1-electrónica analógica de comunicaciones

97
Electrónica Analógica de Comunicaciones. GRUPO: 8CV03 SEPTIEMBRE-DICIMEBRE 2015 LABORATORIO: MARTES 16:00-17:30 TEORÍA: MIÉRCOLES 19:00-20:30 SALON 5106 TEORÍA JUEVES: 20:30-22:00 SALON 5112 ROBERTO LINARES Y MIRANDA [email protected]

Upload: luiz-ariel

Post on 15-Apr-2016

15 views

Category:

Documents


3 download

DESCRIPTION

Curso de electrónica analógica de comunicaciones

TRANSCRIPT

Electrónica Analógica de Comunicaciones.

GRUPO: 8CV03SEPTIEMBRE-DICIMEBRE 2015

LABORATORIO: MARTES 16:00-17:30TEORÍA: MIÉRCOLES 19:00-20:30 SALON 5106

TEORÍA JUEVES: 20:30-22:00 SALON 5112ROBERTO LINARES Y MIRANDA

[email protected]

PRIMERA PARTE• Procesos de fabricación de circuitos integrados de alta y baja frecuencia. • Parámetros de dispersión. • Filtros pasivos Butterworth y Chebyshev. • Filtro pasa bajas. • Filtro pasa altas. • Filtro pasa banda. • Filtro elimina banda. • Simulación asistida por computadora para el diseño de • filtros pasivos S Pice. • Filtros activos Butterworth y Chebyshev. • Filtro pasa baja. • Filtro pasa altas. • Filtro pasa banda. • Filtro elimina banda • Simulación asistida por computadora para el diseño de • filtros activos S Pice. • Comparación entre filtros pasivos y activos. • Distorsión lineal. •

Objetivos:

•Describir los bloques electrónicos funcionales que son

utilizados en las comunicaciones radioeléctricas.

•Describir cómo estos bloques electrónicos se agrupan para

construir transmisores, receptores y transceptores.

PRIMERA PARTE

1. Introducción a la Electrónica de

Comunicaciones

Información

Transmisor

Información

ReceptorMedio

físico

Transmisión de la

información a distancia

Información

Transmisor

Información

Receptor

Transmisión radioeléctrica de la información (I)

Línea de

transmisión

Antena

Línea de

transmisión

Antena

Transmisión radioeléctrica de la información (II)

Información

Transmisor

Información

Receptor

Línea de

transmisión

Antena

Línea de

transmisión

Antena

• Dispositivos Electrónicos

• Electrónica Analógica

• Electrónica Digital

• Sistemas Electrónicos Digitales

• Campos

Electromagnéticos (I y II)

• Radiación y

Radiopropagación

Electrónica de

Comunicaciones

Transmisión en simplex

Información

Transmisor

Antena

Información

Receptor

Antena

Ejemplo: Mando a distancia de garaje

Información

Transmisión en semiduplex (half duplex), (I)

Información Antena

Transmisor

Receptor

Conmutador

InformaciónAntena

Transmisor

Receptor

Conmutador

Información

Información Antena

Transmisor

Receptor

Conmutador

InformaciónAntena

Transmisor

Receptor

Conmutador

Información

Transmisión en semiduplex (half duplex), (I)

Información Antena

Transmisor

Receptor

Conmutador

InformaciónAntena

Transmisor

Receptor

Conmutador

Información

Información Antena

Transmisor

Receptor

Conmutador

InformaciónAntena

Transmisor

Receptor

Conmutador

Información

Transmisión en semiduplex (half duplex), (II)

Ejemplo: radioteléfono

Información Antena InformaciónAntena

Transmisor

Receptor

Transmisor

Receptor

Conmutador Conmutador

Información

ATE-UO EC int 06

Transmisión en duplex (full duplex)

Ejemplo: teléfono inalámbrico

InformaciónAntena

Transmisor f1

+ Filtro

Receptor f2+

Filtro

InformaciónAntena

Transmisor f2

+ Filtro

Receptor f1 +

Filtro

Información

Información

ATE-UO EC int 07

Ejemplo de receptor: Receptor Superheterodino

Filtro

de RF

Antena

Información

Amplificador

de RF

Mezclador

Filtro

de FI

Amplificador

de FI

Oscilador Local

Demodulador

Amplificador

de BB

RF: Radio Frecuencia

FI: Frecuencia Intermedia

BB: Banda Base

Bloques electrónicos funcionales:

Oscilador.

