análisis y diseño de un reservorio de 120 m3

28
ANALISIS Y DISEÑO DEL RESERVORIO DE ANGOSTURA DE 120 M3 ANÁLISIS Y DISEÑO DE UN RESERVORIO DE 120 M3

Upload: bernardino-gutierrez-caceres

Post on 30-Jul-2015

190 views

Category:

Documents


11 download

TRANSCRIPT

Page 1: Análisis y diseño de un reservorio de 120 m3

ANALISIS Y DISEÑO DEL RESERVORIO DE ANGOSTURA DE 120 M3

ANÁLISIS Y DISEÑO DE UN RESERVORIO DE120 M3

DISEÑO DE UN RESERVORIO APOYADO PARA UNA CAPACIDAD DE 120 m3

Page 2: Análisis y diseño de un reservorio de 120 m3

ANALISIS Y DISEÑO DEL RESERVORIO DE ANGOSTURA DE 120 M3

1. Datos Generales.

1.1. Geometría.Tipo: Se considerará un reservorio para el almacenamiento de agua para el consumo humano, según el ACI 350.3-01 sección 2.1.1 se clasificará como tanque circular de concreto armado con conexión muro-losa no flexible

Volumen: De almacenamiento igual a 120 metros cúbicos.

Radio: Interior (D) de 7.00 metros.

Alturas: Altura Efectiva para almacenamiento de agua (Hl) igual a 3.15 metros.

Profundidad enterrada (He) igual a 0.75 metros.

Altura Total del muro (Hw) igual a 3.30 metros.

Flecha de diseño para la cúpula (Fc) igual a la Luz sobre 10, por lo tanto 7.00 / 10 = 0.70 metros.

Espesor de Muros: tw = 0.20 metros.

Espesor de la Cúpula: Ce = 0.10 metros con un ensanchamiento a 0.15 metros a 1 metro de la unión cúpula-muro.

Espesor de Fundación: Hz = 0.20 metros

Volado en Fundación: v = 0.50 metros.

1.2. Materiales.Resistencia del Concreto: f'c = 210 Kg/cm2 a los 28 días.

Page 3: Análisis y diseño de un reservorio de 120 m3

Peso del M uro (W w)+ Peso de la Cúpula (W r) 5775.166 kgPeso del M uro (W w) 3652.35 kgPeso de la Cúpula (W r) 2122.81 kgDiámetro Interior (D) 7.00 mAltura Efectiva de Líquido (Hl) 3.15 mCoeficiente de M asa Efectiva ( є) (por Peso Propio) 0.67

22M asa Efectiva (W e) (por Peso Propio) 4569.88 kg

M asa Total del Líquido Almacenado (W l) 120000.00 kgD/Hl 2.22

Wi / Wl 0.498Wc / Wl 0.475Peso Equivalente de la Componente Impulsiva W i 59760.00 kgPeso Equivalente de la Componente Convectiva W c 57000.00 kg

ANALISIS Y DISEÑO DEL RESERVORIO DE ANGOSTURA DE 120 M3

Es del Concreto: De acuerdo a ACI 350M-01 sección 8.5.1 =15100 √f ′c = 218819.79 Kg/cm2.

fy del acero : 4200 Kg/cm2.

2. Análisis (según Metodología del Apéndice A del ACI 350.3-01).

2.1. Análisis Sísmico Estático.Los resultados presentados fueron evaluados en hojas de cálculo en Excel y el programa Sap2000.

Cálculo de la Masa Efectiva, según ACI 350.3-01 sección 9.5.2:

Cálculo de la Masa Efectiva del líquido almacenado, componente impulsiva (Wi) y componente convectiva (Wc), según ACI 350.3-01 sección 9.3.1:

Page 4: Análisis y diseño de un reservorio de 120 m3

ANALISIS Y DISEÑO DEL RESERVORIO DE ANGOSTURA DE 120 M3

Cálculo de la frecuencia de vibración natural combinada (wi) de la estructura y el componente impulsivo del líquido almacenado, según ACI 350.3-01 sección 9.3.4:

