unitat 6 propietats i assaigs

68
12/06/22 Unitat 6. Propietats i assaigs 1 UNITAT 6 PROPIETATS I ASSAIGS

Upload: matthew-terry

Post on 01-Jan-2016

57 views

Category:

Documents


1 download

DESCRIPTION

UNITAT 6 PROPIETATS I ASSAIGS. ELS MATERIALS I ELS PROCESSOS INDUSTRIALS. Els materials són, juntament amb l’energia, els dos elements imprescindibles per iniciar un procés industrial. Per aquest motiu és importantíssim conèixer bé les propietats dels materials que utilitzarem. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 1

UNITAT 6

PROPIETATS I ASSAIGS

Page 2: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 2

• Els materials són, juntament amb l’energia, els dos elements imprescindibles per iniciar un procés industrial. Per aquest motiu és importantíssim conèixer bé les propietats dels materials que utilitzarem.

• En qualsevol procés industrial cal elaborar un projecte abans de dur-lo a terme. En aquest projecte cal decidir:

Com ha de ser el producte. El procés de transformació dels materials necessaris.

Per tant serà molt important triar els materials a utilitzar, tenint en compte que hi intervenen molts factors diferents, i per tant caldrà tenir en compte els diferents CRITERIS DE SELECCIÓ DE MATERIALS.

ELS MATERIALS I ELS PROCESSOS INDUSTRIALS

Page 3: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 3

ELS MATERIALS I ELS PROCESSOS INDUSTRIALS

CRITERIS DE SELECCIÓ DE MATERIALS

Les propietats s’han d’adequar a l’ús de l’objecte a fabricar (resistent a Tª, lleugeresa, conductivitat, flexibilitat,...).

Les qualitats estètiques color, textura, forma,...

El procés de fabricació cal tenir en compte la maquinària, si els operaris dominen les tècniques,...

El cost tant de matèries primeres com dels processos.

La disponibilitat cal tenir en compte la vida prevista al mercat del producte, i si aquesta és llarga cal assegurar que disposarem de material en el futur.

L’impacte ambiental de les operacions d’extracció i/o transformació de les MP i del reciclatge o reutilització del producte quan ha finalitzat la seva vida útil.

Page 4: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 4

• Les propietats mecàniques descriuen el comportament dels materials davant d’esforços (forces) que intenten estirar-los, aixafar-los, retorçar-los, doblegar-los, tallar-los, trencar-los amb un cop sec,...

Aquestes propietats són degudes a les forces de cohesió dels àtoms, que s’oposen a esforços externs que apliquem als materials. Les principals propietats mecàniques són:

PROPIETATS MECÀNIQUES

A la traccióA la compressióA la flexióA la torsióAl cisallament

Resistència

Ductil·litatMal·leabilitat

Tenacitat

Plasticitat

DuresaPROPIETATS MECÀNIQUES

Page 5: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 5

1> Fes una llista de les propietats més importants que han de tenir els materials dels objectes següents:a) Fulla de ganivet.b) Radiador de calefacció.c) Jersei.d) Para-xocs d’un automòbil.

3> Indica i justifica quins són els criteris de selecció de materials que, segons el teu parer, tenen més importància a l’hora de fabricar:a) Una escultura decorativa.b) Un satèl·lit de comunicacions.c) Circuits integrats per a càmeres de vídeo.f) Una central nuclear.e) Mobles de fusta tropical.g) Un got d’un sol ús.h) Bateries per a rellotges de polsera.

Page 6: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 6

• Per conèixer i mesurar les seves propietats mecàniques, els materials se sotmeten a unes proves de laboratori anomenades assaigs.

• Els assaigs són procediments normalitzats que permeten conèixer i mesurar les propietats dels materials, els defectes dels productes elaborats i la resposta que presenten sota determinades condicions de treball.

• Els conceptes i els valors obtinguts en aquests assaigs són la base de la disciplina coneguda amb el nom de resistència de materials, per tant aquesta és l’encarregada d’estudiar els mètodes d’identificació i càlcul d’esforços, formes i seccions dels materials.

PROPIETATS MECÀNIQUES

Page 7: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 7

PROPIETATS MECÀNIQUES

• Els assaigs poden ser:

Tracció DuresaResiliènciaFatigaDestructius

(calen provetes)

No destructiusMagnètics Raigs X o γUltrasons

Page 8: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 8

PROPIETATS MECÀNIQUES

• La resistència mecànica és la capacitat que té un material per suportar esforços sense deformar-se o trencar-se.

