wa of compostes

Upload: mohd-bashree-abu-bakar

Post on 05-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 Wa of Compostes

    1/17

    1

    WaterAbsorptionandDurabilityofWoodPlasticCompositesMarekGnatowski,Ph.D.,ResearchDirector,PolymerEngineeringCompanyLtd.

    Burnaby,BC,Canada

    AbstractWaterabsorptioninwoodplasticcomposites(WPC)isstillacontroversialbut

    importantissueassociatedwithcompositedurability.

    Inthispaper,waterabsorptionbyWPCboardsexposedtoexteriorconditionsin

    Vancouver,BCforaperiodofupto6yearsisexamined. Theboardsweremade

    usingdifferentmaterialformulationsthatmatchedthewaterabsorption

    characteristicsofavarietyofcommercialproductsavailableinNorthAmericain

    20012002.

    Thetotalwaterabsorptionandwaterdistributionwithintheboardswasevaluated

    withthefocuson:(1)periodofexposure(2)woodcontentincomposite(3)exposure

    location(sun

    or

    shadow)

    (4)

    exposure

    geographical

    location

    (5)

    wood

    species

    (6)

    presenceofUVstabilizers(7)presenceofzincborate. Theeffectofwaterabsorption

    onbiologicalactivitywithintheWPCboardsaswellasmechanicalpropertieswillbe

    discussed.

    ItwasfoundthatWPCmayabsorbasignificantquantityofwaterduringprolonged

    exposuretoexteriorconditions,andthewatercontentinthematerialseemsto

    increaseduringtheexposureperiod. Thismaybeassociatedwiththelossofsome

    mechanicalpropertiesandthepresenceofbiologicalactivity,includingdecayfungi.

    IntroductionWater

    seems

    to

    be

    an

    environmental

    factor

    that

    affects

    practically

    all

    materials

    exposed

    toexteriorconditions. Waterispresenteverywhere,andevenondrysunnydayswe

    mayseelongperiodsofheavydewformationduringthenight,fromearlyeveningto

    latemorning. Itisexpectedthatwatermayalsoaffectperformanceandpropertiesof

    WoodPlasticComposites(WPC)includingmechanicalproperties,dimensionalstability,

    warping,andintensificationofbiologicalactivity.(117)

    Forthisreasonwaterabsorption

    byWPCshasbecomeourprimeinterestinresearchondurabilityofthesenew

    materials. Itiswidelyknownthatthereissomecontroversysurroundingwater

    absorptionbywoodplasticcomposites. Fromonesidethereisaperceptioninindustry

    thatwoodparticlesareeffectivelyencapsulatedinwaterimperviousplastic. While

    woodmay

    absorb

    as

    much

    as

    about

    25%

    water

    to

    fiber

    saturation

    point,

    polyolefins,

    includingpolyethylenewhichcreatesacontinuousphaseofthecomposite,mayabsorb

    only0.01%moistureafterimmersion. Therearehowever,signsthatcontradictthese

    optimisticexpectations. Thereispublisheddatathatindicatesexpansion,warpage,

    decay,andeventhepresenceoffruitingbodiesofdecayfungiontheWPCsurfacein

    thefield.(4,10,12,13,14)

    Thissuggestsaratherhighwaterpresenceintheevaluated

    materialsexposedtoweatherelements.

  • 8/2/2019 Wa of Compostes

    2/17

    2

    Toshedsomelightonthiscontroversy,in2000PolymerEngineeringCompanyLtd.

    undertookresearchonwaterabsorptionbyWPCexposedtoexteriorconditionsto

    gatherscientificdatainthisrespect. Theexperimentalsamplesusedinthiswork

    simulatedtheextremeperformanceofcommercialcomposites. Thesamplesdiscussed

    inthispaperwereexposedinthemild,temperateclimateofVancouver,BCforupto6

    years,andalsoanevaluationwasdoneforboardsexposedlaterintropicalHilo,Hawaii.

    Theobjectiveofthispaperistosharewithyousomeourresults. Certainresultshave

    beendiscussedinpreviousWPCconferencesinMadison(15)

    andinToronto(17)

    andtheymayberepeatedhereforcomparisonpurposes.