Mezclador.

Amplificadores de pequeña señal.

Filtros pasa-banda.

Demodulador.

Ejemplo de Transmisor: Transmisor de

comunicaciones modulado en BLU (SSB)

Filtro a

cristalAmplificador

de Potencia

Mezclador

(modulador)

Filtro de

Banda

Amplificador

de BLU

Oscilador a

Cristal

Amplificador

de BB

BLU (SSB): Banda Lateral Única

BB: Banda Base

OFV (VFO): Oscilador de

Frecuencia Variable

Bloques electrónicos funcionales:

Osciladores.

Mezcladores.

Amplificadores de pequeña señal.

Amplificador de gran señal.

Filtros pasa-banda.

Información

Antena

OFV (VFO)

Mezclador

S-P

ara

mete

rsEE 5

64

Transmission Lines2 Port Networks & S-Parameters

38

S-P

ara

mete

rsEE 5

64

Contents

Two Port Networks

Z Parameters

Y Parameters

Vector Network Analyzers

S Parameters: 2 port, n ports

Return Loss

Insertion Loss

Transmission (ABCD) Matrix

Differential S Parameters (MOVE TO 6.2)

Summary

References

Appendices

39

S-P

ara

mete

rsEE 5

64

Two Port Networks Linear networks can be completely characterized by

parameters measured at the network ports without knowing the content of the networks.

Networks can have any number of ports. Analysis of a 2-port network is sufficient to explain the theory

and applies to isolated signals (no crosstalk).

The ports can be characterized with many parameters (Z, Y, S, ABDC). Each has a specific advantage.

Each parameter set is related to 4 variables: 2 independent variables for excitation

2 dependent variables for response

40

2 Port

NetworkPo

rt 1

I1

+

-

V1

Po

rt 2I

2

+

-

V2

S-P

ara

mete

rsEE 5

64

Z Parameters

Advantage: Z parameters are intuitive.

Relates all ports to an impedance & is easy to calculate.

Disadvantage: Requires open circuit voltage

measurements, which are difficult to make.

Open circuit reflections inject noise into measurements.

Open circuit capacitance is non-trivial at high frequencies.

41

NNNNN

N

N I

I

I

ZZZ

Z

ZZZ

V

V

V

2

1

21

21

11211

2

1

IZV

0

jkIj

iij

I

VZ (Open circuit impedance)

Impedance Matrix: Z Parameters

or [1]

where [2]

2221212

2121111

IZIZV

IZIZV

2 Port example:

2

1

2221

1211

2

1

I

I

ZZ

ZZ

V

V[4][3]

S-P

ara

mete

rsEE 5

64

Y Parameters

42

NNNNN

N

N V

V

V

YYY

Y

YYY

I

I

I

2

1

21

21

11211

2

1

VYI

0

jkVj

iij

V

IY (Short circuit admittance)

Admittance Matrix: Y Parameters

or

[6]

[5]

where

2221212

2121111

VYVYI

VYVYI

2 Port example:

2

1

2221

1211

2

1

V

V

YY

YY

I

I

Advantage: Y parameters are also somewhat intuitive.

Disadvantage: Requires short circuit voltage

measurements, which are difficult to make.

Short circuit reflections inject noise into measurements.

Short circuit inductance is non-trivial at high frequencies.

[7] [8]

S-P

ara

mete

rsEE 5

64

Example

43

ZC

ZA

ZB

+

-

+

-

V1

V2

I1

I2

Po

rt 1

Po

rt 2

CA

CA

I

ZZ

ZZV

V

I

VZ

1

1

1

111

02

CC

I

ZI

ZI

I

VZ

2

2

2

112

01

CC

I

ZI

ZI

I

VZ

1

1

1

221

02

CB

CB

I

ZZ

ZZV

V

I

VZ

2

2

2

222

01

S-P

ara

mete

rsEE 5

64

Frequency Domain: Vector Network Analyzer (VNA)

VNA offers a means to

characterize circuit elements

as a function of frequency.

44

VNA is a microwave based instrument that provides the

ability to understand frequency dependent effects.

