Álgebra elemental

Post on 10-Feb-2016

118 Views

Category:

Documents

4 Downloads

Preview:

Click to see full reader

DESCRIPTION

Álgebra elemental. Las cuatro operaciones fundamentales Productos notables y factorización Fracciones Ecuaciones de primer grado Funciones y gráficas Ecuaciones simultaneas de primer grado Exponentes radicales Ecuaciones de segundo grado Razones, proporciones y variaciones Logaritmos. - PowerPoint PPT Presentation

TRANSCRIPT

1.Las cuatro operaciones fundamentales2.Productos notables y factorización3.Fracciones4.Ecuaciones de primer grado5.Funciones y gráficas6.Ecuaciones simultaneas de primer grado7.Exponentes radicales8.Ecuaciones de segundo grado9.Razones, proporciones y variaciones10.Logaritmos

1.El sistema de los números reales2.Definiciones básicas3.Adición y sustracción4.Símbolos de agrupación5.Multiplicación6.Exponentes en la multiplicación7.Productos que incluyen multinomios8.Los exponentes en la división9.Divisiones que incluyen multinomios10.Operaciones en que aparece el cero

Las operaciones fundamentales del álgebra son la adición, la sustracción, la multiplicación y la división.

El primer paso en la creación del sistema de los números reales fue la invención de los enteros positivos 1, 2, 3 ... , o números empleados para contar un conjunto de objetos.

Los números enteros positivos

ó números naturales

1,2,3,

los denotaremos como

N

Cuando uno suma dos números naturales (dos números enteros positivos) el resultado es, siempre, otro número natural.

Cuando uno suma dos números naturales (dos números enteros positivos) el resultado es, siempre, otro número natural.

Se dice entonces que el conjunto de los números naturales es cerrado con respecto a la operación de suma.

Cuando uno multiplica dos números naturales (dos números enteros positivos) el resultado es, siempre, otro número natural.

Cuando uno multiplica dos números naturales (dos números enteros positivos) el resultado es, siempre, otro número natural.

Se dice entonces que el conjunto de los números naturales es cerrado con respecto a la operación de multiplicación.

Sin embargo, si uno sustrae dos números enteros positivos, el resultado no necesariamente es un número entero positivo.

Sin embargo, si uno sustrae dos números enteros positivos, el resultado no necesariamente es un número entero positivo.

Por ejemplo, si tenemos

7 9 ?

Lo mismo sucede en el caso de la división.El cociente de dos números enteros positivos, no es en general un número entero.

Evidentemente, un conjunto numérico es inadecuado si la suma, el producto, la diferencia o el cociente de dos de los números del sistema no es también un elemento del sistema.

Evidentemente, un conjunto numérico es inadecuado si la suma, el producto, la diferencia o el cociente de dos de los números del sistema no es también un elemento del sistema.

Por ejemplo, no existe ningún entero positivo que sea igual a 5 - 9 ó a 5 ÷ 9. Esto es, la sustracción y la división sólo pueden aplicarse de manera limitada a los enteros positivos.

Se dice que un conjunto de números es un conjunto cerrado, para una operación, si al aplicar dicha operación a dos elementos del conjunto el resultado es también un elemento del conjunto.

Puesto que la suma y el producto de dos enteros positivos cualesquiera es también un entero positivo, entonces el conjunto de los enteros positivos es un conjunto cerrado con respecto a la adición y la multiplicación

Se dice que un conjunto de números es un conjunto cerrado, para una operación, si al aplicar dicha operación a dos elementos del conjunto el resultado es también un elemento del conjunto.

Se dice que un conjunto de números es un conjunto cerrado, para una operación, si al aplicar dicha operación a dos elementos del conjunto el resultado es también un elemento del conjunto.

En cambio, la diferencia y el cociente de dos enteros positivos no conduce siempre a un entero positivo, esto es, el conjunto de los enteros positivosno es un conjunto cerrado con respecto a la sustracción y la división.