    SamplePreparationandExposureSamplesusedforevaluationweremadeintwogroupsrepresentedbyformulations#5

    and#12,containingnominalwoodcontentof50%and65%.(table1). Woodcontentof

    50%and65%areshownforsimplicity. Further,samples#5and#12wereoptionally

    modifiedbytheadditionofaUVstabilizerpackagecontainingorganicUVabsorbers,

    freeradicalsscavengersandinorganicpigments,and/orzincboratebiocide. Also,for

    simplicity,thequantityofHDPEisgivenas45%and30%respectively. Acorrectionto

    accommodateadditives

    was

    done

    accordingly

    without

    displaying

    the

    relatively

    small

    changesrequiredinwoodandresincontents.

    Formulations#5and#12wereestablishedsothatwaterabsorptioninequilibriumand

    kineticsresembledsomecommercialWPCwithextremeperformancewithrespectto

    waterabsorptioncollectedinNorthAmericaandtestedforthispurposeduringthe

    periodfrom2000to2002.(figures1and2)

    0%

    5%

    10%

    15%

    20%

    25%

    30%

    35%

    40%

    45%

    W

    aterAbsorption

    (%

    )

    A B C E F G H I J K L M N O 5 6 12 13

    Commercial Experimental

    Figure1. Waterabsorptioninequilibriumforcommercial(AO)

    andexperimental(5,6,12,13)WPC

  • 8/2/2019 Wa of Compostes

    3/17

    3

    0%

    5%

    10%

    15%

    20%

    25%

    30%

    35%

    40%

    Start 6 hours 1day 7 day 10 day 11day 14 day 17 day 21 day

    Length of Immersion

    W

    aterAbsorption

    (%

    )

    G

    L

    6

    5

    0%

    5%

    10%

    15%

    20%

    25%

    30%

    35%

    40%

    Star t 6 hours 1 day 7 day 10 day 11 day 14 day 17 day 21 day

    Length of Immersion

    WaterAbsorption(%)

    N

    B

    13

    12

    Figure2. Kineticsofwaterabsorptionbyselectedsamplesof

    commercialandexperimentalWPC

    WPCboardsusedfortestingwereextrudedatWashingtonStateUniversity,WoodMaterials

    andEngineeringLaboratoryunderwellcontrolledconditionsusinga55mmconicalcounter

    rotatingMillicrontwinscrewextruder.

    Sampleswerecollectedinthefieldbycuttingtheendoftheexposedboardtobecross

    sectionedin

    the

    laboratory,

    as

    shown

    in

    figure

    3.

    Care

    was

    taken

    to

    avoid

    loss

    of

    moisture

    duringmaterialhandling.

    Figure3. Specimencuttingpatternandpresentationofmoisturecontent(MC)

    andwaterabsorption(WA)intestedsamples

    bc

  • 8/2/2019 Wa of Compostes

    4/17

    4

    BydryingsectionB,theaveragewaterabsorption(WA)forthetestedboardwas

    established. Withtheknowledgeoftheexactwoodcontentinthesamples,moisture

    content(MC)inwoodforeachspecimenwasthencalculated. Thismoisturecontentin

    wood,asanimportantfactorincompositeperformance,isshowninbargraphs(figure

    3)inthispaper. Furthermore,bywaferingsectionCofthesample,wewereableto

    findthemoisturecontentdistributionwithintheexposedboardsasafunctionofthe

    boardthicknessasshowninfigure3. Allgraphsclearlyindicatethemoisturecontentrequiredtoinitiatedecay,whichisabout25%.

    Thetestedsampleswereexposedinsunandshadowintwogeographicallocations;

    Vancouver,BCandHilo,Hawaii. Thelocationswereselectedinsuchawaythatthey

    representedamoderate,temperateclimateaswellasatropicalclimatethatcouldbe

    expectedtobemoreaggressive. Thisaggressivenesswithrespecttobiologicalactivity

    couldberepresentedbytheSchefferIndex: Hilo331,andVancouver(Seattle)49.

    ResultsanddiscussionThe

    evaluation

    of

    the

    exposed

    samples

    allowed

    for

    the

    collection

    of

    information

    about

    waterabsorption,takingintoconsiderationthefollowingfactors:

    Periodofexposure

    Woodcontentincomposite

    Exposurelocation(sunandshadow)

    Exposuregeographicallocation

    Woodspecies

    PresenceofUVstabilizers

    Presenceofbiocide(zincborate)

  • 8/2/2019 Wa of Compostes

    5/17

    5

    Ascanbeseeninfigure4,duringthefirst4yearsmoisturecontentinthetested

    samplesgrewrapidly,andlateron,betweenthe4th

    and6th

    years,aplateauseemedto

    beachieved. However,lookingatwaterdistributionwithintheboardswecouldseea

    constantincreaseinmoisturecontentinthecenterofthesamples,withadecreasein

    MCnearthesurface. Thiscouldbeduetoclimaticvariabilitypriortosampleharvesting.

