deduce que c = 5a/4.

    PROBLEMA 11.43

    Al girar alrededor del eje OX la curva de ecuacion y =

    x

    1 + x2se

    obtiene en el intervalo [0, x] un solido cuyo volumen designaremospor V(x). Determinar el valor de a para que V(a) =

    1

    2lmxV(x).

    Solucion

    El volumen V(x) se calcula mediante la formula:

    V(x) =

    x0

    y2(x) dx =

    x0

    x dx

    (1 + x2)2=

    2

    11 + x2

    x0

    =

    2 x

    2

    1 + x2.

    74

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    39/71

    Ahora bien, como lmx

    V(x) =

    2

    , debera cumplirse

    2 a2

    1 + a2

    =1

    2

    2

    de

    donde a = 1 (no es valido a = 1 pues no esta en el dominio de la funcion).

    PROBLEMA 11.44

    Un solido de revolucion esta generado por la rotacion de la graficade y = f(x) para [0, a] alrededor del eje X. Si para a > 0 el volumenes a3 + a, hallar la funcion f.

    Solucion

    Por la formula del volumen tenemos que

    a3 + a = V =

    a0

    [f(x)]2 dx.

    Si llamamos G a una primitiva de f2, es decir tal que G(x) = f2(x), enton-ces

    V = [G(a) G(0)] = a3

    + a = G(a) =a3 + a

    + G(0).

    Esto sugiere definir G(x) =x3 + x

    . De este modo, G(0) = 0 y

    G(x) =3x2 + 1

    = f2(x) = f(x) =

    3x2 + 1

    .

    PROBLEMA 11.45

    Hallar el volumen de la figura engendrada al girar la superficiecomprendida entre la parabola y2 = x y la circunferencia y2 =2x x2 alrededor del eje X.

    Solucion

    Los puntos de interseccion de ambas curvas son (1, 1) y (1,1).

    75

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    40/71

    Utilizando el metodo de integracion por discos y descomponiendo la integralen dos sumandos, tenemos

    V =

    10

    x dx +

    21

    (2x x2) dx =

    x2

    2

    10

    +

    x2 x

    3

    3

    21

    =7

    6.

    PROBLEMA 11.46

    Se considera la parabola de ecuacion y = x2

    2/a, con a > 0, y lacircunferencia x2+y2 = a2. Determinar el volumen engendrado por

    la zona sombreada de la figura al girar en torno al eje OX.

    Solucion

    Resolviendo el sistema formado por las ecuaciones de la parabola y de lacircunferencia, se tiene que OC = a

    2/2. Como el radio de la circunferencia

    76

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    41/71

    es a, el volumen pedido sera

    V =

    a2/20

    2x4/a2 dx +

    aa2/2

    (a2 x2) dx

    =

    2x5

    5a2

    a2/20

    +

    a2x x

    3

    3

    aa2/2

    =a3

    30(20 11

    2).

    PROBLEMA 11.47

    Determinar el volumen del solido obtenido al girar alrededor deleje OY la region limitada por las parabolas y = ax2, y = b cx2,con a, b, c > 0.

    Solucion

    Los puntos de interseccion de las parabolas se obtienen resolviendo el sistemaformado por sus ecuaciones. As se tiene A(b/(a + c),ab/(a + c)).

    Calculamos el volumen por el metodo de los discos para lo cual debemosintegrar respecto a y en los intervalos (0,ab/(a+c)) y (ab/(a+c), b). Resultaas:

    V =

    ab/(a+c)0

    y

    ady +

    bab/(a+c)

    b yc

    dy =b2

    2(a + c).

    77

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    42/71

    PROBLEMA 11.48

    Hallar el volumen generado por la rotacion del area limitada porla parabola y2 = 8x y la ordenada correspondiente a x = 2

    i) en torno al eje X;

    ii) en torno al eje Y;

    iii) en torno a la recta x = 2.

    Solucion

    i) Dividiendo el area en franjas verticales, al girar alrededor del eje X seobtienen discos de radio y = 8x en el intervalo x [0, 2].

    Aplicando la formula de integracion por discos se obtiene:

    V =

    20

    8x dx = 16.

    ii) Aplicaremos nuevamente el metodo de los discos para lo cual debemosintegrar respecto a la variable y en el intervalo [4, 4].