RESISTÈNCIA MECÀNICA I ASSAIG DE TRACCIÓ

Es distingeixen diferents tipus d’esforços:

Page 9: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 9

• Els esforços de flexió es poden considerar, en general, com una combinació d’esforços, ja que un material sotmès a flexió presenta una zona sotmesa a tracció i una zona sotmesa a compressió. També presenta una zona longitudinal que no està sotmesa a cap tipus d’esforç, la línia neutra.

A mesura que ens allunyem de la línia neutra va augmentant la intensitat dels esforços.

PROPIETATS MECÀNIQUES

RESISTÈNCIA MECÀNICA I ASSAIG DE TRACCIÓ

Page 10: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 10

• Cal tenir present que, de vegades, segons la forma del material, un esforç de compressió pot produir un corbament en lloc d’un aixafament. Aquest fenomen rep el nom de vinclament i es dóna en materials esvelts (llarg en comparació amb la seva secció).

PROPIETATS MECÀNIQUES

RESISTÈNCIA MECÀNICA I ASSAIG DE TRACCIÓ

Page 11: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 11

Esforç DeformacióFormes més adequades

per suportar-lo

Tracció Allargament Secció elevada

Compressió

En materials esvelts

Aixafament

Vinclament

Secció elevada i poca longitud

Flexió Corbament Secció elevada, cantell gran i

poca longitud

Torsió Retorçament Secció elevada

Cisallament Tall net Secció elevada

• Segons el tipus de deformació produïda podem identificar l’esforç que l’ha provocat i la forma més adequada per suportar-lo:

PROPIETATS MECÀNIQUES

RESISTÈNCIA MECÀNICA I ASSAIG DE TRACCIÓ

Page 12: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 12

• Quan un material és deformat per l’aplicació d’un esforç, pot ser que la deformació sigui temporal o permanent:

Deformació elàstica: si el material recupera la forma original quan desapareix l’esforç que provoca la deformació.

Deformació plàstica: si el material queda deformat permanentment quan desapareix l’esforç que l’ha provocat.• Hi ha materials que es trenquen sense experimentar,

pràcticament, cap deformació prèvia comportament fràgil

(vidres, ceràmiques,...)

PROPIETATS MECÀNIQUES

RESISTÈNCIA MECÀNICA I ASSAIG DE TRACCIÓ

MODELS DE DEFORMACIÓ I COMPORTAMENT MECÀNIC

• D’altres materials, en canvi, es deformen molt abans de trencar-se comportament dúctil

(coure, alumini,...)

Page 13: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 13

ACTIVITATS1.- Que descriuen les propietats mecàniques?2.- Què són els forces de cohesió?3.- Què estudia la resistència de materials?4.- Què és la resistència mecànica?5.- Explica, dibuixa i digues quina és la forma més adequada per suportar els esforços de: tracció, compressió, flexió, torsió i cisallament6.- Explica com es pot considerar l’esforç de flexió.7.- Explica què és la deformació elàstica i la diferència que hi ha amb la deformació plàstica?8.- Explica quins materials tenen un comportament fràgil.9.- Explica que vol dir tenir un comportament dúctil.

Page 14: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 14

• Pel que fa a la resposta dels materials davant d’un determinat esforç, aquesta pot ser de tres tipus:

PROPIETATS MECÀNIQUES

RESISTÈNCIA MECÀNICA I ASSAIG DE TRACCIÓ

MODELS DE DEFORMACIÓ I COMPORTAMENT MECÀNIC

Page 15: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 15

• Consisteix en sotmetre unes provetes, de formes i dimensions normalitzades, a esforços de tracció que produeixen deformacions en forma d’allargaments.

PROPIETATS MECÀNIQUES

RESISTÈNCIA MECÀNICA I ASSAIG DE TRACCIÓ

ASSAIG DE TRACCIÓ

Page 16: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 16

PROPIETATS MECÀNIQUES

RESISTÈNCIA MECÀNICA I ASSAIG DE TRACCIÓ

ASSAIG DE TRACCIÓ

Page 17: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 17

• Les provetes tenen una secció inicial S0 uniforme entre dues marques separades per una llargària L0 anomenada llargària calibrada.

PROPIETATS MECÀNIQUES

RESISTÈNCIA MECÀNICA I ASSAIG DE TRACCIÓ

ASSAIG DE TRACCIÓ

Page 18: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 18

PROPIETATS MECÀNIQUES

RESISTÈNCIA MECÀNICA I ASSAIG DE TRACCIÓ

ASSAIG DE TRACCIÓ

• Per tal que els valors obtinguts en aquests assaigs no depenguin de les dimensions de la peça que estem utilitzant, si no només del seu material, s’utilitzen els conceptes d’esforç unitari i d’allargament unitari.