Page 5: Análisis y diseño de un reservorio de 120 m3

Hl / D 0.45Coef. Para det. Frecuencia Fund. Tanque-líquido (Cw) 0.158Espesor del M uro (tw) 0.20 mRadio circular interno R 3.50 mCoef. Para det. Frecuencia Fund. Tanque-líquido (Cl) 0.382Resistencia a Com presión del Concreto (f'c) 210.00 kg/cm 2M ódulo de Elasticidad del concreto (Ec) 21458.90 M PaDensidad del concreto (ρc) 2.40 kN .s2/m 4Frec. Circ. Del modo de vibración impulsivo (wi) 362.756 rad/sPeriodo Fund. De Oscilación del Tanque + Comp. Impulsivo (Ti) 0.0173 s

Aceleración debido a la gravedad (g) 9.81 m /s2

ʎ 10.472Frec. circular de vibración del primer modo convectivo (wc) 3.96 rad/sPeriodo Natural del primer modo convectivo (Tc) 1.59 s

ANALISIS Y DISEÑO DEL RESERVORIO DE ANGOSTURA DE 120 M3

Cálculo de la frecuencia de vibración de la componente convectiva (wc), según ACI 350.3-01 sección 9.3.4:

Parámetros para el Cálculo de la Fuerza Sísmica, según ACI 350.3-01 sección 4.2 y NTE E-030:El factor de zona que corresponde a la Zona Sísmica del ACI 350.3 es similar a los valores especificados en la NTE E-030 sección 2.1. Por encontrarse en la zona de intermedia amenaza

Page 6: Análisis y diseño de un reservorio de 120 m3

ANALISIS Y DISEÑO DEL RESERVORIO DE ANGOSTURA DE 120 M3

sísmica, se tomará como Zona 2 con una aceleración de 0.30 g (según NTE E-030), lo que equivale a la Zona 3 del ACI 350.3-01.

Como valor para el parámetro del suelo, según la NTE E-030 le corresponde el Tipo S3 con un valor de 1.4, esta vez también el valor es muy similar al propuesto por el ACI 350.3-01.

La NTE E-030, categoriza a los reservorios como Edificación Esencial (A) al que le corresponde el factor 1.5. Se ve que la NTE E-030 no tiene mayores categorías para reservorios como el ACI 350.3-01, en el que categorizaríamos este modelo en el segundo tipo que corresponde a reservorios destinados a permanecer en uso para propósitos de emergencia en eventos sísmicos. Para este modelo usaremos el valor más alto de 1.5.

Page 7: Análisis y diseño de un reservorio de 120 m3

ANALISIS Y DISEÑO DEL RESERVORIO DE ANGOSTURA DE 120 M3

El Coeficiente de Modificación de Respuesta o coeficiente de reducción de fuerza sísmica si usáramos la NTE E-030 tendría un valor de 6, como en el parámetro anterior, vemos que el ACI 350.3-01 entrega valores para distintos tipos de reservorios, y son más restrictivos que la NTE E-030.AL necesitar factores para las componentes impulsiva y convectiva usaremos los valores de Rwi = 2.75 y Rwc = 1.00 (Tipo b).

Page 8: Análisis y diseño de un reservorio de 120 m3

Coeficiente representativo de las características del Suelo (S) 1.40Factor de Amplificación Espectral para el mov. Horizontal Ci 1.96Factor de Amplificación Espectral para el mov. Horizontal Cc 1.37

Factor de zona (Z) 0.30Factor de Importancia (I) 1.50Desplazamiento Máximo Vertical del líquido contenido (d max) ASUMIMOS 3.30 m

ANALISIS Y DISEÑO DEL RESERVORIO DE ANGOSTURA DE 120 M3

Cálculo de los factores de amplificación espectral Ci y Cc, según ACI 350.3-01 sección 4.2:

Cálculo del desplazamiento máximo del líquido contenido (dmax), según ACI 350.3-01 sección 7.1:

Page 9: Análisis y diseño de un reservorio de 120 m3

hi / Hl 0.375Altura al centro de Gravedad de la Comp. Impulsiva (hi) 1.18 m

hc / Hl 0.59Altura al centro de Gravedad de la Comp. Convectiva (hc) 1.86 m

ANALISIS Y DISEÑO DEL RESERVORIO DE ANGOSTURA DE 120 M3

Cálculo de las alturas al centro de gravedad de la ubicación de las componentes impulsivas y convectivas, según ACI 350.3-01 sección 9.3.2:

ANALISIS DINAMICO ESPECTRAL

A 1.5

2 0.30

S3 0.90

1.40

2.75

T (s) C i ZISC /Rwi

0.00 1.96 0.4500

0.02 1.96 0.4500

0.04 1.96 0.4500

0.06 1.96 0.4500

0.08 1.96 0.4500

0.10 1.96 0.4500

0.12 1.96 0.4500

0.14 1.96 0.4500

0.16 1.96 0.4500

0.18 1.96 0.4500

0.20 1.96 0.4500

0.25 1.96 0.4500

0.30 1.96 0.4500

0.35 1.96 0.4500

0.40 1.96 0.4500

0.45 1.96 0.4500

0.50 1.96 0.4500

0.55 1.96 0.4500

0.60 1.96 0.4500

0.65 1.96 0.4500

0.70 1.96 0.4500

0.75 1.96 0.4500

0.80 1.96 0.4500

0.85 1.96 0.4500

0.90 1.96 0.4500

0.95 1.94 0.4445

1.00 1.88 0.4295

2.00 1.18 0.2706

3.00 0.67 0.1527

4.00 0.38 0.0859

5.00 0.24 0.0550

6.00 0.17 0.0382

7.00 0.12 0.0281

8.00 0.09 0.0215

9.00 0.07 0.0170

10.00 0.06 0.0137

ESPECTRO DE SISMO SEGÚN ACI 350.3-01 Y NORMA E-030Para el Cálculo de las Fuerzas Inerciales y Componente Impulsivo

I

Z

Tp (s)

Rwi

S

Base Articulada o Fija, No Enterrada (1.1, 1.2, 2.1, 2.2)

Categoria Edificio

Zona Sísmica

Tipo de Suelo

Coeficicente de red.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

ZIS

C/R

wi

PERIODO T

ESPECTRO DE SISM O ACI 350.3-01 y NORMA E-030

Sa

sTSTC

sTSC

nEspectralAceleracióxgRZISC

S

Iii

Ii

W i

Ia

31.0 ;/75.2/25.1

31.0 ;/75.2

)(

32

Page 10: Análisis y diseño de un reservorio de 120 m3

ANALISIS Y DISEÑO DEL RESERVORIO DE ANGOSTURA DE 120 M3

A 1.5

2 0.30

S3 0.90

1.40

1.00

T (s) Cc ZICS/Rwc

0.00 1.96 1.2375

0.02 1.96 1.2375

0.04 1.96 1.2375

0.06 1.96 1.2375

0.08 1.96 1.2375

0.10 1.96 1.2375

0.12 1.96 1.2375

0.14 1.96 1.2375

0.16 1.96 1.2375

0.18 1.96 1.2375

0.20 1.96 1.2375

0.25 1.96 1.2375

0.30 1.96 1.2375

0.35 1.96 1.2375

0.40 1.96 1.2375

0.45 1.96 1.2375

0.50 1.96 1.2375

0.55 1.96 1.2375

0.60 1.96 1.2375

0.65 1.96 1.2375

0.70 1.96 1.2375

0.75 1.96 1.2375

0.80 1.96 1.2375

0.85 1.96 1.2375

0.90 1.96 1.2375

0.95 1.94 1.2223

1.00 1.88 1.1813

2.00 1.18 0.7441

3.00 0.67 0.4200

4.00 0.38 0.2363

5.00 0.24 0.1512

6.00 0.17 0.1050

7.00 0.12 0.0771

8.00 0.09 0.0591

9.00 0.07 0.0467

10.00 0.06 0.0378

ESPECTRO DE SISMO SEGÚN ACI 350.3-01 Y NORMA E-030Para el Cálculo del Componente Convectivo

Categoria Edificio I

Zona Sísmica Z

Tipo de Suelo Tp (s)