    78

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    43/71

    Como un disco generico tiene radio exterior 2 y radio interior x = y2/8,

    el volumen viene dado por

    V =

    44

    [22 (y2/8)2] dy =

    4y y5

    320

    44

    =128

    5.

    iii) Aplicaremos en este caso el metodo de los tubos. Como se observa enla figura, la altura de un cilindro generico es 2y = 2

    8x = 4

    2x y su

    distancia al eje de giro es 2 x.

    El volumen pedido sera

    V = 220

    42x(2 x) dx = 82 20

    (2x1/2 x3/2) dx = 25615

    .

    PROBLEMA 11.49

    Cual es el volumen del solido que se obtiene al girar alrededordel eje X la figura limitada por la curva y = ex y las rectas x = 0,y = e?

    79

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    44/71

    Solucion

    Como la recta y = e queda por encima de la curva y = ex en el intervalo[0, 1], si aplicamos la formula (4), el volumen viene dado por:

    V =

    10

    (e2 e2x) dx =

    e2x 12

    e2x10

    = e2 + 1

    2.

    Una idea del solido obtenido se expresa en la siguiente figura.

    PROBLEMA 11.50

    Se considera la region del plano formada por los puntos (x, y) quesatisfacen las desigualdades 0 x 2, x2/4 y 1. Calcular elvolumen del solido obtenido al girar esta region alrededor del ejeY, alrededor del eje X, alrededor de la recta x = 2, y alrededor de

    la recta y = 1.

    80

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    45/71

    Solucion

    a)

    Al girar alrededor del eje Y, el volumen (por el metodo de los discos)es

    V =

    10

    4y dy =

    2y210

    = 2.

    b)

    Nuevamente por el metodo de los discos, si integramos respecto a x,tenemos:

    V =

    20

    1 x

    4

    16

    dx =

    x x

    5

    80

    20

    =8

    5.

    c)

    Aplicando en esta ocasion el metodo de los tubos tenemos:

    V = 2

    20

    (2 x)(1 x2/4) dx = 2

    2x x2

    2 x

    3

    6+

    x4

    16

    20

    =10

    3.

    81

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    46/71

    d)

    Integrando por el metodo de los discos, tenemos por ultimo que

    V =

    2

    0(1 x2/4)2 dx =

    x x3

    6+

    x5

    80

    2

    0

    =1615

    .

    PROBLEMA 11.51

    Hallar el volumen generado por la rotacion del area limitada pory = x2 3x + 6, x + y 3 = 0 alrededor de la recta

    i) y = 0;

    ii) x = 3.

    Solucion

    i) Los puntos de interseccion de las curvas son

    y = x2 3x + 6, y = 3x =x2 2x + 3 = 0 = x = 3, x = 1.

    82

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    47/71

    Si aplicamos el metodo de los discos, como la parabola queda por

    encima de la recta en el intervalo x [3, 1], el volumen es:V =

    13

    (y2p y2r) dx = 13

    [(x2 3x + 6)2 (3 x)2] dx

    =

    13

    (x4 + 6x3 4x2 30x + 27) dx = 179215

    .

    ii) La recta x = 3 es exterior a la region que gira. Aplicamos en este casoel metodo de las tubos. La altura de un cilindro generico es yp yr =(x2 3x + 6) (3 x) = x2 2x + 3 y el radio es 3 x (distanciadel eje de giro a un punto de la regi on).

    El volumen es pues

    V = 2

    1

    3(3x)(x22x+3) dx = 2

    1

    3(x3x29x+9) dx = 256

    3.

    PROBLEMA 11.52

    Calcular el volumen del solido obtenido al girar la region limitadapor las graficas de f(x) = b(x/a)2 y g(x) = b|x/a| alrededor de y = 0.

    Solucion

    Los puntos de interseccion de ambas curvas son:

    x 0 : y = bx2

    a2, y =

    bx

    a= bx

    2

    a2=

    bx

    a= x2 ax = 0 = x = 0, x = a.

    83

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    48/71

    Debido a la simetra de la figura, como la recta queda por encima de la

    parabola, el volumen es:

    V = 2

    a0

    b2x2

    a2 b

    2x4

    a4

    dx = 2 b

    2

    a2

    x3

    3 x

    5

    5a2

    a0

    =4b2 a

    15.