The input signal is a frequency swept sinusoid.

Characterizes the network by observing transmitted and

reflected power waves.

Voltage and current are difficult to measure directly.

It is also difficult to implement open & short circuit loads at high

frequency.

Matched load is a unique, repeatable termination, and is

insensitive to length, making measurement easier.

Incident and reflected waves the key measures.

We characterize the device under test using S parameters.

2-Port

NetworkV

1

+

V2

I1

I2

-

+

-

S-P

ara

mete

rsEE 5

64

S Parameters

We wish to characterize the network by observing

transmitted and reflected power waves.

ai represents the square root of the power wave injected into port i.

bi represents the square root of the power wave injected into port j.

45

2 Port

Network

a1

+

-

V1

Po

rt 2

a2

+

-

V2

Po

rt 1

b1

b2

RVP

2

R

VPai

1

R

Vb

j

j

use

to get

[9]

[10]

[11]

S-P

ara

mete

rsEE 5

64

S Parameters #2

We can use a set of

linear equations to

describe the behavior of

the network in terms of

the injected and

reflected power waves.

For the 2 port case:

2

1

2221

1211

2

1

a

a

SS

SS

b

b

46

2 Port

Network

a1

+

-

V1

Po

rt 2

a2

+

-

V2

Po

rt 1

b1

b2

2221212

2121111

aSaSb

aSaSb

iport at measuredpower

jport at measuredpower

i

j

ija

bSwhere

in matrix form:

[12]

[13]

S-P

ara

mete

rsEE 5

64

S Parameters – n Ports

47

[5.5.14]

[17]

n

nn

Z

Va

0

aSb

n

nn

Z

Vb

0

jkk

jkk

Vj

j

i

i

aj

iij

Z

V

Z

V

a

bS

,0

,0

0

0

nnnn

N

n a

a

a

SS

S

SSS

b

b

b

2

1

1

21

11211

2

1

nnnnnn

nn

nn

aSaSaSb

aSaSaSb

aSaSaSb

2211

22221212

12121111

or

[15]

[16]

[18]

S-P

ara

mete

rsEE 5

64 Scattering Matrix – Return Loss

S11, the return loss, is a

measure of the power

returned to the source.

When there is no

reflection from the load,

or the line length is

zero, S11 is equal to the

reflection coefficient.

48

50

50

0

00

1

1

0

1

0

1

1

111

02

Z

Z

V

V

V

V

Z

V

Z

V

a

bS

incident

reflected

a

[19]

0

0,0

jjai

iii

a

bSIn general: [20]

S-P

ara

mete

rsEE 5

64 Scattering Matrix – Return Loss #2

When there is a reflection from the load,

S11 will be composed of multiple reflections

due to standing waves.

Use input impedance to calculate S11 when

the line is not perfectly terminated.

49

)0(1

)0(1)0(

z

zZzZZ oin

If the network is driven with a 50 source,

S11 is calculated using equation [5.5.22]

RS = 50

Zin

S11 for a transmission line will exhibit

periodic effects due to the standing

waves.

In this case S11 will be maximum when Zin is real. An imaginary

component implies a phase difference between Vinc and Vref. No phase

difference means they are perfectly aligned and will constructively add.

50

5011

in

inv

Z

ZS

[21]

[22]

S-P

ara

mete

rsEE 5

64

Scattering Matrix – Insertion Loss #1

When power is injected into Port 1 and measured at Port

2, the power ratio reduces to a voltage ratio:

50

incident

dtransmitte

o

o

aV

V

V

V

Z

V

Z

V

a

bS

1

2

1

2

021

221

2 Port

Network

a1

+

-

V1

Po

rt 2

a2

+

-

V2

Po

rt 1

b1

b2

Z0

Z0

S21, the insertion loss, is a measure of the power

transmitted from port 1 to port 2.

[22]

S-P

ara

mete

rsEE 5

64

Comments On “Loss”

True losses come from physical energy losses.

Ohmic (i.e. skin effect)

Field dampening effects (loss tangent)

Radiation (EMI)

Insertion and return losses include other effects, such

as impedance discontinuities and resonance, which

are not true losses.

Loss free networks can still exhibit significant insertion

and return losses due to impedance discontinuities.