ESFORÇ UNITARI

• L’esforç unitari (σ) o simplement esforç, és la relació entre la força F aplicada a un material i la secció A sobre la qual s¡aplica.

AF

σ on σ = esforç unitari [N/mm2] o [MPa]

F = força aplicada [N] A = secció inicial [mm2]

[N/mm2] o [MPa]

Page 19: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 19

PROPIETATS MECÀNIQUES

RESISTÈNCIA MECÀNICA I ASSAIG DE TRACCIÓ

ESFORÇ UNITARI

Page 20: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 20

PROPIETATS MECÀNIQUES

RESISTÈNCIA MECÀNICA I ASSAIG DE TRACCIÓ

ALLARGAMENT UNITARI

• L’allargament unitari (ε) és la relació entre l’allargament ΔL d’una peça i la llargària inicial L0 que tenia abans d’aplicar l’esforç de tracció.

LΔL

ε0

on ε = allargament unitari [adimensional o

%]∆L = increment de llargària [mm]

L0 = llargària calibrada (inicial) [mm]

Page 21: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 21

PROPIETATS MECÀNIQUES

RESISTÈNCIA MECÀNICA I ASSAIG DE TRACCIÓ

ALLARGAMENT UNITARI

Page 22: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 22

PROPIETATS MECÀNIQUES

RESISTÈNCIA MECÀNICA I ASSAIG DE TRACCIÓ

DIAGRAMA DE TRACCIÓ

• Els resultats de l’assaig s’enregistren en un gràfic anomenat diagrama de tracció, que recull l’allargament produït en funció de l’esforç aplicat.

Page 23: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 23

• Les deformacions produïdes desapareixen després d’aplicar l’esforç.

• Gràficament és una recta (existeix proporció fixa entre esforç aplicat i l’allargament produït).

• El valor constant de proporcionalitat s’anomena mòdul elàstic o mòdul de Young (E).

εσ

E on E = Mòdul elàstic o mòdul de Young [N/mm2] o

[MPa]σ = esforç unitari [N/mm2] o [MPa]ε = allargament unitari

[N/mm2] o [MPa]

• El valor del mòdul elàstic es pot interpretar com la rigidesa del material.

Si E RIGIDESA

ZONA ELÀSTICA

PROPIETATS MECÀNIQUES

RESISTÈNCIA MECÀNICA I ASSAIG DE TRACCIÓ

DIAGRAMA DE TRACCIÓ

Page 24: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 24

ACTIVITATS1.- Explica per què es fa servir l’esforç unitari i l’allargament

unitari en els assajos dels materials.2.- Explica què és l’esforç unitari , escriu la fórmula, els símbols

i les unitats.3.- Explica què és l’allargament unitari , escriu la fórmula, els

símbols i les unitats.4.- Explica la llei de Hooke, amb un diagrama i la fórmula, en

els casos generals d’allargament i d’allargament unitari.5.- Explica què és mòdul de Young, elàstic o de rigidesa ,

escriu la fórmula, els símbols i les unitats.6.- A partir de la fórmula del mòdul de rigidesa, aïlla l’esforç

unitari i la longitud inicial del material.

Page 25: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 25

• Límit elàstic (σe): és l’esforç unitari màxim que pot suportar un material sense experimentar cap deformació permanent.

σ et

on σe = límit elàstic del material [N/mm2] o [MPa]

σt = tensió màxima de treball [N/mm2] o [MPa]

n = coeficient de seguretat [entre 1,2 i 4]

[N/mm2] o [MPa]

• Existeix un límit elàstic teòric i un límit elàstic mesurat.

• A la pràctica, al dissenyar un element d’una màquina es fa de tal manera que sempre treballi per sota del seu límit elàstic. Per calcular la tensió a la que haurà de treballar apliquem un coeficient de seguretat. Com més gran sigui aquest coeficient, més segura serà la peça.

ZONA PLÀSTICA

PROPIETATS MECÀNIQUES

RESISTÈNCIA MECÀNICA I ASSAIG DE TRACCIÓ

DIAGRAMA DE TRACCIÓ

Page 26: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 26

• A partir del límit elàstic (σe), a mesura que s’incrementen els esforços, augmenta la deformació, que sempre serà de caràcter permanent. Aquest tram s’anomena fluència.

ZONA PLÀSTICA

• Si un material és molt fràgil pràcticament no té zona plàstica, passa directament de la zona elàstica al trencament.

• Com més plàstic sigui un material, més àmplia tindrà aquesta zona (es diu que el material flueix).

PROPIETATS MECÀNIQUES

RESISTÈNCIA MECÀNICA I ASSAIG DE TRACCIÓ

DIAGRAMA DE TRACCIÓ

Page 27: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 27

• És el valor de l’esforç (R) a partir del qual començarà el trencament de la peça, tot i que disminuïm l’esforç.