    PROBLEMA 11.53

    Calcular el volumen engendrado por la region que delimitan lasparabolas y2 = 2px, x2 = 2py (p > 0), al girar en torno a OX.

    Solucion

    Se obtiene facilmente que los puntos de interseccion de las parabolas son(0, 0) y (2p, 2p).

    Por el metodo de los discos, el volumen es:

    V =

    2p0

    2px dx 2p0

    x4

    4p2dx =

    12

    5p3.

    PROBLEMA 11.54

    Calcular el volumen del solido obtenido al girar la region limitadapor las graficas de f(x) = sen x y g(x) = cos x en el intervalo [0, /2]alrededor del eje X.

    84

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    49/71

    Solucion

    /4 /2

    Aplicando el metodo de los discos, debido a la posicion relativa de las cur-vas, debemos descomponer la integral en los intervalos [0, /4] y [/4, /2].As tenemos:

    V =

    /40

    (cos2 x sen2 x) dx + /2/4

    (sen2 x cos2 x) dx

    = sen2x

    2/4

    0

    sen2x

    2/2

    /4

    = .

    PROBLEMA 11.55

    Calcular el volumen del solido obtenido al girar la region limitadapor las graficas de f(x) = x2 4x + 4 y g(x) = 4 x alrededor dey =

    1.

    Solucion

    Los extremos de integracion seran los puntos de interseccion de las curvas.Estos son:

    y = x2 4x + 4, y = 4 x = x2 3x = 0 = x = 0, x = 3.

    85

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    50/71

    Si aplicamos el metodo de los discos (formula (5)), teniendo en cuenta queel radio exterior es re = yr +1 = 4x +1 y el radio interior es ri = yp + 1 =x2 4x + 4 + 1, resulta:

    V = 3

    0

    [(4 x + 1)2 (x2 4x + 4 + 1)2] dx

    =

    x3

    3 5x2 + 25x (x 2)

    2

    5 x 2(x 2)

    3

    3

    30

    =117

    5.

    Una seccion del solido obtenido tiene la forma de la figura adjunta.

    86

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    51/71

    PROBLEMA 11.56

    Determinar el volumen del solido que se obtiene al girar alrededordel eje de abscisas la region del primer cuadrante limitada por lascurvas y = 1/x2, y = sen(x/2) y las rectas x = 0, y = e.

    Solucion

    Los puntos de interseccion de las curvas son

    y = 1/x2, y = senx

    2= sen x

    2=

    1

    x2= x = 1;

    y = 1/x2, y = e = x2 = 1/e = x = 1/e.

    Aplicando el metodo de los discos, tenemos:

    V =

    1/e0

    e2 sen2 x2

    dx +

    11/e

    1

    x4 sen2 x

    2

    dx

    =

    e2x x2

    +sen x

    2

    1/e0

    +

    13x3

    x2

    +sen x

    2

    11/e

    =(8e

    e 5)6

    .

    87

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    52/71

    PROBLEMA 11.57

    Se considera la hiperbola de ecuacion x2/a2 y2/b2 = 1 y las dosrectas perpendiculares al eje OX de ecuaciones x = p, x = p + h(p > a).

    Determinar el volumen del cuerpo de revolucion engendrado por laregion ABCD indicada en la figura (siendo OB una de las asnto-

    tas) al girar en torno al eje OX.

    Solucion

    Sabiendo que la ecuacion de la asntota OB es y = bx/a, el volumen delsolido indicado viene dado por

    V =

    p+hp

    bx

    a

    2 b2

    x2

    a2 1

    dx =

    b2

    a2

    p+hp

    (x2x2+a2) dx = b2h.

    PROBLEMA 11.58

    Hallar el volumen generado por el area comprendida entre la parabo-la y = 4xx2 y el eje X al girar alrededor de la recta y = 6.

    88

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    53/71

    Solucion

    Utilizando el metodo de los discos, como la region esta comprendida en elintervalo [0, 4], el volumen, dado por la formula (5), es

    V =

    40

    [62 (6 y)2] dx = 40

    [36 (6 4x + x2)2] dx

    =

    40

    (48x 28x2 + 8x3 x4) dx = 140815

    .