Es así como se origina la necesidad de ampliar el sistema. (Recuérdeseque el sistema numérico es una invención).

Se dice que un conjunto de números es un conjunto cerrado, para una operación, si al aplicar dicha operación a dos elementos del conjunto el resultado es también un elemento del conjunto.El conjunto de los enteros positivos no es un conjunto cerrado con respecto a la sustracción y la división.

La solución de problemas prácticos, esencialmente la solución de ecuaciones, llevo, de manera natural, a la introducción de los números enteros negativos.

Si tengo 4 pesos y un pan cuesta 5, ¿cuánto tengo?

¿4-5=?

Así el conjunto de los números enteros está constituido por los números naturales, el cero y los números enteros negativos.

El conjunto de los números enteros

..., 5, 4, 3, 2, 1,0,1,2,3,4,5,...

lo denotaremos como

Z

..., 5, 4, 3, 2, 1,0,1,2,3,4,5,... Z

El conjunto de los números enteros es cerrado para las operaciones de suma, resta y multiplicación.

¿Qué número multiplicado por 2 nos da 1?

¿Qué número multiplicado por 2 nos da 1?

Evidentemente esta pregunta no tiene respuesta “dentro de los números enteros”.El conjunto de los números enteros no es cerrado con respecto a la operación de división.

¿Qué número multiplicado por 2 nos da 1?El conjunto de los números enteros no es cerrado con respecto a la operación de división.

Para responder esta pregunta tenemos que “inventar” los números racionales.

Los números racionales son aquellos que se escriben como el cociente de dos números enteros.

Los números racionales son aquellos que se escriben como el cociente de dos números enteros.

Las fracciones son los números racionales.

3 7 1 1 23Los números , , , ,

5 3 9 2 54son números racionales.

A los números racionales

los denotaremos como

Q

Notese que los números racionales

contienen a los números enteros,

que a su vez, contienen a los

números naturales.

Es decir,

N Z Q

Existen números, como 2 que

no se puede expresar como el

cociente de dos números enteros.

A dichos números se les llama

.números irracionales

Al conjunto de todos los números,

se les llama .números reales

La interpretación de los números como distancias es útil para definir y para comprender las ampliaciones del sistema numérico.

L´L

Interpretación de los números como distancias. La interpretaciónde los números como distancias es útil para definir y para comprenderlas ampliaciones mencionadas del sistema numérico. Para ello se usaránla línea recta indefinida L' L (Fig. 1.1), un punto O fijo sobre ella,y la unidad de distancia u. A la derecha de O se trazan intervalos delongitud u, obteniéndose los puntos que aparecen debajo de li línea.Luego, a partir del primer punto a la derecha de O, se colocan sucesi·vamente los enteros 1, 2, 3 ... Se tiene así la certeza de que cada unode los puntos marcados en la línea está asociado tanto con uno de losnúmeros enteros como con una distancia que representa a cada uno

Definición del sistema de los números reales, Se define el conjuntade los números reales como el conjunto de los números r que se puedenasociar con puntos R situados sobre una línea recta de tal maneraque cada punto R está a una distancia r del punto fijo O. Si R está a laderecha de O, r es positivo; si R está a la izquierda de O, r es negativo;si R coincide con O, r es cero, Cero no es positivo ni negativo y separa,además, a los números positivos de los números negativos.

El valor absoluto o valor numérico de un número se define como sigue:a)El valor absoluto o valor numérico

de un número real positivo es el número mismo.

b)El valor absoluto o valor numérico de un número real negativo es el mismo número con signo opuesto.

El valor absoluto o valor numérico de un número es el número “en si”, sin el signo.

El valor absoluto, es por tanto, siempre un número positivo.

El valor absoluto de un número n, se representa por medio del símbolo│n│y se puede imaginar como la distancia entre O y el punto que representa a n en la escala de los números reales.

El valor absoluto o valor numérico de un número se define como sigue:a)El valor absoluto o valor numérico

de un número real positivo es el número mismo.

b)El valor absoluto o valor numérico de un número real negativo es el mismo número con signo opuesto.