RESISTÈNCIA O CÀRREGA AL TRENCAMENT

• Com més dúctil sigui un material, més àmplia tindrà aquesta zona posterior a R. En aquesta zona l’esforç serà menor al valor d’R perquè la secció disminueix (estricció).

• Un cop trencada la proveta, s’uneixen els dos trossos i es mesura la distància entre les marques de calibratge. L’allargament s’expressa en forma de percentatge:

ALLARGAMENT

100L

L-Lε%

0

0f on ε% = allargament en %

Lf = llargària final [mm]

L0 = llargària inicial [mm]

• ε% ens dóna idea de la ductilitat dels metalls. Com més elevat és ε% més dúctil és el material.

PROPIETATS MECÀNIQUES

RESISTÈNCIA MECÀNICA I ASSAIG DE TRACCIÓ

DIAGRAMA DE TRACCIÓ

Page 28: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 28

PROPIETATS MECÀNIQUES

RESISTÈNCIA MECÀNICA I ASSAIG DE TRACCIÓ

DIAGRAMA DE TRACCIÓ

Page 29: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 29

PROPIETATS MECÀNIQUES

CARACTERÍSTIQUES MECÀNIQUES D’ALGUNS MATERIALS• Podem dir que el que indica cada valor és:

E (mòdul elàstic/de Young) la rigidesa

σe (límit elàstic) l’elasticitat

σr (esforç al trencament) la resistència mecànica

ε (allargament) la plasticitat dels materials

• D’altra banda, cal recordar el concepte de densitat (ρ):

Vm

ρ [kg/m3]

Page 30: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 30

PROPIETATS MECÀNIQUES

CARACTERÍSTIQUES MECÀNIQUES D’ALGUNS

MATERIALS

Page 31: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 31

PROPIETATS MECÀNIQUES

CARACTERÍSTIQUES MECÀNIQUES D’ALGUNS

MATERIALS

Page 32: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 32

PROPIETATS MECÀNIQUES

CARACTERÍSTIQUES MECÀNIQUES D’ALGUNS

MATERIALS

Page 33: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 33

PROPIETATS MECÀNIQUES

• La duresa és la resistència o oposició que presenta un material a ser ratllat o penetrat per un altre material.

DURESA

• És deguda a les forces de cohesió entre els àtoms del material (els materials més durs presenten enllaços iònics o covalents).

• És molt comú que els sòlids durs siguin alhora fràgils com el vidre.

• Per comparar i mesurar la duresa s’utilitzen diferents tipus d’assaigs. La major part d’aquests assaigs consisteixen en forçar la penetració d’un objecte de material molt dur (penetrador) sobre el material a assajar (mostra o proveta). Com més penetració s’aconsegueix, aplicant la mateixa força, més tou serà el material que s’està estudiant.

• Un dels mètodes més utilitats per mesurar la duresa dels metalls és l’assaig Brinell (regulat per la norma UNE-EN 6506-1).

Page 34: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 34

ASSAJOS DE DURESA

• Els assajos de duresa poden ser:

Escala Mohs Assaig Martens

Al ratllat

A la penetració

Assaig BrinellAssaig VickersAssaig KnoopAssaig Rockwell

Al rebot Assaig Shore

PROPIETATS MECÀNIQUESDURESA

Page 35: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 35

• En tots els mètodes es col·loca un element molt dur anomenat penetrador sobre la superfície del material a assajar (proveta) i se li aplica una càrrega durant un temps determinat.

• En aquest tipus d’assajos està normalitzat:– La forma, les dimensions i el material del que està fet el

penetrador.– El valor de la càrrega aplicada.– El temps d’aplicació de la càrrega.

• Depenent del mètode utilitzat, el valor de la duresa del material s’obté en funció de la superfície o de la fondària de la marca deixada pel penetrador.

ASSAJOS DE DURESA

PROPIETATS MECÀNIQUESDURESA

Page 36: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 36

PROPIETATS MECÀNIQUES

DURESA

ASSAIG BRINELL

• Ideat el 1900 per un enginyer suec. Utilitza un penetrador de material molt dur (carbur de tungsté) en forma d’esfera que se situa damunt de la mostra de material que s’han d’assajar.

• S’aplica una càrrega damunt l’esfera durant un temps. Després es retiren la càrrega i l’esfera i es mesura la superfície de la marca sobre la proveta (serà un casquet esfèric la superfície del qual la podrem calcular a partir de la mesura dels diàmetres de la marca i l’esfera).