51

S-P

ara

mete

rsEE 5

64

Reflection Coefficients

Reflection coefficient at the load:

52

0

0

ZZ

ZZ

L

LL

0

0

ZZ

ZZ

S

SS

L

L

L

Lin

S

SS

S

SSS

11

2

1211

22

211211

11

S

Sout

S

SSS

11

211222

1

[23]

[24]

[25]

[26]

Reflection coefficient at the source:

Input reflection coefficient:

Output reflection coefficient:

Assuming S12 = S21 and S11 = S22.

S-P

ara

mete

rsEE 5

64

Transmission Line Velocity Measurements

53

We can calculate the delay per unit length

(or velocity) from S21:

S21 = b2/a1

p

dvlf

S 1

360

21

Where (S21 ) is the phase angle of the S21 measurement.

f is the frequency at which the measurement was taken.

l is the length of the line.

[27]

0°180°

+90°

-90°

Positive

Phase

Negative

Phase

0.8 135°

S-P

ara

mete

rsEE 5

64

Transmission Line Z0 Measurements

Impedance vs. frequency

Recall

Zin vs f will be a function of delay () and ZL.

We can use Zin equations for open and short circuited

lossy transmission.

54

lZZ openin tanh0,

lZZ shortin coth0,

lj

lj

ine

eZZ

2

2

01

1

openinshortin ZZZ ,,0

[28]

[29]

[30]

Using the equation for Zin,

in, and Z0, we can find the

impedance.

S-P

ara

mete

rsEE 5

64

Transmission Line Z0 Measurement #2

Input reflection coefficients for the open and short circuit cases:

55

shortin

shortin

VNAj

shortin

j

shortin

VNAshortin Ze

eZZ

,

,

02

,

02

,

,1

1

1

1

openinshortin ZZZ ,,0

[31]

[32]

11

2

1211

11

2

1211,

111

1

S

SS

S

SSopenin

11

2

1211

11

2

1211,

111

1

S

SS

S

SSshortin

openin

openin

VNAj

openin

j

openin

VNAopenin Ze

eZZ

,

,

02

,

02

,

,1

1

1

1

Input impedance for the open and short circuit cases:

Now we can apply equation [5.5.30]:

S-P

ara

mete

rsEE 5

64

Scattering Matrix Example

Using the S11 plot shown below, calculate Z0 and

estimate er.

56

01.0 1.5 2.0 2.5 3..0 3.5 4.0 4.5 5.0

Frequency [GHz]

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

S11

Mag

nit

ud

e

S-P

ara

mete

rsEE 5

64

Scattering Matrix Example #2

57

1.76GHz 2.94GHzStep 1: Calculate the d

of the transmission line

based on the peaks or

dips.

d

peakst

GHzGHzf2

176.194.2

Step 2: Calculate er based on the velocity (prop delay per unit length).

minchinchps

smcv

rrd /37.39/7.84

1/1031 8

ee

Peak=0.384

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45S

11

Mag

nit

ud

e

0.1re

pstd 7.423

inchpsin

psd /7.84

5

7.423

S-P

ara

mete

rsEE 5

64

Example – Scattering Matrix (Cont.)

58

Step 3: Calculate the input impedance to the transmission line

based on the peak S11 at 1.76GHz, assuming a 50 port.

384.050

5011

in

in

Z

ZS

Step 4: Calculate Z0 from Zin at z=0:

LCflj

o

ol eZ

Zex 42

50

500)(

Solution: er = 1.0 and Z0 = 75

33.112inZ

1366.97.84)5(76.144 jpsGHzLCflj eeje

)1(50

501

)1(50

501

33.112)5(1

)5(1

o

o

o

o

ooin

Z

Z

Z

Z

Zz

zZZ

9.74oZ

S-P

ara

mete

rsEE 5

64 Advantages/Disadvantages of S Parameters

Advantages:

Ease of measurement: It is much easier to measure

power at high frequencies than open/short current and

voltage.

Disadvantages:

They are more difficult to understand and it is more

difficult to interpret measurements.

59

Transmission line equivalent

circuits and relevant

equations

Physics of transmission line structures

Basic transmission line equivalent circuit

?Equations for transmission line propagation

E & H Fields – Microstrip Case

The signal is really the wave propagating between the conductors

Remember fields are setup given

an applied forcing function.