1.El sistema de los números reales2.Definiciones básicas3.Adición y sustracción4.Símbolos de agrupación5.Multiplicación6.Exponentes en la multiplicación7.Productos que incluyen multinomios8.Los exponentes en la división9.Divisiones que incluyen multinomios10.Operaciones en que aparece el cero

Un grupo de números y letras combinadas entre sí mediante una o más de las operaciones fundamentales recibe el nombre de expresión algebraica.

Un grupo de números y letras combinadas entre sí mediante una o más de las operaciones fundamentales recibe el nombre de expresión algebraica.

2 2

3 2

Las siguientes son expresiones algebráicas:

5 3

2

1 1 13

x y

a ab b

qw r rf q r

Un número o una letra, o varios números y letras, combinados entre sí mediante las operaciones de multiplicación o de división, o de ambas, recibe el nombre de término

Un número o una letra, o varios números y letras, combinados entre sí mediante las operaciones de multiplicación o de división, o de ambas, recibe el nombre de término

3

3 4

2

2 3

Ejemplos:

3

3

23

37

xy z

a b c

x y

d f

Puesto que un término no implica ni adición ni sustracción, todo grupo de letras que en una expresión algebraica esté separado de otros grupos mediante los signos más o menos es un término.

De acuerdo con lo anterior, el signo de un término es el signo que lo precede.

Puesto que un término no implica ni adición ni sustracción, todo grupo de letras que en una expresión algebraica esté separado de otros grupos mediante los signos más o menos es un término.

Puesto que un término no implica ni adición ni sustracción, todo grupo de letras que en una expresión algebraica esté separado de otros grupos mediante los signos más o menos es un término. De acuerdo con lo anterior, el signo de un término es el signo que lo precede.

2 3 2 4 7

2 3 2 4 7

En la expresión

2 13 5

3 2son términos

2 13 , 5 , ,

3 2y los que están en rojo son sus signos.

x y x y z xyz x yz

x y x y z xyz x yz

Si un término está compuesto de un número y una o más letras, el número recibe el nombre de coeficiente numérico de las letras en el término.

Si un término está compuesto de un número y una o más letras, el número recibe el nombre de coeficiente numérico de las letras en el término.

2 3 2 4 7

En los términos

2 13 , 5 , ,

3 2los coeficientes numéricos son:

2 1+3, 5, , +

3 2

x y x y z xyz x yz

Si un término está compuesto de un número y una o más letras, el número recibe el nombre de coeficiente numérico de las letras en el término.

Comúnmente al hablar del coeficiente numérico se dice simplemente el coeficiente.

Una expresión algebraica que contiene solamente un término se denominamonomio.

Una expresión algebraica que contiene exactamente dos términos se denominabimonomio.

Una expresión algebraica que contiene exactamente tres términos se denominatrinomio.

Las expresiones algebraicas que contienen más de tres términos se denominanmultinomios.

En realidad se le puede decir multinomio a cualquier expresión algebraica que contenga más de un término.

1.El sistema de los números reales2.Definiciones básicas3.Adición y sustracción4.Símbolos de agrupación5.Multiplicación6.Exponentes en la multiplicación7.Productos que incluyen multinomios8.Los exponentes en la división9.Divisiones que incluyen multinomios10.Operaciones en que aparece el cero

En álgebra los términos suma y diferencia se usan en el mismo sentido que en aritmética, si se aplican a números positivos.Sin embargo, su aplicación a números negativos hace necesario precisar el procedimiento de adición.

Esta operación más amplia, que se conoce como adición algebraica, se describe en el regla siguiente:La suma algebraica de dos números con el mismo signo es la suma de los valores absolutos de los dos números, precedida de su signo común; la suma algebraica de dos números con signo diferente es la diferencia de los valores absolutos de los números, precedida por el signo del número de mayor valor absoluto.