    PROBLEMA 11.59

    Un servilletero se obtiene practicando un agujero cilndrico en unaesfera de modo que el eje de aquel pase por el centro de esta.Si la longitud del agujero es 2h, demostrar que el volumen delservilletero es ah3, siendo a un numero racional.

    Solucion

    Si llamamos r al radio de la esfera, el radio del agujero cilndrico sera k =r2 h2.

    89

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    54/71

    De este modo, y de acuerdo con la figura, el s olido obtenido viene dado al

    girar alrededor del eje X la region limitada por las curvas x2

    + y2

    = r2

    ey = k. Tenemos entonces:

    V =

    hh

    (r2 x2 k2) dx =

    (r2 k2)x x3

    3

    hh

    =4h3

    3.

    Como 4/3 es racional, el resultado obtenido prueba el enunciado.

    Una seccion de la figura obtenida es la siguiente:

    PROBLEMA 11.60

    Se considera la elipse de ecuacionx2

    a2+

    y2

    b2= 1 y la cuerda F C

    paralela al eje OX. Determinar OA = h de manera que el volumenengendrado por la region sombreada de la figura al girar en torno aOX sea la mitad del volumen del elipsoide engendrado por el areaque limita la elipse dada girando en torno al mismo eje.

    90

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    55/71

    Solucion

    Designaremos por V1 y V2 a los volumenes del cuerpo engendrado por laregion sombreada y del elipsoide engendrado por la elipse, respectivamen-te. Como los puntos C y F tienen abscisa a

    1 h2/b2 y a

    1 h2/b2,

    respectivamente, dichos volumenes se obtienen por integracion mediante lasformulas:

    V1 =

    a1h2/b2a

    1h2/b2[b2(1 x2/a2) h2] dx

    = 2 a

    1h2/b2

    0[b2(1 x2/a2) h2] dx = 2 (b

    2 h2)x b2x3

    3a2 a

    1h2/b2

    0

    =4

    3a(b2 h2)

    1 h2/b2;

    V2 =

    aa

    b2(1 x2/a2) dx = 43

    ab2.

    Como debe ser V1 = V2/2, al resolver esta ecuacion se obtiene que

    4

    3a(b2 h2)

    1 h2/b2 = 2

    3ab2 = h = b

    1 1/ 3

    4.

    PROBLEMA 11.61

    Calcular el volumen del toro, que es el solido de revolucion engen-drado al girar un crculo de radio r alrededor de un eje situado ensu plano y a una distancia b de su centro (b r).

    91

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    56/71

    Solucion

    Si hacemos que OX sea el eje de giro y el centro de la circunferencia el punto(0, b), esta tiene por ecuacion x2 + (y b)2 = r2. El volumen, aplicando elmetodo de los discos, vendra dado por:

    V = r

    r b +r2 x22 b r

    2

    x22 dx = (cambio x = r sen t)

    = 4b

    /2/2

    r2 cos2 t dt = 2br2

    t +

    1

    2sen2t

    /2/2

    = 2br22.

    PROBLEMA 11.62

    Hallar el volumen de un cono recto de altura h, cuya base es unaelipse de eje mayor 2a y eje menor 2b.

    Solucion

    La seccion determinada en el cono por un plano paralelo a la base y dealtura OP = z es una elipse de eje mayor 2x y eje menor 2y. Su area es puesxy.

    92

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    57/71

    Por semejanza de triangulos, se deduce de la figura que

    M P C

    M OA = P C

    OA=

    P M

    OMes decir

    x

    a=

    h zh

    ;

    M P D

    M OB =

    P D

    OB

    =P M

    OM

    es deciry

    b

    =h z

    h

    .

    El area de la seccion es entonces xy =ab(h z)2

    h2. Luego,

    V =ab

    h2

    h0

    (h z)2dz = abh3

    .

    PROBLEMA 11.63

    Un solido tiene una base circular de radio 2. Cada secci on produ-cida por un plano perpendicular a un diametro fijo es un trianguloequilatero. Calcular el volumen del solido.

    Solucion

    Si expresamos por la ecuacion x2+y2 = 4 a la base del solido y consideramoslas secciones perpendiculares al eje X, el lado de un triangulo generico esl = 2y y la altura es h =

    l2 l2/4 = l3/2 = y3.

