estaticidad geométrica de las estructuras geométrica de las estructuras arquitectura y...

Post on 24-May-2018

237 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Taller de Tecnología 1, Bim4g ,Escuela de Arquitectura U. de Talca

Estaticidad geométrica de las estructurasArquitectura y Estructuras, Pierre Lavigne

Estaticidad geométrica de las estructurasArquitectura y Estructuras, Pierre Lavigne

1. Equilibrios estable e inestable

2. El problema geométrico de la estabilidad

3. Tipos de conexiones en un plano

4. Ley geométrica de la estática

5. Consecuencias para estructuras isostáticas e hiperestáticas.

1. Equilibrios Estable e Inestable

Equilibrio Inestable

Equilibrio Estable

2. El problema geométrico de la estabilidad

• Aun antes de considerar las cargas que actúan sobre una estructurase puede evaluar su estaticidad geométricamente.

• Para garantizar la estabilidad global se debe razonar en al menosdos direcciones no coplanaresdos direcciones no coplanares.

Plano de análisis 1

Plano de análisis 2Plano de análisis 2

Plano de análisis 3

( debe comprobarse la estaticidad en distintos planos)

• Muchas soluciones dependen crucialmente de la calidady tipo de conexiones.

3. Tipos de Conexiones en un Plano

a) Conexiones Simples

1  parámetro de conexión ( permite el giro y el desplazamiento)p ( p g y p )

1 parámetrode conexión

Permite Giro Permite Desplazamiento

( en éste caso reacción vertical)

Puente Ferroviario, Rio Claro, Region del Maule.

3. Tipos de Conexiones en un Plano

a) Conexiones Simples

3. Tipos de Conexiones en un Plano

B) Conexiones dobles

2  parámetro de conexión ( permite el giro)

2 parámetros

Permite Giro

2 parámetrosde conexión

( en éste caso reacción vertical y horizontal)

3. Tipos de Conexiones en un PlanoB) Conexiones dobles

Bernd Haller, Amercanda, Parque Bustamante. Santiago

3. Tipos de Conexiones en un Plano

C) Conexiones triples

3  parámetros de conexión ( impide las 3 posibilidades de movimiento en un 

plano: deslizamiento en un eje “y” deslizamiento en un eje”x” y giro)plano: deslizamiento en un eje  y , deslizamiento en un eje x  y giro)

3 parámetrosde conexión

( en éste caso reacción vertical horizontal y giro), horizontal y giro)

3. Tipos de Conexiones en un Plano

D) Conexiones  MÚLTIPLES

4 PARÁMETROS 6 PARÁMETROS 3 PARÁMETROS4 PARÁMETROS 6 PARÁMETROS 3 PARÁMETROS

9 PARÁMETROS

3. Tipos de Conexiones en un Plano

D) Conexiones  MULTIPLES

4. Ley geométrica de la estática

d l l d b i id l ibilid dTodo elemento estructural debe tener restringida las posibilidadesde rotación y de traslación en su plano (en dos ejes ortogonales)

“Todo cuerpo rígido en el plano tiene 3 grados de libertad.p g p gPara estar en estado de equilibrio, requiere de 3 apoyos,3 restricciones al movimiento.”

Esto es equivalente a decir que un sistema esta en equilibrio al cumplirque:

ΣFx = 0 ΣFy = 0 ΣM= 0

4. Ley geométrica de la estática

C= parámetros de conexión entre elementosn =numero de elementos de la estructuraN= numero total de solicitaciones de movimiento de todos los elementos “n” de una estructura ( N = 3n)

A) Mecanismos:  La estructura no es estática, carece de parámetros de conexión suficientes para asegurar la estabilidad ( en todos los planos de análisis)

C = 82 2

C   8N = 3n N = 3x3=9

2C < N 2 2

4. Ley geométrica de la estática

B) Estructura Isostática:  La estructura es estable, “ no sobran ni faltan parámetros de conexión”

3C = 9N = 3n N = 3x3=9

32

N   3x3 9

C = N 2 2

4. Ley geométrica de la estática

C) Estructura Hiperestática:  La estructura tiene mas parámetros de conexión de los necesarios para lograr la estaticidad. Tiene una estática muy grande(hiper).El grado de hiperestaticidad se define como el numero de parámetros de conexión excedentes.

C = 11N = 3n N = 3x3=9

3 3N   3x3 9

C > N

HiperestáticoG° 2

23

4. Ley geométrica de la estática

C) Estructura Hiperestática:  La estructura tiene mas parámetros de conexión de los necesarios para lograr la estaticidad. Tiene una estática muy grande(hiper).El grado de hiperestaticidad se define como el numero de parámetros de conexión excedentes.

C = 11N = 3n N = 3x3=9

3 3N   3x3 9

C > N

HiperestáticoG° 2

23

4. Ley geométrica de la estática

Análisis de elementos aisladosEstudiando la estaticidad interna de un conjunto estructural ( compuesto por varios elementos), éste es isostático cuando C+3=N, donde “3” representa los parámetros de conexión necesarios que debe tener con una ligazón externa.

Ejemplo:

46

2

6

4

4

24

8

C = 36 + 3 = 39N 3 3 13 39N = 3n = 3x13 = 39

Isostático

4. Ley geométrica de la estática

Análisis de elementos aislados

Entonces:

2

C = 6N = 3n = 3x2 = 6

2 2

N   3n   3x2   6

Isostático

4. Ley geométrica de la estática

Hiperestaticidad Interna y Externa

En relación al ejemplo descrito anteriormente, la hiperestaticidad puede estar determinada InternamenteExternamente ( en relación a su ligazón con el exterior)

Hiperestaticidad Externa

2

C = 4

2

N = 3n = 3x1 = 2Hiperestático ( externo) G°1

4. Ley geométrica de la estática

Hiperestaticidad Interna y Externa

Hiperestaticidad Interna

2 6 6 6 2

6 59 6

C = 48N = 3n = 3x15 = 45Hiperestático ( interno) G°3

5 Algunas consecuencias de lo anterior

• Las estructuras isostáticas se llaman también estáticamente determinadasporque bastan las ecuaciones de equilibrio estático para encontrar losporque bastan las ecuaciones de equilibrio estático para encontrar losesfuerzos en cada uno de sus elementos.

• Constituyen el mínimo necesario y suficiente para garantizar la estaticidad.

• No sufren variaciones de sus esfuerzos internos debido a desplazamientosde apoyos o cambios de temperatura.

5 Algunas consecuencias de lo anterior

• Las estructuras hiperestáticas requieren ecuaciones adicionales:ecuaciones constitutivas ecuaciones de compatibilidad de desplazamientoecuaciones constitutivas ecuaciones de compatibilidad de desplazamiento

• Son mas rígidas, por lo cual se asocian a menores deformaciones.

Ti l l• Tienen mayor reserva ante los colapsos.

top related