S

Coeficicente de red. Rwc

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

ZIS

C/R

wi

PERIODO T

ESPECTRO DE SISM O ACI 350.3-01 y NORMA E-030

Sa

sTSTC

sTTC

nEspectralAceleracióxgR

ZISCS

ICC

ICC

WC

Ca

40.2 ;/75.2/875.1

40.2 ;/0.6

)(

32

2

Page 11: Análisis y diseño de un reservorio de 120 m3

ANALISIS Y DISEÑO DEL RESERVORIO DE ANGOSTURA DE 120 M3

ANALISIS DEL RESERVORIO DE 120 M3 CON EL SAP 2000

Page 12: Análisis y diseño de un reservorio de 120 m3

ANALISIS Y DISEÑO DEL RESERVORIO DE ANGOSTURA DE 120 M3

Page 13: Análisis y diseño de un reservorio de 120 m3

ANALISIS Y DISEÑO DEL RESERVORIO DE ANGOSTURA DE 120 M3

Page 14: Análisis y diseño de un reservorio de 120 m3

ANALISIS Y DISEÑO DEL RESERVORIO DE ANGOSTURA DE 120 M3

DEFORMACIONES DEL RESERVORIO

CALCULO DEL ACERO CON EL PROGRAMA SAP2000

Page 15: Análisis y diseño de un reservorio de 120 m3

ANALISIS Y DISEÑO DEL RESERVORIO DE ANGOSTURA DE 120 M3

TANTO EL ACERO RADIAL Y EL ACERO TANGENCIAL SON MENORES QUE EL ACERO MINIMO POR LO TANTO SE DISEÑARA CON EL ACERO MINIMO, COMO SE MUESTRA ACONTINUACION

Page 16: Análisis y diseño de un reservorio de 120 m3

ANALISIS Y DISEÑO DEL RESERVORIO DE ANGOSTURA DE 120 M3

DATOSH = 3.30 m ALTURA DEL RESERVORIO

BL = 0.15 m BORDE LIBRE

HL = 3.15 m ALTURA DEL LIQUIDO

DL = 7.00 m DIAMETRO INTERIOR DEL RESERVORIO

t = 0.20 m ESPESOR DEL RESERVORIO

tl = 0.20 m ESPESOR DE LA LOSA

f'c = 210 Kg/cm2 RESISTENCIA DEL CONCRETO

V = 121.23 m3 CAPACIDAD DEL RESERVORIO

Rd = 3.60 m RADIO DE DISEÑO DEL RESERVORIO

DISEÑO ESTATICO Y DINAMICO DEL RESERVORIO DE ANGOSTURA DE 120M3

a). Análisis y diseño anular por presión hidrostática:Se considera un muro con base fija, extremo superior libre y carga triangular, como se muestra en la figura

Page 17: Análisis y diseño de un reservorio de 120 m3

ANALISIS Y DISEÑO DEL RESERVORIO DE ANGOSTURA DE 120 M3

HL = 3.15 m ALTURA DEL LIQUIDO

DL = 7.00 m DIAMETRO INTERIOR DEL RESERVORIO

t = 0.20 m ESPESOR DEL RESERVORIO

R = 3.50 m RADIO INTERNO DEL RESERVORIO

fa = 7.09

fa = 7.10 asumiremos

Calculo del valor de wu: Wu = 2.81 Tn/m3

fc = 1.70 FACTOR DE AMPLIFICACION DE CARGA

Cs = 1.65 COEFICIENTE SANITARIO

= 1.00 Tn/m3 PESO ESPECIFICO DEL AGUA

W = 30.93 Tn/m

VAR.HALTURA COEFICIENTE T=COEFICIENTE*W

1.0 3.15 0.002 0.06 Tn/m

0.9 2.84 0.111 3.42 Tn/m

0.8 2.52 0.225 6.96 Tn/m

0.7 2.21 0.339 10.49 Tn/m

0.6 1.89 0.442 13.67 Tn/m

0.5 1.58 0.521 16.10 Tn/m

0.4 1.26 0.548 16.93 Tn/m

0.3 0.95 0.493 15.24 Tn/m

0.2 0.63 0.310 9.60 Tn/m

0.1 0.32 0.133 4.13 Tn/m

0.0 0.00 0.000 0.00 Tn/m

16.93 Tn/m

16.10 Tn/mTension ala mitad de reserv =

Según el PCA (Portland Cement Assocition), recomienda el uso de tablas en función de las condiciones de extremo y apoyo, para lo cual se sigue el siguiente procedimiento.