Page 37: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 37

PROPIETATS MECÀNIQUES

DURESA

ASSAIG BRINELL

• El grau de duresa, que en aquest cas s’anomena Duresa Brinell, s’obté amb l’expressió:

AF

0,102HBW on HB = grau de duresa Brinell (sense unitats)

0,102= constant 1/9,806F = càrrega aplicada a la bola [N]A = superfície deixada per la marca de la bola [mm2]

• Per obtenir el valor de la superfície de la marca, es mesura el seu diàmetre amb un microscopi o lupa de retícula graduada i després es resol la següent expressió:

2dD-DDπ

A22

on D = diàmetre de la bola [mm]

d = diàmetre de la marca [mm] [mm2]

Page 38: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 38

PROPIETATS MECÀNIQUES

DURESA

Diàmetre de la bola: 10 mmCàrrega aplicada: 29,42 kN (equivalent a m=3000

kg) Temps d’aplicació: 15 s

D/C/t) HBW XX

XX grau de duresa Brinell D diàmetre de la bola [mm] C 0,102·F (F és la càrrega en N) t temps d’aplicació [s]

• Els assaigs de duresa es fan amb unes màquines especials anomenades duròmetres. Per acers i materials metàl·lics en general, s’utilitzen els valors següents:

• Si el valor HB s’ha obtingut en unes altres condicions, acostuma a indicar-se de la següent manera (materials més tous o més prims):

ASSAIG BRINELL

Page 39: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 39

RELACIÓ ENTRE LA DURESA I LA RESISTÈNCIA A LA TRACCIÓ

• És més senzill realitzar un assaig de duresa que un de tracció. Serà interessant poder obtenir una relació entre aquests dos paràmetres.

• Per a l’acer aquesta relació és la següent:

HBW3,45MPaσr

PROPIETATS MECÀNIQUES DURESA

ASSAIG BRINELL

• Tant la duresa com la resistència a la tracció indiquen el grau d’oposició del material a ser deformat plàsticament.

Page 40: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 40

PROPIETATS MECÀNIQUES

• La tenacitat és defineix com la capacitat de resistència al xoc.

TENACITAT

• És la propietat contrària a la fragilitat.

• Els materials tenaços són capaços d’absorbir molta energia cinètica en un xoc i transformar-la en deformació plàstica o elàstica, evitant així el trencament.

• Normalment, la fragilitat (o manca de tenacitat) va lligada a la duresa: els materials durs acostumen a ser fràgils.

ASSAIG DE RESILIÈNCIA

• Es coneix amb el nom de resiliència l’energia necessària per trencar un material amb un sol cop. L’assaig de resiliència es denomina també assaig de resistència al xoc.

Page 41: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 41

PROPIETATS MECÀNIQUES

TENACITAT ASSAIG DE RESILIÈNCIA

• El valor de la resiliència obtingut a l’assaig és una mesura indirecta de la tenacitat dels materials (juntament amb una bona resistència a la tracció i un elevat valor d’allargament).

• Hi ha 2 modalitats d’aquests tipus d’assaigs: el pèndol de Charpy i el d’Izod. Les 2 són molt similars i, per tant, només en descriurem una:

• Es realitza en una màquina que incorpora un pèndol amb una massa de 22 kg situada a l’extrem. A la vertical del punt de gir del pèndol hi ha l’enclusa on es fixa la proveta.

• Per realitzat l’assaig, es deixa caure el pèndol des de la posició inicial a una alçària fixa h0. Un cop impactada la proveta, aquesta es trenca i el pèndol continua el seu recorregut assolint una alçària final hf. La diferència d’alçàries (h0 – hf) és proporcional a la resiliència.

ASSAIG CHARPY

Page 42: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 42

PROPIETATS MECÀNIQUES

TENACITAT ASSAIG DE RESILIÈNCIA

Page 43: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 43

PROPIETATS MECÀNIQUES

TENACITAT ASSAIG DE RESILIÈNCIA

Page 44: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 44

• Les provetes porten mecanitzada una entalla, que té forma de “V”, que permet que el trencament es produeixi en el punt desitjat.

• Les dimensions i la forma i de les provetes estan normalitzades.

• Els valors de resiliència es donen en funció de la secció del material en el punt de trencament.

AE

K C

on K = resiliència del material [J/mm2]EC= energia cinètica consumida en el trencament [J]A = secció de trencament de la proveta [mm2]

[J/mm2]

PROPIETATS MECÀNIQUES

TENACITAT ASSAIG DE RESILIÈNCIA

CHARPY

Page 45: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 45

PROPIETATS MECÀNIQUES

• Els esforços de fatiga són aquells que alternen el seu sentit d’aplicació (tracció-compressió, torsió, flexió) de manera repetitiva o cíclica en el temps.

