universidad tecnológica de panamá

9
Universidad Tecnológica de Panamá Investigación de Laboratorio de Aire Acondicionado Tipos de Compresores y Válvulas de Expansión Hiram González 8-865-1895 Instructor Mohit Dipakkumar Fecha de Entrega: 24/09/2015

Upload: hiram-gonzalez

Post on 12-Jul-2016

7 views

Category:

Documents


0 download

DESCRIPTION

compresores

TRANSCRIPT

Page 1: Universidad Tecnológica de Panamá

Universidad Tecnológica de Panamá

Investigación de Laboratorio de Aire Acondicionado

Tipos de Compresores y Válvulas de Expansión

Hiram González

8-865-1895

Instructor

Mohit Dipakkumar

Fecha de Entrega: 24/09/2015

Page 2: Universidad Tecnológica de Panamá

Tipos y clasificación de Compresores.

COMPRESORES ROTATIVOS

Los compresores rotativos producen aire comprimido por un procedimiento rotatorio y continuo, es decir, que empujar el aire desde la aspiración hacia la descarga, comprimiéndolo.

Los modelos de más amplia difusión industrial pueden clasificarse:

De paletas.

De tornillo,

Tipo Roots

COMPRESORES DE PALETA

En los compresores de paleta el rotor cilíndrico es tal colocado excéntricamente dentro del hueco tabular del estator. El rotor lleva un número de paletas radiales metidas en unas ranuras dispuestas a tal efecto, y cuando el rotor gira accionado por el motor, las paletas se desplazan hacia fuera ajustándose a la pared interior del estator hasta el punto de excentricidad máxima situado en la parte superior del estator. El volumen de aire atrapado en la cámara comprendida entre dos paletas consecutivas se comprime gradualmente mientras que la rotación del aire irá poco a poco disminuyendo y por tanto su presión aumentará por la progresiva reducción del volumen provocando la correspondiente compresión. En el momento en que llega a la lumbrera o abertura de descarga el aire será empujado a través de ella hacia la salida habiéndose consumado el ciclo aspiración-compresión-descarga.

COMPRESORES DE TORNILLO

Son asimismo de tipo volumétrico. Desde 1934 hasta nuestros días, su diseño ha sufrido un avance considerable.

Están dispuestos de tal manera que el rotor macho se encuentra dotado de lóbulos con un perfil de estudiado diseño, y el rotor hembra de acanaladuras en las cuales se introducen los lóbulos en el curso de la rotación.

El accionamiento del conjunto tiene lugar por el extremo del eje que lleva el rotor macho, quien arrastra por contacto a la hembra, o lo hace mediante engranajes sincronizados que posicionan relativamente los elementos con enorme exactitud, consiguiendo en ambos casos la intercepción mutua entre los cuatro lóbulos del macho y los seis canales de la hembra.

Page 3: Universidad Tecnológica de Panamá

El rotor macho es el que absorbe la potencia suministrada por el motor, estableciéndose alrededor del 85 al 90% total para él, dejando un 10 al 15% para el rotor hembra. Los rotores giran a velocidades lentas (1300 a 2400 rpm) sobre rodamientos de bolas y rodillos, con interposición de una película de aceite que sirve para sellar el espacio de compresión y eliminar el calor que se origina durante la compresión.

COMPRESORES ROOTS

Conocidos también con el nombre de soplantes, tiene un amplio campo de aplicación para bajas presiones. Dentro de un cuerpo de bomba o estator, dos rotores de perfiles idénticos en forma de ocho, giran a velocidad angular constante, en sentido inverso el uno del otro. Estas rotaciones están sincronizadas por un juego de engranajes exteriores, lubricados por baño de aceite. A diferencia de otros compresores los rotores no rozan ni entre sí ni con el estator, existiendo una pequeña tolerancia entre estos; por consiguiente no pueden efectuar compresión interior, ya que el volumen de las cámaras de trabajo no disminuye durante la rotación.

Estos compresores únicamente transportan del lado de la aspiración al de compresión el volumen de aire aspirado, sin comprimirlo en este recorrido. El volumen que llega a la boca de salida, todavía con la presión de aspiración, se junta con el aire ya comprimido que vuele a la tubería de descarga y se introduce en la cámara cuyo contenido llega en ese momento a la presión máxima, siendo descargado seguidamente.

Page 4: Universidad Tecnológica de Panamá

La ventaja de la ausencia de fricción entre los rotores hace innecesaria la lubricación en la cámara de compresión, lo cual permite la entrega de un aire totalmente exento de aceite que pudiera contaminarlo.

COMPRESORES SECOS

Cuando el agente comprimido que ha de producir un compresor tiene que quedar exento de aceite, hay que recurrir a compresores de pistón o de tornillo en los que ningún aceite de lubricación o sucedáneo entre en contacto con el gas a comprimir, resolviendo la mencionada necesidad mediante cámaras de compresión sin lubricante.

El aire sigue estando húmedo, denominándose mejor compresores exentos de aceite o sin lubricación.

Es imposible conseguir que el aire real y absolutamente exento de aceite, si bien los compresores secos, teóricamente, producen aire libre de aceite, puesto que trabajan con cámaras de compresión sin lubricación.

La definición de aire exento de aceite deberá ser: aire al que, por medios prácticos, se ha eximido de aceite hasta el punto que no se pueden detectar trazas de aceite en las líneas de aire comprimido.

Es evidente que el tener un compresor exento de aceite no excusa el colocar filtros de aire cerca del punto de consumo, ya que el aire es portador, en una dosis más o menos grande, de contaminantes a veces imperceptibles.