Tension Maxima =

�ܽߛ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 10

20

Alt

ura

(m

)

Tension (Tn/m)

DIAGRAMA DE TENSION

Page 18: Análisis y diseño de un reservorio de 120 m3

ANALISIS Y DISEÑO DEL RESERVORIO DE ANGOSTURA DE 120 M3

C = 0.0003 COEFICIENTE DE CONTRACCION DE FRAGUA

f'c = 210 Kg/cm2 RESISTENCIA DE CONCRETO

fy = 4200 Kg/cm2 FLUENCIA DE ACERO GRADO 60

fct = 21 Kg/cm2 RESISTENCIA ADMISIBLE DEL CONCRETO (0.1 f'c)

fs = 2520 Kg/cm2 RESISTENCIA ADMISIBLE A TENSION.

Es = 2000000 Kg/cm2 MODULO DE ELASTICIDAD DEL ACERO

Ec = 217371 Kg/cm2 MODULO DE ELASTICIDAD DEL CONCRETO

n = 9.20 RELACION DE MODULOS DE ELASTICIDAD ENTRE EL ACERO Y EL CONCRETO

Tmax = 16.93 Tn/m 169.3 Kg/cm

t = 0.09 cm

t = 0.20 m

Entonces Asɸ=As min = 0.0030 b*t = 6.00 cm2

DIAMETRO AREA DE ACERO DIS.Asmin1/4 0.32 cm2 As = 6.00 cm2/m3/8 0.71 cm21/2 1.27 cm25/8 1.98 cm2 S = 0.24 m3/4 2.85 cm2

1 5.07 cm21 1/2 11.40 cm2

3/8 @ 0.20 m

Entonces Asɸ=As min = 0.0030 b*t = 6.00 cm2

DIAMETRO AREA DE ACERO DIS.Asmin1/4 0.32 cm2 As = 6.00 cm2/m3/8 0.71 cm21/2 1.27 cm25/8 1.98 cm2 S = 0.24 m3/4 2.85 cm2

1 5.07 cm21 1/2 11.40 cm2

3/8 @ 0.200 m

0.71 cm2

As > As min

ENTOCES LA DISTRIBUCION SERA

SE COLOCARA ACERO DE DESDE UNA ALTURA DE 1.58 m

Apartir de la altura de tensión máxima se calcula la siguiente distribución para un momento de H/2:

DISEÑO ESTRUCTURALVAMOS A ELEGIR ACERO DE

As = 4.26 cm2/m 3/8

1.58 m

CON LA FUERZA DE TENSION SE VERIFICA EL ESPESOR DEL MURO

asumimos un espesor de

DISEÑO ESTRUCTURALVAMOS A ELEGIR ACERO DE

As = 4.48 cm2/m 3/8

0.71 cm2

As > As min

ENTOCES LA DISTRIBUCION SERA

SE COLOCARA ACERO DE HASTA UNA ALTURA DE

Page 19: Análisis y diseño de un reservorio de 120 m3

ANALISIS Y DISEÑO DEL RESERVORIO DE ANGOSTURA DE 120 M3

b). Análisis y diseño en flexión por presión hidrostática:

Calculo del valor de wu: Wu = 2.21 Tn/m3

fc = 1.70 FACTOR DE AMPLIFICACION DE CARGA

Cs = 1.30 COEFICIENTE SANITARIO

= 1.00 Tn/m3 PESO ESPECIFICO DEL AGUA

W = 69.08 Tn.m/m

VAR.HALTURA COEFICIENTE T=COEFICIENTE*W

1.0 3.15 0.0000 0.00 Tn/m

0.9 2.84 0.0000 0.00 Tn/m

0.8 2.52 0.0002 0.01 Tn/m

0.7 2.21 0.0005 0.03 Tn/m

0.6 1.89 0.0013 0.09 Tn/m

0.5 1.58 0.0023 0.16 Tn/m

0.4 1.26 0.0036 0.25 Tn/m

0.3 0.95 0.0044 0.31 Tn/m

0.2 0.63 0.0029 0.20 Tn/m

0.1 0.32 -0.0031 -0.21 Tn/m

0.0 0.00 -0.0164 -1.14 Tn/m

0.31 Tn.m/m

-1.14 Tn.m/m

Con el momento se realiza el diseño:t = 0.20 m ESPESOR DEL MURO

f'c = 210 Kg/cm2 RESISTENCIA DEL CONCRETO

fy = 4200 Kg/cm2 FLUENCIA DEL ACERO GRADO 60

r = 0.05 m RECUBRIMIENTO

d = 15.00 cm PERALTE DEL MURO Mu =ɸ = 0.9 a = 0.001270b = 100.00 cm

30600.44 Kg . cm /m

Momento Minimo=

DISEÑO ESTRUCTURAL

7.10

Momento Maximo =

�ܽߛ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

-1.3

0-1

.20

-1.1

0-1

.00

-0.9

0-0

.80

-0.7

0-0

.60

-0.5

0-0

.40

-0.3

0-0

.20

-0.1

00

.00

0.1

00

.20

0.3

00

.40

Alt

ura

(m

)

Momento (Tn.m/m)

DIAGRAMA DE MOMENTOS

Page 20: Análisis y diseño de un reservorio de 120 m3

ANALISIS Y DISEÑO DEL RESERVORIO DE ANGOSTURA DE 120 M3

As = 0.54 cm2

Entonces Asɸ=As min = 0.0030 b*t = 6.00 cm2

DIAMETRO AREA DE ACERO DIS.Asmin1/4 0.32 cm2 As = 6.00 cm2/m3/8 0.71 cm21/2 1.27 cm25/8 1.98 cm2 S = 0.24 m3/4 2.85 cm2

1 5.07 cm21 1/2 11.40 cm2

3/8 @ 0.200 m

Mu =a = 0.004715

As = 2.00 cm2

Entonces Asɸ=As min = 0.0030 b*t = 6.00 cm2

DIAMETRO AREA DE ACERO DIS.Asmin1/4 0.32 cm2 As = 6.00 cm2/m3/8 0.71 cm21/2 1.27 cm25/8 1.98 cm2 S = 0.21 m3/4 2.85 cm2

1 5.07 cm21 1/2 11.40 cm2

1/2 @ 0.200 mSE COLOCARA ACERO DE

1/2

113594.63 Kg . cm /m

VAMOS A ELEGIR ACERO DE

1.27 cm2

As > As min

ENTOCES LA DISTRIBUCION SERA

3/8

0.71 cm2

SE COLOCARA ACERO DE

As > As min

ENTOCES LA DISTRIBUCION SERA

VAMOS A ELEGIR ACERO DE

Page 21: Análisis y diseño de un reservorio de 120 m3

ANALISIS Y DISEÑO DEL RESERVORIO DE ANGOSTURA DE 120 M3

c). Análisis y diseño en corte por presión hidrostática:fa = 7.09

fa = 7.10 asumiremos

Calculo del valor de wu:

