analisis numerico

8
Unidad II Alvimar vargas UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA

Upload: alvi-vargas

Post on 22-Jan-2017

47 views

Category:

Engineering


0 download

TRANSCRIPT

Page 1: analisis numerico

Unidad IIAlvimar vargas

UNIVERSIDAD FERMÍN TORO

VICE RECTORADO ACADÉMICO

FACULTAD DE INGENIERÍA

Page 2: analisis numerico

En esta unidad examinaremos los aspectos numéricos que se presentan al resolver sistemas de ecuaciones, utilizando matrices que permiten utilizar algoritmos para resolver estos sistemas.

Page 3: analisis numerico

MÉTODOS DE ELIMINACIÓN GAUSSIANA El proceso de eliminación de Gaussisana o de Gauss, consiste en realizar

transformaciones elementales en el sistema inicial (intercambio de filas, intercambio de columnas, multiplicación de filas o columnas por constantes, operaciones con filas o columnas, . . . ), destinadas a transformarlo en un sistema triangular superior, que resolveremos por remonte. Además, la matriz de partida tiene el mismo determinante que la matriz de llegada, cuyo determinante es el producto de los coeficientes diagonales de la matriz.

Uno de los problemas de la eliminación Gaussiana es que debemos dividir entre el pivote; si este es un número muy pequeño, entonces un error de redondeo puede arrojar serias dudas sobre la respuesta final. En forma general este método propone la eliminación progresiva de variables en el sistema de ecuaciones, hasta tener sólo una ecuación con una incógnita. Una vez resuelta esta, se procede por sustitución regresiva hasta obtener los valores de todas las variables.

Page 4: analisis numerico

 MÉTODO DE GAUSS-JORDANEl proceso de eliminación de Gauss - Jordán consiste en realizar transformaciones elementales en el sistema inicial, destinadas a transformarlo en un sistema diagonal. El número de operaciones elementales de este método, es superior al del método de Gauss (alrededor de un 50% más).Sin embargo, a la hora de resolver el sistema de llegada por remonte, el número de operaciones es menor, motivo por el cual, el método de Gauss - Jordán es un método computacionalmente bueno cuando tenemos que resolver varios sistemas con la misma matriz A y resolverlos simultáneamente, utilizando el algoritmo de Gauss-Jordán.En base a lo anteriormente expuesto, solo haríamos un proceso de eliminación en la matriz y la resolución de un sistema con esta matriz es muy fácil. Un ejemplo en el que se suele usar Gauss - Jordán es en el cálculo de la matriz inversa, ya que calcular la inversa de A, es calcular N sistemas con la misma matriz.

Page 5: analisis numerico

DESCOMPOSICIÓN LU Descomposición LU El método de Descomposición LU se basa en demostrar que una matriz A se puede factorizar como el producto de una matriz triangular inferior L con una matriz triangular superior U, donde en el paso de eliminación sólo se involucran operaciones sobre los coeficientes de la matriz, permitiendo así evaluar los términos independientes bi de manera eficiente.La implementación del algoritmo de la Descomposición LU tiene sus variantes en cuanto a los valores iniciales de la diagonal que tomen las matrices L y U, es decir si los valores de la diagonal de la matriz L tiene números 1, formalmente esto se refiere a la Descomposición de Doolitle. Pero si los valores de la diagonal de la matriz U tiene números 1, formalmente esto se refiere a la Descomposición de Crout 

Page 6: analisis numerico

FACTORIZACIÓN DE CHOLESKY

Una matriz simétrica es aquella donde Aij = Aji para toda i y j, En otras palabras, [A] =[A] T. Tales sistemas ocurren comúnmente en problemas de ambos contextos: el matemático y el de ingeniería. Ellos ofrecen ventajas computacionales ya que sólo se necesita la mitad de almacenamiento y, en la mayoría de los casos, sólo se requiere la mitad del tiempo de cálculo para su solución. Al contrario de la Descomposición LU, no requiere de pivoteo. El método de Factorización de Cholesky se basa en demostrar que si una matriz A es simétrica y definida positiva en lugar de factorizarse como LU, puede ser factorizada como el producto de una matriz triangular inferior y la traspuesta de la matriz triangular inferior, es decir los factores triangulaes resultantes son la traspuesta de cada uno.

Page 7: analisis numerico

MÉTODO DE GAUSS SEIDEL El Método de Gauss Seidel emplea valores iniciales y después itera para

obtener estimaciones refinadas de la solución; es particularmente adecuado para un gran número de ecuaciones, lo cual en cierto modo lo hace un método más comúnmente usado. La fórmula utilizada para hallar los xi viene dada por el despeje de cada una de las xien cadauna de las ecuaciones y se les da un valor inicial a cada xi de cero

Observase que en el método de Gauss Seidel los valores actualizados de xi sustituyen de inmediato a los valores anteriores, mientras que en el método de Jacobi todas las componentes nuevas del vector se calculan antes de llevar a cabo la sustitución.

Page 8: analisis numerico

MÉTODO DE JACOBI El Método de Jacobi transforma una matriz simétrica en una matriz diagonal al eliminar de forma simétrica los elementos que están fuera de la diagonal. Desafortunadamente, el método requiere un número infinito de operaciones, ya que la eliminación de cada elemento no cero a menudo crea un nuevo valor no cero en el elemento cero anterior. Si A es diagonalmente dominante, entonces la sucesión que resulta de la iteración de Jacobi converge a la solución de Ax = b para cualquier vector inicial Xo.