Para hacer la suma de varios términos que poseen las mismas letras, se efectúa la suma aritmética de los coeficientes y se agrega el grupo de letras.

3 3 3

2 2 2 2 2 2

La suma de 4 y 7 es: 11

La suma de 3 y 2 es: 5

La suma de 12 y 9 es: 3

a b a b a b

x y z x y z x y z

st st st

La suma de dos o más términos que contienen letras diferentes puede ser solamente expresada colocando un signo más entre ellos.

La suma de dos o más términos que contienen letras diferentes puede ser solamente expresada colocando un signo más entre ellos.

Por ejemplo, la suma de-1ab y 3cdes-1ab + 3cd.

En aritmética se puede comprobar que, para cualquier par de números que se ensaye, la suma es la misma independientemente del orden en que se efectúe la adición. Esto se conoce como la propiedad conmutativa de la adición.Consideraremos que esto es cierto para todos los números y tendremos entonces el axioma siguiente:

La adición es conmutativa.

Es decir,

a b b a

Otra propiedad de la adición, que puede comprobarse fácilmente para cualesquiera tres o más números dados, es que la suma es la misma independientemente del orden en el cual los números se adicionen.

Otra propiedad de la adición, que puede comprobarse fácilmente para cualesquiera tres o más números dados, es que la suma es la misma independientemente del orden en el cual los números se adicionen.

Por ejemplo,

2 + 3 + 7 = 5 + 7 = 2 + 10 = 9 + 3 = 12.

Consideraremos que esta propiedad, conocida como la propiedad asociativa de la adición, es válida para todos los números.De ese modo tenemos el axioma siguiente, en el cual los paréntesis se usan para indicar el orden en que se efectúa la adición:

La adición es asociativa.

Es decir,

a b c a b c

Estos dos axiomas son la base del procedimiento usual para encontrar la suma de dos o más expresiones.Esto es, del procedimiento en el cual se escribe cada expresión debajo de la que le precede, y al mismo tiempo, se ordenan los términos de tal modo que los que contienen las mismas letras queden formando columnas.

2

2

2

umar las expresiones

3 + 1;

2 2 3 ;

4 3

S

x x

x x

x x

2

2

2

3 1

2 3 2

4 3

x x

x x

x x

2 2 2

umar las expresiones

3 + 1; 2 2 3 ; 4 3

S

x x x x x x

El proceso de restar o sustraer

de

equivale a encontrar una ,

tal que

b a

x

a b x

Se determina sumando

a cada miembro de la igualdad,

obteniéndose

x b

a b b x b x

El proceso de restar o sustraer de

equivale a encontrar una , tal que

b a

x a b x

Con ello se verifica la regla usual de la sustracción: Para restar una cantidad de otra se cambia el signo del “sustraendo” y se procede como en la adición.

1.El sistema de los números reales2.Definiciones básicas3.Adición y sustracción4.Símbolos de agrupación5.Multiplicación6.Exponentes en la multiplicación7.Productos que incluyen multinomios8.Los exponentes en la división9.Divisiones que incluyen multinomios10.Operaciones en que aparece el cero

Cuando un grupo de términos en una expresión algebraica van a ser manejados como un solo número, se encierran en paréntesis, ( ); en corchetes, [ ]; o bien en llaves, { }.

Estos símbolos se usan también para indicar que se van a efectuar ciertas operaciones algebraicas y el orden en el cual deben efectuarse.

Con objeto de efectuar las operaciones indicadas mediante el uso de los símbolos de agrupación, se necesita quitar dichos símbolos antes de llevar a cabo la operación final.

Si la operación indicada es la adición, se puede, por el axioma de la asociatividad, omitir los símbolos de agrupación y combinar los términos en el orden que se desee.

Si la operación indicada es la sustracción, el grupo de términos encerrados en el paréntesis precedido del signo menos, es el sustraendo.

Si la operación indicada es la sustracción, el grupo de términos encerrados en el paréntesis precedido del signo menos, es el sustraendo.