fc = 1.70 FACTOR DE AMPLIFICACION DE CARGA Wu = 1.70 Tn/m3

Cs = 1.00 COEFICIENTE SANITARIO

= 1.00 Tn/m3 PESO ESPECIFICO DEL AGUA

W= 16.87 Tn/m

COEFICIENTE V=COEFICIENTE*W

0.152 2.56 Tn/m CARGA TRIANGULAR EN LA BASE FIJ A

0.165 2.78 Tn/m CARGA RECTANGULAR EN LA BASE FIJ A

0.083 1.40 Tn/m CARGA TRIANGULAR O RECTANGULAR EN LA BASE APOYADA

-6.095 -102.81 Tn/m MOMENTO EN EL EXTREMO

CALCULO DE LA CORTANTE DEL CONCRETOt = 0.20 m ESPESOR DEL MURO

f'c = 210 Kg/cm2 RESISTENCIA DEL CONCRETO

r = 0.05 m RECUBRIMIENTO

d = 15.00 cm PERALTE DEL MURO

ɸ = 0.85

b = 100.00 cm

Vc= 9792.55 Kg Vc= 9.79 Tn/m

Vu = 2.78 Tn/mOK

CARGA RECTANGULAR EN LA BASE FIJ A

Vu < Vc

�ܽߛ

Page 22: Análisis y diseño de un reservorio de 120 m3

ANALISIS Y DISEÑO DEL RESERVORIO DE ANGOSTURA DE 120 M3

H= 3.30 m Altura del tanqueBL= 0.15 m Borde libreHL= 3.15 m Altura del liquidoDi= 7.00 m Diametro interior del tanque

t= 0.20 m Espesor del tanquetl= 0.20 m Espesor de la losa

fc= 210.00 Kg/cm2 Resistencia del Concreto

V= 121.23 m3 capacidad del tanque

Rd= 3.6 m Radio de diseño del tanque

Movimiento de un Fluido en un Tanque.Se utiliza la teoria simplificada de Housner, que inicialmente desarrollaron Graham y Rodriguez, el cual considera un modelo de masa resorte,tal como se muestra en la figura.

MODELO DINAMICO (Masa Resorte)

El procedimiento a seguir en el analisis dinamico es el siguiente:

a) Determinacion de la Masa de la Estructura que activa el sismo.

H= 3.30 m Altura del tanque Peso del muro del TanqueBL= 0.15 m Borde libreHL= 3.15 m Altura del liquidoDi= 7.00 m Diametro interior del tanque

t= 0.20 m Espesor del tanquetl= 0.20 m Espesor de la losa Ww= 35.83 Tn

fc= 210.00 Kg/cm2 Resistencia del Concreto mw= 3.65 Tn.seg2/m

V= 121.23 m3 capacidad del tanquega= 1.00 Tn/m3 Peso Especifico del Agua

gc= 2.40 Tn/m3 Peso Especifico del Concreto

g= 9.81 m/seg2 GravedadRd= 3.6 m Radio de diseño del tanque

ANALISIS SISMICO DEL RESERVORIO DE ANGOSTURA DE 120 M3

Page 23: Análisis y diseño de un reservorio de 120 m3

ANALISIS Y DISEÑO DEL RESERVORIO DE ANGOSTURA DE 120 M3

Peso de la base del Tanque

Wb= 20.64 Tn

mb= 2.1 Tn.seg2/m

Peso del agua

Wa= 121.23 Tn

ma= 12.36 Tn.seg2/m

b) Calculo de los parametros del modelo dinamico

Se calculara en funcion de una masa impulsiva y convectiva

En C.G.

2.222

Con esta relacion calculamos los factores de participacion de las masas:

fi= 0.498 mi= 6.15 Tn.seg2/m

fc= 0.475 mc= 5.87 Tn.seg2/m

Se puede observar que el 49.80% es excitado en el modo impulsivomientras que el 47.50% participa en el modo convectivo. La suma de la masa impulsiva y convectiva es

2.70% menor que la masa del liquido.

c) Calculo de las alturas impulsivas y convectivas

fi= 0.375 hi= 1.181 m

fc= 0.590 hc= 1.857 m

En el C.G.

fi= 0.879 hi'= 2.77 m

fc= 0.832 hc'= 2.622 m

Page 24: Análisis y diseño de un reservorio de 120 m3

ANALISIS Y DISEÑO DEL RESERVORIO DE ANGOSTURA DE 120 M3

d) Calculo de la rigidez convectiva

Kc= 27.79 Tn/m

e) Calculo de los Periodos Impulsivos y ConvectivosH= 3.30 m Altura del tanque

Di= 7.00 m Diametro interior del tanque (D=L)t= 0.20 m Espesor del tanque

fc= 210.00 Kg/cm2 Resistencia del Concreto

Ec= 217,370.65 Kg/cm2 Modulo de elasticidad del concretoga= 1.00 Tn/m3 Peso Especifico del Agua

g= 9.81 m/seg2 Gravedad

0.450

Ti= 0.0177688

Tc= 2.86948907