(Source)

How does the signal move

from source to load?

Electric field

Magnetic field

Ground return path

X

Y

Z (into the page)

Signal path

Electric field

Magnetic field

Ground return path

X

Y

Z (into the page)

Signal path

Transmission Line “Definition”

• General transmission line: a closed system in which power is transmitted from a source to a destination

• Our class: only TEM mode transmission lines– A two conductor wire system with the wires in close proximity, providing

relative impedance, velocity and closed current return path to the source.– Characteristic impedance is the ratio of the voltage and current waves at

any one position on the transmission line

– Propagation velocity is the speed with which signals are transmitted through the transmission line in its surrounding medium.

I

VZ 0

r

cv

e

Presence of Electric and Magnetic Fields

• Both Electric and Magnetic fields are present in the transmission lines– These fields are perpendicular to each other and to the direction of wave

propagation for TEM mode waves, which is the simplest mode, and assumed for most simulators(except for microstrip lines which assume “quasi-TEM”, which is an approximated equivalent for transient response calculations).

• Electric field is established by a potential difference between two conductors.

– Implies equivalent circuit model must contain capacitor.

• Magnetic field induced by current flowing on the line– Implies equivalent circuit model must contain inductor.

V

I

I

E

+

-

+

-

+

-

+

-

V + V

I + I

I + I

V

IH

IH

V + V

I + I

I + I

• General Characteristics of Transmission Line– Propagation delay per unit length (T0) { time/distance} [ps/in]

• Or Velocity (v0) {distance/ time} [in/ps]

– Characteristic Impedance (Z0)

– Per-unit-length Capacitance (C0) [pf/in]

– Per-unit-length Inductance (L0) [nf/in]

– Per-unit-length (Series) Resistance (R0) [/in]

– Per-unit-length (Parallel) Conductance (G0) [S/in]

T-Line Equivalent Circuit

lL0lR0

lC0lG0

Ideal T Line

• Ideal (lossless) Characteristics of Transmission Line– Ideal TL assumes:

• Uniform line

• Perfect (lossless) conductor (R00)

• Perfect (lossless) dielectric (G00)

– We only consider T0, Z0 , C0, and L0.

• A transmission line can be represented by a cascaded network (subsections) of these equivalent models. – The smaller the subsection the more accurate the model

– The delay for each subsection should be no larger than 1/10th the signal rise time.

lL0

lC0

Signal Frequency and Edge Rate vs.

Lumped or Tline Models

In theory, all circuits that deliver transient power from

one point to another are transmission lines, but if the

signal frequency(s) is low compared to the size of the

circuit (small), a reasonable approximation can be

used to simplify the circuit for calculation of the circuit

transient (time vs. voltage or time vs. current)

response.

T Line Rules of Thumb

Td < .1 Tx

Td < .4 Tx

May treat as lumped Capacitance Use this 10:1 ratio for accurate modeling of transmission lines

May treat as RC on-chip, and treat as LC for PC board interconnect

So, what are the rules of thumb to use?

Other “Rules of Thumb”

• Frequency knee (Fknee) = 0.35/Tr (so if Tr is 1nS, Fknee is 350MHz)

• This is the frequency at which most energy is below

• Tr is the 10-90% edge rate of the signal

• Assignment: At what frequency can your thumb be used to determine which elements are lumped?– Assume 150 ps/in

Equations & Formulas

• How to model & explain transmission line behavior

Relevant Transmission Line Equations

Propagation equation

jCjGLjR ))((

)(

)(0

CjG

LjRZ

Characteristic Impedance equation

In class problem: Derive the high frequency, lossless approximation for Z0

is the attenuation (loss) factor

is the phase (velocity) factor

Ideal Transmission Line Parameters• Knowing any two out of Z0,

Td, C0, and L0, the other two

can be calculated.

• C0 and L0 are reciprocal

functions of the line cross-

sectional dimensions and

are related by constant me.

• e is electric permittivitye0= 8.85 X 10-12 F/m (free space)

eri s relative dielectric constant

• m is magnetic permeabilitym0= 4p X 10-7 H/m (free space)

mr is relative permeability

.;

;;1

;;

;;

00

000

000

0

00

00d

0

00

eeemmm

meme

rr

LCv

TZLZ

TC

CLTC

LZ

Don’t forget these relationships and what they mean!