Válvula de expansión Térmica

Las válvulas de expansión termostáticas son desarrolladas para regular la inyección de refrigerante líquido a los evaporadores. Esta inyección de refrigerante estará siempre regulada por un elemento termostático que está situado en la parte superior de la válvula de expansión la cual es controlada en función del recalentamiento del refrigerante.

Existe una gran variedad de válvulas de expansión termostáticas, ej: R-22, R 404-A, R-717 (amoniaco). Con puerto balanceado, con carga MOP. En todas ellas el objetivo es entregar la máxima eficiencia del evaporador con un sobrecalentamiento adecuado.Lo primero es analizar y conocer el funcionamiento de la válvula de expansión: consta de un elemento termostático (1) separado del cuerpo por medio de una membrana, el elemento termostático está en contacto con el bulbo (2) a través de un tubo capilar, un cuerpo con un asiento y orificio (3) y un muelle o resorte.

Page 5: Universidad Tecnológica de Panamá

FuncionamientoP1:     la presión del bulbo que actúa en la parte superior de la membrana y en dirección de apertura de la válvula.P2:     la presión del evaporador, que influye en la parte inferior de la membrana y en la dirección de cierre de la válvula.P3:     la fuerza del resorte, que influye en la parte inferior de la membrana y la única variable que es controlable por parte del técnico.Cuando la válvula regula, hay un balance entre la presión del bulbo por la parte superior de la membrana y en contra se tendrá la presión del evaporador y la del resorte, esto con el fin de encontrar el sobrecalentamiento más adecuado de operación.SobrecalentamientoEl concepto de sobrecalentamiento es el calor agregado al vapor después de la vaporización en la válvula de expansión. Esto se puede medir en el lugar donde está el bulbo que es la tubería de succión. La diferencia que existe entre la temperatura del termómetro y la presión de evaporación, traducida a temperatura que le corresponde, el resultado será el recalentamiento en el evaporador, el cual está diseñado para operar con un rango de recalentamiento de 5° C. Para obtener el sobrecalentamiento total basta con cambiar el termómetro hasta el final de la tubería de succión, 30 centímetros antes del compresor, y tomar la presión de succión a la entrada del compresor. La diferencia en temperatura será el sobrecalentamiento total  el cual no deberá ser mayor a 15° C. Es muy importante aclarar que estas mediciones se deberán hacer cuando ya se haya obtenido la temperatura de cámara, si por algún motivo no se

Page 6: Universidad Tecnológica de Panamá

llega a la temperatura deseada se debe revisar bien el balance térmico o probables taponamientos por suciedad y/o humedad en el sistema de refrigeración.

El sobrecalentamiento sirve para asegurar que el refrigerante líquido será evaporado en su totalidad en el evaporador. Pero existen situaciones donde deberá de modificar el ajuste de sobrecalentamiento, el cual se puede hacer cuando se tienen distancias mayores a 15mts, en esta condición se podrá disminuir el sobrecalentamiento al girar el tornillo en contra de las manecillas del reloj. Se recomienda no más de un giro de 360° con el fin de cuidar el compresor, recordando que el 90% del enfriamiento de los compresores herméticos está dado por el gas de succión. Por otro lado, si el sobrecalentamiento total es muy reducido se tendrá que aumentar el mismo y esto se logra girando el tornillo a favor de las manecillas del reloj. Cabe aclarar que la presencia o ausencia de escarcha de hielo en una tubería de succión no indica o garantiza el estado físico del refrigerante.

Válvulas con igualación de presión externaSi se usan distribuidores de líquido, siempre deberán emplearse válvulas de expansión con igualación de presión externa.El uso de distribuidores de líquido causa generalmente una caída de presión de 14.7 psig en el distribuidor y en los tubos de distribución.Siempre deberán utilizarse válvulas de este tipo en instalaciones de refrigeración con evaporadores o intercambiadores de calor de placas grandes, donde la caída de presión será más elevada que la presión correspondiente a 2°C.Válvulas con carga MOPLas válvulas con Carga MOP se usan normalmente en equipos fabricados, donde se desea una limitación de la presión de aspiración en el momento de puesta en marcha, como por ejemplo en el sector de transporte y en instalaciones de aire acondicionado.Las válvulas de expansión con MOP tienen una cantidad muy reducida de carga en el bulbo.

Page 7: Universidad Tecnológica de Panamá

Esto significa que la válvula o el elemento tienen que poseer una temperatura mayor que el bulbo. En caso contrario, la carga puede emigrar del bulbo hacia el elemento e impedir el funcionamiento de la válvula de expansión.Carga MOP significa una cantidad limitada de carga líquida en el bulbo. Las siglas “MOP” significan Presión de Operación Máxima (Maximum Operation Pressure) y es la presión de succión/evaporación más alta permitida en las tuberías de succión/evaporación.La carga se habrá evaporado cuando se llegue al punto MOP. Gradualmente, a medida que la presión de aspiración aumenta, la válvula de expansión comienza a cerrarse a aproximadamente 4/5 psig por debajo del punto MOP. Se cierra completamente cuando la presión de aspiración es igual al punto MOP.MOP también se llama a veces “Protección de Sobrecarga del Motor” (Motor Overload Protection).Cómo seleccionar la válvula de expansiónLos siguientes datos son importantes para la selección de la válvula de expansión:•  Caída de presión a través de la válvula•  Igualación de presión interna o externa•  Refrigerante•  Capacidad del evaporador•  Presión de evaporación•  Presión de condensación