Por tanto, de acuerdo con la definición de sustracción, se cambian todos los signos del sustraendo, se omiten los símbolos de agrupación y se combinan después los términos en el orden que se desee.

Se tiene el siguiente procedimiento para eliminar los símbolos de agrupación en una expresión algebraica:

Si en una expresión algebraica es necesario eliminar la pareja de símbolos de agrupación precedido por un signo menos, debe cambiarseel signo de cada uno de los términos encerrados por estos símbolos.

Se tiene el siguiente procedimiento para eliminar los símbolos de agrupación en una expresión algebraica:

Sin embargo, si los símbolos de agrupación están precedidos por un signo más, pueden eliminarse sin ningún cambio en la expresión.

Si en una expresión algebraica es necesario insertar un par de símbolos de agrupación precedido de un signo menos, deben cambiarse los signos de cada uno de los términos que quedan encerrados.

Cuando una expresión algebraica contiene uno o más pares de símbolos de agrupación, encerrados en otro par, se eliminará primero el de más adentro.

1.El sistema de los números reales2.Definiciones básicas3.Adición y sustracción4.Símbolos de agrupación5.Multiplicación6.Exponentes en la multiplicación7.Productos que incluyen multinomios8.Los exponentes en la división9.Divisiones que incluyen multinomios10.Operaciones en que aparece el cero

El producto de dos números

y

se expresa como:

a b

a b

a b

ab

a bMultiplicando Multiplicador

a bProducto

Cada uno de los números que aparecen en el producto, o el producto de dos o más de ellos, es un factor del producto.

Ya que cualquier número nes igual an×1resulta que n es un factor de sí mismo.

Cualquier número que no tenga otro factor que él mismo y uno, se llama número primo.

La multiplicación es conmutativa,

esto es

a b b a

La multiplicación es asociativa,

esto es

a bc ab c

La multiplicación es distributiva

con respecto a la adición,

esto es

a b c ab ac

El producto de dos factores del

mismo signo es positivo.

El producto de dos factores de

signos diferentes es negativo

1.El sistema de los números reales2.Definiciones básicas3.Adición y sustracción4.Símbolos de agrupación5.Multiplicación6.Exponentes en la multiplicación7.Productos que incluyen multinomios8.Los exponentes en la división9.Divisiones que incluyen multinomios10.Operaciones en que aparece el cero

2

El producto

se escribe

y se llama cuadrada.

a a

a

a

3

El producto

se escribe

y se llama cúbica.

a a a

a

a

El producto

...

veces, se escribe

y se llama enésima potencia de

ó a la .

n

a a a a

n a

a

a n

Si es un entero positivo, el símbolo

se denomina la enésima potencia de

y es el producto de factores, cada uno

de los cuales es .

nn a

a

n

a

Si es un entero positivo, el símbolo

se denomina la enésima potencia de

y es el producto de factores, cada uno

de los cuales es .

nn a

a

n

a

La letra se llama la base

y el exponente.

a

n

naLa base

El exponente

Podemos enunciar

el siguiente teorema:n m n ma a a

n m n ma a a

veces veces

veces

Demostración:

... ...

Como la multiplicación es asociativa,

...

Y por la definición de potenciación,

n m

n m

n m

n m

n m n m

a a a a a a a a a a

a a a a a a

a a a

Teorema:

nn na b ab

nn na b ab

veces veces

veces

Demostración:

... ...

Como la multiplicación es asociativa,

...

Y por la definición de potenciación,

n n

n n

n n

n

nn n

a b a a a a b b b b

a b ab ab ab ab

a b ab

Teorema:

pn npa a

pn npa a

veces

veces

...

Demostración:

...

Por la primera ley de los

exponentes en la multiplicación,

y por tanto,

p

pn n n n n

p

n n n npn

pn np

a a a a a

a a

a a

1.El sistema de los números reales2.Definiciones básicas3.Adición y sustracción4.Símbolos de agrupación5.Multiplicación6.Exponentes en la multiplicación7.Productos que incluyen multinomios8.Los exponentes en la división9.Divisiones que incluyen multinomios10.Operaciones en que aparece el cero

El producto de un monomio por

un multinomio es la suma de los

productos del monomio por cada

uno de los términos del multinomio.