Parallel Plate Approximation

• Assumptions– TEM conditions

– Uniform dielectric (e ) between conductors

– TC<< TD; WC>> TD• T-line characteristics are

function of:– Material electric and magnetic

properties– Dielectric Thickness (TD)– Width of conductor (WC)

• Trade-off– TD ; C0 , L0 , Z0

– WC ; C0 , L0 , Z0

TD

TC

WC

e

To a first order, t-line capacitance and inductance can

be approximated using the parallel plate approximation.

d

PlateAreaC

*e Base

equation

C0 eWC

TD

F

m

8.85 e rWC

TD

pF

m

L0 mTD

WC

F

m

0.4 mrTD

WC

mH

m

Z0 377TD

WC

mr

e r

Improved Microstrip Formula• Parallel Plate Assumptions +

– Large ground plane with zero thickness

• To accurately predict microstripimpedance, you must calculate the effective dielectric constant.

TD

TC

e

WC

From Hall, Hall & McCall:

CC

D

r TW

TZ

8.0

98.5ln

41.1

870

e

DC

Cr

C

D

rre

TW

TF

W

T1217.0

1212

1

2

1

e

eee

2

1102.0

D

Cr

T

We

F1

D

C

T

Wfor

01

D

C

T

Wfor

Valid when:

0.1 < WC/TD < 2.0 and 1 < er < 15

Improved Stripline Formulas• Same assumptions as used

for microstrip apply here

TD2

TCe

WCTD1

From Hall, Hall & McCall:

)8.0(67.0

)(4ln

60 110

CC

DD

r

sym

TW

TTZ

e

Symmetric (balanced) Stripline Case TD1 = TD2

),,,2(),,,2(

),,,2(),,,2(2

00

000

rCCsymrCCsym

rCCsymrCCsymoffset

TWBZTWAZ

TWBZTWAZZ

ee

ee

Offset (unbalanced) Stripline Case TD1 > TD2

Valid when WC/(TD1+TD2) < 0.35 and TC/(TD1+TD2) < 0.25

You can’t beat a field solver

Special Cases to Remember

1

Zo

Zo

0

ZoZo

ZoZo

10

0

Zo

Zo

Vs

ZsZo Zo

A: Terminated in Zo

Vs

ZsZo

B: Short Circuit

Vs

ZsZo

C: Open Circuit

S-P

ara

mete

rsEE 5

64

Transmission (ABCD) Matrix The transmission matrix describes the network in terms of

both voltage and current waves (analagous to a Thévinin

Equivalent).

76

The coefficients can be defined using superposition:

221

221

DICVI

BIAVV

2

2

1

1

I

V

DC

BA

I

V

02

1

2

IV

IC

2 Port

Network

I1

+

-

V1

Po

rt 2

I2

+

-

V2

Po

rt 1

02

1

2

VI

ID

02

1

2

VI

VB

02

1

2

IV

VA

[33]

[34]

[35]

[36]

[5.5.29]

[5.5.31]

S-P

ara

mete

rsEE 5

64

Transmission (ABCD) Matrix

Since the ABCD matrix represents the ports in terms of currents and

voltages, it is well suited for cascading elements.

77

I1

+

-

V1

I2

V2

I1

I3

+

-

V3

The matrices can be mathematically cascaded by multiplication:

3

3

22

2

2

2

11

1

I

V

DC

BA

I

V

I

V

DC

BA

I

V

3

3

211

1

I

V

DC

BA

DC

BA

I

V

This is the best way to cascade elements in the frequency domain.

It is accurate, intuitive and simple to use.

2DC

BA

1DC

BA

[37]

S-P

ara

mete

rsEE 5

64

ABCD Matrix Values for Common Circuits

78

ZPort 1 Port 2 10

1

DC

ZBA

Port 1 Y Port 2 1

01

DYC

BA

323

3212131

/1/1

//1

ZZDZC

ZZZZZBZZA

Z1

Port 1 Port 2

Z2

Z3

Y1Port 1 Port 2Y2

Y3

3132121

332

/1/

/1/1

YYDYYYYYC

YBYYA

Port 1 Port 2,oZ)cosh()sinh()/1(

)sinh()cosh(

lDlZC

lZBlA

o

o

l

[38]

[39]

[40]

[41]

[42]

S-P

ara

mete

rsEE 5

64

Converting to and from the S-Matrix

The S-parameters can be measured with a VNA, and

converted back and forth into ABCD the Matrix

Allows conversion into a more intuitive matrix

Allows conversion to ABCD for cascading

ABCD matrix can be directly related to several useful circuit

topologies

79

S-P

ara

mete

rsEE 5

64

ABCD Matrix – Example

Create a model of a via from the measured s-parameters.