    Aportionofthespecimensexceededthemoisturecontentrequiredforinitiationofdecay.

    Thiscanalsobeseenonthemajorityofthegraphs.

    Figure4. MoisturecontentanditsdistributioninsamplesofWPCexposedin

    Vancouver,BC(sunnylocation)for70months

  • 8/2/2019 Wa of Compostes

    6/17

    6

    Woodcontent,asexpected,seemstobeanimportantfactorinwaterabsorptionby

    WPC. Justanincreaseinpineflourcontentfromabout50to65%,causedanincreasein

    moisturecontentofabout100%regardlessoftheexposureperiod(figure5). Therewas

    alsoasignificantdifferenceinmoisturedistributionwithintheboard,particularlywith

    increaseddistancefromthesurface.

    Figure5. MoisturecontentanditsdistributioninsamplesofWPCcontaining50and65%wood

    exposedin

    Vancouver,

    BC

    (sunny

    location)

    for

    70

    months

  • 8/2/2019 Wa of Compostes

    7/17

    7

    Surprisingly,therewererelativelysmalldifferencesinmoisturecontentforsamples

    exposedinsunandshadow. Samplesexposedinsunseemedtohaveevenhigher

    moisturecontent,particularlyinthecaseofcompositeswithlargerwoodcontentas

    showninfigure6.

    Figure6. MoisturecontentanditsdistributioninsamplesofWPCexposedinVancouver,BC

    insunandshadowfor70months

  • 8/2/2019 Wa of Compostes

    8/17

    8

    Evenmoresurprising,wastheperformanceofoursampleswhenexposureina

    moderatevs.tropicalclimatewascompared. SamplesexposedinVancouvershowed

    significantlyhighermoisturecontentthanthoseexposedinhotandverywetHilo,

    Hawaii(figure7). Thismaybeexplainedbythehigherevaporationrateintropical

    Hawaii,andthefactthatsampleswerealwaysharvestedinVancouverattheendofthe

    wetterwintermonthsofFebruaryorMarch.

    Figure7. MoisturecontentanditsdistributioninsamplesofWPCexposedfor46months

    inVancouver,BCand51monthsinHilo,HI

  • 8/2/2019 Wa of Compostes

    9/17

    9

    Woodspeciesalsoseemstoinfluencethewaterabsorptionofcomposites. Samples

    containingthesamequantityoftheoakflouralwaysshowedlowerwaterabsorptionin

    comparisontopinewhenexposedatthesamelocation(figure8).

    Figure8. MoisturecontentanditsdistributioninsamplesofWPCmadefromdifferentwoodspecies(pine

    oroak)exposedinVancouver,BC(sunnylocation)for70months

  • 8/2/2019 Wa of Compostes

    10/17

    10

    AdditivesusedinourUVstabilizerpackageseemedtoincreasethewaterabsorptionof

    thesamplesascanbeseeninfigure9. Thisappliedtobothformulationswithlowerand

    higherwoodcontent. Alargeincreaseinmoisturecontentoccurredallacrossthe

    boards,includingtheareaneartheboardsurfaceandalsointhecentre.

    Figure9. MoisturecontentanditsdistributioninsamplesofWPC,withandwithoutUV

    stabilizerpackage,exposedinVancouver,BC(sunnylocation)for70months

  • 8/2/2019 Wa of Compostes

    11/17

    11

    Interestingandunexpectedwastheadditionofzincborate,knowntobeeffectiveasa

    fungicide. Thepresenceofzincborateseemedtodecreasewaterabsorptionin

    practicallyallofthetestedformulationsasshowninfigure10.

    Figure10. MoisturecontentanditsdistributioninsamplesofWPC,withandwithout

    zincborate,exposedinVancouver,BC(sunnylocation)for70months

  • 8/2/2019 Wa of Compostes

    12/17

    12

    WaterabsorptionaffectedthedurabilityoftheWPCboards. Duringtestingofthe

    flexuralpropertiesofboardsexposedtoexteriorconditionsinVancouverforalmostsix

    years,wefoundthattheMOEwasreducedbyabout30%,regardlessofsunorshadow

    exposure(figure11). BoardsexposedinshadowseemedtohaveaslightlyhigherMOE

    buttherewasonlyarelativelysmallvariationinMOEbetweenthedifferentexposure

    conditions. Itmaybepointedoutthatthepresenceofzincborateonceagainaffected

    theboardperformance. WhileunexposedreferencesamplescontainingzincborateshowedlowerMOE,alloftheexposedsampleswithzincboratehadstatistically

    significanthigherMOEasshownbycapitallettersonthegraph.