El producto de dos multinomios es

igual a la suma de los productos

obtenidos al multiplicar cada

término de un multinomio por

cada término del otro.

1.El sistema de los números reales2.Definiciones básicas3.Adición y sustracción4.Símbolos de agrupación5.Multiplicación6.Exponentes en la multiplicación7.Productos que incluyen multinomios8.Los exponentes en la división9.Divisiones que incluyen multinomios10.Operaciones en que aparece el cero

Si y son dos números y si 0,

se acostumbra indicar la división

de entre , sea por el uso del signo

de división , sea escribiendo

los dos números a modo de fracción, .

a b b

a b

a b

a

b

El número se llama dividendo,

el número se llama divisor

y el resultado de la operación

se llama cociente.

a

b

a

b

Dividendo

Divisor

Cociente

La ley de los signos para la división es

similar a la anteriormente establecida

para la multiplicación:

El cociente de dos números del mismo

signo es positivo.

El cociente de dos números de signos

diferentes es negativo.

El cociente de dos números del

mismo signo es positivo.

El cociente de dos números de

signos diferentes es negativo.

Teorema:

con 0, y enteros,

y .

mm n

n

aa

aa m n

m n

0

Demostración:

1

1

m m m m n n

n n n n

m n nm n m n

n

a a a a a a

a a a a

a aa a

a

Teorema: con 0, y enteros, y .m

m nn

aa a m n m n

a

Teorema:

con 0, y entero positivo.

n n

n

a a

b b

b n

1.El sistema de los números reales2.Definiciones básicas3.Adición y sustracción4.Símbolos de agrupación5.Multiplicación6.Exponentes en la multiplicación7.Productos que incluyen multinomios8.Los exponentes en la división9.Divisiones que incluyen multinomios10.Operaciones en que aparece el cero

El cociente que se obtiene al dividir

un multinomio entre un monomio

es la suma de los cocientes que

resultan de dividir cada término

del multinomio por el monomio.

El cociente que se obtiene al dividir un multinomio entre

un monomio es la suma de los cocientes que resultan de

dividir cada término del multinomio por el monomio.

El cociente que se obtiene al dividir un multinomio entre

un monomio es la suma de los cocientes que resultan de

dividir cada término del multinomio por el monomio.

2 3 2 2 23 12 21

3

x yz x y z xyz

xyz

El cociente que se obtiene al dividir un multinomio entre

un monomio es la suma de los cocientes que resultan de

dividir cada término del multinomio por el monomio.

2 3 2 2 2

2 3 2 2 2

2

3 12 21

3

3 12 21

3 3 3

4 7

x yz x y z xyz

xyz

x yz x y z xyz

xyz xyz xyz

x x yz z

Para dividir

un multinomio por otro multinomio

se efectúan los siguientes pasos:

1. Tanto el dividendo como el divisor

se disponen en orden ascendente

o descendente de las potencias de

alguna letra que aparezca en ambos.

2. Se divide el primer término del

dividendo por el primer término

del divisor y se obtiene así el

primer término del cociente.

3. Se multiplica el divisor por el

primer término del cociente y el

producto obtenido se sustrae

del dividendo.

4. El residuo obtenido en el paso

anterior se trata como un nuevo

divisor y se repiten con él los

pasos 2 y 3.

5. Se continúa este proceso hasta

obtener un residuo en el cual el

mayor exponente de la letra que

en el paso 1 se escogió como base

de la ordenación sea menor que

el mayor exponente de dicha letra

en el divisor.

Para dividir un multinomio por otro multinomio se efectúan los siguientes

pasos:

1. Tanto el dividendo como el divisor se disponen en orden ascendente

o descendente de las potencias de alguna letra que aparezca en

ambos.