80

Po

rt 2

Po

rt 1

The model can be extracted as either a Pi or a T network

The inductance values will include the L of the trace and

the via barrel

assumes the test setup minimizes the trace length, so

that trace capacitance is minimal.

The capacitance represents the via pads.

L1

L1

Cvia

S-P

ara

mete

rsEE 5

64

ABCD Matrix – Example #1 The measured S-parameter matrix at 5 GHz is:

81

153.0110.0572.0798.0

572.0798.0153.0110.0

2221

1211

jj

jj

SS

SS

Converted to ABCD parameters:

827.00157.0

08.20827.0

2

11

2

11

2

11

2

11

21

21122211

21

21122211

21

21122211

21

21122211

j

j

S

SSSS

SZ

SSSS

S

SSSSZ

S

SSSS

DC

BA

VNA

VNA

Relating the ABCD parameters to the T circuit topology,

the capacitance can be extracted from C & inductance

from A:pFC

fCj

ZjC VIA

VIA

5.0

2

1

110157.0

3

nHLLfCj

fLj

Z

ZA

VIA

35.0)2/(1

21827.01 21

3

1

Z1

Port 1 Port 2

Z2

Z3

S-P

ara

mete

rsEE 5

64

Advantages/Disadvantages of ABCD Matrix

Advantages:

The ABCD matrix is intuitive: it describes all ports with

voltages and currents.

Allows easy cascading of networks.

Easy conversion to and from S-parameters.

Easy to relate to common circuit topologies.

Disadvantages:

Difficult to directly measure: Must convert from

measured scattering matrix.

82

S-P

ara

mete

rsEE 5

64

Summary

We can characterize interconnect networks

using n-Port circuits.

The VNA uses S- parameters.

From S- parameters we can characterize

transmission lines and discrete elements.

83

S-P

ara

mete

rsEE 5

64

References D.M. Posar, Microwave Engineering, John Wiley & Sons,

Inc. (Wiley Interscience), 1998, 2nd edition.

B. Young, Digital Signal Integrity, Prentice-Hall PTR, 2001,

1st edition.

S. Hall, G. Hall, and J. McCall, High Speed Digital System

Design, John Wiley & Sons, Inc. (Wiley Interscience), 2000,

1st edition.

W. Dally and J. Poulton, Digital Systems Engineering,

Chapters 4.3 & 11, Cambridge University Press, 1998.

“Understanding the Fundamental Principles of Vector

Network Analysis,” Agilent Technologies application note

1287-1, 2000.

“In-Fixture Measurements Using Vector Network Analyzers,”

Agilent Technologies application note 1287-9, 2000.

“De-embedding and Embedding S-Parameter Networks

Using A Vector Network Analyzer,” Agilent Technologies

application note 1364-1, 2001.

84

S-P

ara

mete

rsEE 5

64

Appendix

More material on S parameters.

85

S-P

ara

mete

rsEE 5

64

86

0Re

any for 0Re

mn

mn

Y

m,nZ

jkkIj

iij

I

VZ

,0

jkkVj

iij

V

IY

,0

Lossless

Reciprocal jiij ZZ jiij ZZ

1 ZY

S-P

ara

mete

rsEE 5

64

S Parameters

87

NNNNN

N

N V

V

V

SSS

S

SSS

V

V

V

2

1

21

12

12111

2

1

VSV

jkkVj

iij

V

VS

,0

Scattering Matrix: S Parameters

or [1]

where [2]

nnn VVV

nnnnn VVIII ????