ASSAIGS DE FATIGA

• L’assaig de fatiga intenta reproduir les condicions de treball reals dels materials. Un dels més usuals consisteix en sotmetre la proveta a esforços de flexió rotativa (torsió + flexió) en un cicle que es va repetint en el temps.

• Per realitzar aquest tipus d’assajos s’utilitza la màquina universal AMSLER (treballa entre 250 i 500 cicles per minut).

• Els resultats dels assajos de fatiga es representen en un gràfic que es coneix com Corba S-N o Diagrama de Wölher. A l’eix de les ordenades es representa l’amplitud de l’esforç aplicat S (valor mig entre màxim i mínim) [N/mm2] i a l’eix de les abscisses es representa (en escala logarítmica) el nombre de cicles N a que ha estat sotmesa la proveta fins al seu trencament.

Page 46: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 46

PROPIETATS MECÀNIQUES

ASSAIGS DE FATIGA

• Podem trobar dos tipus de corbes diferents depenent del tipus de material assajat:

Corba amb límit de fatiga: si no superem aquest valor d’esforç el material no es trenca mai.

Corba sense límit de fatiga: per a tota l’amplitud de l’esforç existeix un nombre de cicles que fa la peça es trenqui. Podem definir dos valors importants:

La resistència a la fatiga: és el valor d’amplitud de l’esforç que provoca el trencament del material després d’un nombre determinat de cicles.

La vida a la fatiga: és el nombre de cicles de treball que pot suportar un material per a una determinada amplitud de l’esforç aplicat (Nf).

Page 47: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 47

Ex: aliatges de Ti, de Fe,...

Trencament després de 105 cicles

No existeix trencament

PROPIETATS MECÀNIQUES

ASSAIGS DE FATIGA

Page 48: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 48

Ex: aliatges de Cu, d’Al,...

PROPIETATS MECÀNIQUES

ASSAIGS DE FATIGA

Page 49: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 49

Les principals característiques d’aquest tipus d’assajos són:Es realitzen sobre peces, objectes un cop ja hem finalitzat la seva fabricació.

Han de permetre utilitzar la peça després de realitzar l’assaig, sense deixar cap mena de marca.

S’apliquen per detectar la presència o absència de defectes interns no observables a primera vista (també s’anomenen assajos de defectes).

Aquests defectes poden ser: fissures, esquerdes, porus, inclusions,...

Els principals tipus són: MagnèticsAmb radiacions (raigs X o raigs gamma)D’ultrasons

PROPIETATS MECÀNIQUES

ASSAIGS NO DESTRUCTIUS O DE DEFECTES

Page 50: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 50

• Consisteixen en l’aplicació d’un camp magnètic a la peça que volem assajar.

Si la peça no té defectes, l’estructura interna serà homogènia i, per tant, la permeabilitat magnètica (μ) serà constant en tota la seva extensió.

Si la peça té defectes, l’estructura interna deixa de ser homogènia i es provoca una variació localitzada de la μ que desvia les línies de força del camp magnètic.

PROPIETATS MECÀNIQUES

ASSAIGS NO DESTRUCTIUS O DE DEFECTES

ASSAIGS MAGNÈTICS

• Aquests assaigs tenen una limitació: només es poden realitzar en materials ferromagnètics (acers i foses) que són els que tenen una permeabilitat elevada i que concentren les línies del camp magnètic.

Page 51: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 51

• La desviació de les línies de força (que indica presència de defecte) pot ser detectada de tres maneres:

Detecció òptica assaig magnetoscòpicDetecció acústica assaig magnetoacústicDetecció elèctrica assaig electromagnètic

PROPIETATS MECÀNIQUES

ASSAIGS NO DESTRUCTIUS o DE DEFECTES

ASSAIGS MAGNÈTICS

Page 52: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 52

PROPIETATS MECÀNIQUES

ASSAIGS NO DESTRUCTIUS O DE DEFECTES

ASSAIGS PER RAIGS X I RAIGS GAMMA

• S’utilitzen quan el material que volem assajar no és ferromagnètic o quan el defecte està allunyat de la superfície.

• Aquestes radiacions són del tipus electromagnètic, caracteritzades per:

– Desplaçar-se en línia recta a la velocitat de la llum.

– No ser desviades per camps elèctrics ni magnètics.

– No canviar de direcció (ni per reflexió ni per refracció).

– Impressionar plaques fotogràfiques similarment a com ho fa la llum.

Page 53: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 53

• Aquests assajos consisteixen en fer que la radiació travessi la peça que es vol examinar i arribi a impressionar una placa fotogràfica situada al seu darrere.