2. Se divide el primer término del dividendo por el primer término

del divisor y se obtiene así el primer término del cociente.

3. Se multiplica el divisor por el primer término del cociente y el

producto obtenido se sustrae del dividendo.

4. El residuo obtenido en el paso anterior se trata como un nuevo

divisor y se repiten con él los pasos 2 y 3.

5. Se continúa este proceso hasta obtener un residuo en el cual el

mayor exponente de la letra que en el paso 1 se escogió como base de

la ordenación sea menor que el mayor exponente de dicha letra en el

divisor.

2 2

Dividir

2 2 3

entre

2

b a ab

a b

2 22 2 3

21. Tanto el dividendo como el divisor se disponen en orden ascendente

o descendente de las potencias de alguna letra que aparezca en ambos.

b a ab

a b

2 22 3 2

2

a ab b

a b

2 22 3 2

21. Tanto el dividendo como el divisor se disponen en orden ascendente

o descendente de las potencias de alguna letra que aparezca en ambos.

a ab b

a b

2 22 2 3 2a b a ab b

2 22 3 2

21. Tanto el dividendo como el divisor se disponen en orden ascendente

o descendente de las potencias de alguna letra que aparezca en ambos.

a ab b

a b

2 22 2 3 2a b a ab b

2 22 2 3 2

2. Se divide el primer término del dividendo por el primer término

del divisor y se obtiene así el primer término del cociente.

a b a ab b

2 2

2 2 3 2

aa b a ab b

2 2

2 2 3 2

3. Se multiplica el divisor por el primer término del cociente

y el producto obtenido se sustrae del dividendo.

aa b a ab b

2 2

2

2

2 2 3 2

2 ______________ 4 2

aa b a ab b

a abab b

4. El residuo obtenido en el paso anterior se trata como

un nuevo divisor y se repiten con él los pasos 2 y 3.

2 2

2

2

2 2 2 3 2

2 ______________ 4 2

a ba b a ab b

a abab b

4. El residuo obtenido en el paso anterior se trata como

un nuevo divisor y se repiten con él los pasos 2 y 3.

2 2

2

2

2

2 2 2 3 2

2 ______________ 4 2 4 2 __________ 0

a ba b a ab b

a abab bab b

5. Se continúa este proceso hasta obtener un residuo en el cual el

mayor exponente de la letra que en el paso 1 se escogió como base de

la ordenación sea menor que el mayor exponente de dicha letra en el

divisor.

2 2

2

2

2

2 2 2 3 2

2 ______________ 4 2 4 2 __________ 0

a ba b a ab b

a abab bab b

2 22 2 32

2

b a aba b

a b

2 2 3 2 2

2 2

Dividir

10 5 2 4 2

entre

2 5

xy y x x x y xy

xy x y

2 2 3 2 2

2 2

10 5 2 4 2

2 5

1. Tanto el dividendo como el divisor se disponen en orden ascendente

o descendente de las potencias de alguna letra que aparezca en ambos.

xy y x x x y xy

xy x y

3 2 2 2 2

2 2

Elegimos la letra que aparece tanto

en el dividendo como en el divisor

2 4 2 10 5

2 5

x

x x x y xy xy y

x xy y

3 2 2 2 2

2 2

2 4 2 10 5

2 5

1. Tanto el dividendo como el divisor se disponen en orden ascendente

o descendente de las potencias de alguna letra que aparezca en ambos.

x x x y xy xy y

x xy y

2 2 3 2 2 2 22 5 2 4 2 10 5x xy y x x x y xy xy y

2 2 3 2 2 2 22 5 2 4 2 10 5

2. Se divide el primer término del dividendo por el primer término

del divisor y se obtiene así el primer término del cociente.

x xy y x x x y xy xy y

2 2 3 2 2 2 2

2 2 5 2 4 2 10 5

xx xy y x x x y xy xy y

2 2 3 2 2 2 2

2 2 5 2 4 2 10 5

3. Se multiplica el divisor por el primer término del cociente

y el producto obtenido se sustrae del dividendo.

xx xy y x x x y xy xy y

2 2 3 2 2 2 2

3 2 2

2 2 5 2 4 2 10 5

2 4 10 _____________________________

xx xy y x x x y xy xy y

x x y xy

2 2 2 5x xy y

4. El residuo obtenido en el paso anterior se trata como

un nuevo divisor y se repiten con él los pasos 2 y 3.