    Figure11. ChangeinMOEofWPC,withUVstabilizerpackage,andwithandwithout

    zincborate,exposedinsunandshadowinVancouver,BCfor70months

  • 8/2/2019 Wa of Compostes

    13/17

    13

    Moisturecontentwasalsomeasuredinthetestedsamplesdirectlyafterremovalfrom

    thefield. Inallsamplestested,theaverageMCwaswellbelowthedecaypoint. The

    averageMCwasinitiallyabout15to20%anddecreasedduring6dayconditioning(75F,

    50%RH)onlytoabout10to15%. Moisturecontentinthetestedsamplesisshownin

    figure12. Thereferencesamplesused,whichwerestoredforoversixyearsina

    shelteredlocationthatwasheatedduringthewinter,hadonlyabout3%MC,evenafter

    conditioning.Moisture

    was

    typically

    significantly

    higher

    near

    the

    sample

    surface,

    which

    likelyaffectedthetestingresults.

    Figure12. MoisturecontentanditsdistributionforsamplesofWPCexposedinVancouver,BCfor70monthsandtestedformechanicalproperties(figure11)

  • 8/2/2019 Wa of Compostes

    14/17

    14

    Anotherconsequenceoftheobservedhighmoisturecontent,whichoftenexceeded

    25%inmanysamples,seemedtobedecay. Decaywasfoundafterathorough

    inspectionofthesamplesafteronly28monthsexposureinHilo. Atthispoint,Iwould

    liketorepeatwhatwasmentionedearlier,thatHiloisaveryaggressiveplacewith

    respecttodecayandhasaSchefferindexofabout330,versusonlyabout50expected

    inVancouver. Aninitialbrieflookatthesampledidnotshowanythingunusual,onlyafurthercarefulinspectionusingamagnifyingglassshowedsomestrangesurface

    topographyinthecentre,andsomedarkerthanusualsegmentsofwood. Further

    examinationofthesample,withopticalandSEMmicroscopes,revealedwhatseemed

    tobeadvanceddecaywithevidenceoffungalmyceliainsomeplaces(figure13). Ithas

    tobementionedthatthedecayregionwashardtothetouchandwaslimitedtothe

    internalportionofthesample. Theexternalpartoftheboardwasundamaged.

    Samplescollectedmorerecently,inHiloandVancouver,arestillunderevaluationinthis

    respect.

  • 8/2/2019 Wa of Compostes

    15/17

    15

    Figure13. MicroscopicinspectionofinteriorofWPC(sample#8)exposedinHilo,HI

    (sunnylocation)

    for

    28

    months

    (A)

    digital

    photomicrography

    (B

    and

    C)

    optical

    microscopy (DandE)SEMmicroscopy. Pleasenotethedecayedwoodintheboard

    centre,andfungimyceliumfillingthecavitywithremainsofthewood. FiguresCandD

    showtheidenticalsampleareausingopticalmicroscopyandSEMrespectively.

    A

    B

    C

    D

    E

  • 8/2/2019 Wa of Compostes

    16/17

    16

    Conclusions WoodPlasticComposites(WPC)boardsprogressivelyabsorbasignificant

    quantityofwaterduringexteriorexposure. Moisturecontentdistributioninthe

    boardcrosssectionshaveacharacteristicUshape,frequentlyexceedingthe

    concentrationrequiredfordecayinitiation.

    Waterabsorptionisalongprocess,andevenafter6yearsexposureinamoderateclimate,equilibriumhaslikelynotbeenreached

    AmajorfactorinwaterabsorptionbyWPCwastheratioofwoodtoplastic

    binder;withtheincreaseofwoodcontent,moisturecontentprogressesvery

    quickly

    AnotherfactorinwaterabsorptionisthematerialcompositionofWPC. Certain

    additivesmaysignificantlyincreaseordecreasewaterabsorption(forexample

    zincboratedecreasedwaterabsorptioninthetestedformulations)

    Climateandsamplelocation(sunorshadow)maynotbeamajorfactorinwater

    absorption

    Itwas

    shown

    that

    water

    absorption

    in

    exterior

    exposure

    most

    likely

    influenced

    MOEofselectedsamples(decrease~30%). Itwasobservedthatsome

    experimentalsampleswithasignificantamountofwaterabsorptionunderwent

    decayinexteriorexposure.