    93

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    58/71

    El volumen sera entonces

    V =

    22

    2y y32

    dx =

    3

    22

    (4 x2) dx = 32

    3

    3.

    PROBLEMA 11.64

    Un cilindro cuya base es una elipse se corta por un plano inclinadoque pasa por el eje menor de la misma. Hallar el volumen del solidorestante.

    Solucion

    Supongamos que la ecuacion de la elipse es x2/a2 + y2/b2 = 1 y llamamos Ha la altura del cilindro (que corresponde al punto (a, 0)). Cortando el solidopor planos perpendiculares al eje OY obtenemos triangulos rectangulos se-mejantes. En un punto arbitrario (x, y) el area de uno de dichos triangulos(ver figura) es

    A =x h

    2=

    x2 tg 2

    =x2 H

    2a.

    94

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    59/71

    Como (x, y) verifica la ecuacion de la elipse, escribimos el area en funcion

    de y como A(y) =a2(1 y2/b2) H

    2a. El volumen sera entonces

    V =

    bb

    A(y) dy = 2

    b0

    a(1 y2/b2) H2

    dy = aH

    y y

    3

    3b2

    b0

    =2abH

    3.

    PROBLEMA 11.65

    Un solido tiene una base en forma de elipse cuyos ejes mayor ymenor miden 10 y 8 unidades respectivamente. Hallar su volumen

    sabiendo que toda seccion del mismo perpendicular al eje mayores un triangulo isosceles de altura igual a 6.

    Solucion

    Escribimos la ecuacion de la elipse como x2/25 + y2/16 = 1.

    95

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    60/71

    El triangulo obtenido por la seccion perpendicular al eje OX por un puntox tiene area A(x) = 2y h/2 = 6y = 24

    1 x2/25, y el volumen del solido

    (aplicando los metodos usuales de integracion) es

    V =

    55

    A(x) dx = 24

    55

    1 x2/25 dx

    =24

    5

    25

    2arc sen

    x

    5+

    x

    225 x2

    55

    = 60.

    PROBLEMA 11.66

    La seccion de un cierto solido por cualquier plano perpendicularal eje OX es un cuadrado tal que los extremos de una diagonalpertenecen respectivamente a las parabolas y2 = 4x, x2 = 4y. Hallarel volumen del solido.

    Solucion

    La region que limitan ambas curvas viene indicada en la figura y los puntos

    de corte son (0, 0) y (4, 4).

    96

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    61/71

    Como indica el enunciado, la diagonal de un cuadrado generico une los

    puntos (x, y1) y (x, y2) y su longitud, en funcion de x es d = 2x x2

    /4.Como el area del cuadrado es A(x) = d2/2 = (2

    x x2/4)2/2, el volumen

    pedido es:

    V =

    40

    (2

    x x2/4)22

    dx =1

    2

    2x2 +

    x5

    80 2x

    7/2

    7

    40

    =144

    35.

    C. LONGITUD DE CURVAS PLANAS.

    Dada la funcion y = f(x), definida en un intervalo [a, b], a cada particionP = {x0 = a, x1, . . . , xn1, xn = b} de [a, b] le corresponde una poligonal devertices Pk = (xk, f(xk)), k = 0, 1, . . . , n, como indica la figura.

    La longitud del arco de la curva entre los puntos A y B de abscisas x = a yx = b se define como el supremo de los permetros de todas las poligonales. Sies finito, se dice que la curva es rectificable; si no, la curva no es rectificable(tiene longitud infinita). El resultado fundamental que aplicaremos en estaseccion es el siguiente:

    Teorema. Si una funcion y = f(x) tiene derivada de primer orden continuaen [a, b], entonces es rectificable y la longitud del arco viene dada por laformula

    l = AB =

    ba

    1 + [f(x)]2 dx.

    97

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    62/71

    Si la funcion viene expresada en coordenadas parametricas x = x(t), y =

    y(t), la formula queda de la forma

    l =

    t1t0

    [x(t)]2 + [y(t)]2 dt,

    siendo t0 y t1 los parametros correspondientes a los puntos inicial y final dela curva.

    En la mayora de los casos no es posible encontrar expresiones explcitas dela longitud de un arco de curva. Por ello se deben crear nuevas funciones,como es el caso de las integrales elpticas (que expresan longitudes de arcos deelipses), o utilizar metodos aproximados para calcular arcos de curva.