VVVIZIZIZ

VUZVUZ

10

10

001

U

UZUZVVS 11

S-P

ara

mete

rsEE 5

64

S Parameters #2

88

[5.5.1]

where [5.5.2]

UZUZVVS 11

USZSUZUZS

SUSUZ 1

TSS Reciprocal

N

k

kikiSS1

* 1

N

k

kjki jiSS1

* ,0

S-P

ara

mete

rsEE 5

64

S Parameters – n Ports

89

n

nn

Z

Va

0

aSb

n

nn

Z

Vb

0

nnnnnn baZVVV

0

nn

nn

nnn ba

ZZ

VVI

00

1

22

2

1

2

1nnn baP

jkkaj

iij

a

bS

,0

jkk

jkk

Vj

j

i

i

aj

iij

Z

V

Z

V

a

bS

,0

,0

0

0

nnnn

N

n a

a

a

SS

S

SSS

b

b

b

2

1

1

21

11211

2

1

nnnnnn

nn

nn

aSaSaSb

aSaSaSb

aSaSaSb

2211

22221212

12121111

S-P

ara

mete

rsEE 5

64

S Parameters #4

90

aSb

where

jkkaj

iij

a

bS

,0

jkk

jkk

Vj

j

i

i

aj

iij

Z

V

Z

V

a

bS

,0

,0

0

0

niaSbn

j

jiji ,,3,2,1for

Sij = Gij is the reflection coefficient of the ith

port if i=j with all other ports matched

Sij = Tij is the forward transmission coefficient

of the ith port if I>j with all other ports

matched

Sij = Tij is the reverse transmission coefficient

of the ith port if I<j with all other ports

matched

S-P

ara

mete

rsEE 5

64

VNA Calibration

Proper calibration is critical!!!

There are two basic calibration methods

Short, Open, Load and Thru (SOLT)

• Calibrated to known standard( Ex: 50)

• Measurement plane at probe tip

Thru, Reflect, Line(TRL)

• Calibrated to line Z0

– Helps create matched port condition.

• Measurement plane moved to desired position set by

calibration structure design.

91

S-P

ara

mete

rsEE 5

64

SOLT Calibration Structures

92

OPEN SHORT

LOAD THRU

Calibration Substrate

G

G

S

S

G

S

Signal

Ground

G

S

G

S

S-P

ara

mete

rsEE 5

64 TRL Calibration Structures

TRL PCB Structures

Normalized Z0 to line

De-embed’s launch structure parasitics

93

6mil wide gap

Short

100 mils 100 mils

Open

?

Thru

?

L1

?

L2

Measurement

Planes

S-P

ara

mete

rsEE 5

64

Calibration- Verification

Always check the calibration prior to taking measurements. Verify open, load etc..

• Smith Chart: Open & Short should be inside the perimeter.

• Ideal response is dot at each location when probing the calibration structures.

94

Capacitance

Inductance

Normalized

Zo

Perimeter

Zo = 0+/- j X

Short 1.00.2 20

-j0.5

-j1.0

+j0.5

+j1.0

Zo

Open

Normalized

Zo = 0.2 - j1

S11(Short) S11(Open)

S11(load)

S21/12(Thru)

S-P

ara

mete

rsEE 5

64

One Port Measurements

Practical sub 2 GHz technique for L & C data.

Structure must be electrically shorter than /4 of fmax.

1st order (Low Loss):

• Zin = jL (Shorted transmission line)

• Zin = 1/jC (Open transmission line)

• For an electrically short structure V and I to order are ~constant.

At the short, we have Imax and Vmin.

Measure L using a shorted transmission line with negligible loss.

At the open you have Vmax and Imin.

Measure C using an open transmission line with negligible loss.

95

V

RS= 50 DUT Short

CurrentZin = jL·I

DUT

Open

V

RS = 50

Zin = V/jC

S-P

ara

mete

rsEE 5

64 One Port Measurements – L & C

VNA - Format

Use Smith chart

format to read L & C data

96

Capacitance

Inductance

Normalized

Zo

Perimeter

Zo = 0+/- j X

Short 1.00.2 20

-j0.5

-j1.0

+j0.5

+j1.0

Zo

Open

Normalized

Zo = 0.2 - j1

S-P

ara

mete

rsEE 5

64

Connector L & C

Use test board to measure connector inductance and

capacitance

Measure values relevant to pinout

Procedure

• Measure test board L & C without connector

• Measure test board with connector

• Difference = connector parasitics

97

Short Open