• Aquesta radiació va sent absorbida pel material, però no tots els materials absorbeixen en la mateixa mesura. Aquest fet ens servirà per detectar els defectes.

– Si no existeixen defectes la placa quedarà impressionada de forma uniforme.

– Si existeixen defectes a la placa veurem zones impressionades amb més o menys intensitat (taques).

PROPIETATS MECÀNIQUES

ASSAIGS NO DESTRUCTIUS O DE DEFECTES

ASSAIGS PER RAIGS X I RAIGS GAMMA

Page 54: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 54

• RAIGS X

– Es produeixen aplicant una tensió elèctrica elevada (fins 106 V) en una mena de làmpada de vidre (amb filament i electrode).

– Poder de penetració: fins a peces de 100 mm.

– Aparell utilitzat és més voluminós i més car i necessita energia elèctrica per funcionar.

• RAIGS GAMMA

– Es produeixen per substàncies radioactives com el Ra, el Co, el Cs, l’Ir,... sense que calgui utilitzar energia elèctrica.

– Poder de penetració: fins a peces de 250 mm.

PROPIETATS MECÀNIQUES

ASSAIGS NO DESTRUCTIUS O DE DEFECTES

ASSAIGS PER RAIGS X I RAIGS GAMMA

Page 55: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 55

• Consisteix en utilitzar ultrasons (ones de pressió o sonores de freqüència superior a la màxima audible pels humans (> 20000 Hz)), com es fa en les ecografies mèdiques o en els sonars dels vaixells.

• Els ultrasons es caracteritzen per:

– Desplaçar-se en línia recta a gran velocitat.

– La velocitat de propagació depèn del medi: perfectament en sòlids (quan més rígid millor), força bé pels líquids, amb dificultat pels gasos i inexistent en el buit.

– Es reflecteixen, es refracten i es dispersen davant de canvis en el medi per on es propaguen.

PROPIETATS MECÀNIQUES

ASSAIGS NO DESTRUCTIUS O DE DEFECTES

ASSAIGS PER ULTRASONS

Page 56: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 56

• Per generar i detectar defectes s’utilitzen cristalls de quars aprofitant el seu efecte piezoelèctric.

• Apliquem una càrrega elèctrica alterna als cristalls, fent que aquests vibrin i emetin ultrasons.

• Quan aquesta vibració travessa la peça, rebota i retorna als cristalls provocant l’efecte invers, una tensió elèctrica que es captada pel quars i visualitzada en una pantalla fosforescent.

• Una de les modalitats consisteix en col·locar dos cristalls de quars (el generador i el receptor) sobre la mateixa cara de la peça a assajar, de forma que el receptor capta l’eco de la senyal que ha emès el generador després que aquesta reboti contra el fons de la peça.

PROPIETATS MECÀNIQUES

ASSAIGS NO DESTRUCTIUS O DE DEFECTES

ASSAIGS PER ULTRASONS

Page 57: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 57

PROPIETATS MECÀNIQUES

ASSAIGS NO DESTRUCTIUS O DE DEFECTES

ASSAIGS PER ULTRASONS

Page 58: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 58

• Les propietats tèrmiques indiquen el comportament dels materials davant d’una de les formes que pot adoptar l’energia: la calor.

Les principals propietats tèrmiques són:

PROPIETATS TÈRMIQUES

Conductivitat tèrmica (λ)

Dilatació tèrmica

PROPIETATS TÈRMIQUES

• La conductivitat tèrmica és pròpia de cada material i depèn de la Tª inicial a la que aquest es troba. Les taules on s’indiquen les propietats dels materials solen prendre de referència els 0 o 20 ºC.

CONDUCTIVITAT TÈRMICA (λ)

• La conductivitat tèrmica és la facilitat que ofereix un material per permetre el flux d’energia tèrmica a través seu.

Page 59: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 59

PROPIETATS TÈRMIQUES

• La calor transmesa per un objecte depèn de:

El tipus de material (λ). La distància entre la font de calor i el punt on prenem la

Tª (L). La secció de l’objecte (A). La diferència de temperatures inicial i final (ΔT). El temps de propagació de la calor (t).

• La relació entre aquestes magnituds s’expressa matemàticament:

CONDUCTIVITAT TÈRMICA (λ)

LΔTtA

Q

λOn Q = quantitat de calor [J]

λ = conductivitat tèrmica el material [W/m·K]t = temps transcorregut [s]A = superfície de contaccte entre les dues masses tèrmiques o entre les dues zones que es troben a diferent T [m2]ΔT = diferència de temperatura [K]L = gruix del material o distància entre les dues zones a diferent T si es tracta d’un mateix cos [m]

[J]

Page 60: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 60

PROPIETATS TÈRMIQUES

• El quocient Q/t s’anomena potència tèrmica (Pt). Així doncs, podem determinar la potència tèrmica transmesa com:

CONDUCTIVITAT TÈRMICA (λ)

LΔTA

Pt

λ [W]

DILATACIÓ TÈRMICA

• La dilatació tèrmica és el fenomen que provoca l’augment de les dimensions d’un material, especialment els metalls, quan augment la temperatura.