2 2 3 2 2 2 2

3 2 2

2 1 2 5 2 4 2 10 5

2 4 10 _____________________________

xx xy y x x x y xy xy y

x x y xy

2 2 2 5x xy y

4. El residuo obtenido en el paso anterior se trata como

un nuevo divisor y se repiten con él los pasos 2 y 3.

2 2 3 2 2 2 2

3 2

2 +1 2 5 2 4 2 10 5

2 4 ______________________________

xx xy y x x x y xy xy y

x x y

2 2

2 2

2 5

2 5 __________________________

x xy y

x xy y

0

5. Se continúa este proceso hasta obtener un residuo en el cual el

mayor exponente de la letra que en el paso 1 se escogió como base de

la ordenación sea menor que el mayor exponente de dicha letra en el

divisor.

2 2 3 2 2 2 2

3 2

2 +1 2 5 2 4 2 10 5

2 4 ______________________________

xx xy y x x x y xy xy y

x x y

2 2

2 2

2 5

2 5 __________________________

x xy y

x xy y

0

2 2 3 2 2

2 2

10 5 2 4 2

2 5

2 1

xy y x x x y xy

xy x y

x

1.El sistema de los números reales2.Definiciones básicas3.Adición y sustracción4.Símbolos de agrupación5.Multiplicación6.Exponentes en la multiplicación7.Productos que incluyen multinomios8.Los exponentes en la división9.Divisiones que incluyen multinomios10.Operaciones en que aparece el cero

Si el cero es considerado como la ausencia

total de cantidad, entonces es evidente que:

0

0 0

y

00

n n

n

n

Tenemos las ecuaciones

0 1 0 y 0 2 0

Entonces, igualando: 0 1 0 2

0 0Dividiendo: 1 2

0 0Por tanto, 1 1 1

¡¡¡

2

y finalmente

¡¡ 1 2 !!!!!!

Tenemos las ecuaciones

0 1 0 y 0 2 0

2 2

Tenemos las ecuaciones:

0 y 0x x x x x

Igualando:

Dividiendo:

Simplific

1

ando:

Sumando: 2

y finalmente

2

x x x x x x x

x x x x x x x

x x x xx x x

x x

2 2

Tenemos las ecuaciones:

0 y 0x x x x x

Si el cociente que se obtiene al dividir

entre se define como el valor de

tal que , entonces, para 0 y

0, se obtiene 0 , y, por tanto,

no existe valor de que satisfaga esa

expresión, ya q

a b a

a bx b

a a x

x

ue siempre 0 0.x

Si 0 y 0, entonces 0 0 ,

expresión que se satisface con

cualquier valor de ; esto es,

0, no existe como número único.

0

b a x

x

En consecuencia,

¡¡¡¡¡ la división entre cero

quedará excluida!!!!!

El símbolo se ha definido

cuando es un entero positivo,

pero esta definición carece de

significado cuando 0.

na

n

n

0

Sin embargo, si se exige que la ecuación

con 0, y enteros, y .

sea válida para , se tiene

con 0

mm n

n

nn n

n

aa a m n m n

am n

aa a a

a

0

0

En consecuencia, ya que es igual a 1,

el valor de se define como igual a 1 y

se tiene 1 con 0.

n

n

a

a

a

a a

0

0 0

0

Esta definición de es consistente

también con la ecuación ,

ya que .

Este es el resultado que debe esperarse

si =1.

n m n m

n n n

a

a a a

a a a a

a

top related