    PROBLEMA 11.67

    Hallar la longitud del arco de la parabola x2 = 2py, con p > 0,comprendida en el intervalo [0, a].

    Solucion

    Si calculamos la derivada de la funcion, tenemos

    y = x/p =

    1 + y2 =

    1 + (x/p)2 =

    x2 +p2

    p.

    La longitud del arco pedido queda entonces

    l =1

    p

    a0

    x2 +p2 dx =

    p

    2

    x

    x2 +p2

    p2+ ln

    x +

    x2 +p2

    p

    a0

    =p

    2

    a

    a2 +p2

    p2+ ln

    a +

    a2 +p2

    p

    .

    PROBLEMA 11.68

    Probar que la curva f(x) =

    x cos(/x) si x = 00 si x = 0

    no es rectificable

    en [0, 1].

    98

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    63/71

    Solucion

    Si consideramos los puntos xn = 1/n, con n N, sabemos que f(xn) = (1)nn

    y la longitud de la poligonal de vertices xn es

    n1

    ln =n1

    1

    n 1

    n + 1

    2+

    (1)n

    n (1)

    n+1

    n + 1

    2=n1

    2

    n,

    que es una serie divergente. Esto prueba que la curva no es rectificable en[0, 1].

    PROBLEMA 11.69Calcular la longitud del arco de curva y = ln(cos x) en el intervalo[0, /3].

    Solucion

    Como la derivada de la funcion es y = tg x, la longitud pedida es

    l =

    /30

    1 + tg2 x dx =

    ln(sec x + tg x)

    /30

    = ln(2 +

    3).

    PROBLEMA 11.70

    Hallar la longitud de la curva de ecuacion 8a2y2 = x2(a2 2x2).

    Solucion

    a/2 a/2

    Si escribimos la ecuacion en forma explcita, tenemos y = x2

    2a

    a2 2x2,

    de donde y2 =(a2 4x2)2

    8a2(a2 2x2) y

    1 + y2 =3a2 4x2

    2

    2a

    a2 2x2 .

    La longitud del arco sera:

    99

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    64/71

    L = 4 12

    2a

    a/20

    3a2 4x2a2 2x2 dx

    =

    2a arc sen x

    2

    a+

    2

    a x

    a2 2x2

    a/20

    = a.

    PROBLEMA 11.71

    Hallar la longitud de la astroide de ecuacion x2/3 + y2/3 = a2/3.

    Solucion

    Escribiendo la ecuacion en forma parametrica como x = a cos3 t, y =a sen3 t y teniendo en cuenta la simetra de la figura, la longitud viene dadapor:

    L = 4

    /20

    x(t)2 + y(t)2 dt = 4

    /20

    3a sen t cos t dt = 6a.

    PROBLEMA 11.72Hallar la longitud de un lazo de la cicloide x = a(t sen t), y =a(1 cos t).

    Solucion

    2a 4a

    100

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    65/71

    Como un lazo de la cicloide es el arco de curva comprendido en el intervalo

    t [0, 2], la longitud es:

    L =

    20

    x(t)2 + y(t)2 dt =

    20

    a

    (1 cos t)2 + sen2 t dt

    = a

    2

    20

    1 cos t dt = a

    2

    20

    2sen(t/2) dt = 8a.

    PROBLEMA 11.73

    Hallar la longitud de la curva cuya ecuacion en forma parametrica

    es x(t) = a cos3 t, y(t) = a sen t(1 + cos2 t).

    Solucion

    Debido a la simetra de la figura, por la formula de la longitud de arcotenemos:

    L = 4

    /20

    x(t)2 + y(t)2 dt = 4

    /20

    a cos t

    4 3sen2 t dt = (cambio

    3

    2sen t = sen u) =

    16a3

    /30

    cos2 u du =8a

    3

    u +

    sen2u

    2

    /30

    =2a(4 + 3

    3)

    3

    3.

    101

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    66/71

    D. EJERCICIOS PROPUESTOS.

    1. Encontrar una formula que permita calcular el area de cada unade las regiones I, II, III y IV de la figura siguiente:

    Resp.: Si llamamos r(x) = f(0) +g(b) f(0)

    b x a la recta que pasa

    por los puntos (0, f(0)) y (b, g(b)), tenemos:

    AI =ba

    [f(x) g(x)] dx;

    AII =

    a0

    [h(x) g(x)] dx +ba

    [h(x) f(x)] dx;

    AII I =

    a0

    [f(x) r(x)] dx +ba

    [g(x) r(x)] dx;

    AIV =

    a0

    [g(x) f(x)] dx.