• La dilatació tèrmica depèn:

Del material (cada material té un grau diferent de dilatació).

De l’increment de la temperatura (com més gran sigui, major serà la dilatació).

Page 61: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 61

• Segons siguin les dimensions de l’objecte sobre les quals es determina l’increment, es defineixen diferents tipus de dilatacions:

Dilatació lineal Dilatació superficial Dilatació cúbica

PROPIETATS TÈRMIQUES

DILATACIÓ TÈRMICA (λ)

• La dilatació tèrmica es calcula mitjançant l’expressió:

ΔTαLΔL

o

On ΔL = diferència entre llargària inicial i final [m]Lo = llargària inicial [m]α = coeficient de dilatació tèrmica lineal [ºC-1]ΔT = diferència de temperatura [ºC]

Page 62: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 62

• Cada material té valors diferents i propis de dilatació tèrmica, els quals podem trobar a les taules de característiques dels materials. Aquest coeficient sol ser vàlid per a temperatures compreses entre els 20 ºC i els 100 ºC.

• La dilatació tèrmica es pot aprofitar per calcular la temperatura d’un cos a partir de saber el seu increment de llargària i el seu coeficient de dilatació.

• Alguns elements de control automàtic de T (termòstats, termòmetres bimetàl·lics,...) basen el seu funcionament en la dilatació tèrmica. També s’ha de tenir present la dilatació a l’hora de realitzar construccions amb elements metàl·lics com ara ponts, vies de ferrocarril, edificis,... , ja que els canvis de t els poden sotmetre a grans tensions i provocar una deformació perillosa o, fins i tot, el trencament de l’estructura.

PROPIETATS TÈRMIQUES

DILATACIÓ TÈRMICA (λ)

Page 63: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 63

PROPIETATS TÈRMIQUES

DILATACIÓ TÈRMICA (λ)

Page 64: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 64

MAGNETISME

• Un camp magnètic és aquella regió de l’espai que envolta un imant o que es forma en el nucli d’un electroimant. Representem el camp magnètic mitjançant una sèrie de línies de força, de manera que com més juntes estiguin voldrà dir que més intens és el camp les forces d’atracció o repulsió que provocarà seran més grans.

• La permeabilitat magnètica (μ) ens dóna idea de la capacitat que té un material de concentrar o dispersar les línies de força.

ASSAIGS MAGNÈTICS

Page 65: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 65

0r μ

μμ

On μr = permeabilitat relativa del material.μ = permeabilitat magnètica absoluta del

material.μ0 = permeabilitat magnètica absoluta en el

buit.

• Normalment es pren el valor de la permeabilitat en el buit com a referència (μ0), i llavors s’obté el valor de la permeabilitat relativa.

• Segons sigui la permeabilitat podem classificar els materials en:

Materials FERROMAGNÈTICS Si μr > 1

Materials PARAMAGNÈTICS Si μr = 1

Materials DIAMAGNÈTICS Si μr < 1

MAGNETISME

ASSAIGS MAGNÈTICS

Page 66: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 66

MATERIALS PARAMAGNÈTICS μr = 1• Són aquells que situats en un camp magnètic:

No s’imanten. No desvien les línies de força.

• Alguns materials paramagnètics són: Al, Sn, Cr, O, Ti,... (comportament similar al de l’aire).

MAGNETISMEASSAIGS

MAGNÈTICS

Page 67: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 67

• Són aquells que situats en un camp magnètic:

No s’imanten (o ho fan molt feblement). Tendeixen a separar les LF debiliten el camp.

• Alguns materials diamagnètics són: Cu, Zn, Ag, Hg, H2O,...

MATERIALS DIAMAGNÈTICS μr < 1

MAGNETISMEASSAIGS

MAGNÈTICS

Page 68: UNITAT 6  PROPIETATS I ASSAIGS

19/04/23 Unitat 6. Propietats i assaigs 68

• Són aquells que situats en un camp magnètic:

S’imanten. Tendeixen a concentrar les LF reforcen el camp.

• Alguns materials ferromagnètics són: Fe, acer, Co, Ni,...

MATERIALS FERROMAGNÈTICS μr > 1

MAGNETISMEASSAIGS

MAGNÈTICS