    References:

    1. Lopez,J,Sain,M.,andP.A.Copper,2004,DurabilityofNaturalFibrePlasticComposites

    forOutdoorApplications,ProgressinWoodfibrePlasticCompositesConference

    Proceedings,Toronto,Canada,May1011,2004

    2. Ibach,R.E.,

    and

    C.M.

    Clemons,

    2004,

    Field

    Evaluations

    of

    Extruded

    Woodfiber

    Plastic

    Composites,ProgressinWoodfibrePlasticCompositesConferenceProceedings,

    Toronto,Canada,May1011,2004

    3. Ibach,R.E. ClemonsC.M.,andN.M.Stark,2003,CombinedUVandWaterExposureas

    aPreconditioningMethodinLaboratoryFungalDurabilityTesting,7thAnnual

    ConferenceonWoodfiberPlasticComposites,Madison(WN)May1920,2003

    4. Morris,P.I.andP.A.Cooper,1997,Recycledplastic/woodcompositelumberattacked

    byfungi,ForestProductsJournal48(1):8688

    5. Klyosov,A.,2004,NaturalandWoodfiberCompositesintheRealWorld,Progressin

    WoodfibrePlasticCompositesConferenceProceedings,Toronto,Canada,May1011,

    2004

    6. Rowell,R.A.,Lange,S.E.,andR.E.Jacobson,2002,EffectsofMoistureonAspen

    Fiber/PolypropyleneComposites,ProgressinWoodfibrePlasticComposites

    ConferenceProceedings,Toronto,Canada,May2324,2002

    7. Verhey,S.A.,andP.E.Laks,2002,StrengthLossFollowingFungalAttackonWood

    Fiber/ThermoplasticComposites,ProgressinWoodfibrePlasticCompositesConference

    Proceedings,Toronto,Canada,May2324,2002

    8. Sigworth,B.,2002,AdditivesforWoodfilledPolyolefinsCouplingAgents,Progressin

    WoodfibrePlasticCompositesConferenceProceedings,Toronto,Canada,May2324,

    2002

  • 8/2/2019 Wa of Compostes

    17/17

    17

    9. Gnatowski,M.andC.Mah,May2003,TestingofWoodPlasticComposites,7th

    Annual

    ConferenceonWoodfiberPlasticComposites,Madison(WN)May1920,2003

    10.Manning,M.,2004,CreatingValueinWPCProductswithAntiMicrobialsandStain

    ResistantAdditives,WPCConference,Baltimore,MD,October1112,2004

    11.Zabel,R.A.andJ.J.Morrell.1992,WoodMicrobiology,DecayandItsPrevention

    12.Morris,P.I.andP.A.Cooper,1997,ObservationsonPlasticLumberasaSubstitutefor

    PreservativeTreatedWood,18thAnnualMeetingoftheCWPA,pg117128,Vancouver,

    BC,November

    34,

    1997

    13.Manning,M.,2006,FieldTestingofWPCsaCriticalComponentofDurability

    Evaluation,ProgressinWoodandBiofibrePlasticCompositesConferenceProceedings,

    Toronto,Canada,May12,2006

    14.Manning,M.,Ascherl,F.,2007,WoodPlasticCompositeDurabilityandtheCompelling

    CaseforFieldTesting9thInternationalConferenceonWood&BiofiberPlastic

    Composites,Madison,WN,May2123,2007

    15. Gnatowski,M.,2005,WaterAbsorptionbyWoodPlasticCompositesinExterior

    Exposure,8thInternationalConferenceonWoodfiberPlasticComposites,Madison,

    WI,May2325,2005

    16.Gnatowski,M.,2007,RadiationInducedDegradationinWPCintheFieldandin

    LaboratoryConditions,9thInternationalConferenceonWood&BiofiberPlastic

    Composites,Madison,WN,May2123,200717.Gnatowski,M.,2008,WaterAbsorptionbyWoodPlasticCompositesFieldand

    LaboratoryChallenges,10thInternationalConferenceonProgressinBiofibrePlastic

    Composites,Toronto,Ontario,May1213,2008

    AcknowledgementsTheauthorofthispaperwouldliketothankthefollowingPolymerEngineeringstaffinvolvedinthisresearch: CeciliaStevens,Ph.D.,MathewLeung,B.Sc.,KateMao,B.Eng.,DavidLesewick,ChristineMah,B.Sc.,andBeverlyStart.IwouldalsoliketothankWashingtonStateUniversity(WoodMaterialsandEngineeringLab)fortheirsupport

    in

    sample

    preparation.