    2. Hallar el area de la figura limitada por la hiperbola equilateraxy = a2, el eje OX y las rectas x = a, x = 2a.

    Resp.: A = a2 ln2.

    3. Hallar el area encerrada por la recta y = 1 y la curva y = ln2 x.

    Resp.: A = 4/e.

    4. Calcular el area limitada por las curvas y = (x4)2, y = 16x2.

    102

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    67/71

    Resp.: A = 64/3.

    5. Hallar el area limitada por la curva y = x2 2x + 2, su tangenteen el punto (3, 5), el eje OX y el eje OY.

    Resp.: A = 23/8.

    6. Calcular el area de la figura del primer cuadrante limitada por lasparabolas x2 = 2py, y2 = 2px en el interior de la circunferenciax2 + y2 = 3p2, (p > 0).

    Resp.: A =p2

    24(4

    2 + 9 36arcsen1/

    3).

    7. Calcular el area de la region limitada por las curvas y = x2 + 6,(y 2)2 + x2 = 4, y = x.

    Resp.: A =1

    6(49 6).

    8. Hallar el area de la region limitada por la curva y = (x2 + 2x)ex

    y el eje OX en el tercer cuadrante.

    Resp.: A = 4.

    9. Hallar el area de la region limitada por la curva y = x(1 x2)2 arc sen x

    y las rectas x = 0, x = 1/2, y = 0.

    Resp.: A =

    9 1

    2

    3.

    10. Calcular el area de la region limitada por las curvas y = 5 x2,y = (x 1)2.Resp.: A = 9.

    11. Calcular el area de la elipsex2

    a2+

    y2

    b2= 1.

    Resp.: A = ab.

    12. Calcular el area de la region limitada por las curvas x2 + y2 = 2,y = x2, y = x + 6.

    Resp.: A =45 +

    2.

    103

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    68/71

    13. Calcular el area de la region limitada por las graficas de f(x) =

    x2

    4x + 4 y g(x) = 4 x.Resp.: A = 9/2.

    14. Calcular el area de la figura limitada por la curva y = x3, la rectay = 8 y el eje OY.

    Resp.: A = 12.

    15. Hallar el area limitada por la curva y2 = x2 x4.

    Resp.: A = 4/3.

    16. Hallar el area de la superficie interior a la circunferencia x2 +y2 = 16 y por encima de la parabola x2 = 12(y 1).

    Resp.: A =16 + 4

    3

    3.

    17. Hallar el area limitada por la curva y = cos 2x + cos x y el eje Xentre las dos ordenadas que corresponden a una distancia iguala un perodo de la curva.

    Resp.: A = 33.

    18. Hallar el area encerrada por el bucle de la curva x3 = a(x2y2).

    Resp.: A =8a2

    15.

    19. Dada la hiperbola de ecuacionx2

    a2 y

    2

    b2= 1, determinar el area A

    del triangulo mixtilneo AP Q, siendo A(a, 0), P(a

    2, b), Q(a

    2, 0).

    Resp.: A =ab

    2[

    2 ln(1 +

    2)].

    20. Hallar el area del segmento circular de centro O y radio r com-prendido entre las rectas x = a, x = b.

    Resp.: A = b

    r2 b2 + r2 arc sen br a

    r2 a2 r2 arc sen a

    r.

    104

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    69/71

    21. Hallar el area del segmento parabolico comprendido entre y2 =

    2px las rectas x = a, x = b.

    Resp.: A =4

    2p

    3(b3/2 a3/2).

    22. Hallar el volumen del solido de revolucion engendrado por lafigura limitada por la curva y = xex y las rectas y = 0, x = 1 algirar alrededor del eje OX.

    Resp.: V =e2

    4.

    23. Calcular el volumen del solido engendrado al girar alrededor deleje OX la region interior a la circunferencia x2 + y2 = 1 y a laparabola y2 = 3x/2.

    Resp.: 19/48.

    24. Calcular el volumen del solido obtenido al girar alrededor del ejeOX la region limitada por la curva y = 21 x2 y el eje OX.Resp.: V =

    3(28 6).

    25. Calcular el volumen del solido limitado por las curvas x2y2 = 4,y = 2, y = 2 al girar alrededor del eje OX.

    Resp.: V =32

    3(2

    2 1).

    26. Calcular el volumen del solido limitado por las curvas y = sen x,y = 2x/ al girar alrededor del eje OX.

    Resp.: V = 2/6.

    27. Calcular el volumen del solido obtenido al girar la region limitadapor las graficas de f(x) =

    4 x2 y g(x) = 1 en el intervalo [0,3]

    alrededor de y = 0.

    Resp.: V = 2

    3.

    28. Sea R la region interior a la circunferencia de centro (1,1) yradio 2 y por encima de la recta y =

    3 1.

    a) Determinar el area de R.

    105

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    70/71

    b) Calcular el volumen del solido obtenido al girar la region R

    alrededor del eje OX.

    Resp.: A =2

    3

    3; V =2

    3(2 + 3

    3 2).

    29. Sea R la region limitada por las curvas x + y = 2y2, y = x3. Cal-cular el area de R y el volumen que engendra R al girar alrededordel eje OX.

    Resp.: A = 7/12 (pensar x como funcion de y); V = 11/21 (metodode los tubos).

    30. Sea R la region limitada por las curvas y =x2

    4+ 2 y 5x+8y14 =

    0. Calcular el area de R y el volumen de la figura obtenida al girarR alrededor del eje OX.

    Resp.: A = 27/192; V =891

    1280(metodo de los discos).

    31. Sea R la region limitada por las curvas y = 4x x2 y 2x y = 0.Calcular el area de R y el volumen de la figura obtenida al girarR alrededor del eje OX.

    Resp.: A = 4/3; V = 32/5.

    32. Sea R la region limitada por las curvas y =1

    1 + x2e y =

    x2

    2. Cal-

    cular el area de R y el volumen de la figura obtenida al girar Ralrededor de los ejes OX y OY.

    Resp.: A = (3 2)/6; VX = 20

    (5 + 8) (discos); VY =

    4(4ln2 1)

    (tubos).

    33. Se considera la region R limitada por las curvas x2 + (y1)2 = 5,x = 2(y 1)2.a) Calcular el area de R.

    b) Calcular el volumen obtenido al girar la region R alrededordel eje OY.

    c) Calcular el volumen obtenido al girar la region R alrededor dela recta y = 1.

    106

  • 7/29/2019 Area de Figuras Planas Calculo Integral Aplicaciones

    71/71

    Resp.: A = 5arcsen1

    5+

    2

    3

    ; VY =116

    15

    (discos); Vy=1 =10

    5 193

    (tubos).

    34. Dada la region limitada por las curvas y = 4x2, y = x2/9, y = 2,calcular el area de la region y el volumen obtenido al girar dicharegion alrededor de los ejes OX y OY.

    Resp.: A = 20

    2/3; VX = 16

    2 (tubos); VY = 35/2 (discos).

    35. Dada la region limitada por las curvas y = x2 + 1, y 1 = x,calcular el area de la region y el volumen obtenido al girar dicha

    region alrededor del eje OY.Resp.: A = 1/6; VY = /6.

    36. Dada la region limitada por las curvas x2 + y2 = 12, x2 = 4y,y2 = 4x, calcular el area de la region y el volumen obtenido algirar dicha region alrededor del eje OY.

    Resp.: A =4

    2

    3+ 12 arc sen

    2/3 3; VY =

    15(256

    5 200).

    37. Se considera la region limitada por la curva y = sen(x/2) +

    cos(x/2) + 1 y las rectas x = 0, x = 1 e y = 0. Hallar el area dedicha region y el volumen del solido obtenido al girar alrededordel eje OX.

    Resp.: A = 1 +4

    ; V = 2 + 10.

    38. Calcular el volumen del tronco de cono con radios de las bases ry R y altura h.

    Resp.: V =h

    3(r2 + rR + R2).

    39. Calcular la longitud del arco de la curva y = ex/2 + ex/2 entrelos puntos de abscisa x = 0 y x = 2.

    Resp.: L = e e1.x + 1